]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - net/socket.c
lan743x: Add power management support
[mirror_ubuntu-eoan-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <net/busy_poll.h>
108 #include <linux/errqueue.h>
109
110 #ifdef CONFIG_NET_RX_BUSY_POLL
111 unsigned int sysctl_net_busy_read __read_mostly;
112 unsigned int sysctl_net_busy_poll __read_mostly;
113 #endif
114
115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
117 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
118
119 static int sock_close(struct inode *inode, struct file *file);
120 static __poll_t sock_poll(struct file *file,
121 struct poll_table_struct *wait);
122 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
123 #ifdef CONFIG_COMPAT
124 static long compat_sock_ioctl(struct file *file,
125 unsigned int cmd, unsigned long arg);
126 #endif
127 static int sock_fasync(int fd, struct file *filp, int on);
128 static ssize_t sock_sendpage(struct file *file, struct page *page,
129 int offset, size_t size, loff_t *ppos, int more);
130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
131 struct pipe_inode_info *pipe, size_t len,
132 unsigned int flags);
133
134 /*
135 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
136 * in the operation structures but are done directly via the socketcall() multiplexor.
137 */
138
139 static const struct file_operations socket_file_ops = {
140 .owner = THIS_MODULE,
141 .llseek = no_llseek,
142 .read_iter = sock_read_iter,
143 .write_iter = sock_write_iter,
144 .poll = sock_poll,
145 .unlocked_ioctl = sock_ioctl,
146 #ifdef CONFIG_COMPAT
147 .compat_ioctl = compat_sock_ioctl,
148 #endif
149 .mmap = sock_mmap,
150 .release = sock_close,
151 .fasync = sock_fasync,
152 .sendpage = sock_sendpage,
153 .splice_write = generic_splice_sendpage,
154 .splice_read = sock_splice_read,
155 };
156
157 /*
158 * The protocol list. Each protocol is registered in here.
159 */
160
161 static DEFINE_SPINLOCK(net_family_lock);
162 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
163
164 /*
165 * Support routines.
166 * Move socket addresses back and forth across the kernel/user
167 * divide and look after the messy bits.
168 */
169
170 /**
171 * move_addr_to_kernel - copy a socket address into kernel space
172 * @uaddr: Address in user space
173 * @kaddr: Address in kernel space
174 * @ulen: Length in user space
175 *
176 * The address is copied into kernel space. If the provided address is
177 * too long an error code of -EINVAL is returned. If the copy gives
178 * invalid addresses -EFAULT is returned. On a success 0 is returned.
179 */
180
181 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
182 {
183 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
184 return -EINVAL;
185 if (ulen == 0)
186 return 0;
187 if (copy_from_user(kaddr, uaddr, ulen))
188 return -EFAULT;
189 return audit_sockaddr(ulen, kaddr);
190 }
191
192 /**
193 * move_addr_to_user - copy an address to user space
194 * @kaddr: kernel space address
195 * @klen: length of address in kernel
196 * @uaddr: user space address
197 * @ulen: pointer to user length field
198 *
199 * The value pointed to by ulen on entry is the buffer length available.
200 * This is overwritten with the buffer space used. -EINVAL is returned
201 * if an overlong buffer is specified or a negative buffer size. -EFAULT
202 * is returned if either the buffer or the length field are not
203 * accessible.
204 * After copying the data up to the limit the user specifies, the true
205 * length of the data is written over the length limit the user
206 * specified. Zero is returned for a success.
207 */
208
209 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
210 void __user *uaddr, int __user *ulen)
211 {
212 int err;
213 int len;
214
215 BUG_ON(klen > sizeof(struct sockaddr_storage));
216 err = get_user(len, ulen);
217 if (err)
218 return err;
219 if (len > klen)
220 len = klen;
221 if (len < 0)
222 return -EINVAL;
223 if (len) {
224 if (audit_sockaddr(klen, kaddr))
225 return -ENOMEM;
226 if (copy_to_user(uaddr, kaddr, len))
227 return -EFAULT;
228 }
229 /*
230 * "fromlen shall refer to the value before truncation.."
231 * 1003.1g
232 */
233 return __put_user(klen, ulen);
234 }
235
236 static struct kmem_cache *sock_inode_cachep __ro_after_init;
237
238 static struct inode *sock_alloc_inode(struct super_block *sb)
239 {
240 struct socket_alloc *ei;
241 struct socket_wq *wq;
242
243 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
244 if (!ei)
245 return NULL;
246 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
247 if (!wq) {
248 kmem_cache_free(sock_inode_cachep, ei);
249 return NULL;
250 }
251 init_waitqueue_head(&wq->wait);
252 wq->fasync_list = NULL;
253 wq->flags = 0;
254 RCU_INIT_POINTER(ei->socket.wq, wq);
255
256 ei->socket.state = SS_UNCONNECTED;
257 ei->socket.flags = 0;
258 ei->socket.ops = NULL;
259 ei->socket.sk = NULL;
260 ei->socket.file = NULL;
261
262 return &ei->vfs_inode;
263 }
264
265 static void sock_destroy_inode(struct inode *inode)
266 {
267 struct socket_alloc *ei;
268 struct socket_wq *wq;
269
270 ei = container_of(inode, struct socket_alloc, vfs_inode);
271 wq = rcu_dereference_protected(ei->socket.wq, 1);
272 kfree_rcu(wq, rcu);
273 kmem_cache_free(sock_inode_cachep, ei);
274 }
275
276 static void init_once(void *foo)
277 {
278 struct socket_alloc *ei = (struct socket_alloc *)foo;
279
280 inode_init_once(&ei->vfs_inode);
281 }
282
283 static void init_inodecache(void)
284 {
285 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
286 sizeof(struct socket_alloc),
287 0,
288 (SLAB_HWCACHE_ALIGN |
289 SLAB_RECLAIM_ACCOUNT |
290 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
291 init_once);
292 BUG_ON(sock_inode_cachep == NULL);
293 }
294
295 static const struct super_operations sockfs_ops = {
296 .alloc_inode = sock_alloc_inode,
297 .destroy_inode = sock_destroy_inode,
298 .statfs = simple_statfs,
299 };
300
301 /*
302 * sockfs_dname() is called from d_path().
303 */
304 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
305 {
306 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
307 d_inode(dentry)->i_ino);
308 }
309
310 static const struct dentry_operations sockfs_dentry_operations = {
311 .d_dname = sockfs_dname,
312 };
313
314 static int sockfs_xattr_get(const struct xattr_handler *handler,
315 struct dentry *dentry, struct inode *inode,
316 const char *suffix, void *value, size_t size)
317 {
318 if (value) {
319 if (dentry->d_name.len + 1 > size)
320 return -ERANGE;
321 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
322 }
323 return dentry->d_name.len + 1;
324 }
325
326 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
327 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
328 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
329
330 static const struct xattr_handler sockfs_xattr_handler = {
331 .name = XATTR_NAME_SOCKPROTONAME,
332 .get = sockfs_xattr_get,
333 };
334
335 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
336 struct dentry *dentry, struct inode *inode,
337 const char *suffix, const void *value,
338 size_t size, int flags)
339 {
340 /* Handled by LSM. */
341 return -EAGAIN;
342 }
343
344 static const struct xattr_handler sockfs_security_xattr_handler = {
345 .prefix = XATTR_SECURITY_PREFIX,
346 .set = sockfs_security_xattr_set,
347 };
348
349 static const struct xattr_handler *sockfs_xattr_handlers[] = {
350 &sockfs_xattr_handler,
351 &sockfs_security_xattr_handler,
352 NULL
353 };
354
355 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
356 int flags, const char *dev_name, void *data)
357 {
358 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
359 sockfs_xattr_handlers,
360 &sockfs_dentry_operations, SOCKFS_MAGIC);
361 }
362
363 static struct vfsmount *sock_mnt __read_mostly;
364
365 static struct file_system_type sock_fs_type = {
366 .name = "sockfs",
367 .mount = sockfs_mount,
368 .kill_sb = kill_anon_super,
369 };
370
371 /*
372 * Obtains the first available file descriptor and sets it up for use.
373 *
374 * These functions create file structures and maps them to fd space
375 * of the current process. On success it returns file descriptor
376 * and file struct implicitly stored in sock->file.
377 * Note that another thread may close file descriptor before we return
378 * from this function. We use the fact that now we do not refer
379 * to socket after mapping. If one day we will need it, this
380 * function will increment ref. count on file by 1.
381 *
382 * In any case returned fd MAY BE not valid!
383 * This race condition is unavoidable
384 * with shared fd spaces, we cannot solve it inside kernel,
385 * but we take care of internal coherence yet.
386 */
387
388 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
389 {
390 struct qstr name = { .name = "" };
391 struct path path;
392 struct file *file;
393
394 if (dname) {
395 name.name = dname;
396 name.len = strlen(name.name);
397 } else if (sock->sk) {
398 name.name = sock->sk->sk_prot_creator->name;
399 name.len = strlen(name.name);
400 }
401 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
402 if (unlikely(!path.dentry)) {
403 sock_release(sock);
404 return ERR_PTR(-ENOMEM);
405 }
406 path.mnt = mntget(sock_mnt);
407
408 d_instantiate(path.dentry, SOCK_INODE(sock));
409
410 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
411 &socket_file_ops);
412 if (IS_ERR(file)) {
413 /* drop dentry, keep inode for a bit */
414 ihold(d_inode(path.dentry));
415 path_put(&path);
416 /* ... and now kill it properly */
417 sock_release(sock);
418 return file;
419 }
420
421 sock->file = file;
422 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
423 file->private_data = sock;
424 return file;
425 }
426 EXPORT_SYMBOL(sock_alloc_file);
427
428 static int sock_map_fd(struct socket *sock, int flags)
429 {
430 struct file *newfile;
431 int fd = get_unused_fd_flags(flags);
432 if (unlikely(fd < 0)) {
433 sock_release(sock);
434 return fd;
435 }
436
437 newfile = sock_alloc_file(sock, flags, NULL);
438 if (likely(!IS_ERR(newfile))) {
439 fd_install(fd, newfile);
440 return fd;
441 }
442
443 put_unused_fd(fd);
444 return PTR_ERR(newfile);
445 }
446
447 struct socket *sock_from_file(struct file *file, int *err)
448 {
449 if (file->f_op == &socket_file_ops)
450 return file->private_data; /* set in sock_map_fd */
451
452 *err = -ENOTSOCK;
453 return NULL;
454 }
455 EXPORT_SYMBOL(sock_from_file);
456
457 /**
458 * sockfd_lookup - Go from a file number to its socket slot
459 * @fd: file handle
460 * @err: pointer to an error code return
461 *
462 * The file handle passed in is locked and the socket it is bound
463 * to is returned. If an error occurs the err pointer is overwritten
464 * with a negative errno code and NULL is returned. The function checks
465 * for both invalid handles and passing a handle which is not a socket.
466 *
467 * On a success the socket object pointer is returned.
468 */
469
470 struct socket *sockfd_lookup(int fd, int *err)
471 {
472 struct file *file;
473 struct socket *sock;
474
475 file = fget(fd);
476 if (!file) {
477 *err = -EBADF;
478 return NULL;
479 }
480
481 sock = sock_from_file(file, err);
482 if (!sock)
483 fput(file);
484 return sock;
485 }
486 EXPORT_SYMBOL(sockfd_lookup);
487
488 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
489 {
490 struct fd f = fdget(fd);
491 struct socket *sock;
492
493 *err = -EBADF;
494 if (f.file) {
495 sock = sock_from_file(f.file, err);
496 if (likely(sock)) {
497 *fput_needed = f.flags;
498 return sock;
499 }
500 fdput(f);
501 }
502 return NULL;
503 }
504
505 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
506 size_t size)
507 {
508 ssize_t len;
509 ssize_t used = 0;
510
511 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
512 if (len < 0)
513 return len;
514 used += len;
515 if (buffer) {
516 if (size < used)
517 return -ERANGE;
518 buffer += len;
519 }
520
521 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
522 used += len;
523 if (buffer) {
524 if (size < used)
525 return -ERANGE;
526 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
527 buffer += len;
528 }
529
530 return used;
531 }
532
533 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
534 {
535 int err = simple_setattr(dentry, iattr);
536
537 if (!err && (iattr->ia_valid & ATTR_UID)) {
538 struct socket *sock = SOCKET_I(d_inode(dentry));
539
540 if (sock->sk)
541 sock->sk->sk_uid = iattr->ia_uid;
542 else
543 err = -ENOENT;
544 }
545
546 return err;
547 }
548
549 static const struct inode_operations sockfs_inode_ops = {
550 .listxattr = sockfs_listxattr,
551 .setattr = sockfs_setattr,
552 };
553
554 /**
555 * sock_alloc - allocate a socket
556 *
557 * Allocate a new inode and socket object. The two are bound together
558 * and initialised. The socket is then returned. If we are out of inodes
559 * NULL is returned.
560 */
561
562 struct socket *sock_alloc(void)
563 {
564 struct inode *inode;
565 struct socket *sock;
566
567 inode = new_inode_pseudo(sock_mnt->mnt_sb);
568 if (!inode)
569 return NULL;
570
571 sock = SOCKET_I(inode);
572
573 inode->i_ino = get_next_ino();
574 inode->i_mode = S_IFSOCK | S_IRWXUGO;
575 inode->i_uid = current_fsuid();
576 inode->i_gid = current_fsgid();
577 inode->i_op = &sockfs_inode_ops;
578
579 return sock;
580 }
581 EXPORT_SYMBOL(sock_alloc);
582
583 /**
584 * sock_release - close a socket
585 * @sock: socket to close
586 *
587 * The socket is released from the protocol stack if it has a release
588 * callback, and the inode is then released if the socket is bound to
589 * an inode not a file.
590 */
591
592 static void __sock_release(struct socket *sock, struct inode *inode)
593 {
594 if (sock->ops) {
595 struct module *owner = sock->ops->owner;
596
597 if (inode)
598 inode_lock(inode);
599 sock->ops->release(sock);
600 if (inode)
601 inode_unlock(inode);
602 sock->ops = NULL;
603 module_put(owner);
604 }
605
606 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
607 pr_err("%s: fasync list not empty!\n", __func__);
608
609 if (!sock->file) {
610 iput(SOCK_INODE(sock));
611 return;
612 }
613 sock->file = NULL;
614 }
615
616 void sock_release(struct socket *sock)
617 {
618 __sock_release(sock, NULL);
619 }
620 EXPORT_SYMBOL(sock_release);
621
622 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
623 {
624 u8 flags = *tx_flags;
625
626 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
627 flags |= SKBTX_HW_TSTAMP;
628
629 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
630 flags |= SKBTX_SW_TSTAMP;
631
632 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
633 flags |= SKBTX_SCHED_TSTAMP;
634
635 *tx_flags = flags;
636 }
637 EXPORT_SYMBOL(__sock_tx_timestamp);
638
639 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
640 {
641 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
642 BUG_ON(ret == -EIOCBQUEUED);
643 return ret;
644 }
645
646 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
647 {
648 int err = security_socket_sendmsg(sock, msg,
649 msg_data_left(msg));
650
651 return err ?: sock_sendmsg_nosec(sock, msg);
652 }
653 EXPORT_SYMBOL(sock_sendmsg);
654
655 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
656 struct kvec *vec, size_t num, size_t size)
657 {
658 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
659 return sock_sendmsg(sock, msg);
660 }
661 EXPORT_SYMBOL(kernel_sendmsg);
662
663 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
664 struct kvec *vec, size_t num, size_t size)
665 {
666 struct socket *sock = sk->sk_socket;
667
668 if (!sock->ops->sendmsg_locked)
669 return sock_no_sendmsg_locked(sk, msg, size);
670
671 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
672
673 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
674 }
675 EXPORT_SYMBOL(kernel_sendmsg_locked);
676
677 static bool skb_is_err_queue(const struct sk_buff *skb)
678 {
679 /* pkt_type of skbs enqueued on the error queue are set to
680 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
681 * in recvmsg, since skbs received on a local socket will never
682 * have a pkt_type of PACKET_OUTGOING.
683 */
684 return skb->pkt_type == PACKET_OUTGOING;
685 }
686
687 /* On transmit, software and hardware timestamps are returned independently.
688 * As the two skb clones share the hardware timestamp, which may be updated
689 * before the software timestamp is received, a hardware TX timestamp may be
690 * returned only if there is no software TX timestamp. Ignore false software
691 * timestamps, which may be made in the __sock_recv_timestamp() call when the
692 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
693 * hardware timestamp.
694 */
695 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
696 {
697 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
698 }
699
700 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
701 {
702 struct scm_ts_pktinfo ts_pktinfo;
703 struct net_device *orig_dev;
704
705 if (!skb_mac_header_was_set(skb))
706 return;
707
708 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
709
710 rcu_read_lock();
711 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
712 if (orig_dev)
713 ts_pktinfo.if_index = orig_dev->ifindex;
714 rcu_read_unlock();
715
716 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
717 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
718 sizeof(ts_pktinfo), &ts_pktinfo);
719 }
720
721 /*
722 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
723 */
724 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
725 struct sk_buff *skb)
726 {
727 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
728 struct scm_timestamping tss;
729 int empty = 1, false_tstamp = 0;
730 struct skb_shared_hwtstamps *shhwtstamps =
731 skb_hwtstamps(skb);
732
733 /* Race occurred between timestamp enabling and packet
734 receiving. Fill in the current time for now. */
735 if (need_software_tstamp && skb->tstamp == 0) {
736 __net_timestamp(skb);
737 false_tstamp = 1;
738 }
739
740 if (need_software_tstamp) {
741 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
742 struct timeval tv;
743 skb_get_timestamp(skb, &tv);
744 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
745 sizeof(tv), &tv);
746 } else {
747 struct timespec ts;
748 skb_get_timestampns(skb, &ts);
749 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
750 sizeof(ts), &ts);
751 }
752 }
753
754 memset(&tss, 0, sizeof(tss));
755 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
756 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
757 empty = 0;
758 if (shhwtstamps &&
759 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
760 !skb_is_swtx_tstamp(skb, false_tstamp) &&
761 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
762 empty = 0;
763 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
764 !skb_is_err_queue(skb))
765 put_ts_pktinfo(msg, skb);
766 }
767 if (!empty) {
768 put_cmsg(msg, SOL_SOCKET,
769 SCM_TIMESTAMPING, sizeof(tss), &tss);
770
771 if (skb_is_err_queue(skb) && skb->len &&
772 SKB_EXT_ERR(skb)->opt_stats)
773 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
774 skb->len, skb->data);
775 }
776 }
777 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
778
779 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
780 struct sk_buff *skb)
781 {
782 int ack;
783
784 if (!sock_flag(sk, SOCK_WIFI_STATUS))
785 return;
786 if (!skb->wifi_acked_valid)
787 return;
788
789 ack = skb->wifi_acked;
790
791 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
792 }
793 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
794
795 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
796 struct sk_buff *skb)
797 {
798 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
799 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
800 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
801 }
802
803 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
804 struct sk_buff *skb)
805 {
806 sock_recv_timestamp(msg, sk, skb);
807 sock_recv_drops(msg, sk, skb);
808 }
809 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
810
811 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
812 int flags)
813 {
814 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
815 }
816
817 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
818 {
819 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
820
821 return err ?: sock_recvmsg_nosec(sock, msg, flags);
822 }
823 EXPORT_SYMBOL(sock_recvmsg);
824
825 /**
826 * kernel_recvmsg - Receive a message from a socket (kernel space)
827 * @sock: The socket to receive the message from
828 * @msg: Received message
829 * @vec: Input s/g array for message data
830 * @num: Size of input s/g array
831 * @size: Number of bytes to read
832 * @flags: Message flags (MSG_DONTWAIT, etc...)
833 *
834 * On return the msg structure contains the scatter/gather array passed in the
835 * vec argument. The array is modified so that it consists of the unfilled
836 * portion of the original array.
837 *
838 * The returned value is the total number of bytes received, or an error.
839 */
840 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
841 struct kvec *vec, size_t num, size_t size, int flags)
842 {
843 mm_segment_t oldfs = get_fs();
844 int result;
845
846 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
847 set_fs(KERNEL_DS);
848 result = sock_recvmsg(sock, msg, flags);
849 set_fs(oldfs);
850 return result;
851 }
852 EXPORT_SYMBOL(kernel_recvmsg);
853
854 static ssize_t sock_sendpage(struct file *file, struct page *page,
855 int offset, size_t size, loff_t *ppos, int more)
856 {
857 struct socket *sock;
858 int flags;
859
860 sock = file->private_data;
861
862 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
863 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
864 flags |= more;
865
866 return kernel_sendpage(sock, page, offset, size, flags);
867 }
868
869 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
870 struct pipe_inode_info *pipe, size_t len,
871 unsigned int flags)
872 {
873 struct socket *sock = file->private_data;
874
875 if (unlikely(!sock->ops->splice_read))
876 return -EINVAL;
877
878 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
879 }
880
881 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
882 {
883 struct file *file = iocb->ki_filp;
884 struct socket *sock = file->private_data;
885 struct msghdr msg = {.msg_iter = *to,
886 .msg_iocb = iocb};
887 ssize_t res;
888
889 if (file->f_flags & O_NONBLOCK)
890 msg.msg_flags = MSG_DONTWAIT;
891
892 if (iocb->ki_pos != 0)
893 return -ESPIPE;
894
895 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
896 return 0;
897
898 res = sock_recvmsg(sock, &msg, msg.msg_flags);
899 *to = msg.msg_iter;
900 return res;
901 }
902
903 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
904 {
905 struct file *file = iocb->ki_filp;
906 struct socket *sock = file->private_data;
907 struct msghdr msg = {.msg_iter = *from,
908 .msg_iocb = iocb};
909 ssize_t res;
910
911 if (iocb->ki_pos != 0)
912 return -ESPIPE;
913
914 if (file->f_flags & O_NONBLOCK)
915 msg.msg_flags = MSG_DONTWAIT;
916
917 if (sock->type == SOCK_SEQPACKET)
918 msg.msg_flags |= MSG_EOR;
919
920 res = sock_sendmsg(sock, &msg);
921 *from = msg.msg_iter;
922 return res;
923 }
924
925 /*
926 * Atomic setting of ioctl hooks to avoid race
927 * with module unload.
928 */
929
930 static DEFINE_MUTEX(br_ioctl_mutex);
931 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
932
933 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
934 {
935 mutex_lock(&br_ioctl_mutex);
936 br_ioctl_hook = hook;
937 mutex_unlock(&br_ioctl_mutex);
938 }
939 EXPORT_SYMBOL(brioctl_set);
940
941 static DEFINE_MUTEX(vlan_ioctl_mutex);
942 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
943
944 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
945 {
946 mutex_lock(&vlan_ioctl_mutex);
947 vlan_ioctl_hook = hook;
948 mutex_unlock(&vlan_ioctl_mutex);
949 }
950 EXPORT_SYMBOL(vlan_ioctl_set);
951
952 static DEFINE_MUTEX(dlci_ioctl_mutex);
953 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
954
955 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
956 {
957 mutex_lock(&dlci_ioctl_mutex);
958 dlci_ioctl_hook = hook;
959 mutex_unlock(&dlci_ioctl_mutex);
960 }
961 EXPORT_SYMBOL(dlci_ioctl_set);
962
963 static long sock_do_ioctl(struct net *net, struct socket *sock,
964 unsigned int cmd, unsigned long arg)
965 {
966 int err;
967 void __user *argp = (void __user *)arg;
968
969 err = sock->ops->ioctl(sock, cmd, arg);
970
971 /*
972 * If this ioctl is unknown try to hand it down
973 * to the NIC driver.
974 */
975 if (err != -ENOIOCTLCMD)
976 return err;
977
978 if (cmd == SIOCGIFCONF) {
979 struct ifconf ifc;
980 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
981 return -EFAULT;
982 rtnl_lock();
983 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
984 rtnl_unlock();
985 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
986 err = -EFAULT;
987 } else {
988 struct ifreq ifr;
989 bool need_copyout;
990 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
991 return -EFAULT;
992 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
993 if (!err && need_copyout)
994 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
995 return -EFAULT;
996 }
997 return err;
998 }
999
1000 /*
1001 * With an ioctl, arg may well be a user mode pointer, but we don't know
1002 * what to do with it - that's up to the protocol still.
1003 */
1004
1005 struct ns_common *get_net_ns(struct ns_common *ns)
1006 {
1007 return &get_net(container_of(ns, struct net, ns))->ns;
1008 }
1009 EXPORT_SYMBOL_GPL(get_net_ns);
1010
1011 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1012 {
1013 struct socket *sock;
1014 struct sock *sk;
1015 void __user *argp = (void __user *)arg;
1016 int pid, err;
1017 struct net *net;
1018
1019 sock = file->private_data;
1020 sk = sock->sk;
1021 net = sock_net(sk);
1022 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1023 struct ifreq ifr;
1024 bool need_copyout;
1025 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1026 return -EFAULT;
1027 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1028 if (!err && need_copyout)
1029 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1030 return -EFAULT;
1031 } else
1032 #ifdef CONFIG_WEXT_CORE
1033 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1034 err = wext_handle_ioctl(net, cmd, argp);
1035 } else
1036 #endif
1037 switch (cmd) {
1038 case FIOSETOWN:
1039 case SIOCSPGRP:
1040 err = -EFAULT;
1041 if (get_user(pid, (int __user *)argp))
1042 break;
1043 err = f_setown(sock->file, pid, 1);
1044 break;
1045 case FIOGETOWN:
1046 case SIOCGPGRP:
1047 err = put_user(f_getown(sock->file),
1048 (int __user *)argp);
1049 break;
1050 case SIOCGIFBR:
1051 case SIOCSIFBR:
1052 case SIOCBRADDBR:
1053 case SIOCBRDELBR:
1054 err = -ENOPKG;
1055 if (!br_ioctl_hook)
1056 request_module("bridge");
1057
1058 mutex_lock(&br_ioctl_mutex);
1059 if (br_ioctl_hook)
1060 err = br_ioctl_hook(net, cmd, argp);
1061 mutex_unlock(&br_ioctl_mutex);
1062 break;
1063 case SIOCGIFVLAN:
1064 case SIOCSIFVLAN:
1065 err = -ENOPKG;
1066 if (!vlan_ioctl_hook)
1067 request_module("8021q");
1068
1069 mutex_lock(&vlan_ioctl_mutex);
1070 if (vlan_ioctl_hook)
1071 err = vlan_ioctl_hook(net, argp);
1072 mutex_unlock(&vlan_ioctl_mutex);
1073 break;
1074 case SIOCADDDLCI:
1075 case SIOCDELDLCI:
1076 err = -ENOPKG;
1077 if (!dlci_ioctl_hook)
1078 request_module("dlci");
1079
1080 mutex_lock(&dlci_ioctl_mutex);
1081 if (dlci_ioctl_hook)
1082 err = dlci_ioctl_hook(cmd, argp);
1083 mutex_unlock(&dlci_ioctl_mutex);
1084 break;
1085 case SIOCGSKNS:
1086 err = -EPERM;
1087 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1088 break;
1089
1090 err = open_related_ns(&net->ns, get_net_ns);
1091 break;
1092 default:
1093 err = sock_do_ioctl(net, sock, cmd, arg);
1094 break;
1095 }
1096 return err;
1097 }
1098
1099 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1100 {
1101 int err;
1102 struct socket *sock = NULL;
1103
1104 err = security_socket_create(family, type, protocol, 1);
1105 if (err)
1106 goto out;
1107
1108 sock = sock_alloc();
1109 if (!sock) {
1110 err = -ENOMEM;
1111 goto out;
1112 }
1113
1114 sock->type = type;
1115 err = security_socket_post_create(sock, family, type, protocol, 1);
1116 if (err)
1117 goto out_release;
1118
1119 out:
1120 *res = sock;
1121 return err;
1122 out_release:
1123 sock_release(sock);
1124 sock = NULL;
1125 goto out;
1126 }
1127 EXPORT_SYMBOL(sock_create_lite);
1128
1129 /* No kernel lock held - perfect */
1130 static __poll_t sock_poll(struct file *file, poll_table *wait)
1131 {
1132 struct socket *sock = file->private_data;
1133 __poll_t events = poll_requested_events(wait);
1134
1135 sock_poll_busy_loop(sock, events);
1136 if (!sock->ops->poll)
1137 return 0;
1138 return sock->ops->poll(file, sock, wait) | sock_poll_busy_flag(sock);
1139 }
1140
1141 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1142 {
1143 struct socket *sock = file->private_data;
1144
1145 return sock->ops->mmap(file, sock, vma);
1146 }
1147
1148 static int sock_close(struct inode *inode, struct file *filp)
1149 {
1150 __sock_release(SOCKET_I(inode), inode);
1151 return 0;
1152 }
1153
1154 /*
1155 * Update the socket async list
1156 *
1157 * Fasync_list locking strategy.
1158 *
1159 * 1. fasync_list is modified only under process context socket lock
1160 * i.e. under semaphore.
1161 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1162 * or under socket lock
1163 */
1164
1165 static int sock_fasync(int fd, struct file *filp, int on)
1166 {
1167 struct socket *sock = filp->private_data;
1168 struct sock *sk = sock->sk;
1169 struct socket_wq *wq;
1170
1171 if (sk == NULL)
1172 return -EINVAL;
1173
1174 lock_sock(sk);
1175 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1176 fasync_helper(fd, filp, on, &wq->fasync_list);
1177
1178 if (!wq->fasync_list)
1179 sock_reset_flag(sk, SOCK_FASYNC);
1180 else
1181 sock_set_flag(sk, SOCK_FASYNC);
1182
1183 release_sock(sk);
1184 return 0;
1185 }
1186
1187 /* This function may be called only under rcu_lock */
1188
1189 int sock_wake_async(struct socket_wq *wq, int how, int band)
1190 {
1191 if (!wq || !wq->fasync_list)
1192 return -1;
1193
1194 switch (how) {
1195 case SOCK_WAKE_WAITD:
1196 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1197 break;
1198 goto call_kill;
1199 case SOCK_WAKE_SPACE:
1200 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1201 break;
1202 /* fall through */
1203 case SOCK_WAKE_IO:
1204 call_kill:
1205 kill_fasync(&wq->fasync_list, SIGIO, band);
1206 break;
1207 case SOCK_WAKE_URG:
1208 kill_fasync(&wq->fasync_list, SIGURG, band);
1209 }
1210
1211 return 0;
1212 }
1213 EXPORT_SYMBOL(sock_wake_async);
1214
1215 int __sock_create(struct net *net, int family, int type, int protocol,
1216 struct socket **res, int kern)
1217 {
1218 int err;
1219 struct socket *sock;
1220 const struct net_proto_family *pf;
1221
1222 /*
1223 * Check protocol is in range
1224 */
1225 if (family < 0 || family >= NPROTO)
1226 return -EAFNOSUPPORT;
1227 if (type < 0 || type >= SOCK_MAX)
1228 return -EINVAL;
1229
1230 /* Compatibility.
1231
1232 This uglymoron is moved from INET layer to here to avoid
1233 deadlock in module load.
1234 */
1235 if (family == PF_INET && type == SOCK_PACKET) {
1236 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1237 current->comm);
1238 family = PF_PACKET;
1239 }
1240
1241 err = security_socket_create(family, type, protocol, kern);
1242 if (err)
1243 return err;
1244
1245 /*
1246 * Allocate the socket and allow the family to set things up. if
1247 * the protocol is 0, the family is instructed to select an appropriate
1248 * default.
1249 */
1250 sock = sock_alloc();
1251 if (!sock) {
1252 net_warn_ratelimited("socket: no more sockets\n");
1253 return -ENFILE; /* Not exactly a match, but its the
1254 closest posix thing */
1255 }
1256
1257 sock->type = type;
1258
1259 #ifdef CONFIG_MODULES
1260 /* Attempt to load a protocol module if the find failed.
1261 *
1262 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1263 * requested real, full-featured networking support upon configuration.
1264 * Otherwise module support will break!
1265 */
1266 if (rcu_access_pointer(net_families[family]) == NULL)
1267 request_module("net-pf-%d", family);
1268 #endif
1269
1270 rcu_read_lock();
1271 pf = rcu_dereference(net_families[family]);
1272 err = -EAFNOSUPPORT;
1273 if (!pf)
1274 goto out_release;
1275
1276 /*
1277 * We will call the ->create function, that possibly is in a loadable
1278 * module, so we have to bump that loadable module refcnt first.
1279 */
1280 if (!try_module_get(pf->owner))
1281 goto out_release;
1282
1283 /* Now protected by module ref count */
1284 rcu_read_unlock();
1285
1286 err = pf->create(net, sock, protocol, kern);
1287 if (err < 0)
1288 goto out_module_put;
1289
1290 /*
1291 * Now to bump the refcnt of the [loadable] module that owns this
1292 * socket at sock_release time we decrement its refcnt.
1293 */
1294 if (!try_module_get(sock->ops->owner))
1295 goto out_module_busy;
1296
1297 /*
1298 * Now that we're done with the ->create function, the [loadable]
1299 * module can have its refcnt decremented
1300 */
1301 module_put(pf->owner);
1302 err = security_socket_post_create(sock, family, type, protocol, kern);
1303 if (err)
1304 goto out_sock_release;
1305 *res = sock;
1306
1307 return 0;
1308
1309 out_module_busy:
1310 err = -EAFNOSUPPORT;
1311 out_module_put:
1312 sock->ops = NULL;
1313 module_put(pf->owner);
1314 out_sock_release:
1315 sock_release(sock);
1316 return err;
1317
1318 out_release:
1319 rcu_read_unlock();
1320 goto out_sock_release;
1321 }
1322 EXPORT_SYMBOL(__sock_create);
1323
1324 int sock_create(int family, int type, int protocol, struct socket **res)
1325 {
1326 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1327 }
1328 EXPORT_SYMBOL(sock_create);
1329
1330 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1331 {
1332 return __sock_create(net, family, type, protocol, res, 1);
1333 }
1334 EXPORT_SYMBOL(sock_create_kern);
1335
1336 int __sys_socket(int family, int type, int protocol)
1337 {
1338 int retval;
1339 struct socket *sock;
1340 int flags;
1341
1342 /* Check the SOCK_* constants for consistency. */
1343 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1344 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1345 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1346 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1347
1348 flags = type & ~SOCK_TYPE_MASK;
1349 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1350 return -EINVAL;
1351 type &= SOCK_TYPE_MASK;
1352
1353 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1354 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1355
1356 retval = sock_create(family, type, protocol, &sock);
1357 if (retval < 0)
1358 return retval;
1359
1360 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1361 }
1362
1363 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1364 {
1365 return __sys_socket(family, type, protocol);
1366 }
1367
1368 /*
1369 * Create a pair of connected sockets.
1370 */
1371
1372 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1373 {
1374 struct socket *sock1, *sock2;
1375 int fd1, fd2, err;
1376 struct file *newfile1, *newfile2;
1377 int flags;
1378
1379 flags = type & ~SOCK_TYPE_MASK;
1380 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1381 return -EINVAL;
1382 type &= SOCK_TYPE_MASK;
1383
1384 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1385 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1386
1387 /*
1388 * reserve descriptors and make sure we won't fail
1389 * to return them to userland.
1390 */
1391 fd1 = get_unused_fd_flags(flags);
1392 if (unlikely(fd1 < 0))
1393 return fd1;
1394
1395 fd2 = get_unused_fd_flags(flags);
1396 if (unlikely(fd2 < 0)) {
1397 put_unused_fd(fd1);
1398 return fd2;
1399 }
1400
1401 err = put_user(fd1, &usockvec[0]);
1402 if (err)
1403 goto out;
1404
1405 err = put_user(fd2, &usockvec[1]);
1406 if (err)
1407 goto out;
1408
1409 /*
1410 * Obtain the first socket and check if the underlying protocol
1411 * supports the socketpair call.
1412 */
1413
1414 err = sock_create(family, type, protocol, &sock1);
1415 if (unlikely(err < 0))
1416 goto out;
1417
1418 err = sock_create(family, type, protocol, &sock2);
1419 if (unlikely(err < 0)) {
1420 sock_release(sock1);
1421 goto out;
1422 }
1423
1424 err = security_socket_socketpair(sock1, sock2);
1425 if (unlikely(err)) {
1426 sock_release(sock2);
1427 sock_release(sock1);
1428 goto out;
1429 }
1430
1431 err = sock1->ops->socketpair(sock1, sock2);
1432 if (unlikely(err < 0)) {
1433 sock_release(sock2);
1434 sock_release(sock1);
1435 goto out;
1436 }
1437
1438 newfile1 = sock_alloc_file(sock1, flags, NULL);
1439 if (IS_ERR(newfile1)) {
1440 err = PTR_ERR(newfile1);
1441 sock_release(sock2);
1442 goto out;
1443 }
1444
1445 newfile2 = sock_alloc_file(sock2, flags, NULL);
1446 if (IS_ERR(newfile2)) {
1447 err = PTR_ERR(newfile2);
1448 fput(newfile1);
1449 goto out;
1450 }
1451
1452 audit_fd_pair(fd1, fd2);
1453
1454 fd_install(fd1, newfile1);
1455 fd_install(fd2, newfile2);
1456 return 0;
1457
1458 out:
1459 put_unused_fd(fd2);
1460 put_unused_fd(fd1);
1461 return err;
1462 }
1463
1464 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1465 int __user *, usockvec)
1466 {
1467 return __sys_socketpair(family, type, protocol, usockvec);
1468 }
1469
1470 /*
1471 * Bind a name to a socket. Nothing much to do here since it's
1472 * the protocol's responsibility to handle the local address.
1473 *
1474 * We move the socket address to kernel space before we call
1475 * the protocol layer (having also checked the address is ok).
1476 */
1477
1478 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1479 {
1480 struct socket *sock;
1481 struct sockaddr_storage address;
1482 int err, fput_needed;
1483
1484 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1485 if (sock) {
1486 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1487 if (err >= 0) {
1488 err = security_socket_bind(sock,
1489 (struct sockaddr *)&address,
1490 addrlen);
1491 if (!err)
1492 err = sock->ops->bind(sock,
1493 (struct sockaddr *)
1494 &address, addrlen);
1495 }
1496 fput_light(sock->file, fput_needed);
1497 }
1498 return err;
1499 }
1500
1501 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1502 {
1503 return __sys_bind(fd, umyaddr, addrlen);
1504 }
1505
1506 /*
1507 * Perform a listen. Basically, we allow the protocol to do anything
1508 * necessary for a listen, and if that works, we mark the socket as
1509 * ready for listening.
1510 */
1511
1512 int __sys_listen(int fd, int backlog)
1513 {
1514 struct socket *sock;
1515 int err, fput_needed;
1516 int somaxconn;
1517
1518 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1519 if (sock) {
1520 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1521 if ((unsigned int)backlog > somaxconn)
1522 backlog = somaxconn;
1523
1524 err = security_socket_listen(sock, backlog);
1525 if (!err)
1526 err = sock->ops->listen(sock, backlog);
1527
1528 fput_light(sock->file, fput_needed);
1529 }
1530 return err;
1531 }
1532
1533 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1534 {
1535 return __sys_listen(fd, backlog);
1536 }
1537
1538 /*
1539 * For accept, we attempt to create a new socket, set up the link
1540 * with the client, wake up the client, then return the new
1541 * connected fd. We collect the address of the connector in kernel
1542 * space and move it to user at the very end. This is unclean because
1543 * we open the socket then return an error.
1544 *
1545 * 1003.1g adds the ability to recvmsg() to query connection pending
1546 * status to recvmsg. We need to add that support in a way thats
1547 * clean when we restructure accept also.
1548 */
1549
1550 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1551 int __user *upeer_addrlen, int flags)
1552 {
1553 struct socket *sock, *newsock;
1554 struct file *newfile;
1555 int err, len, newfd, fput_needed;
1556 struct sockaddr_storage address;
1557
1558 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1559 return -EINVAL;
1560
1561 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1562 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1563
1564 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1565 if (!sock)
1566 goto out;
1567
1568 err = -ENFILE;
1569 newsock = sock_alloc();
1570 if (!newsock)
1571 goto out_put;
1572
1573 newsock->type = sock->type;
1574 newsock->ops = sock->ops;
1575
1576 /*
1577 * We don't need try_module_get here, as the listening socket (sock)
1578 * has the protocol module (sock->ops->owner) held.
1579 */
1580 __module_get(newsock->ops->owner);
1581
1582 newfd = get_unused_fd_flags(flags);
1583 if (unlikely(newfd < 0)) {
1584 err = newfd;
1585 sock_release(newsock);
1586 goto out_put;
1587 }
1588 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1589 if (IS_ERR(newfile)) {
1590 err = PTR_ERR(newfile);
1591 put_unused_fd(newfd);
1592 goto out_put;
1593 }
1594
1595 err = security_socket_accept(sock, newsock);
1596 if (err)
1597 goto out_fd;
1598
1599 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1600 if (err < 0)
1601 goto out_fd;
1602
1603 if (upeer_sockaddr) {
1604 len = newsock->ops->getname(newsock,
1605 (struct sockaddr *)&address, 2);
1606 if (len < 0) {
1607 err = -ECONNABORTED;
1608 goto out_fd;
1609 }
1610 err = move_addr_to_user(&address,
1611 len, upeer_sockaddr, upeer_addrlen);
1612 if (err < 0)
1613 goto out_fd;
1614 }
1615
1616 /* File flags are not inherited via accept() unlike another OSes. */
1617
1618 fd_install(newfd, newfile);
1619 err = newfd;
1620
1621 out_put:
1622 fput_light(sock->file, fput_needed);
1623 out:
1624 return err;
1625 out_fd:
1626 fput(newfile);
1627 put_unused_fd(newfd);
1628 goto out_put;
1629 }
1630
1631 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1632 int __user *, upeer_addrlen, int, flags)
1633 {
1634 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1635 }
1636
1637 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1638 int __user *, upeer_addrlen)
1639 {
1640 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1641 }
1642
1643 /*
1644 * Attempt to connect to a socket with the server address. The address
1645 * is in user space so we verify it is OK and move it to kernel space.
1646 *
1647 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1648 * break bindings
1649 *
1650 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1651 * other SEQPACKET protocols that take time to connect() as it doesn't
1652 * include the -EINPROGRESS status for such sockets.
1653 */
1654
1655 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1656 {
1657 struct socket *sock;
1658 struct sockaddr_storage address;
1659 int err, fput_needed;
1660
1661 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1662 if (!sock)
1663 goto out;
1664 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1665 if (err < 0)
1666 goto out_put;
1667
1668 err =
1669 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1670 if (err)
1671 goto out_put;
1672
1673 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1674 sock->file->f_flags);
1675 out_put:
1676 fput_light(sock->file, fput_needed);
1677 out:
1678 return err;
1679 }
1680
1681 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1682 int, addrlen)
1683 {
1684 return __sys_connect(fd, uservaddr, addrlen);
1685 }
1686
1687 /*
1688 * Get the local address ('name') of a socket object. Move the obtained
1689 * name to user space.
1690 */
1691
1692 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1693 int __user *usockaddr_len)
1694 {
1695 struct socket *sock;
1696 struct sockaddr_storage address;
1697 int err, fput_needed;
1698
1699 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1700 if (!sock)
1701 goto out;
1702
1703 err = security_socket_getsockname(sock);
1704 if (err)
1705 goto out_put;
1706
1707 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1708 if (err < 0)
1709 goto out_put;
1710 /* "err" is actually length in this case */
1711 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1712
1713 out_put:
1714 fput_light(sock->file, fput_needed);
1715 out:
1716 return err;
1717 }
1718
1719 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1720 int __user *, usockaddr_len)
1721 {
1722 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1723 }
1724
1725 /*
1726 * Get the remote address ('name') of a socket object. Move the obtained
1727 * name to user space.
1728 */
1729
1730 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1731 int __user *usockaddr_len)
1732 {
1733 struct socket *sock;
1734 struct sockaddr_storage address;
1735 int err, fput_needed;
1736
1737 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1738 if (sock != NULL) {
1739 err = security_socket_getpeername(sock);
1740 if (err) {
1741 fput_light(sock->file, fput_needed);
1742 return err;
1743 }
1744
1745 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1746 if (err >= 0)
1747 /* "err" is actually length in this case */
1748 err = move_addr_to_user(&address, err, usockaddr,
1749 usockaddr_len);
1750 fput_light(sock->file, fput_needed);
1751 }
1752 return err;
1753 }
1754
1755 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1756 int __user *, usockaddr_len)
1757 {
1758 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1759 }
1760
1761 /*
1762 * Send a datagram to a given address. We move the address into kernel
1763 * space and check the user space data area is readable before invoking
1764 * the protocol.
1765 */
1766 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1767 struct sockaddr __user *addr, int addr_len)
1768 {
1769 struct socket *sock;
1770 struct sockaddr_storage address;
1771 int err;
1772 struct msghdr msg;
1773 struct iovec iov;
1774 int fput_needed;
1775
1776 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1777 if (unlikely(err))
1778 return err;
1779 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1780 if (!sock)
1781 goto out;
1782
1783 msg.msg_name = NULL;
1784 msg.msg_control = NULL;
1785 msg.msg_controllen = 0;
1786 msg.msg_namelen = 0;
1787 if (addr) {
1788 err = move_addr_to_kernel(addr, addr_len, &address);
1789 if (err < 0)
1790 goto out_put;
1791 msg.msg_name = (struct sockaddr *)&address;
1792 msg.msg_namelen = addr_len;
1793 }
1794 if (sock->file->f_flags & O_NONBLOCK)
1795 flags |= MSG_DONTWAIT;
1796 msg.msg_flags = flags;
1797 err = sock_sendmsg(sock, &msg);
1798
1799 out_put:
1800 fput_light(sock->file, fput_needed);
1801 out:
1802 return err;
1803 }
1804
1805 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1806 unsigned int, flags, struct sockaddr __user *, addr,
1807 int, addr_len)
1808 {
1809 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1810 }
1811
1812 /*
1813 * Send a datagram down a socket.
1814 */
1815
1816 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1817 unsigned int, flags)
1818 {
1819 return __sys_sendto(fd, buff, len, flags, NULL, 0);
1820 }
1821
1822 /*
1823 * Receive a frame from the socket and optionally record the address of the
1824 * sender. We verify the buffers are writable and if needed move the
1825 * sender address from kernel to user space.
1826 */
1827 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1828 struct sockaddr __user *addr, int __user *addr_len)
1829 {
1830 struct socket *sock;
1831 struct iovec iov;
1832 struct msghdr msg;
1833 struct sockaddr_storage address;
1834 int err, err2;
1835 int fput_needed;
1836
1837 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1838 if (unlikely(err))
1839 return err;
1840 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1841 if (!sock)
1842 goto out;
1843
1844 msg.msg_control = NULL;
1845 msg.msg_controllen = 0;
1846 /* Save some cycles and don't copy the address if not needed */
1847 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1848 /* We assume all kernel code knows the size of sockaddr_storage */
1849 msg.msg_namelen = 0;
1850 msg.msg_iocb = NULL;
1851 msg.msg_flags = 0;
1852 if (sock->file->f_flags & O_NONBLOCK)
1853 flags |= MSG_DONTWAIT;
1854 err = sock_recvmsg(sock, &msg, flags);
1855
1856 if (err >= 0 && addr != NULL) {
1857 err2 = move_addr_to_user(&address,
1858 msg.msg_namelen, addr, addr_len);
1859 if (err2 < 0)
1860 err = err2;
1861 }
1862
1863 fput_light(sock->file, fput_needed);
1864 out:
1865 return err;
1866 }
1867
1868 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1869 unsigned int, flags, struct sockaddr __user *, addr,
1870 int __user *, addr_len)
1871 {
1872 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1873 }
1874
1875 /*
1876 * Receive a datagram from a socket.
1877 */
1878
1879 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1880 unsigned int, flags)
1881 {
1882 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1883 }
1884
1885 /*
1886 * Set a socket option. Because we don't know the option lengths we have
1887 * to pass the user mode parameter for the protocols to sort out.
1888 */
1889
1890 static int __sys_setsockopt(int fd, int level, int optname,
1891 char __user *optval, int optlen)
1892 {
1893 int err, fput_needed;
1894 struct socket *sock;
1895
1896 if (optlen < 0)
1897 return -EINVAL;
1898
1899 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1900 if (sock != NULL) {
1901 err = security_socket_setsockopt(sock, level, optname);
1902 if (err)
1903 goto out_put;
1904
1905 if (level == SOL_SOCKET)
1906 err =
1907 sock_setsockopt(sock, level, optname, optval,
1908 optlen);
1909 else
1910 err =
1911 sock->ops->setsockopt(sock, level, optname, optval,
1912 optlen);
1913 out_put:
1914 fput_light(sock->file, fput_needed);
1915 }
1916 return err;
1917 }
1918
1919 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1920 char __user *, optval, int, optlen)
1921 {
1922 return __sys_setsockopt(fd, level, optname, optval, optlen);
1923 }
1924
1925 /*
1926 * Get a socket option. Because we don't know the option lengths we have
1927 * to pass a user mode parameter for the protocols to sort out.
1928 */
1929
1930 static int __sys_getsockopt(int fd, int level, int optname,
1931 char __user *optval, int __user *optlen)
1932 {
1933 int err, fput_needed;
1934 struct socket *sock;
1935
1936 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1937 if (sock != NULL) {
1938 err = security_socket_getsockopt(sock, level, optname);
1939 if (err)
1940 goto out_put;
1941
1942 if (level == SOL_SOCKET)
1943 err =
1944 sock_getsockopt(sock, level, optname, optval,
1945 optlen);
1946 else
1947 err =
1948 sock->ops->getsockopt(sock, level, optname, optval,
1949 optlen);
1950 out_put:
1951 fput_light(sock->file, fput_needed);
1952 }
1953 return err;
1954 }
1955
1956 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1957 char __user *, optval, int __user *, optlen)
1958 {
1959 return __sys_getsockopt(fd, level, optname, optval, optlen);
1960 }
1961
1962 /*
1963 * Shutdown a socket.
1964 */
1965
1966 int __sys_shutdown(int fd, int how)
1967 {
1968 int err, fput_needed;
1969 struct socket *sock;
1970
1971 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1972 if (sock != NULL) {
1973 err = security_socket_shutdown(sock, how);
1974 if (!err)
1975 err = sock->ops->shutdown(sock, how);
1976 fput_light(sock->file, fput_needed);
1977 }
1978 return err;
1979 }
1980
1981 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1982 {
1983 return __sys_shutdown(fd, how);
1984 }
1985
1986 /* A couple of helpful macros for getting the address of the 32/64 bit
1987 * fields which are the same type (int / unsigned) on our platforms.
1988 */
1989 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1990 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1991 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1992
1993 struct used_address {
1994 struct sockaddr_storage name;
1995 unsigned int name_len;
1996 };
1997
1998 static int copy_msghdr_from_user(struct msghdr *kmsg,
1999 struct user_msghdr __user *umsg,
2000 struct sockaddr __user **save_addr,
2001 struct iovec **iov)
2002 {
2003 struct user_msghdr msg;
2004 ssize_t err;
2005
2006 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2007 return -EFAULT;
2008
2009 kmsg->msg_control = (void __force *)msg.msg_control;
2010 kmsg->msg_controllen = msg.msg_controllen;
2011 kmsg->msg_flags = msg.msg_flags;
2012
2013 kmsg->msg_namelen = msg.msg_namelen;
2014 if (!msg.msg_name)
2015 kmsg->msg_namelen = 0;
2016
2017 if (kmsg->msg_namelen < 0)
2018 return -EINVAL;
2019
2020 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2021 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2022
2023 if (save_addr)
2024 *save_addr = msg.msg_name;
2025
2026 if (msg.msg_name && kmsg->msg_namelen) {
2027 if (!save_addr) {
2028 err = move_addr_to_kernel(msg.msg_name,
2029 kmsg->msg_namelen,
2030 kmsg->msg_name);
2031 if (err < 0)
2032 return err;
2033 }
2034 } else {
2035 kmsg->msg_name = NULL;
2036 kmsg->msg_namelen = 0;
2037 }
2038
2039 if (msg.msg_iovlen > UIO_MAXIOV)
2040 return -EMSGSIZE;
2041
2042 kmsg->msg_iocb = NULL;
2043
2044 return import_iovec(save_addr ? READ : WRITE,
2045 msg.msg_iov, msg.msg_iovlen,
2046 UIO_FASTIOV, iov, &kmsg->msg_iter);
2047 }
2048
2049 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2050 struct msghdr *msg_sys, unsigned int flags,
2051 struct used_address *used_address,
2052 unsigned int allowed_msghdr_flags)
2053 {
2054 struct compat_msghdr __user *msg_compat =
2055 (struct compat_msghdr __user *)msg;
2056 struct sockaddr_storage address;
2057 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2058 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2059 __aligned(sizeof(__kernel_size_t));
2060 /* 20 is size of ipv6_pktinfo */
2061 unsigned char *ctl_buf = ctl;
2062 int ctl_len;
2063 ssize_t err;
2064
2065 msg_sys->msg_name = &address;
2066
2067 if (MSG_CMSG_COMPAT & flags)
2068 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2069 else
2070 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2071 if (err < 0)
2072 return err;
2073
2074 err = -ENOBUFS;
2075
2076 if (msg_sys->msg_controllen > INT_MAX)
2077 goto out_freeiov;
2078 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2079 ctl_len = msg_sys->msg_controllen;
2080 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2081 err =
2082 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2083 sizeof(ctl));
2084 if (err)
2085 goto out_freeiov;
2086 ctl_buf = msg_sys->msg_control;
2087 ctl_len = msg_sys->msg_controllen;
2088 } else if (ctl_len) {
2089 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2090 CMSG_ALIGN(sizeof(struct cmsghdr)));
2091 if (ctl_len > sizeof(ctl)) {
2092 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2093 if (ctl_buf == NULL)
2094 goto out_freeiov;
2095 }
2096 err = -EFAULT;
2097 /*
2098 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2099 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2100 * checking falls down on this.
2101 */
2102 if (copy_from_user(ctl_buf,
2103 (void __user __force *)msg_sys->msg_control,
2104 ctl_len))
2105 goto out_freectl;
2106 msg_sys->msg_control = ctl_buf;
2107 }
2108 msg_sys->msg_flags = flags;
2109
2110 if (sock->file->f_flags & O_NONBLOCK)
2111 msg_sys->msg_flags |= MSG_DONTWAIT;
2112 /*
2113 * If this is sendmmsg() and current destination address is same as
2114 * previously succeeded address, omit asking LSM's decision.
2115 * used_address->name_len is initialized to UINT_MAX so that the first
2116 * destination address never matches.
2117 */
2118 if (used_address && msg_sys->msg_name &&
2119 used_address->name_len == msg_sys->msg_namelen &&
2120 !memcmp(&used_address->name, msg_sys->msg_name,
2121 used_address->name_len)) {
2122 err = sock_sendmsg_nosec(sock, msg_sys);
2123 goto out_freectl;
2124 }
2125 err = sock_sendmsg(sock, msg_sys);
2126 /*
2127 * If this is sendmmsg() and sending to current destination address was
2128 * successful, remember it.
2129 */
2130 if (used_address && err >= 0) {
2131 used_address->name_len = msg_sys->msg_namelen;
2132 if (msg_sys->msg_name)
2133 memcpy(&used_address->name, msg_sys->msg_name,
2134 used_address->name_len);
2135 }
2136
2137 out_freectl:
2138 if (ctl_buf != ctl)
2139 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2140 out_freeiov:
2141 kfree(iov);
2142 return err;
2143 }
2144
2145 /*
2146 * BSD sendmsg interface
2147 */
2148
2149 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2150 bool forbid_cmsg_compat)
2151 {
2152 int fput_needed, err;
2153 struct msghdr msg_sys;
2154 struct socket *sock;
2155
2156 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2157 return -EINVAL;
2158
2159 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2160 if (!sock)
2161 goto out;
2162
2163 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2164
2165 fput_light(sock->file, fput_needed);
2166 out:
2167 return err;
2168 }
2169
2170 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2171 {
2172 return __sys_sendmsg(fd, msg, flags, true);
2173 }
2174
2175 /*
2176 * Linux sendmmsg interface
2177 */
2178
2179 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2180 unsigned int flags, bool forbid_cmsg_compat)
2181 {
2182 int fput_needed, err, datagrams;
2183 struct socket *sock;
2184 struct mmsghdr __user *entry;
2185 struct compat_mmsghdr __user *compat_entry;
2186 struct msghdr msg_sys;
2187 struct used_address used_address;
2188 unsigned int oflags = flags;
2189
2190 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2191 return -EINVAL;
2192
2193 if (vlen > UIO_MAXIOV)
2194 vlen = UIO_MAXIOV;
2195
2196 datagrams = 0;
2197
2198 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2199 if (!sock)
2200 return err;
2201
2202 used_address.name_len = UINT_MAX;
2203 entry = mmsg;
2204 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2205 err = 0;
2206 flags |= MSG_BATCH;
2207
2208 while (datagrams < vlen) {
2209 if (datagrams == vlen - 1)
2210 flags = oflags;
2211
2212 if (MSG_CMSG_COMPAT & flags) {
2213 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2214 &msg_sys, flags, &used_address, MSG_EOR);
2215 if (err < 0)
2216 break;
2217 err = __put_user(err, &compat_entry->msg_len);
2218 ++compat_entry;
2219 } else {
2220 err = ___sys_sendmsg(sock,
2221 (struct user_msghdr __user *)entry,
2222 &msg_sys, flags, &used_address, MSG_EOR);
2223 if (err < 0)
2224 break;
2225 err = put_user(err, &entry->msg_len);
2226 ++entry;
2227 }
2228
2229 if (err)
2230 break;
2231 ++datagrams;
2232 if (msg_data_left(&msg_sys))
2233 break;
2234 cond_resched();
2235 }
2236
2237 fput_light(sock->file, fput_needed);
2238
2239 /* We only return an error if no datagrams were able to be sent */
2240 if (datagrams != 0)
2241 return datagrams;
2242
2243 return err;
2244 }
2245
2246 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2247 unsigned int, vlen, unsigned int, flags)
2248 {
2249 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2250 }
2251
2252 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2253 struct msghdr *msg_sys, unsigned int flags, int nosec)
2254 {
2255 struct compat_msghdr __user *msg_compat =
2256 (struct compat_msghdr __user *)msg;
2257 struct iovec iovstack[UIO_FASTIOV];
2258 struct iovec *iov = iovstack;
2259 unsigned long cmsg_ptr;
2260 int len;
2261 ssize_t err;
2262
2263 /* kernel mode address */
2264 struct sockaddr_storage addr;
2265
2266 /* user mode address pointers */
2267 struct sockaddr __user *uaddr;
2268 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2269
2270 msg_sys->msg_name = &addr;
2271
2272 if (MSG_CMSG_COMPAT & flags)
2273 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2274 else
2275 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2276 if (err < 0)
2277 return err;
2278
2279 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2280 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2281
2282 /* We assume all kernel code knows the size of sockaddr_storage */
2283 msg_sys->msg_namelen = 0;
2284
2285 if (sock->file->f_flags & O_NONBLOCK)
2286 flags |= MSG_DONTWAIT;
2287 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2288 if (err < 0)
2289 goto out_freeiov;
2290 len = err;
2291
2292 if (uaddr != NULL) {
2293 err = move_addr_to_user(&addr,
2294 msg_sys->msg_namelen, uaddr,
2295 uaddr_len);
2296 if (err < 0)
2297 goto out_freeiov;
2298 }
2299 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2300 COMPAT_FLAGS(msg));
2301 if (err)
2302 goto out_freeiov;
2303 if (MSG_CMSG_COMPAT & flags)
2304 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2305 &msg_compat->msg_controllen);
2306 else
2307 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2308 &msg->msg_controllen);
2309 if (err)
2310 goto out_freeiov;
2311 err = len;
2312
2313 out_freeiov:
2314 kfree(iov);
2315 return err;
2316 }
2317
2318 /*
2319 * BSD recvmsg interface
2320 */
2321
2322 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2323 bool forbid_cmsg_compat)
2324 {
2325 int fput_needed, err;
2326 struct msghdr msg_sys;
2327 struct socket *sock;
2328
2329 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2330 return -EINVAL;
2331
2332 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2333 if (!sock)
2334 goto out;
2335
2336 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2337
2338 fput_light(sock->file, fput_needed);
2339 out:
2340 return err;
2341 }
2342
2343 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2344 unsigned int, flags)
2345 {
2346 return __sys_recvmsg(fd, msg, flags, true);
2347 }
2348
2349 /*
2350 * Linux recvmmsg interface
2351 */
2352
2353 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2354 unsigned int flags, struct timespec *timeout)
2355 {
2356 int fput_needed, err, datagrams;
2357 struct socket *sock;
2358 struct mmsghdr __user *entry;
2359 struct compat_mmsghdr __user *compat_entry;
2360 struct msghdr msg_sys;
2361 struct timespec64 end_time;
2362 struct timespec64 timeout64;
2363
2364 if (timeout &&
2365 poll_select_set_timeout(&end_time, timeout->tv_sec,
2366 timeout->tv_nsec))
2367 return -EINVAL;
2368
2369 datagrams = 0;
2370
2371 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2372 if (!sock)
2373 return err;
2374
2375 if (likely(!(flags & MSG_ERRQUEUE))) {
2376 err = sock_error(sock->sk);
2377 if (err) {
2378 datagrams = err;
2379 goto out_put;
2380 }
2381 }
2382
2383 entry = mmsg;
2384 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2385
2386 while (datagrams < vlen) {
2387 /*
2388 * No need to ask LSM for more than the first datagram.
2389 */
2390 if (MSG_CMSG_COMPAT & flags) {
2391 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2392 &msg_sys, flags & ~MSG_WAITFORONE,
2393 datagrams);
2394 if (err < 0)
2395 break;
2396 err = __put_user(err, &compat_entry->msg_len);
2397 ++compat_entry;
2398 } else {
2399 err = ___sys_recvmsg(sock,
2400 (struct user_msghdr __user *)entry,
2401 &msg_sys, flags & ~MSG_WAITFORONE,
2402 datagrams);
2403 if (err < 0)
2404 break;
2405 err = put_user(err, &entry->msg_len);
2406 ++entry;
2407 }
2408
2409 if (err)
2410 break;
2411 ++datagrams;
2412
2413 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2414 if (flags & MSG_WAITFORONE)
2415 flags |= MSG_DONTWAIT;
2416
2417 if (timeout) {
2418 ktime_get_ts64(&timeout64);
2419 *timeout = timespec64_to_timespec(
2420 timespec64_sub(end_time, timeout64));
2421 if (timeout->tv_sec < 0) {
2422 timeout->tv_sec = timeout->tv_nsec = 0;
2423 break;
2424 }
2425
2426 /* Timeout, return less than vlen datagrams */
2427 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2428 break;
2429 }
2430
2431 /* Out of band data, return right away */
2432 if (msg_sys.msg_flags & MSG_OOB)
2433 break;
2434 cond_resched();
2435 }
2436
2437 if (err == 0)
2438 goto out_put;
2439
2440 if (datagrams == 0) {
2441 datagrams = err;
2442 goto out_put;
2443 }
2444
2445 /*
2446 * We may return less entries than requested (vlen) if the
2447 * sock is non block and there aren't enough datagrams...
2448 */
2449 if (err != -EAGAIN) {
2450 /*
2451 * ... or if recvmsg returns an error after we
2452 * received some datagrams, where we record the
2453 * error to return on the next call or if the
2454 * app asks about it using getsockopt(SO_ERROR).
2455 */
2456 sock->sk->sk_err = -err;
2457 }
2458 out_put:
2459 fput_light(sock->file, fput_needed);
2460
2461 return datagrams;
2462 }
2463
2464 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2465 unsigned int vlen, unsigned int flags,
2466 struct timespec __user *timeout)
2467 {
2468 int datagrams;
2469 struct timespec timeout_sys;
2470
2471 if (flags & MSG_CMSG_COMPAT)
2472 return -EINVAL;
2473
2474 if (!timeout)
2475 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2476
2477 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2478 return -EFAULT;
2479
2480 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2481
2482 if (datagrams > 0 &&
2483 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2484 datagrams = -EFAULT;
2485
2486 return datagrams;
2487 }
2488
2489 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2490 unsigned int, vlen, unsigned int, flags,
2491 struct timespec __user *, timeout)
2492 {
2493 return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout);
2494 }
2495
2496 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2497 /* Argument list sizes for sys_socketcall */
2498 #define AL(x) ((x) * sizeof(unsigned long))
2499 static const unsigned char nargs[21] = {
2500 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2501 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2502 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2503 AL(4), AL(5), AL(4)
2504 };
2505
2506 #undef AL
2507
2508 /*
2509 * System call vectors.
2510 *
2511 * Argument checking cleaned up. Saved 20% in size.
2512 * This function doesn't need to set the kernel lock because
2513 * it is set by the callees.
2514 */
2515
2516 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2517 {
2518 unsigned long a[AUDITSC_ARGS];
2519 unsigned long a0, a1;
2520 int err;
2521 unsigned int len;
2522
2523 if (call < 1 || call > SYS_SENDMMSG)
2524 return -EINVAL;
2525
2526 len = nargs[call];
2527 if (len > sizeof(a))
2528 return -EINVAL;
2529
2530 /* copy_from_user should be SMP safe. */
2531 if (copy_from_user(a, args, len))
2532 return -EFAULT;
2533
2534 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2535 if (err)
2536 return err;
2537
2538 a0 = a[0];
2539 a1 = a[1];
2540
2541 switch (call) {
2542 case SYS_SOCKET:
2543 err = __sys_socket(a0, a1, a[2]);
2544 break;
2545 case SYS_BIND:
2546 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2547 break;
2548 case SYS_CONNECT:
2549 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2550 break;
2551 case SYS_LISTEN:
2552 err = __sys_listen(a0, a1);
2553 break;
2554 case SYS_ACCEPT:
2555 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2556 (int __user *)a[2], 0);
2557 break;
2558 case SYS_GETSOCKNAME:
2559 err =
2560 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2561 (int __user *)a[2]);
2562 break;
2563 case SYS_GETPEERNAME:
2564 err =
2565 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2566 (int __user *)a[2]);
2567 break;
2568 case SYS_SOCKETPAIR:
2569 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2570 break;
2571 case SYS_SEND:
2572 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2573 NULL, 0);
2574 break;
2575 case SYS_SENDTO:
2576 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2577 (struct sockaddr __user *)a[4], a[5]);
2578 break;
2579 case SYS_RECV:
2580 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2581 NULL, NULL);
2582 break;
2583 case SYS_RECVFROM:
2584 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2585 (struct sockaddr __user *)a[4],
2586 (int __user *)a[5]);
2587 break;
2588 case SYS_SHUTDOWN:
2589 err = __sys_shutdown(a0, a1);
2590 break;
2591 case SYS_SETSOCKOPT:
2592 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2593 a[4]);
2594 break;
2595 case SYS_GETSOCKOPT:
2596 err =
2597 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2598 (int __user *)a[4]);
2599 break;
2600 case SYS_SENDMSG:
2601 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2602 a[2], true);
2603 break;
2604 case SYS_SENDMMSG:
2605 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2606 a[3], true);
2607 break;
2608 case SYS_RECVMSG:
2609 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2610 a[2], true);
2611 break;
2612 case SYS_RECVMMSG:
2613 err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2614 a[3], (struct timespec __user *)a[4]);
2615 break;
2616 case SYS_ACCEPT4:
2617 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2618 (int __user *)a[2], a[3]);
2619 break;
2620 default:
2621 err = -EINVAL;
2622 break;
2623 }
2624 return err;
2625 }
2626
2627 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2628
2629 /**
2630 * sock_register - add a socket protocol handler
2631 * @ops: description of protocol
2632 *
2633 * This function is called by a protocol handler that wants to
2634 * advertise its address family, and have it linked into the
2635 * socket interface. The value ops->family corresponds to the
2636 * socket system call protocol family.
2637 */
2638 int sock_register(const struct net_proto_family *ops)
2639 {
2640 int err;
2641
2642 if (ops->family >= NPROTO) {
2643 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2644 return -ENOBUFS;
2645 }
2646
2647 spin_lock(&net_family_lock);
2648 if (rcu_dereference_protected(net_families[ops->family],
2649 lockdep_is_held(&net_family_lock)))
2650 err = -EEXIST;
2651 else {
2652 rcu_assign_pointer(net_families[ops->family], ops);
2653 err = 0;
2654 }
2655 spin_unlock(&net_family_lock);
2656
2657 pr_info("NET: Registered protocol family %d\n", ops->family);
2658 return err;
2659 }
2660 EXPORT_SYMBOL(sock_register);
2661
2662 /**
2663 * sock_unregister - remove a protocol handler
2664 * @family: protocol family to remove
2665 *
2666 * This function is called by a protocol handler that wants to
2667 * remove its address family, and have it unlinked from the
2668 * new socket creation.
2669 *
2670 * If protocol handler is a module, then it can use module reference
2671 * counts to protect against new references. If protocol handler is not
2672 * a module then it needs to provide its own protection in
2673 * the ops->create routine.
2674 */
2675 void sock_unregister(int family)
2676 {
2677 BUG_ON(family < 0 || family >= NPROTO);
2678
2679 spin_lock(&net_family_lock);
2680 RCU_INIT_POINTER(net_families[family], NULL);
2681 spin_unlock(&net_family_lock);
2682
2683 synchronize_rcu();
2684
2685 pr_info("NET: Unregistered protocol family %d\n", family);
2686 }
2687 EXPORT_SYMBOL(sock_unregister);
2688
2689 bool sock_is_registered(int family)
2690 {
2691 return family < NPROTO && rcu_access_pointer(net_families[family]);
2692 }
2693
2694 static int __init sock_init(void)
2695 {
2696 int err;
2697 /*
2698 * Initialize the network sysctl infrastructure.
2699 */
2700 err = net_sysctl_init();
2701 if (err)
2702 goto out;
2703
2704 /*
2705 * Initialize skbuff SLAB cache
2706 */
2707 skb_init();
2708
2709 /*
2710 * Initialize the protocols module.
2711 */
2712
2713 init_inodecache();
2714
2715 err = register_filesystem(&sock_fs_type);
2716 if (err)
2717 goto out_fs;
2718 sock_mnt = kern_mount(&sock_fs_type);
2719 if (IS_ERR(sock_mnt)) {
2720 err = PTR_ERR(sock_mnt);
2721 goto out_mount;
2722 }
2723
2724 /* The real protocol initialization is performed in later initcalls.
2725 */
2726
2727 #ifdef CONFIG_NETFILTER
2728 err = netfilter_init();
2729 if (err)
2730 goto out;
2731 #endif
2732
2733 ptp_classifier_init();
2734
2735 out:
2736 return err;
2737
2738 out_mount:
2739 unregister_filesystem(&sock_fs_type);
2740 out_fs:
2741 goto out;
2742 }
2743
2744 core_initcall(sock_init); /* early initcall */
2745
2746 #ifdef CONFIG_PROC_FS
2747 void socket_seq_show(struct seq_file *seq)
2748 {
2749 seq_printf(seq, "sockets: used %d\n",
2750 sock_inuse_get(seq->private));
2751 }
2752 #endif /* CONFIG_PROC_FS */
2753
2754 #ifdef CONFIG_COMPAT
2755 static int do_siocgstamp(struct net *net, struct socket *sock,
2756 unsigned int cmd, void __user *up)
2757 {
2758 mm_segment_t old_fs = get_fs();
2759 struct timeval ktv;
2760 int err;
2761
2762 set_fs(KERNEL_DS);
2763 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2764 set_fs(old_fs);
2765 if (!err)
2766 err = compat_put_timeval(&ktv, up);
2767
2768 return err;
2769 }
2770
2771 static int do_siocgstampns(struct net *net, struct socket *sock,
2772 unsigned int cmd, void __user *up)
2773 {
2774 mm_segment_t old_fs = get_fs();
2775 struct timespec kts;
2776 int err;
2777
2778 set_fs(KERNEL_DS);
2779 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2780 set_fs(old_fs);
2781 if (!err)
2782 err = compat_put_timespec(&kts, up);
2783
2784 return err;
2785 }
2786
2787 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2788 {
2789 struct compat_ifconf ifc32;
2790 struct ifconf ifc;
2791 int err;
2792
2793 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2794 return -EFAULT;
2795
2796 ifc.ifc_len = ifc32.ifc_len;
2797 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2798
2799 rtnl_lock();
2800 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2801 rtnl_unlock();
2802 if (err)
2803 return err;
2804
2805 ifc32.ifc_len = ifc.ifc_len;
2806 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2807 return -EFAULT;
2808
2809 return 0;
2810 }
2811
2812 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2813 {
2814 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2815 bool convert_in = false, convert_out = false;
2816 size_t buf_size = 0;
2817 struct ethtool_rxnfc __user *rxnfc = NULL;
2818 struct ifreq ifr;
2819 u32 rule_cnt = 0, actual_rule_cnt;
2820 u32 ethcmd;
2821 u32 data;
2822 int ret;
2823
2824 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2825 return -EFAULT;
2826
2827 compat_rxnfc = compat_ptr(data);
2828
2829 if (get_user(ethcmd, &compat_rxnfc->cmd))
2830 return -EFAULT;
2831
2832 /* Most ethtool structures are defined without padding.
2833 * Unfortunately struct ethtool_rxnfc is an exception.
2834 */
2835 switch (ethcmd) {
2836 default:
2837 break;
2838 case ETHTOOL_GRXCLSRLALL:
2839 /* Buffer size is variable */
2840 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2841 return -EFAULT;
2842 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2843 return -ENOMEM;
2844 buf_size += rule_cnt * sizeof(u32);
2845 /* fall through */
2846 case ETHTOOL_GRXRINGS:
2847 case ETHTOOL_GRXCLSRLCNT:
2848 case ETHTOOL_GRXCLSRULE:
2849 case ETHTOOL_SRXCLSRLINS:
2850 convert_out = true;
2851 /* fall through */
2852 case ETHTOOL_SRXCLSRLDEL:
2853 buf_size += sizeof(struct ethtool_rxnfc);
2854 convert_in = true;
2855 rxnfc = compat_alloc_user_space(buf_size);
2856 break;
2857 }
2858
2859 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2860 return -EFAULT;
2861
2862 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2863
2864 if (convert_in) {
2865 /* We expect there to be holes between fs.m_ext and
2866 * fs.ring_cookie and at the end of fs, but nowhere else.
2867 */
2868 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2869 sizeof(compat_rxnfc->fs.m_ext) !=
2870 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2871 sizeof(rxnfc->fs.m_ext));
2872 BUILD_BUG_ON(
2873 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2874 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2875 offsetof(struct ethtool_rxnfc, fs.location) -
2876 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2877
2878 if (copy_in_user(rxnfc, compat_rxnfc,
2879 (void __user *)(&rxnfc->fs.m_ext + 1) -
2880 (void __user *)rxnfc) ||
2881 copy_in_user(&rxnfc->fs.ring_cookie,
2882 &compat_rxnfc->fs.ring_cookie,
2883 (void __user *)(&rxnfc->fs.location + 1) -
2884 (void __user *)&rxnfc->fs.ring_cookie) ||
2885 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2886 sizeof(rxnfc->rule_cnt)))
2887 return -EFAULT;
2888 }
2889
2890 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2891 if (ret)
2892 return ret;
2893
2894 if (convert_out) {
2895 if (copy_in_user(compat_rxnfc, rxnfc,
2896 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2897 (const void __user *)rxnfc) ||
2898 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2899 &rxnfc->fs.ring_cookie,
2900 (const void __user *)(&rxnfc->fs.location + 1) -
2901 (const void __user *)&rxnfc->fs.ring_cookie) ||
2902 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2903 sizeof(rxnfc->rule_cnt)))
2904 return -EFAULT;
2905
2906 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2907 /* As an optimisation, we only copy the actual
2908 * number of rules that the underlying
2909 * function returned. Since Mallory might
2910 * change the rule count in user memory, we
2911 * check that it is less than the rule count
2912 * originally given (as the user buffer size),
2913 * which has been range-checked.
2914 */
2915 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2916 return -EFAULT;
2917 if (actual_rule_cnt < rule_cnt)
2918 rule_cnt = actual_rule_cnt;
2919 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2920 &rxnfc->rule_locs[0],
2921 rule_cnt * sizeof(u32)))
2922 return -EFAULT;
2923 }
2924 }
2925
2926 return 0;
2927 }
2928
2929 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2930 {
2931 compat_uptr_t uptr32;
2932 struct ifreq ifr;
2933 void __user *saved;
2934 int err;
2935
2936 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2937 return -EFAULT;
2938
2939 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2940 return -EFAULT;
2941
2942 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2943 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2944
2945 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2946 if (!err) {
2947 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2948 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2949 err = -EFAULT;
2950 }
2951 return err;
2952 }
2953
2954 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2955 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2956 struct compat_ifreq __user *u_ifreq32)
2957 {
2958 struct ifreq ifreq;
2959 u32 data32;
2960
2961 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2962 return -EFAULT;
2963 if (get_user(data32, &u_ifreq32->ifr_data))
2964 return -EFAULT;
2965 ifreq.ifr_data = compat_ptr(data32);
2966
2967 return dev_ioctl(net, cmd, &ifreq, NULL);
2968 }
2969
2970 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2971 struct compat_ifreq __user *uifr32)
2972 {
2973 struct ifreq ifr;
2974 struct compat_ifmap __user *uifmap32;
2975 int err;
2976
2977 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2978 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2979 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2980 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2981 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2982 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2983 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2984 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2985 if (err)
2986 return -EFAULT;
2987
2988 err = dev_ioctl(net, cmd, &ifr, NULL);
2989
2990 if (cmd == SIOCGIFMAP && !err) {
2991 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2992 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2993 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2994 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2995 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2996 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2997 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2998 if (err)
2999 err = -EFAULT;
3000 }
3001 return err;
3002 }
3003
3004 struct rtentry32 {
3005 u32 rt_pad1;
3006 struct sockaddr rt_dst; /* target address */
3007 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3008 struct sockaddr rt_genmask; /* target network mask (IP) */
3009 unsigned short rt_flags;
3010 short rt_pad2;
3011 u32 rt_pad3;
3012 unsigned char rt_tos;
3013 unsigned char rt_class;
3014 short rt_pad4;
3015 short rt_metric; /* +1 for binary compatibility! */
3016 /* char * */ u32 rt_dev; /* forcing the device at add */
3017 u32 rt_mtu; /* per route MTU/Window */
3018 u32 rt_window; /* Window clamping */
3019 unsigned short rt_irtt; /* Initial RTT */
3020 };
3021
3022 struct in6_rtmsg32 {
3023 struct in6_addr rtmsg_dst;
3024 struct in6_addr rtmsg_src;
3025 struct in6_addr rtmsg_gateway;
3026 u32 rtmsg_type;
3027 u16 rtmsg_dst_len;
3028 u16 rtmsg_src_len;
3029 u32 rtmsg_metric;
3030 u32 rtmsg_info;
3031 u32 rtmsg_flags;
3032 s32 rtmsg_ifindex;
3033 };
3034
3035 static int routing_ioctl(struct net *net, struct socket *sock,
3036 unsigned int cmd, void __user *argp)
3037 {
3038 int ret;
3039 void *r = NULL;
3040 struct in6_rtmsg r6;
3041 struct rtentry r4;
3042 char devname[16];
3043 u32 rtdev;
3044 mm_segment_t old_fs = get_fs();
3045
3046 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3047 struct in6_rtmsg32 __user *ur6 = argp;
3048 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3049 3 * sizeof(struct in6_addr));
3050 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3051 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3052 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3053 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3054 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3055 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3056 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3057
3058 r = (void *) &r6;
3059 } else { /* ipv4 */
3060 struct rtentry32 __user *ur4 = argp;
3061 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3062 3 * sizeof(struct sockaddr));
3063 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3064 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3065 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3066 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3067 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3068 ret |= get_user(rtdev, &(ur4->rt_dev));
3069 if (rtdev) {
3070 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3071 r4.rt_dev = (char __user __force *)devname;
3072 devname[15] = 0;
3073 } else
3074 r4.rt_dev = NULL;
3075
3076 r = (void *) &r4;
3077 }
3078
3079 if (ret) {
3080 ret = -EFAULT;
3081 goto out;
3082 }
3083
3084 set_fs(KERNEL_DS);
3085 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3086 set_fs(old_fs);
3087
3088 out:
3089 return ret;
3090 }
3091
3092 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3093 * for some operations; this forces use of the newer bridge-utils that
3094 * use compatible ioctls
3095 */
3096 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3097 {
3098 compat_ulong_t tmp;
3099
3100 if (get_user(tmp, argp))
3101 return -EFAULT;
3102 if (tmp == BRCTL_GET_VERSION)
3103 return BRCTL_VERSION + 1;
3104 return -EINVAL;
3105 }
3106
3107 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3108 unsigned int cmd, unsigned long arg)
3109 {
3110 void __user *argp = compat_ptr(arg);
3111 struct sock *sk = sock->sk;
3112 struct net *net = sock_net(sk);
3113
3114 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3115 return compat_ifr_data_ioctl(net, cmd, argp);
3116
3117 switch (cmd) {
3118 case SIOCSIFBR:
3119 case SIOCGIFBR:
3120 return old_bridge_ioctl(argp);
3121 case SIOCGIFCONF:
3122 return compat_dev_ifconf(net, argp);
3123 case SIOCETHTOOL:
3124 return ethtool_ioctl(net, argp);
3125 case SIOCWANDEV:
3126 return compat_siocwandev(net, argp);
3127 case SIOCGIFMAP:
3128 case SIOCSIFMAP:
3129 return compat_sioc_ifmap(net, cmd, argp);
3130 case SIOCADDRT:
3131 case SIOCDELRT:
3132 return routing_ioctl(net, sock, cmd, argp);
3133 case SIOCGSTAMP:
3134 return do_siocgstamp(net, sock, cmd, argp);
3135 case SIOCGSTAMPNS:
3136 return do_siocgstampns(net, sock, cmd, argp);
3137 case SIOCBONDSLAVEINFOQUERY:
3138 case SIOCBONDINFOQUERY:
3139 case SIOCSHWTSTAMP:
3140 case SIOCGHWTSTAMP:
3141 return compat_ifr_data_ioctl(net, cmd, argp);
3142
3143 case FIOSETOWN:
3144 case SIOCSPGRP:
3145 case FIOGETOWN:
3146 case SIOCGPGRP:
3147 case SIOCBRADDBR:
3148 case SIOCBRDELBR:
3149 case SIOCGIFVLAN:
3150 case SIOCSIFVLAN:
3151 case SIOCADDDLCI:
3152 case SIOCDELDLCI:
3153 case SIOCGSKNS:
3154 return sock_ioctl(file, cmd, arg);
3155
3156 case SIOCGIFFLAGS:
3157 case SIOCSIFFLAGS:
3158 case SIOCGIFMETRIC:
3159 case SIOCSIFMETRIC:
3160 case SIOCGIFMTU:
3161 case SIOCSIFMTU:
3162 case SIOCGIFMEM:
3163 case SIOCSIFMEM:
3164 case SIOCGIFHWADDR:
3165 case SIOCSIFHWADDR:
3166 case SIOCADDMULTI:
3167 case SIOCDELMULTI:
3168 case SIOCGIFINDEX:
3169 case SIOCGIFADDR:
3170 case SIOCSIFADDR:
3171 case SIOCSIFHWBROADCAST:
3172 case SIOCDIFADDR:
3173 case SIOCGIFBRDADDR:
3174 case SIOCSIFBRDADDR:
3175 case SIOCGIFDSTADDR:
3176 case SIOCSIFDSTADDR:
3177 case SIOCGIFNETMASK:
3178 case SIOCSIFNETMASK:
3179 case SIOCSIFPFLAGS:
3180 case SIOCGIFPFLAGS:
3181 case SIOCGIFTXQLEN:
3182 case SIOCSIFTXQLEN:
3183 case SIOCBRADDIF:
3184 case SIOCBRDELIF:
3185 case SIOCSIFNAME:
3186 case SIOCGMIIPHY:
3187 case SIOCGMIIREG:
3188 case SIOCSMIIREG:
3189 case SIOCSARP:
3190 case SIOCGARP:
3191 case SIOCDARP:
3192 case SIOCATMARK:
3193 case SIOCBONDENSLAVE:
3194 case SIOCBONDRELEASE:
3195 case SIOCBONDSETHWADDR:
3196 case SIOCBONDCHANGEACTIVE:
3197 case SIOCGIFNAME:
3198 return sock_do_ioctl(net, sock, cmd, arg);
3199 }
3200
3201 return -ENOIOCTLCMD;
3202 }
3203
3204 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3205 unsigned long arg)
3206 {
3207 struct socket *sock = file->private_data;
3208 int ret = -ENOIOCTLCMD;
3209 struct sock *sk;
3210 struct net *net;
3211
3212 sk = sock->sk;
3213 net = sock_net(sk);
3214
3215 if (sock->ops->compat_ioctl)
3216 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3217
3218 if (ret == -ENOIOCTLCMD &&
3219 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3220 ret = compat_wext_handle_ioctl(net, cmd, arg);
3221
3222 if (ret == -ENOIOCTLCMD)
3223 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3224
3225 return ret;
3226 }
3227 #endif
3228
3229 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3230 {
3231 return sock->ops->bind(sock, addr, addrlen);
3232 }
3233 EXPORT_SYMBOL(kernel_bind);
3234
3235 int kernel_listen(struct socket *sock, int backlog)
3236 {
3237 return sock->ops->listen(sock, backlog);
3238 }
3239 EXPORT_SYMBOL(kernel_listen);
3240
3241 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3242 {
3243 struct sock *sk = sock->sk;
3244 int err;
3245
3246 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3247 newsock);
3248 if (err < 0)
3249 goto done;
3250
3251 err = sock->ops->accept(sock, *newsock, flags, true);
3252 if (err < 0) {
3253 sock_release(*newsock);
3254 *newsock = NULL;
3255 goto done;
3256 }
3257
3258 (*newsock)->ops = sock->ops;
3259 __module_get((*newsock)->ops->owner);
3260
3261 done:
3262 return err;
3263 }
3264 EXPORT_SYMBOL(kernel_accept);
3265
3266 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3267 int flags)
3268 {
3269 return sock->ops->connect(sock, addr, addrlen, flags);
3270 }
3271 EXPORT_SYMBOL(kernel_connect);
3272
3273 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3274 {
3275 return sock->ops->getname(sock, addr, 0);
3276 }
3277 EXPORT_SYMBOL(kernel_getsockname);
3278
3279 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3280 {
3281 return sock->ops->getname(sock, addr, 1);
3282 }
3283 EXPORT_SYMBOL(kernel_getpeername);
3284
3285 int kernel_getsockopt(struct socket *sock, int level, int optname,
3286 char *optval, int *optlen)
3287 {
3288 mm_segment_t oldfs = get_fs();
3289 char __user *uoptval;
3290 int __user *uoptlen;
3291 int err;
3292
3293 uoptval = (char __user __force *) optval;
3294 uoptlen = (int __user __force *) optlen;
3295
3296 set_fs(KERNEL_DS);
3297 if (level == SOL_SOCKET)
3298 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3299 else
3300 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3301 uoptlen);
3302 set_fs(oldfs);
3303 return err;
3304 }
3305 EXPORT_SYMBOL(kernel_getsockopt);
3306
3307 int kernel_setsockopt(struct socket *sock, int level, int optname,
3308 char *optval, unsigned int optlen)
3309 {
3310 mm_segment_t oldfs = get_fs();
3311 char __user *uoptval;
3312 int err;
3313
3314 uoptval = (char __user __force *) optval;
3315
3316 set_fs(KERNEL_DS);
3317 if (level == SOL_SOCKET)
3318 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3319 else
3320 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3321 optlen);
3322 set_fs(oldfs);
3323 return err;
3324 }
3325 EXPORT_SYMBOL(kernel_setsockopt);
3326
3327 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3328 size_t size, int flags)
3329 {
3330 if (sock->ops->sendpage)
3331 return sock->ops->sendpage(sock, page, offset, size, flags);
3332
3333 return sock_no_sendpage(sock, page, offset, size, flags);
3334 }
3335 EXPORT_SYMBOL(kernel_sendpage);
3336
3337 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3338 size_t size, int flags)
3339 {
3340 struct socket *sock = sk->sk_socket;
3341
3342 if (sock->ops->sendpage_locked)
3343 return sock->ops->sendpage_locked(sk, page, offset, size,
3344 flags);
3345
3346 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3347 }
3348 EXPORT_SYMBOL(kernel_sendpage_locked);
3349
3350 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3351 {
3352 return sock->ops->shutdown(sock, how);
3353 }
3354 EXPORT_SYMBOL(kernel_sock_shutdown);
3355
3356 /* This routine returns the IP overhead imposed by a socket i.e.
3357 * the length of the underlying IP header, depending on whether
3358 * this is an IPv4 or IPv6 socket and the length from IP options turned
3359 * on at the socket. Assumes that the caller has a lock on the socket.
3360 */
3361 u32 kernel_sock_ip_overhead(struct sock *sk)
3362 {
3363 struct inet_sock *inet;
3364 struct ip_options_rcu *opt;
3365 u32 overhead = 0;
3366 #if IS_ENABLED(CONFIG_IPV6)
3367 struct ipv6_pinfo *np;
3368 struct ipv6_txoptions *optv6 = NULL;
3369 #endif /* IS_ENABLED(CONFIG_IPV6) */
3370
3371 if (!sk)
3372 return overhead;
3373
3374 switch (sk->sk_family) {
3375 case AF_INET:
3376 inet = inet_sk(sk);
3377 overhead += sizeof(struct iphdr);
3378 opt = rcu_dereference_protected(inet->inet_opt,
3379 sock_owned_by_user(sk));
3380 if (opt)
3381 overhead += opt->opt.optlen;
3382 return overhead;
3383 #if IS_ENABLED(CONFIG_IPV6)
3384 case AF_INET6:
3385 np = inet6_sk(sk);
3386 overhead += sizeof(struct ipv6hdr);
3387 if (np)
3388 optv6 = rcu_dereference_protected(np->opt,
3389 sock_owned_by_user(sk));
3390 if (optv6)
3391 overhead += (optv6->opt_flen + optv6->opt_nflen);
3392 return overhead;
3393 #endif /* IS_ENABLED(CONFIG_IPV6) */
3394 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3395 return overhead;
3396 }
3397 }
3398 EXPORT_SYMBOL(kernel_sock_ip_overhead);