2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly
;
113 unsigned int sysctl_net_busy_poll __read_mostly
;
116 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
);
117 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
);
118 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
120 static int sock_close(struct inode
*inode
, struct file
*file
);
121 static unsigned int sock_poll(struct file
*file
,
122 struct poll_table_struct
*wait
);
123 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
125 static long compat_sock_ioctl(struct file
*file
,
126 unsigned int cmd
, unsigned long arg
);
128 static int sock_fasync(int fd
, struct file
*filp
, int on
);
129 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
130 int offset
, size_t size
, loff_t
*ppos
, int more
);
131 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
132 struct pipe_inode_info
*pipe
, size_t len
,
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
140 static const struct file_operations socket_file_ops
= {
141 .owner
= THIS_MODULE
,
143 .read_iter
= sock_read_iter
,
144 .write_iter
= sock_write_iter
,
146 .unlocked_ioctl
= sock_ioctl
,
148 .compat_ioctl
= compat_sock_ioctl
,
151 .release
= sock_close
,
152 .fasync
= sock_fasync
,
153 .sendpage
= sock_sendpage
,
154 .splice_write
= generic_splice_sendpage
,
155 .splice_read
= sock_splice_read
,
159 * The protocol list. Each protocol is registered in here.
162 static DEFINE_SPINLOCK(net_family_lock
);
163 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
166 * Statistics counters of the socket lists
169 static DEFINE_PER_CPU(int, sockets_in_use
);
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
188 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
190 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
194 if (copy_from_user(kaddr
, uaddr
, ulen
))
196 return audit_sockaddr(ulen
, kaddr
);
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
216 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
217 void __user
*uaddr
, int __user
*ulen
)
222 BUG_ON(klen
> sizeof(struct sockaddr_storage
));
223 err
= get_user(len
, ulen
);
231 if (audit_sockaddr(klen
, kaddr
))
233 if (copy_to_user(uaddr
, kaddr
, len
))
237 * "fromlen shall refer to the value before truncation.."
240 return __put_user(klen
, ulen
);
243 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
245 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
247 struct socket_alloc
*ei
;
248 struct socket_wq
*wq
;
250 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
253 wq
= kmalloc(sizeof(*wq
), GFP_KERNEL
);
255 kmem_cache_free(sock_inode_cachep
, ei
);
258 init_waitqueue_head(&wq
->wait
);
259 wq
->fasync_list
= NULL
;
261 RCU_INIT_POINTER(ei
->socket
.wq
, wq
);
263 ei
->socket
.state
= SS_UNCONNECTED
;
264 ei
->socket
.flags
= 0;
265 ei
->socket
.ops
= NULL
;
266 ei
->socket
.sk
= NULL
;
267 ei
->socket
.file
= NULL
;
269 return &ei
->vfs_inode
;
272 static void sock_destroy_inode(struct inode
*inode
)
274 struct socket_alloc
*ei
;
275 struct socket_wq
*wq
;
277 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
278 wq
= rcu_dereference_protected(ei
->socket
.wq
, 1);
280 kmem_cache_free(sock_inode_cachep
, ei
);
283 static void init_once(void *foo
)
285 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
287 inode_init_once(&ei
->vfs_inode
);
290 static void init_inodecache(void)
292 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc
),
295 (SLAB_HWCACHE_ALIGN
|
296 SLAB_RECLAIM_ACCOUNT
|
297 SLAB_MEM_SPREAD
| SLAB_ACCOUNT
),
299 BUG_ON(sock_inode_cachep
== NULL
);
302 static const struct super_operations sockfs_ops
= {
303 .alloc_inode
= sock_alloc_inode
,
304 .destroy_inode
= sock_destroy_inode
,
305 .statfs
= simple_statfs
,
309 * sockfs_dname() is called from d_path().
311 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
313 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
314 d_inode(dentry
)->i_ino
);
317 static const struct dentry_operations sockfs_dentry_operations
= {
318 .d_dname
= sockfs_dname
,
321 static int sockfs_xattr_get(const struct xattr_handler
*handler
,
322 struct dentry
*dentry
, struct inode
*inode
,
323 const char *suffix
, void *value
, size_t size
)
326 if (dentry
->d_name
.len
+ 1 > size
)
328 memcpy(value
, dentry
->d_name
.name
, dentry
->d_name
.len
+ 1);
330 return dentry
->d_name
.len
+ 1;
333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
337 static const struct xattr_handler sockfs_xattr_handler
= {
338 .name
= XATTR_NAME_SOCKPROTONAME
,
339 .get
= sockfs_xattr_get
,
342 static int sockfs_security_xattr_set(const struct xattr_handler
*handler
,
343 struct dentry
*dentry
, struct inode
*inode
,
344 const char *suffix
, const void *value
,
345 size_t size
, int flags
)
347 /* Handled by LSM. */
351 static const struct xattr_handler sockfs_security_xattr_handler
= {
352 .prefix
= XATTR_SECURITY_PREFIX
,
353 .set
= sockfs_security_xattr_set
,
356 static const struct xattr_handler
*sockfs_xattr_handlers
[] = {
357 &sockfs_xattr_handler
,
358 &sockfs_security_xattr_handler
,
362 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
363 int flags
, const char *dev_name
, void *data
)
365 return mount_pseudo_xattr(fs_type
, "socket:", &sockfs_ops
,
366 sockfs_xattr_handlers
,
367 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
370 static struct vfsmount
*sock_mnt __read_mostly
;
372 static struct file_system_type sock_fs_type
= {
374 .mount
= sockfs_mount
,
375 .kill_sb
= kill_anon_super
,
379 * Obtains the first available file descriptor and sets it up for use.
381 * These functions create file structures and maps them to fd space
382 * of the current process. On success it returns file descriptor
383 * and file struct implicitly stored in sock->file.
384 * Note that another thread may close file descriptor before we return
385 * from this function. We use the fact that now we do not refer
386 * to socket after mapping. If one day we will need it, this
387 * function will increment ref. count on file by 1.
389 * In any case returned fd MAY BE not valid!
390 * This race condition is unavoidable
391 * with shared fd spaces, we cannot solve it inside kernel,
392 * but we take care of internal coherence yet.
395 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
397 struct qstr name
= { .name
= "" };
403 name
.len
= strlen(name
.name
);
404 } else if (sock
->sk
) {
405 name
.name
= sock
->sk
->sk_prot_creator
->name
;
406 name
.len
= strlen(name
.name
);
408 path
.dentry
= d_alloc_pseudo(sock_mnt
->mnt_sb
, &name
);
409 if (unlikely(!path
.dentry
))
410 return ERR_PTR(-ENOMEM
);
411 path
.mnt
= mntget(sock_mnt
);
413 d_instantiate(path
.dentry
, SOCK_INODE(sock
));
415 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
,
418 /* drop dentry, keep inode */
419 ihold(d_inode(path
.dentry
));
425 file
->f_flags
= O_RDWR
| (flags
& O_NONBLOCK
);
426 file
->private_data
= sock
;
429 EXPORT_SYMBOL(sock_alloc_file
);
431 static int sock_map_fd(struct socket
*sock
, int flags
)
433 struct file
*newfile
;
434 int fd
= get_unused_fd_flags(flags
);
435 if (unlikely(fd
< 0))
438 newfile
= sock_alloc_file(sock
, flags
, NULL
);
439 if (likely(!IS_ERR(newfile
))) {
440 fd_install(fd
, newfile
);
445 return PTR_ERR(newfile
);
448 struct socket
*sock_from_file(struct file
*file
, int *err
)
450 if (file
->f_op
== &socket_file_ops
)
451 return file
->private_data
; /* set in sock_map_fd */
456 EXPORT_SYMBOL(sock_from_file
);
459 * sockfd_lookup - Go from a file number to its socket slot
461 * @err: pointer to an error code return
463 * The file handle passed in is locked and the socket it is bound
464 * to is returned. If an error occurs the err pointer is overwritten
465 * with a negative errno code and NULL is returned. The function checks
466 * for both invalid handles and passing a handle which is not a socket.
468 * On a success the socket object pointer is returned.
471 struct socket
*sockfd_lookup(int fd
, int *err
)
482 sock
= sock_from_file(file
, err
);
487 EXPORT_SYMBOL(sockfd_lookup
);
489 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
491 struct fd f
= fdget(fd
);
496 sock
= sock_from_file(f
.file
, err
);
498 *fput_needed
= f
.flags
;
506 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
512 len
= security_inode_listsecurity(d_inode(dentry
), buffer
, size
);
522 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
527 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
534 static int sockfs_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
536 int err
= simple_setattr(dentry
, iattr
);
538 if (!err
&& (iattr
->ia_valid
& ATTR_UID
)) {
539 struct socket
*sock
= SOCKET_I(d_inode(dentry
));
541 sock
->sk
->sk_uid
= iattr
->ia_uid
;
547 static const struct inode_operations sockfs_inode_ops
= {
548 .listxattr
= sockfs_listxattr
,
549 .setattr
= sockfs_setattr
,
553 * sock_alloc - allocate a socket
555 * Allocate a new inode and socket object. The two are bound together
556 * and initialised. The socket is then returned. If we are out of inodes
560 struct socket
*sock_alloc(void)
565 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
569 sock
= SOCKET_I(inode
);
571 kmemcheck_annotate_bitfield(sock
, type
);
572 inode
->i_ino
= get_next_ino();
573 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
574 inode
->i_uid
= current_fsuid();
575 inode
->i_gid
= current_fsgid();
576 inode
->i_op
= &sockfs_inode_ops
;
578 this_cpu_add(sockets_in_use
, 1);
581 EXPORT_SYMBOL(sock_alloc
);
584 * sock_release - close a socket
585 * @sock: socket to close
587 * The socket is released from the protocol stack if it has a release
588 * callback, and the inode is then released if the socket is bound to
589 * an inode not a file.
592 void sock_release(struct socket
*sock
)
595 struct module
*owner
= sock
->ops
->owner
;
597 sock
->ops
->release(sock
);
602 if (rcu_dereference_protected(sock
->wq
, 1)->fasync_list
)
603 pr_err("%s: fasync list not empty!\n", __func__
);
605 this_cpu_sub(sockets_in_use
, 1);
607 iput(SOCK_INODE(sock
));
612 EXPORT_SYMBOL(sock_release
);
614 void __sock_tx_timestamp(__u16 tsflags
, __u8
*tx_flags
)
616 u8 flags
= *tx_flags
;
618 if (tsflags
& SOF_TIMESTAMPING_TX_HARDWARE
)
619 flags
|= SKBTX_HW_TSTAMP
;
621 if (tsflags
& SOF_TIMESTAMPING_TX_SOFTWARE
)
622 flags
|= SKBTX_SW_TSTAMP
;
624 if (tsflags
& SOF_TIMESTAMPING_TX_SCHED
)
625 flags
|= SKBTX_SCHED_TSTAMP
;
629 EXPORT_SYMBOL(__sock_tx_timestamp
);
631 static inline int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
)
633 int ret
= sock
->ops
->sendmsg(sock
, msg
, msg_data_left(msg
));
634 BUG_ON(ret
== -EIOCBQUEUED
);
638 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
)
640 int err
= security_socket_sendmsg(sock
, msg
,
643 return err
?: sock_sendmsg_nosec(sock
, msg
);
645 EXPORT_SYMBOL(sock_sendmsg
);
647 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
648 struct kvec
*vec
, size_t num
, size_t size
)
650 iov_iter_kvec(&msg
->msg_iter
, WRITE
| ITER_KVEC
, vec
, num
, size
);
651 return sock_sendmsg(sock
, msg
);
653 EXPORT_SYMBOL(kernel_sendmsg
);
655 static bool skb_is_err_queue(const struct sk_buff
*skb
)
657 /* pkt_type of skbs enqueued on the error queue are set to
658 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
659 * in recvmsg, since skbs received on a local socket will never
660 * have a pkt_type of PACKET_OUTGOING.
662 return skb
->pkt_type
== PACKET_OUTGOING
;
665 /* On transmit, software and hardware timestamps are returned independently.
666 * As the two skb clones share the hardware timestamp, which may be updated
667 * before the software timestamp is received, a hardware TX timestamp may be
668 * returned only if there is no software TX timestamp. Ignore false software
669 * timestamps, which may be made in the __sock_recv_timestamp() call when the
670 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
671 * hardware timestamp.
673 static bool skb_is_swtx_tstamp(const struct sk_buff
*skb
, int false_tstamp
)
675 return skb
->tstamp
&& !false_tstamp
&& skb_is_err_queue(skb
);
678 static void put_ts_pktinfo(struct msghdr
*msg
, struct sk_buff
*skb
)
680 struct scm_ts_pktinfo ts_pktinfo
;
681 struct net_device
*orig_dev
;
683 if (!skb_mac_header_was_set(skb
))
686 memset(&ts_pktinfo
, 0, sizeof(ts_pktinfo
));
689 orig_dev
= dev_get_by_napi_id(skb_napi_id(skb
));
691 ts_pktinfo
.if_index
= orig_dev
->ifindex
;
694 ts_pktinfo
.pkt_length
= skb
->len
- skb_mac_offset(skb
);
695 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_PKTINFO
,
696 sizeof(ts_pktinfo
), &ts_pktinfo
);
700 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
702 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
705 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
706 struct scm_timestamping tss
;
707 int empty
= 1, false_tstamp
= 0;
708 struct skb_shared_hwtstamps
*shhwtstamps
=
711 /* Race occurred between timestamp enabling and packet
712 receiving. Fill in the current time for now. */
713 if (need_software_tstamp
&& skb
->tstamp
== 0) {
714 __net_timestamp(skb
);
718 if (need_software_tstamp
) {
719 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
721 skb_get_timestamp(skb
, &tv
);
722 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
726 skb_get_timestampns(skb
, &ts
);
727 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
732 memset(&tss
, 0, sizeof(tss
));
733 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
) &&
734 ktime_to_timespec_cond(skb
->tstamp
, tss
.ts
+ 0))
737 (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
) &&
738 !skb_is_swtx_tstamp(skb
, false_tstamp
) &&
739 ktime_to_timespec_cond(shhwtstamps
->hwtstamp
, tss
.ts
+ 2)) {
741 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_PKTINFO
) &&
742 !skb_is_err_queue(skb
))
743 put_ts_pktinfo(msg
, skb
);
746 put_cmsg(msg
, SOL_SOCKET
,
747 SCM_TIMESTAMPING
, sizeof(tss
), &tss
);
749 if (skb_is_err_queue(skb
) && skb
->len
&&
750 SKB_EXT_ERR(skb
)->opt_stats
)
751 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_OPT_STATS
,
752 skb
->len
, skb
->data
);
755 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
757 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
762 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
764 if (!skb
->wifi_acked_valid
)
767 ack
= skb
->wifi_acked
;
769 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
771 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
773 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
776 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& SOCK_SKB_CB(skb
)->dropcount
)
777 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
778 sizeof(__u32
), &SOCK_SKB_CB(skb
)->dropcount
);
781 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
784 sock_recv_timestamp(msg
, sk
, skb
);
785 sock_recv_drops(msg
, sk
, skb
);
787 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
789 static inline int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
792 return sock
->ops
->recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
795 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
, int flags
)
797 int err
= security_socket_recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
799 return err
?: sock_recvmsg_nosec(sock
, msg
, flags
);
801 EXPORT_SYMBOL(sock_recvmsg
);
804 * kernel_recvmsg - Receive a message from a socket (kernel space)
805 * @sock: The socket to receive the message from
806 * @msg: Received message
807 * @vec: Input s/g array for message data
808 * @num: Size of input s/g array
809 * @size: Number of bytes to read
810 * @flags: Message flags (MSG_DONTWAIT, etc...)
812 * On return the msg structure contains the scatter/gather array passed in the
813 * vec argument. The array is modified so that it consists of the unfilled
814 * portion of the original array.
816 * The returned value is the total number of bytes received, or an error.
818 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
819 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
821 mm_segment_t oldfs
= get_fs();
824 iov_iter_kvec(&msg
->msg_iter
, READ
| ITER_KVEC
, vec
, num
, size
);
826 result
= sock_recvmsg(sock
, msg
, flags
);
830 EXPORT_SYMBOL(kernel_recvmsg
);
832 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
833 int offset
, size_t size
, loff_t
*ppos
, int more
)
838 sock
= file
->private_data
;
840 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
841 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
844 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
847 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
848 struct pipe_inode_info
*pipe
, size_t len
,
851 struct socket
*sock
= file
->private_data
;
853 if (unlikely(!sock
->ops
->splice_read
))
856 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
859 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
861 struct file
*file
= iocb
->ki_filp
;
862 struct socket
*sock
= file
->private_data
;
863 struct msghdr msg
= {.msg_iter
= *to
,
867 if (file
->f_flags
& O_NONBLOCK
)
868 msg
.msg_flags
= MSG_DONTWAIT
;
870 if (iocb
->ki_pos
!= 0)
873 if (!iov_iter_count(to
)) /* Match SYS5 behaviour */
876 res
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
881 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
883 struct file
*file
= iocb
->ki_filp
;
884 struct socket
*sock
= file
->private_data
;
885 struct msghdr msg
= {.msg_iter
= *from
,
889 if (iocb
->ki_pos
!= 0)
892 if (file
->f_flags
& O_NONBLOCK
)
893 msg
.msg_flags
= MSG_DONTWAIT
;
895 if (sock
->type
== SOCK_SEQPACKET
)
896 msg
.msg_flags
|= MSG_EOR
;
898 res
= sock_sendmsg(sock
, &msg
);
899 *from
= msg
.msg_iter
;
904 * Atomic setting of ioctl hooks to avoid race
905 * with module unload.
908 static DEFINE_MUTEX(br_ioctl_mutex
);
909 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
911 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
913 mutex_lock(&br_ioctl_mutex
);
914 br_ioctl_hook
= hook
;
915 mutex_unlock(&br_ioctl_mutex
);
917 EXPORT_SYMBOL(brioctl_set
);
919 static DEFINE_MUTEX(vlan_ioctl_mutex
);
920 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
922 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
924 mutex_lock(&vlan_ioctl_mutex
);
925 vlan_ioctl_hook
= hook
;
926 mutex_unlock(&vlan_ioctl_mutex
);
928 EXPORT_SYMBOL(vlan_ioctl_set
);
930 static DEFINE_MUTEX(dlci_ioctl_mutex
);
931 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
933 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
935 mutex_lock(&dlci_ioctl_mutex
);
936 dlci_ioctl_hook
= hook
;
937 mutex_unlock(&dlci_ioctl_mutex
);
939 EXPORT_SYMBOL(dlci_ioctl_set
);
941 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
942 unsigned int cmd
, unsigned long arg
)
945 void __user
*argp
= (void __user
*)arg
;
947 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
950 * If this ioctl is unknown try to hand it down
953 if (err
== -ENOIOCTLCMD
)
954 err
= dev_ioctl(net
, cmd
, argp
);
960 * With an ioctl, arg may well be a user mode pointer, but we don't know
961 * what to do with it - that's up to the protocol still.
964 static struct ns_common
*get_net_ns(struct ns_common
*ns
)
966 return &get_net(container_of(ns
, struct net
, ns
))->ns
;
969 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
973 void __user
*argp
= (void __user
*)arg
;
977 sock
= file
->private_data
;
980 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
981 err
= dev_ioctl(net
, cmd
, argp
);
983 #ifdef CONFIG_WEXT_CORE
984 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
985 err
= dev_ioctl(net
, cmd
, argp
);
992 if (get_user(pid
, (int __user
*)argp
))
994 f_setown(sock
->file
, pid
, 1);
999 err
= put_user(f_getown(sock
->file
),
1000 (int __user
*)argp
);
1008 request_module("bridge");
1010 mutex_lock(&br_ioctl_mutex
);
1012 err
= br_ioctl_hook(net
, cmd
, argp
);
1013 mutex_unlock(&br_ioctl_mutex
);
1018 if (!vlan_ioctl_hook
)
1019 request_module("8021q");
1021 mutex_lock(&vlan_ioctl_mutex
);
1022 if (vlan_ioctl_hook
)
1023 err
= vlan_ioctl_hook(net
, argp
);
1024 mutex_unlock(&vlan_ioctl_mutex
);
1029 if (!dlci_ioctl_hook
)
1030 request_module("dlci");
1032 mutex_lock(&dlci_ioctl_mutex
);
1033 if (dlci_ioctl_hook
)
1034 err
= dlci_ioctl_hook(cmd
, argp
);
1035 mutex_unlock(&dlci_ioctl_mutex
);
1039 if (!ns_capable(net
->user_ns
, CAP_NET_ADMIN
))
1042 err
= open_related_ns(&net
->ns
, get_net_ns
);
1045 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
1051 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1054 struct socket
*sock
= NULL
;
1056 err
= security_socket_create(family
, type
, protocol
, 1);
1060 sock
= sock_alloc();
1067 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1079 EXPORT_SYMBOL(sock_create_lite
);
1081 /* No kernel lock held - perfect */
1082 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
1084 unsigned int busy_flag
= 0;
1085 struct socket
*sock
;
1088 * We can't return errors to poll, so it's either yes or no.
1090 sock
= file
->private_data
;
1092 if (sk_can_busy_loop(sock
->sk
)) {
1093 /* this socket can poll_ll so tell the system call */
1094 busy_flag
= POLL_BUSY_LOOP
;
1096 /* once, only if requested by syscall */
1097 if (wait
&& (wait
->_key
& POLL_BUSY_LOOP
))
1098 sk_busy_loop(sock
->sk
, 1);
1101 return busy_flag
| sock
->ops
->poll(file
, sock
, wait
);
1104 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1106 struct socket
*sock
= file
->private_data
;
1108 return sock
->ops
->mmap(file
, sock
, vma
);
1111 static int sock_close(struct inode
*inode
, struct file
*filp
)
1113 sock_release(SOCKET_I(inode
));
1118 * Update the socket async list
1120 * Fasync_list locking strategy.
1122 * 1. fasync_list is modified only under process context socket lock
1123 * i.e. under semaphore.
1124 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1125 * or under socket lock
1128 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1130 struct socket
*sock
= filp
->private_data
;
1131 struct sock
*sk
= sock
->sk
;
1132 struct socket_wq
*wq
;
1138 wq
= rcu_dereference_protected(sock
->wq
, lockdep_sock_is_held(sk
));
1139 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1141 if (!wq
->fasync_list
)
1142 sock_reset_flag(sk
, SOCK_FASYNC
);
1144 sock_set_flag(sk
, SOCK_FASYNC
);
1150 /* This function may be called only under rcu_lock */
1152 int sock_wake_async(struct socket_wq
*wq
, int how
, int band
)
1154 if (!wq
|| !wq
->fasync_list
)
1158 case SOCK_WAKE_WAITD
:
1159 if (test_bit(SOCKWQ_ASYNC_WAITDATA
, &wq
->flags
))
1162 case SOCK_WAKE_SPACE
:
1163 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE
, &wq
->flags
))
1168 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1171 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1176 EXPORT_SYMBOL(sock_wake_async
);
1178 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1179 struct socket
**res
, int kern
)
1182 struct socket
*sock
;
1183 const struct net_proto_family
*pf
;
1186 * Check protocol is in range
1188 if (family
< 0 || family
>= NPROTO
)
1189 return -EAFNOSUPPORT
;
1190 if (type
< 0 || type
>= SOCK_MAX
)
1195 This uglymoron is moved from INET layer to here to avoid
1196 deadlock in module load.
1198 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1199 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1204 err
= security_socket_create(family
, type
, protocol
, kern
);
1209 * Allocate the socket and allow the family to set things up. if
1210 * the protocol is 0, the family is instructed to select an appropriate
1213 sock
= sock_alloc();
1215 net_warn_ratelimited("socket: no more sockets\n");
1216 return -ENFILE
; /* Not exactly a match, but its the
1217 closest posix thing */
1222 #ifdef CONFIG_MODULES
1223 /* Attempt to load a protocol module if the find failed.
1225 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1226 * requested real, full-featured networking support upon configuration.
1227 * Otherwise module support will break!
1229 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1230 request_module("net-pf-%d", family
);
1234 pf
= rcu_dereference(net_families
[family
]);
1235 err
= -EAFNOSUPPORT
;
1240 * We will call the ->create function, that possibly is in a loadable
1241 * module, so we have to bump that loadable module refcnt first.
1243 if (!try_module_get(pf
->owner
))
1246 /* Now protected by module ref count */
1249 err
= pf
->create(net
, sock
, protocol
, kern
);
1251 goto out_module_put
;
1254 * Now to bump the refcnt of the [loadable] module that owns this
1255 * socket at sock_release time we decrement its refcnt.
1257 if (!try_module_get(sock
->ops
->owner
))
1258 goto out_module_busy
;
1261 * Now that we're done with the ->create function, the [loadable]
1262 * module can have its refcnt decremented
1264 module_put(pf
->owner
);
1265 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1267 goto out_sock_release
;
1273 err
= -EAFNOSUPPORT
;
1276 module_put(pf
->owner
);
1283 goto out_sock_release
;
1285 EXPORT_SYMBOL(__sock_create
);
1287 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1289 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1291 EXPORT_SYMBOL(sock_create
);
1293 int sock_create_kern(struct net
*net
, int family
, int type
, int protocol
, struct socket
**res
)
1295 return __sock_create(net
, family
, type
, protocol
, res
, 1);
1297 EXPORT_SYMBOL(sock_create_kern
);
1299 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1302 struct socket
*sock
;
1305 /* Check the SOCK_* constants for consistency. */
1306 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1307 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1308 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1309 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1311 flags
= type
& ~SOCK_TYPE_MASK
;
1312 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1314 type
&= SOCK_TYPE_MASK
;
1316 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1317 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1319 retval
= sock_create(family
, type
, protocol
, &sock
);
1323 retval
= sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1328 /* It may be already another descriptor 8) Not kernel problem. */
1337 * Create a pair of connected sockets.
1340 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1341 int __user
*, usockvec
)
1343 struct socket
*sock1
, *sock2
;
1345 struct file
*newfile1
, *newfile2
;
1348 flags
= type
& ~SOCK_TYPE_MASK
;
1349 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1351 type
&= SOCK_TYPE_MASK
;
1353 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1354 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1357 * Obtain the first socket and check if the underlying protocol
1358 * supports the socketpair call.
1361 err
= sock_create(family
, type
, protocol
, &sock1
);
1365 err
= sock_create(family
, type
, protocol
, &sock2
);
1369 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1371 goto out_release_both
;
1373 fd1
= get_unused_fd_flags(flags
);
1374 if (unlikely(fd1
< 0)) {
1376 goto out_release_both
;
1379 fd2
= get_unused_fd_flags(flags
);
1380 if (unlikely(fd2
< 0)) {
1382 goto out_put_unused_1
;
1385 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1386 if (IS_ERR(newfile1
)) {
1387 err
= PTR_ERR(newfile1
);
1388 goto out_put_unused_both
;
1391 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1392 if (IS_ERR(newfile2
)) {
1393 err
= PTR_ERR(newfile2
);
1397 err
= put_user(fd1
, &usockvec
[0]);
1401 err
= put_user(fd2
, &usockvec
[1]);
1405 audit_fd_pair(fd1
, fd2
);
1407 fd_install(fd1
, newfile1
);
1408 fd_install(fd2
, newfile2
);
1409 /* fd1 and fd2 may be already another descriptors.
1410 * Not kernel problem.
1426 sock_release(sock2
);
1429 out_put_unused_both
:
1434 sock_release(sock2
);
1436 sock_release(sock1
);
1442 * Bind a name to a socket. Nothing much to do here since it's
1443 * the protocol's responsibility to handle the local address.
1445 * We move the socket address to kernel space before we call
1446 * the protocol layer (having also checked the address is ok).
1449 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1451 struct socket
*sock
;
1452 struct sockaddr_storage address
;
1453 int err
, fput_needed
;
1455 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1457 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1459 err
= security_socket_bind(sock
,
1460 (struct sockaddr
*)&address
,
1463 err
= sock
->ops
->bind(sock
,
1467 fput_light(sock
->file
, fput_needed
);
1473 * Perform a listen. Basically, we allow the protocol to do anything
1474 * necessary for a listen, and if that works, we mark the socket as
1475 * ready for listening.
1478 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1480 struct socket
*sock
;
1481 int err
, fput_needed
;
1484 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1486 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1487 if ((unsigned int)backlog
> somaxconn
)
1488 backlog
= somaxconn
;
1490 err
= security_socket_listen(sock
, backlog
);
1492 err
= sock
->ops
->listen(sock
, backlog
);
1494 fput_light(sock
->file
, fput_needed
);
1500 * For accept, we attempt to create a new socket, set up the link
1501 * with the client, wake up the client, then return the new
1502 * connected fd. We collect the address of the connector in kernel
1503 * space and move it to user at the very end. This is unclean because
1504 * we open the socket then return an error.
1506 * 1003.1g adds the ability to recvmsg() to query connection pending
1507 * status to recvmsg. We need to add that support in a way thats
1508 * clean when we restucture accept also.
1511 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1512 int __user
*, upeer_addrlen
, int, flags
)
1514 struct socket
*sock
, *newsock
;
1515 struct file
*newfile
;
1516 int err
, len
, newfd
, fput_needed
;
1517 struct sockaddr_storage address
;
1519 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1522 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1523 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1525 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1530 newsock
= sock_alloc();
1534 newsock
->type
= sock
->type
;
1535 newsock
->ops
= sock
->ops
;
1538 * We don't need try_module_get here, as the listening socket (sock)
1539 * has the protocol module (sock->ops->owner) held.
1541 __module_get(newsock
->ops
->owner
);
1543 newfd
= get_unused_fd_flags(flags
);
1544 if (unlikely(newfd
< 0)) {
1546 sock_release(newsock
);
1549 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1550 if (IS_ERR(newfile
)) {
1551 err
= PTR_ERR(newfile
);
1552 put_unused_fd(newfd
);
1553 sock_release(newsock
);
1557 err
= security_socket_accept(sock
, newsock
);
1561 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
, false);
1565 if (upeer_sockaddr
) {
1566 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)&address
,
1568 err
= -ECONNABORTED
;
1571 err
= move_addr_to_user(&address
,
1572 len
, upeer_sockaddr
, upeer_addrlen
);
1577 /* File flags are not inherited via accept() unlike another OSes. */
1579 fd_install(newfd
, newfile
);
1583 fput_light(sock
->file
, fput_needed
);
1588 put_unused_fd(newfd
);
1592 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1593 int __user
*, upeer_addrlen
)
1595 return sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1599 * Attempt to connect to a socket with the server address. The address
1600 * is in user space so we verify it is OK and move it to kernel space.
1602 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1605 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1606 * other SEQPACKET protocols that take time to connect() as it doesn't
1607 * include the -EINPROGRESS status for such sockets.
1610 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1613 struct socket
*sock
;
1614 struct sockaddr_storage address
;
1615 int err
, fput_needed
;
1617 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1620 err
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
1625 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1629 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1630 sock
->file
->f_flags
);
1632 fput_light(sock
->file
, fput_needed
);
1638 * Get the local address ('name') of a socket object. Move the obtained
1639 * name to user space.
1642 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1643 int __user
*, usockaddr_len
)
1645 struct socket
*sock
;
1646 struct sockaddr_storage address
;
1647 int len
, err
, fput_needed
;
1649 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1653 err
= security_socket_getsockname(sock
);
1657 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
, 0);
1660 err
= move_addr_to_user(&address
, len
, usockaddr
, usockaddr_len
);
1663 fput_light(sock
->file
, fput_needed
);
1669 * Get the remote address ('name') of a socket object. Move the obtained
1670 * name to user space.
1673 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1674 int __user
*, usockaddr_len
)
1676 struct socket
*sock
;
1677 struct sockaddr_storage address
;
1678 int len
, err
, fput_needed
;
1680 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1682 err
= security_socket_getpeername(sock
);
1684 fput_light(sock
->file
, fput_needed
);
1689 sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
,
1692 err
= move_addr_to_user(&address
, len
, usockaddr
,
1694 fput_light(sock
->file
, fput_needed
);
1700 * Send a datagram to a given address. We move the address into kernel
1701 * space and check the user space data area is readable before invoking
1705 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1706 unsigned int, flags
, struct sockaddr __user
*, addr
,
1709 struct socket
*sock
;
1710 struct sockaddr_storage address
;
1716 err
= import_single_range(WRITE
, buff
, len
, &iov
, &msg
.msg_iter
);
1719 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1723 msg
.msg_name
= NULL
;
1724 msg
.msg_control
= NULL
;
1725 msg
.msg_controllen
= 0;
1726 msg
.msg_namelen
= 0;
1728 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
1731 msg
.msg_name
= (struct sockaddr
*)&address
;
1732 msg
.msg_namelen
= addr_len
;
1734 if (sock
->file
->f_flags
& O_NONBLOCK
)
1735 flags
|= MSG_DONTWAIT
;
1736 msg
.msg_flags
= flags
;
1737 err
= sock_sendmsg(sock
, &msg
);
1740 fput_light(sock
->file
, fput_needed
);
1746 * Send a datagram down a socket.
1749 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1750 unsigned int, flags
)
1752 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1756 * Receive a frame from the socket and optionally record the address of the
1757 * sender. We verify the buffers are writable and if needed move the
1758 * sender address from kernel to user space.
1761 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1762 unsigned int, flags
, struct sockaddr __user
*, addr
,
1763 int __user
*, addr_len
)
1765 struct socket
*sock
;
1768 struct sockaddr_storage address
;
1772 err
= import_single_range(READ
, ubuf
, size
, &iov
, &msg
.msg_iter
);
1775 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1779 msg
.msg_control
= NULL
;
1780 msg
.msg_controllen
= 0;
1781 /* Save some cycles and don't copy the address if not needed */
1782 msg
.msg_name
= addr
? (struct sockaddr
*)&address
: NULL
;
1783 /* We assume all kernel code knows the size of sockaddr_storage */
1784 msg
.msg_namelen
= 0;
1785 msg
.msg_iocb
= NULL
;
1787 if (sock
->file
->f_flags
& O_NONBLOCK
)
1788 flags
|= MSG_DONTWAIT
;
1789 err
= sock_recvmsg(sock
, &msg
, flags
);
1791 if (err
>= 0 && addr
!= NULL
) {
1792 err2
= move_addr_to_user(&address
,
1793 msg
.msg_namelen
, addr
, addr_len
);
1798 fput_light(sock
->file
, fput_needed
);
1804 * Receive a datagram from a socket.
1807 SYSCALL_DEFINE4(recv
, int, fd
, void __user
*, ubuf
, size_t, size
,
1808 unsigned int, flags
)
1810 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1814 * Set a socket option. Because we don't know the option lengths we have
1815 * to pass the user mode parameter for the protocols to sort out.
1818 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1819 char __user
*, optval
, int, optlen
)
1821 int err
, fput_needed
;
1822 struct socket
*sock
;
1827 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1829 err
= security_socket_setsockopt(sock
, level
, optname
);
1833 if (level
== SOL_SOCKET
)
1835 sock_setsockopt(sock
, level
, optname
, optval
,
1839 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1842 fput_light(sock
->file
, fput_needed
);
1848 * Get a socket option. Because we don't know the option lengths we have
1849 * to pass a user mode parameter for the protocols to sort out.
1852 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1853 char __user
*, optval
, int __user
*, optlen
)
1855 int err
, fput_needed
;
1856 struct socket
*sock
;
1858 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1860 err
= security_socket_getsockopt(sock
, level
, optname
);
1864 if (level
== SOL_SOCKET
)
1866 sock_getsockopt(sock
, level
, optname
, optval
,
1870 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1873 fput_light(sock
->file
, fput_needed
);
1879 * Shutdown a socket.
1882 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1884 int err
, fput_needed
;
1885 struct socket
*sock
;
1887 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1889 err
= security_socket_shutdown(sock
, how
);
1891 err
= sock
->ops
->shutdown(sock
, how
);
1892 fput_light(sock
->file
, fput_needed
);
1897 /* A couple of helpful macros for getting the address of the 32/64 bit
1898 * fields which are the same type (int / unsigned) on our platforms.
1900 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1901 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1902 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1904 struct used_address
{
1905 struct sockaddr_storage name
;
1906 unsigned int name_len
;
1909 static int copy_msghdr_from_user(struct msghdr
*kmsg
,
1910 struct user_msghdr __user
*umsg
,
1911 struct sockaddr __user
**save_addr
,
1914 struct sockaddr __user
*uaddr
;
1915 struct iovec __user
*uiov
;
1919 if (!access_ok(VERIFY_READ
, umsg
, sizeof(*umsg
)) ||
1920 __get_user(uaddr
, &umsg
->msg_name
) ||
1921 __get_user(kmsg
->msg_namelen
, &umsg
->msg_namelen
) ||
1922 __get_user(uiov
, &umsg
->msg_iov
) ||
1923 __get_user(nr_segs
, &umsg
->msg_iovlen
) ||
1924 __get_user(kmsg
->msg_control
, &umsg
->msg_control
) ||
1925 __get_user(kmsg
->msg_controllen
, &umsg
->msg_controllen
) ||
1926 __get_user(kmsg
->msg_flags
, &umsg
->msg_flags
))
1930 kmsg
->msg_namelen
= 0;
1932 if (kmsg
->msg_namelen
< 0)
1935 if (kmsg
->msg_namelen
> sizeof(struct sockaddr_storage
))
1936 kmsg
->msg_namelen
= sizeof(struct sockaddr_storage
);
1941 if (uaddr
&& kmsg
->msg_namelen
) {
1943 err
= move_addr_to_kernel(uaddr
, kmsg
->msg_namelen
,
1949 kmsg
->msg_name
= NULL
;
1950 kmsg
->msg_namelen
= 0;
1953 if (nr_segs
> UIO_MAXIOV
)
1956 kmsg
->msg_iocb
= NULL
;
1958 return import_iovec(save_addr
? READ
: WRITE
, uiov
, nr_segs
,
1959 UIO_FASTIOV
, iov
, &kmsg
->msg_iter
);
1962 static int ___sys_sendmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
1963 struct msghdr
*msg_sys
, unsigned int flags
,
1964 struct used_address
*used_address
,
1965 unsigned int allowed_msghdr_flags
)
1967 struct compat_msghdr __user
*msg_compat
=
1968 (struct compat_msghdr __user
*)msg
;
1969 struct sockaddr_storage address
;
1970 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1971 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1972 __aligned(sizeof(__kernel_size_t
));
1973 /* 20 is size of ipv6_pktinfo */
1974 unsigned char *ctl_buf
= ctl
;
1978 msg_sys
->msg_name
= &address
;
1980 if (MSG_CMSG_COMPAT
& flags
)
1981 err
= get_compat_msghdr(msg_sys
, msg_compat
, NULL
, &iov
);
1983 err
= copy_msghdr_from_user(msg_sys
, msg
, NULL
, &iov
);
1989 if (msg_sys
->msg_controllen
> INT_MAX
)
1991 flags
|= (msg_sys
->msg_flags
& allowed_msghdr_flags
);
1992 ctl_len
= msg_sys
->msg_controllen
;
1993 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
1995 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
1999 ctl_buf
= msg_sys
->msg_control
;
2000 ctl_len
= msg_sys
->msg_controllen
;
2001 } else if (ctl_len
) {
2002 BUILD_BUG_ON(sizeof(struct cmsghdr
) !=
2003 CMSG_ALIGN(sizeof(struct cmsghdr
)));
2004 if (ctl_len
> sizeof(ctl
)) {
2005 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
2006 if (ctl_buf
== NULL
)
2011 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2012 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2013 * checking falls down on this.
2015 if (copy_from_user(ctl_buf
,
2016 (void __user __force
*)msg_sys
->msg_control
,
2019 msg_sys
->msg_control
= ctl_buf
;
2021 msg_sys
->msg_flags
= flags
;
2023 if (sock
->file
->f_flags
& O_NONBLOCK
)
2024 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
2026 * If this is sendmmsg() and current destination address is same as
2027 * previously succeeded address, omit asking LSM's decision.
2028 * used_address->name_len is initialized to UINT_MAX so that the first
2029 * destination address never matches.
2031 if (used_address
&& msg_sys
->msg_name
&&
2032 used_address
->name_len
== msg_sys
->msg_namelen
&&
2033 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
2034 used_address
->name_len
)) {
2035 err
= sock_sendmsg_nosec(sock
, msg_sys
);
2038 err
= sock_sendmsg(sock
, msg_sys
);
2040 * If this is sendmmsg() and sending to current destination address was
2041 * successful, remember it.
2043 if (used_address
&& err
>= 0) {
2044 used_address
->name_len
= msg_sys
->msg_namelen
;
2045 if (msg_sys
->msg_name
)
2046 memcpy(&used_address
->name
, msg_sys
->msg_name
,
2047 used_address
->name_len
);
2052 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
2059 * BSD sendmsg interface
2062 long __sys_sendmsg(int fd
, struct user_msghdr __user
*msg
, unsigned flags
)
2064 int fput_needed
, err
;
2065 struct msghdr msg_sys
;
2066 struct socket
*sock
;
2068 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2072 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
, 0);
2074 fput_light(sock
->file
, fput_needed
);
2079 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct user_msghdr __user
*, msg
, unsigned int, flags
)
2081 if (flags
& MSG_CMSG_COMPAT
)
2083 return __sys_sendmsg(fd
, msg
, flags
);
2087 * Linux sendmmsg interface
2090 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2093 int fput_needed
, err
, datagrams
;
2094 struct socket
*sock
;
2095 struct mmsghdr __user
*entry
;
2096 struct compat_mmsghdr __user
*compat_entry
;
2097 struct msghdr msg_sys
;
2098 struct used_address used_address
;
2099 unsigned int oflags
= flags
;
2101 if (vlen
> UIO_MAXIOV
)
2106 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2110 used_address
.name_len
= UINT_MAX
;
2112 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2116 while (datagrams
< vlen
) {
2117 if (datagrams
== vlen
- 1)
2120 if (MSG_CMSG_COMPAT
& flags
) {
2121 err
= ___sys_sendmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2122 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2125 err
= __put_user(err
, &compat_entry
->msg_len
);
2128 err
= ___sys_sendmsg(sock
,
2129 (struct user_msghdr __user
*)entry
,
2130 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2133 err
= put_user(err
, &entry
->msg_len
);
2140 if (msg_data_left(&msg_sys
))
2145 fput_light(sock
->file
, fput_needed
);
2147 /* We only return an error if no datagrams were able to be sent */
2154 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2155 unsigned int, vlen
, unsigned int, flags
)
2157 if (flags
& MSG_CMSG_COMPAT
)
2159 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
);
2162 static int ___sys_recvmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2163 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2165 struct compat_msghdr __user
*msg_compat
=
2166 (struct compat_msghdr __user
*)msg
;
2167 struct iovec iovstack
[UIO_FASTIOV
];
2168 struct iovec
*iov
= iovstack
;
2169 unsigned long cmsg_ptr
;
2173 /* kernel mode address */
2174 struct sockaddr_storage addr
;
2176 /* user mode address pointers */
2177 struct sockaddr __user
*uaddr
;
2178 int __user
*uaddr_len
= COMPAT_NAMELEN(msg
);
2180 msg_sys
->msg_name
= &addr
;
2182 if (MSG_CMSG_COMPAT
& flags
)
2183 err
= get_compat_msghdr(msg_sys
, msg_compat
, &uaddr
, &iov
);
2185 err
= copy_msghdr_from_user(msg_sys
, msg
, &uaddr
, &iov
);
2189 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2190 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2192 /* We assume all kernel code knows the size of sockaddr_storage */
2193 msg_sys
->msg_namelen
= 0;
2195 if (sock
->file
->f_flags
& O_NONBLOCK
)
2196 flags
|= MSG_DONTWAIT
;
2197 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
, flags
);
2202 if (uaddr
!= NULL
) {
2203 err
= move_addr_to_user(&addr
,
2204 msg_sys
->msg_namelen
, uaddr
,
2209 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2213 if (MSG_CMSG_COMPAT
& flags
)
2214 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2215 &msg_compat
->msg_controllen
);
2217 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2218 &msg
->msg_controllen
);
2229 * BSD recvmsg interface
2232 long __sys_recvmsg(int fd
, struct user_msghdr __user
*msg
, unsigned flags
)
2234 int fput_needed
, err
;
2235 struct msghdr msg_sys
;
2236 struct socket
*sock
;
2238 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2242 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2244 fput_light(sock
->file
, fput_needed
);
2249 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct user_msghdr __user
*, msg
,
2250 unsigned int, flags
)
2252 if (flags
& MSG_CMSG_COMPAT
)
2254 return __sys_recvmsg(fd
, msg
, flags
);
2258 * Linux recvmmsg interface
2261 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2262 unsigned int flags
, struct timespec
*timeout
)
2264 int fput_needed
, err
, datagrams
;
2265 struct socket
*sock
;
2266 struct mmsghdr __user
*entry
;
2267 struct compat_mmsghdr __user
*compat_entry
;
2268 struct msghdr msg_sys
;
2269 struct timespec64 end_time
;
2270 struct timespec64 timeout64
;
2273 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2279 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2283 err
= sock_error(sock
->sk
);
2290 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2292 while (datagrams
< vlen
) {
2294 * No need to ask LSM for more than the first datagram.
2296 if (MSG_CMSG_COMPAT
& flags
) {
2297 err
= ___sys_recvmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2298 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2302 err
= __put_user(err
, &compat_entry
->msg_len
);
2305 err
= ___sys_recvmsg(sock
,
2306 (struct user_msghdr __user
*)entry
,
2307 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2311 err
= put_user(err
, &entry
->msg_len
);
2319 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2320 if (flags
& MSG_WAITFORONE
)
2321 flags
|= MSG_DONTWAIT
;
2324 ktime_get_ts64(&timeout64
);
2325 *timeout
= timespec64_to_timespec(
2326 timespec64_sub(end_time
, timeout64
));
2327 if (timeout
->tv_sec
< 0) {
2328 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2332 /* Timeout, return less than vlen datagrams */
2333 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2337 /* Out of band data, return right away */
2338 if (msg_sys
.msg_flags
& MSG_OOB
)
2346 if (datagrams
== 0) {
2352 * We may return less entries than requested (vlen) if the
2353 * sock is non block and there aren't enough datagrams...
2355 if (err
!= -EAGAIN
) {
2357 * ... or if recvmsg returns an error after we
2358 * received some datagrams, where we record the
2359 * error to return on the next call or if the
2360 * app asks about it using getsockopt(SO_ERROR).
2362 sock
->sk
->sk_err
= -err
;
2365 fput_light(sock
->file
, fput_needed
);
2370 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2371 unsigned int, vlen
, unsigned int, flags
,
2372 struct timespec __user
*, timeout
)
2375 struct timespec timeout_sys
;
2377 if (flags
& MSG_CMSG_COMPAT
)
2381 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2383 if (copy_from_user(&timeout_sys
, timeout
, sizeof(timeout_sys
)))
2386 datagrams
= __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2388 if (datagrams
> 0 &&
2389 copy_to_user(timeout
, &timeout_sys
, sizeof(timeout_sys
)))
2390 datagrams
= -EFAULT
;
2395 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2396 /* Argument list sizes for sys_socketcall */
2397 #define AL(x) ((x) * sizeof(unsigned long))
2398 static const unsigned char nargs
[21] = {
2399 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2400 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2401 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2408 * System call vectors.
2410 * Argument checking cleaned up. Saved 20% in size.
2411 * This function doesn't need to set the kernel lock because
2412 * it is set by the callees.
2415 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2417 unsigned long a
[AUDITSC_ARGS
];
2418 unsigned long a0
, a1
;
2422 if (call
< 1 || call
> SYS_SENDMMSG
)
2426 if (len
> sizeof(a
))
2429 /* copy_from_user should be SMP safe. */
2430 if (copy_from_user(a
, args
, len
))
2433 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2442 err
= sys_socket(a0
, a1
, a
[2]);
2445 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2448 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2451 err
= sys_listen(a0
, a1
);
2454 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2455 (int __user
*)a
[2], 0);
2457 case SYS_GETSOCKNAME
:
2459 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2460 (int __user
*)a
[2]);
2462 case SYS_GETPEERNAME
:
2464 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2465 (int __user
*)a
[2]);
2467 case SYS_SOCKETPAIR
:
2468 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2471 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2474 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2475 (struct sockaddr __user
*)a
[4], a
[5]);
2478 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2481 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2482 (struct sockaddr __user
*)a
[4],
2483 (int __user
*)a
[5]);
2486 err
= sys_shutdown(a0
, a1
);
2488 case SYS_SETSOCKOPT
:
2489 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2491 case SYS_GETSOCKOPT
:
2493 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2494 (int __user
*)a
[4]);
2497 err
= sys_sendmsg(a0
, (struct user_msghdr __user
*)a1
, a
[2]);
2500 err
= sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3]);
2503 err
= sys_recvmsg(a0
, (struct user_msghdr __user
*)a1
, a
[2]);
2506 err
= sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3],
2507 (struct timespec __user
*)a
[4]);
2510 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2511 (int __user
*)a
[2], a
[3]);
2520 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2523 * sock_register - add a socket protocol handler
2524 * @ops: description of protocol
2526 * This function is called by a protocol handler that wants to
2527 * advertise its address family, and have it linked into the
2528 * socket interface. The value ops->family corresponds to the
2529 * socket system call protocol family.
2531 int sock_register(const struct net_proto_family
*ops
)
2535 if (ops
->family
>= NPROTO
) {
2536 pr_crit("protocol %d >= NPROTO(%d)\n", ops
->family
, NPROTO
);
2540 spin_lock(&net_family_lock
);
2541 if (rcu_dereference_protected(net_families
[ops
->family
],
2542 lockdep_is_held(&net_family_lock
)))
2545 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2548 spin_unlock(&net_family_lock
);
2550 pr_info("NET: Registered protocol family %d\n", ops
->family
);
2553 EXPORT_SYMBOL(sock_register
);
2556 * sock_unregister - remove a protocol handler
2557 * @family: protocol family to remove
2559 * This function is called by a protocol handler that wants to
2560 * remove its address family, and have it unlinked from the
2561 * new socket creation.
2563 * If protocol handler is a module, then it can use module reference
2564 * counts to protect against new references. If protocol handler is not
2565 * a module then it needs to provide its own protection in
2566 * the ops->create routine.
2568 void sock_unregister(int family
)
2570 BUG_ON(family
< 0 || family
>= NPROTO
);
2572 spin_lock(&net_family_lock
);
2573 RCU_INIT_POINTER(net_families
[family
], NULL
);
2574 spin_unlock(&net_family_lock
);
2578 pr_info("NET: Unregistered protocol family %d\n", family
);
2580 EXPORT_SYMBOL(sock_unregister
);
2582 static int __init
sock_init(void)
2586 * Initialize the network sysctl infrastructure.
2588 err
= net_sysctl_init();
2593 * Initialize skbuff SLAB cache
2598 * Initialize the protocols module.
2603 err
= register_filesystem(&sock_fs_type
);
2606 sock_mnt
= kern_mount(&sock_fs_type
);
2607 if (IS_ERR(sock_mnt
)) {
2608 err
= PTR_ERR(sock_mnt
);
2612 /* The real protocol initialization is performed in later initcalls.
2615 #ifdef CONFIG_NETFILTER
2616 err
= netfilter_init();
2621 ptp_classifier_init();
2627 unregister_filesystem(&sock_fs_type
);
2632 core_initcall(sock_init
); /* early initcall */
2634 #ifdef CONFIG_PROC_FS
2635 void socket_seq_show(struct seq_file
*seq
)
2640 for_each_possible_cpu(cpu
)
2641 counter
+= per_cpu(sockets_in_use
, cpu
);
2643 /* It can be negative, by the way. 8) */
2647 seq_printf(seq
, "sockets: used %d\n", counter
);
2649 #endif /* CONFIG_PROC_FS */
2651 #ifdef CONFIG_COMPAT
2652 static int do_siocgstamp(struct net
*net
, struct socket
*sock
,
2653 unsigned int cmd
, void __user
*up
)
2655 mm_segment_t old_fs
= get_fs();
2660 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&ktv
);
2663 err
= compat_put_timeval(&ktv
, up
);
2668 static int do_siocgstampns(struct net
*net
, struct socket
*sock
,
2669 unsigned int cmd
, void __user
*up
)
2671 mm_segment_t old_fs
= get_fs();
2672 struct timespec kts
;
2676 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&kts
);
2679 err
= compat_put_timespec(&kts
, up
);
2684 static int dev_ifname32(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2686 struct ifreq __user
*uifr
;
2689 uifr
= compat_alloc_user_space(sizeof(struct ifreq
));
2690 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2693 err
= dev_ioctl(net
, SIOCGIFNAME
, uifr
);
2697 if (copy_in_user(uifr32
, uifr
, sizeof(struct compat_ifreq
)))
2703 static int dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2705 struct compat_ifconf ifc32
;
2707 struct ifconf __user
*uifc
;
2708 struct compat_ifreq __user
*ifr32
;
2709 struct ifreq __user
*ifr
;
2713 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2716 memset(&ifc
, 0, sizeof(ifc
));
2717 if (ifc32
.ifcbuf
== 0) {
2721 uifc
= compat_alloc_user_space(sizeof(struct ifconf
));
2723 size_t len
= ((ifc32
.ifc_len
/ sizeof(struct compat_ifreq
)) + 1) *
2724 sizeof(struct ifreq
);
2725 uifc
= compat_alloc_user_space(sizeof(struct ifconf
) + len
);
2727 ifr
= ifc
.ifc_req
= (void __user
*)(uifc
+ 1);
2728 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2729 for (i
= 0; i
< ifc32
.ifc_len
; i
+= sizeof(struct compat_ifreq
)) {
2730 if (copy_in_user(ifr
, ifr32
, sizeof(struct compat_ifreq
)))
2736 if (copy_to_user(uifc
, &ifc
, sizeof(struct ifconf
)))
2739 err
= dev_ioctl(net
, SIOCGIFCONF
, uifc
);
2743 if (copy_from_user(&ifc
, uifc
, sizeof(struct ifconf
)))
2747 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2749 i
+ sizeof(struct compat_ifreq
) <= ifc32
.ifc_len
&& j
< ifc
.ifc_len
;
2750 i
+= sizeof(struct compat_ifreq
), j
+= sizeof(struct ifreq
)) {
2751 if (copy_in_user(ifr32
, ifr
, sizeof(struct compat_ifreq
)))
2757 if (ifc32
.ifcbuf
== 0) {
2758 /* Translate from 64-bit structure multiple to
2762 i
= ((i
/ sizeof(struct ifreq
)) * sizeof(struct compat_ifreq
));
2767 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2773 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2775 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2776 bool convert_in
= false, convert_out
= false;
2777 size_t buf_size
= ALIGN(sizeof(struct ifreq
), 8);
2778 struct ethtool_rxnfc __user
*rxnfc
;
2779 struct ifreq __user
*ifr
;
2780 u32 rule_cnt
= 0, actual_rule_cnt
;
2785 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2788 compat_rxnfc
= compat_ptr(data
);
2790 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2793 /* Most ethtool structures are defined without padding.
2794 * Unfortunately struct ethtool_rxnfc is an exception.
2799 case ETHTOOL_GRXCLSRLALL
:
2800 /* Buffer size is variable */
2801 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
2803 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
2805 buf_size
+= rule_cnt
* sizeof(u32
);
2807 case ETHTOOL_GRXRINGS
:
2808 case ETHTOOL_GRXCLSRLCNT
:
2809 case ETHTOOL_GRXCLSRULE
:
2810 case ETHTOOL_SRXCLSRLINS
:
2813 case ETHTOOL_SRXCLSRLDEL
:
2814 buf_size
+= sizeof(struct ethtool_rxnfc
);
2819 ifr
= compat_alloc_user_space(buf_size
);
2820 rxnfc
= (void __user
*)ifr
+ ALIGN(sizeof(struct ifreq
), 8);
2822 if (copy_in_user(&ifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2825 if (put_user(convert_in
? rxnfc
: compat_ptr(data
),
2826 &ifr
->ifr_ifru
.ifru_data
))
2830 /* We expect there to be holes between fs.m_ext and
2831 * fs.ring_cookie and at the end of fs, but nowhere else.
2833 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
2834 sizeof(compat_rxnfc
->fs
.m_ext
) !=
2835 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
2836 sizeof(rxnfc
->fs
.m_ext
));
2838 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
2839 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
2840 offsetof(struct ethtool_rxnfc
, fs
.location
) -
2841 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
2843 if (copy_in_user(rxnfc
, compat_rxnfc
,
2844 (void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2845 (void __user
*)rxnfc
) ||
2846 copy_in_user(&rxnfc
->fs
.ring_cookie
,
2847 &compat_rxnfc
->fs
.ring_cookie
,
2848 (void __user
*)(&rxnfc
->fs
.location
+ 1) -
2849 (void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2850 copy_in_user(&rxnfc
->rule_cnt
, &compat_rxnfc
->rule_cnt
,
2851 sizeof(rxnfc
->rule_cnt
)))
2855 ret
= dev_ioctl(net
, SIOCETHTOOL
, ifr
);
2860 if (copy_in_user(compat_rxnfc
, rxnfc
,
2861 (const void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2862 (const void __user
*)rxnfc
) ||
2863 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
2864 &rxnfc
->fs
.ring_cookie
,
2865 (const void __user
*)(&rxnfc
->fs
.location
+ 1) -
2866 (const void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2867 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
2868 sizeof(rxnfc
->rule_cnt
)))
2871 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2872 /* As an optimisation, we only copy the actual
2873 * number of rules that the underlying
2874 * function returned. Since Mallory might
2875 * change the rule count in user memory, we
2876 * check that it is less than the rule count
2877 * originally given (as the user buffer size),
2878 * which has been range-checked.
2880 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
2882 if (actual_rule_cnt
< rule_cnt
)
2883 rule_cnt
= actual_rule_cnt
;
2884 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
2885 &rxnfc
->rule_locs
[0],
2886 rule_cnt
* sizeof(u32
)))
2894 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2897 compat_uptr_t uptr32
;
2898 struct ifreq __user
*uifr
;
2900 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2901 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2904 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
2907 uptr
= compat_ptr(uptr32
);
2909 if (put_user(uptr
, &uifr
->ifr_settings
.ifs_ifsu
.raw_hdlc
))
2912 return dev_ioctl(net
, SIOCWANDEV
, uifr
);
2915 static int bond_ioctl(struct net
*net
, unsigned int cmd
,
2916 struct compat_ifreq __user
*ifr32
)
2919 mm_segment_t old_fs
;
2923 case SIOCBONDENSLAVE
:
2924 case SIOCBONDRELEASE
:
2925 case SIOCBONDSETHWADDR
:
2926 case SIOCBONDCHANGEACTIVE
:
2927 if (copy_from_user(&kifr
, ifr32
, sizeof(struct compat_ifreq
)))
2932 err
= dev_ioctl(net
, cmd
,
2933 (struct ifreq __user __force
*) &kifr
);
2938 return -ENOIOCTLCMD
;
2942 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2943 static int compat_ifr_data_ioctl(struct net
*net
, unsigned int cmd
,
2944 struct compat_ifreq __user
*u_ifreq32
)
2946 struct ifreq __user
*u_ifreq64
;
2947 char tmp_buf
[IFNAMSIZ
];
2948 void __user
*data64
;
2951 if (copy_from_user(&tmp_buf
[0], &(u_ifreq32
->ifr_ifrn
.ifrn_name
[0]),
2954 if (get_user(data32
, &u_ifreq32
->ifr_ifru
.ifru_data
))
2956 data64
= compat_ptr(data32
);
2958 u_ifreq64
= compat_alloc_user_space(sizeof(*u_ifreq64
));
2960 if (copy_to_user(&u_ifreq64
->ifr_ifrn
.ifrn_name
[0], &tmp_buf
[0],
2963 if (put_user(data64
, &u_ifreq64
->ifr_ifru
.ifru_data
))
2966 return dev_ioctl(net
, cmd
, u_ifreq64
);
2969 static int dev_ifsioc(struct net
*net
, struct socket
*sock
,
2970 unsigned int cmd
, struct compat_ifreq __user
*uifr32
)
2972 struct ifreq __user
*uifr
;
2975 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2976 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
2979 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
2990 case SIOCGIFBRDADDR
:
2991 case SIOCGIFDSTADDR
:
2992 case SIOCGIFNETMASK
:
2997 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
3005 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
3006 struct compat_ifreq __user
*uifr32
)
3009 struct compat_ifmap __user
*uifmap32
;
3010 mm_segment_t old_fs
;
3013 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
3014 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
3015 err
|= get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3016 err
|= get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3017 err
|= get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3018 err
|= get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3019 err
|= get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3020 err
|= get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3026 err
= dev_ioctl(net
, cmd
, (void __user __force
*)&ifr
);
3029 if (cmd
== SIOCGIFMAP
&& !err
) {
3030 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
3031 err
|= put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3032 err
|= put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3033 err
|= put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3034 err
|= put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3035 err
|= put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3036 err
|= put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3045 struct sockaddr rt_dst
; /* target address */
3046 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
3047 struct sockaddr rt_genmask
; /* target network mask (IP) */
3048 unsigned short rt_flags
;
3051 unsigned char rt_tos
;
3052 unsigned char rt_class
;
3054 short rt_metric
; /* +1 for binary compatibility! */
3055 /* char * */ u32 rt_dev
; /* forcing the device at add */
3056 u32 rt_mtu
; /* per route MTU/Window */
3057 u32 rt_window
; /* Window clamping */
3058 unsigned short rt_irtt
; /* Initial RTT */
3061 struct in6_rtmsg32
{
3062 struct in6_addr rtmsg_dst
;
3063 struct in6_addr rtmsg_src
;
3064 struct in6_addr rtmsg_gateway
;
3074 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
3075 unsigned int cmd
, void __user
*argp
)
3079 struct in6_rtmsg r6
;
3083 mm_segment_t old_fs
= get_fs();
3085 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
3086 struct in6_rtmsg32 __user
*ur6
= argp
;
3087 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
3088 3 * sizeof(struct in6_addr
));
3089 ret
|= get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
3090 ret
|= get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
3091 ret
|= get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
3092 ret
|= get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
3093 ret
|= get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
3094 ret
|= get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
3095 ret
|= get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
3099 struct rtentry32 __user
*ur4
= argp
;
3100 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3101 3 * sizeof(struct sockaddr
));
3102 ret
|= get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3103 ret
|= get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3104 ret
|= get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3105 ret
|= get_user(r4
.rt_window
, &(ur4
->rt_window
));
3106 ret
|= get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3107 ret
|= get_user(rtdev
, &(ur4
->rt_dev
));
3109 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3110 r4
.rt_dev
= (char __user __force
*)devname
;
3124 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
3131 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3132 * for some operations; this forces use of the newer bridge-utils that
3133 * use compatible ioctls
3135 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3139 if (get_user(tmp
, argp
))
3141 if (tmp
== BRCTL_GET_VERSION
)
3142 return BRCTL_VERSION
+ 1;
3146 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3147 unsigned int cmd
, unsigned long arg
)
3149 void __user
*argp
= compat_ptr(arg
);
3150 struct sock
*sk
= sock
->sk
;
3151 struct net
*net
= sock_net(sk
);
3153 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3154 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3159 return old_bridge_ioctl(argp
);
3161 return dev_ifname32(net
, argp
);
3163 return dev_ifconf(net
, argp
);
3165 return ethtool_ioctl(net
, argp
);
3167 return compat_siocwandev(net
, argp
);
3170 return compat_sioc_ifmap(net
, cmd
, argp
);
3171 case SIOCBONDENSLAVE
:
3172 case SIOCBONDRELEASE
:
3173 case SIOCBONDSETHWADDR
:
3174 case SIOCBONDCHANGEACTIVE
:
3175 return bond_ioctl(net
, cmd
, argp
);
3178 return routing_ioctl(net
, sock
, cmd
, argp
);
3180 return do_siocgstamp(net
, sock
, cmd
, argp
);
3182 return do_siocgstampns(net
, sock
, cmd
, argp
);
3183 case SIOCBONDSLAVEINFOQUERY
:
3184 case SIOCBONDINFOQUERY
:
3187 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3200 return sock_ioctl(file
, cmd
, arg
);
3217 case SIOCSIFHWBROADCAST
:
3219 case SIOCGIFBRDADDR
:
3220 case SIOCSIFBRDADDR
:
3221 case SIOCGIFDSTADDR
:
3222 case SIOCSIFDSTADDR
:
3223 case SIOCGIFNETMASK
:
3224 case SIOCSIFNETMASK
:
3235 return dev_ifsioc(net
, sock
, cmd
, argp
);
3241 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3244 return -ENOIOCTLCMD
;
3247 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3250 struct socket
*sock
= file
->private_data
;
3251 int ret
= -ENOIOCTLCMD
;
3258 if (sock
->ops
->compat_ioctl
)
3259 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3261 if (ret
== -ENOIOCTLCMD
&&
3262 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3263 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3265 if (ret
== -ENOIOCTLCMD
)
3266 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3272 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3274 return sock
->ops
->bind(sock
, addr
, addrlen
);
3276 EXPORT_SYMBOL(kernel_bind
);
3278 int kernel_listen(struct socket
*sock
, int backlog
)
3280 return sock
->ops
->listen(sock
, backlog
);
3282 EXPORT_SYMBOL(kernel_listen
);
3284 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3286 struct sock
*sk
= sock
->sk
;
3289 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3294 err
= sock
->ops
->accept(sock
, *newsock
, flags
, true);
3296 sock_release(*newsock
);
3301 (*newsock
)->ops
= sock
->ops
;
3302 __module_get((*newsock
)->ops
->owner
);
3307 EXPORT_SYMBOL(kernel_accept
);
3309 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3312 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3314 EXPORT_SYMBOL(kernel_connect
);
3316 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
3319 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
3321 EXPORT_SYMBOL(kernel_getsockname
);
3323 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
3326 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
3328 EXPORT_SYMBOL(kernel_getpeername
);
3330 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3331 char *optval
, int *optlen
)
3333 mm_segment_t oldfs
= get_fs();
3334 char __user
*uoptval
;
3335 int __user
*uoptlen
;
3338 uoptval
= (char __user __force
*) optval
;
3339 uoptlen
= (int __user __force
*) optlen
;
3342 if (level
== SOL_SOCKET
)
3343 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3345 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3350 EXPORT_SYMBOL(kernel_getsockopt
);
3352 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3353 char *optval
, unsigned int optlen
)
3355 mm_segment_t oldfs
= get_fs();
3356 char __user
*uoptval
;
3359 uoptval
= (char __user __force
*) optval
;
3362 if (level
== SOL_SOCKET
)
3363 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3365 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3370 EXPORT_SYMBOL(kernel_setsockopt
);
3372 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3373 size_t size
, int flags
)
3375 if (sock
->ops
->sendpage
)
3376 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3378 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3380 EXPORT_SYMBOL(kernel_sendpage
);
3382 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
3384 mm_segment_t oldfs
= get_fs();
3388 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
3393 EXPORT_SYMBOL(kernel_sock_ioctl
);
3395 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3397 return sock
->ops
->shutdown(sock
, how
);
3399 EXPORT_SYMBOL(kernel_sock_shutdown
);
3401 /* This routine returns the IP overhead imposed by a socket i.e.
3402 * the length of the underlying IP header, depending on whether
3403 * this is an IPv4 or IPv6 socket and the length from IP options turned
3404 * on at the socket. Assumes that the caller has a lock on the socket.
3406 u32
kernel_sock_ip_overhead(struct sock
*sk
)
3408 struct inet_sock
*inet
;
3409 struct ip_options_rcu
*opt
;
3412 #if IS_ENABLED(CONFIG_IPV6)
3413 struct ipv6_pinfo
*np
;
3414 struct ipv6_txoptions
*optv6
= NULL
;
3415 #endif /* IS_ENABLED(CONFIG_IPV6) */
3420 owned_by_user
= sock_owned_by_user(sk
);
3421 switch (sk
->sk_family
) {
3424 overhead
+= sizeof(struct iphdr
);
3425 opt
= rcu_dereference_protected(inet
->inet_opt
,
3428 overhead
+= opt
->opt
.optlen
;
3430 #if IS_ENABLED(CONFIG_IPV6)
3433 overhead
+= sizeof(struct ipv6hdr
);
3435 optv6
= rcu_dereference_protected(np
->opt
,
3438 overhead
+= (optv6
->opt_flen
+ optv6
->opt_nflen
);
3440 #endif /* IS_ENABLED(CONFIG_IPV6) */
3441 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3445 EXPORT_SYMBOL(kernel_sock_ip_overhead
);