]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - net/socket.c
tools build: Use $(shell ) instead of `` to get embedded libperl's ccopts
[mirror_ubuntu-focal-kernel.git] / net / socket.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/sockios.h>
104 #include <net/busy_poll.h>
105 #include <linux/errqueue.h>
106
107 #ifdef CONFIG_NET_RX_BUSY_POLL
108 unsigned int sysctl_net_busy_read __read_mostly;
109 unsigned int sysctl_net_busy_poll __read_mostly;
110 #endif
111
112 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
113 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
114 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115
116 static int sock_close(struct inode *inode, struct file *file);
117 static __poll_t sock_poll(struct file *file,
118 struct poll_table_struct *wait);
119 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
120 #ifdef CONFIG_COMPAT
121 static long compat_sock_ioctl(struct file *file,
122 unsigned int cmd, unsigned long arg);
123 #endif
124 static int sock_fasync(int fd, struct file *filp, int on);
125 static ssize_t sock_sendpage(struct file *file, struct page *page,
126 int offset, size_t size, loff_t *ppos, int more);
127 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
128 struct pipe_inode_info *pipe, size_t len,
129 unsigned int flags);
130
131 /*
132 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
133 * in the operation structures but are done directly via the socketcall() multiplexor.
134 */
135
136 static const struct file_operations socket_file_ops = {
137 .owner = THIS_MODULE,
138 .llseek = no_llseek,
139 .read_iter = sock_read_iter,
140 .write_iter = sock_write_iter,
141 .poll = sock_poll,
142 .unlocked_ioctl = sock_ioctl,
143 #ifdef CONFIG_COMPAT
144 .compat_ioctl = compat_sock_ioctl,
145 #endif
146 .mmap = sock_mmap,
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
152 };
153
154 /*
155 * The protocol list. Each protocol is registered in here.
156 */
157
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160
161 /*
162 * Support routines.
163 * Move socket addresses back and forth across the kernel/user
164 * divide and look after the messy bits.
165 */
166
167 /**
168 * move_addr_to_kernel - copy a socket address into kernel space
169 * @uaddr: Address in user space
170 * @kaddr: Address in kernel space
171 * @ulen: Length in user space
172 *
173 * The address is copied into kernel space. If the provided address is
174 * too long an error code of -EINVAL is returned. If the copy gives
175 * invalid addresses -EFAULT is returned. On a success 0 is returned.
176 */
177
178 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
179 {
180 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
181 return -EINVAL;
182 if (ulen == 0)
183 return 0;
184 if (copy_from_user(kaddr, uaddr, ulen))
185 return -EFAULT;
186 return audit_sockaddr(ulen, kaddr);
187 }
188
189 /**
190 * move_addr_to_user - copy an address to user space
191 * @kaddr: kernel space address
192 * @klen: length of address in kernel
193 * @uaddr: user space address
194 * @ulen: pointer to user length field
195 *
196 * The value pointed to by ulen on entry is the buffer length available.
197 * This is overwritten with the buffer space used. -EINVAL is returned
198 * if an overlong buffer is specified or a negative buffer size. -EFAULT
199 * is returned if either the buffer or the length field are not
200 * accessible.
201 * After copying the data up to the limit the user specifies, the true
202 * length of the data is written over the length limit the user
203 * specified. Zero is returned for a success.
204 */
205
206 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
207 void __user *uaddr, int __user *ulen)
208 {
209 int err;
210 int len;
211
212 BUG_ON(klen > sizeof(struct sockaddr_storage));
213 err = get_user(len, ulen);
214 if (err)
215 return err;
216 if (len > klen)
217 len = klen;
218 if (len < 0)
219 return -EINVAL;
220 if (len) {
221 if (audit_sockaddr(klen, kaddr))
222 return -ENOMEM;
223 if (copy_to_user(uaddr, kaddr, len))
224 return -EFAULT;
225 }
226 /*
227 * "fromlen shall refer to the value before truncation.."
228 * 1003.1g
229 */
230 return __put_user(klen, ulen);
231 }
232
233 static struct kmem_cache *sock_inode_cachep __ro_after_init;
234
235 static struct inode *sock_alloc_inode(struct super_block *sb)
236 {
237 struct socket_alloc *ei;
238
239 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
240 if (!ei)
241 return NULL;
242 init_waitqueue_head(&ei->socket.wq.wait);
243 ei->socket.wq.fasync_list = NULL;
244 ei->socket.wq.flags = 0;
245
246 ei->socket.state = SS_UNCONNECTED;
247 ei->socket.flags = 0;
248 ei->socket.ops = NULL;
249 ei->socket.sk = NULL;
250 ei->socket.file = NULL;
251
252 return &ei->vfs_inode;
253 }
254
255 static void sock_free_inode(struct inode *inode)
256 {
257 struct socket_alloc *ei;
258
259 ei = container_of(inode, struct socket_alloc, vfs_inode);
260 kmem_cache_free(sock_inode_cachep, ei);
261 }
262
263 static void init_once(void *foo)
264 {
265 struct socket_alloc *ei = (struct socket_alloc *)foo;
266
267 inode_init_once(&ei->vfs_inode);
268 }
269
270 static void init_inodecache(void)
271 {
272 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
273 sizeof(struct socket_alloc),
274 0,
275 (SLAB_HWCACHE_ALIGN |
276 SLAB_RECLAIM_ACCOUNT |
277 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
278 init_once);
279 BUG_ON(sock_inode_cachep == NULL);
280 }
281
282 static const struct super_operations sockfs_ops = {
283 .alloc_inode = sock_alloc_inode,
284 .free_inode = sock_free_inode,
285 .statfs = simple_statfs,
286 };
287
288 /*
289 * sockfs_dname() is called from d_path().
290 */
291 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
292 {
293 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
294 d_inode(dentry)->i_ino);
295 }
296
297 static const struct dentry_operations sockfs_dentry_operations = {
298 .d_dname = sockfs_dname,
299 };
300
301 static int sockfs_xattr_get(const struct xattr_handler *handler,
302 struct dentry *dentry, struct inode *inode,
303 const char *suffix, void *value, size_t size)
304 {
305 if (value) {
306 if (dentry->d_name.len + 1 > size)
307 return -ERANGE;
308 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
309 }
310 return dentry->d_name.len + 1;
311 }
312
313 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
314 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
315 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
316
317 static const struct xattr_handler sockfs_xattr_handler = {
318 .name = XATTR_NAME_SOCKPROTONAME,
319 .get = sockfs_xattr_get,
320 };
321
322 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
323 struct dentry *dentry, struct inode *inode,
324 const char *suffix, const void *value,
325 size_t size, int flags)
326 {
327 /* Handled by LSM. */
328 return -EAGAIN;
329 }
330
331 static const struct xattr_handler sockfs_security_xattr_handler = {
332 .prefix = XATTR_SECURITY_PREFIX,
333 .set = sockfs_security_xattr_set,
334 };
335
336 static const struct xattr_handler *sockfs_xattr_handlers[] = {
337 &sockfs_xattr_handler,
338 &sockfs_security_xattr_handler,
339 NULL
340 };
341
342 static int sockfs_init_fs_context(struct fs_context *fc)
343 {
344 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
345 if (!ctx)
346 return -ENOMEM;
347 ctx->ops = &sockfs_ops;
348 ctx->dops = &sockfs_dentry_operations;
349 ctx->xattr = sockfs_xattr_handlers;
350 return 0;
351 }
352
353 static struct vfsmount *sock_mnt __read_mostly;
354
355 static struct file_system_type sock_fs_type = {
356 .name = "sockfs",
357 .init_fs_context = sockfs_init_fs_context,
358 .kill_sb = kill_anon_super,
359 };
360
361 /*
362 * Obtains the first available file descriptor and sets it up for use.
363 *
364 * These functions create file structures and maps them to fd space
365 * of the current process. On success it returns file descriptor
366 * and file struct implicitly stored in sock->file.
367 * Note that another thread may close file descriptor before we return
368 * from this function. We use the fact that now we do not refer
369 * to socket after mapping. If one day we will need it, this
370 * function will increment ref. count on file by 1.
371 *
372 * In any case returned fd MAY BE not valid!
373 * This race condition is unavoidable
374 * with shared fd spaces, we cannot solve it inside kernel,
375 * but we take care of internal coherence yet.
376 */
377
378 /**
379 * sock_alloc_file - Bind a &socket to a &file
380 * @sock: socket
381 * @flags: file status flags
382 * @dname: protocol name
383 *
384 * Returns the &file bound with @sock, implicitly storing it
385 * in sock->file. If dname is %NULL, sets to "".
386 * On failure the return is a ERR pointer (see linux/err.h).
387 * This function uses GFP_KERNEL internally.
388 */
389
390 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
391 {
392 struct file *file;
393
394 if (!dname)
395 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
396
397 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
398 O_RDWR | (flags & O_NONBLOCK),
399 &socket_file_ops);
400 if (IS_ERR(file)) {
401 sock_release(sock);
402 return file;
403 }
404
405 sock->file = file;
406 file->private_data = sock;
407 return file;
408 }
409 EXPORT_SYMBOL(sock_alloc_file);
410
411 static int sock_map_fd(struct socket *sock, int flags)
412 {
413 struct file *newfile;
414 int fd = get_unused_fd_flags(flags);
415 if (unlikely(fd < 0)) {
416 sock_release(sock);
417 return fd;
418 }
419
420 newfile = sock_alloc_file(sock, flags, NULL);
421 if (!IS_ERR(newfile)) {
422 fd_install(fd, newfile);
423 return fd;
424 }
425
426 put_unused_fd(fd);
427 return PTR_ERR(newfile);
428 }
429
430 /**
431 * sock_from_file - Return the &socket bounded to @file.
432 * @file: file
433 * @err: pointer to an error code return
434 *
435 * On failure returns %NULL and assigns -ENOTSOCK to @err.
436 */
437
438 struct socket *sock_from_file(struct file *file, int *err)
439 {
440 if (file->f_op == &socket_file_ops)
441 return file->private_data; /* set in sock_map_fd */
442
443 *err = -ENOTSOCK;
444 return NULL;
445 }
446 EXPORT_SYMBOL(sock_from_file);
447
448 /**
449 * sockfd_lookup - Go from a file number to its socket slot
450 * @fd: file handle
451 * @err: pointer to an error code return
452 *
453 * The file handle passed in is locked and the socket it is bound
454 * to is returned. If an error occurs the err pointer is overwritten
455 * with a negative errno code and NULL is returned. The function checks
456 * for both invalid handles and passing a handle which is not a socket.
457 *
458 * On a success the socket object pointer is returned.
459 */
460
461 struct socket *sockfd_lookup(int fd, int *err)
462 {
463 struct file *file;
464 struct socket *sock;
465
466 file = fget(fd);
467 if (!file) {
468 *err = -EBADF;
469 return NULL;
470 }
471
472 sock = sock_from_file(file, err);
473 if (!sock)
474 fput(file);
475 return sock;
476 }
477 EXPORT_SYMBOL(sockfd_lookup);
478
479 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
480 {
481 struct fd f = fdget(fd);
482 struct socket *sock;
483
484 *err = -EBADF;
485 if (f.file) {
486 sock = sock_from_file(f.file, err);
487 if (likely(sock)) {
488 *fput_needed = f.flags & FDPUT_FPUT;
489 return sock;
490 }
491 fdput(f);
492 }
493 return NULL;
494 }
495
496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
497 size_t size)
498 {
499 ssize_t len;
500 ssize_t used = 0;
501
502 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
503 if (len < 0)
504 return len;
505 used += len;
506 if (buffer) {
507 if (size < used)
508 return -ERANGE;
509 buffer += len;
510 }
511
512 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
513 used += len;
514 if (buffer) {
515 if (size < used)
516 return -ERANGE;
517 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
518 buffer += len;
519 }
520
521 return used;
522 }
523
524 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
525 {
526 int err = simple_setattr(dentry, iattr);
527
528 if (!err && (iattr->ia_valid & ATTR_UID)) {
529 struct socket *sock = SOCKET_I(d_inode(dentry));
530
531 if (sock->sk)
532 sock->sk->sk_uid = iattr->ia_uid;
533 else
534 err = -ENOENT;
535 }
536
537 return err;
538 }
539
540 static const struct inode_operations sockfs_inode_ops = {
541 .listxattr = sockfs_listxattr,
542 .setattr = sockfs_setattr,
543 };
544
545 /**
546 * sock_alloc - allocate a socket
547 *
548 * Allocate a new inode and socket object. The two are bound together
549 * and initialised. The socket is then returned. If we are out of inodes
550 * NULL is returned. This functions uses GFP_KERNEL internally.
551 */
552
553 struct socket *sock_alloc(void)
554 {
555 struct inode *inode;
556 struct socket *sock;
557
558 inode = new_inode_pseudo(sock_mnt->mnt_sb);
559 if (!inode)
560 return NULL;
561
562 sock = SOCKET_I(inode);
563
564 inode->i_ino = get_next_ino();
565 inode->i_mode = S_IFSOCK | S_IRWXUGO;
566 inode->i_uid = current_fsuid();
567 inode->i_gid = current_fsgid();
568 inode->i_op = &sockfs_inode_ops;
569
570 return sock;
571 }
572 EXPORT_SYMBOL(sock_alloc);
573
574 /**
575 * sock_release - close a socket
576 * @sock: socket to close
577 *
578 * The socket is released from the protocol stack if it has a release
579 * callback, and the inode is then released if the socket is bound to
580 * an inode not a file.
581 */
582
583 static void __sock_release(struct socket *sock, struct inode *inode)
584 {
585 if (sock->ops) {
586 struct module *owner = sock->ops->owner;
587
588 if (inode)
589 inode_lock(inode);
590 sock->ops->release(sock);
591 sock->sk = NULL;
592 if (inode)
593 inode_unlock(inode);
594 sock->ops = NULL;
595 module_put(owner);
596 }
597
598 if (sock->wq.fasync_list)
599 pr_err("%s: fasync list not empty!\n", __func__);
600
601 if (!sock->file) {
602 iput(SOCK_INODE(sock));
603 return;
604 }
605 sock->file = NULL;
606 }
607
608 void sock_release(struct socket *sock)
609 {
610 __sock_release(sock, NULL);
611 }
612 EXPORT_SYMBOL(sock_release);
613
614 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
615 {
616 u8 flags = *tx_flags;
617
618 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
619 flags |= SKBTX_HW_TSTAMP;
620
621 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
622 flags |= SKBTX_SW_TSTAMP;
623
624 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
625 flags |= SKBTX_SCHED_TSTAMP;
626
627 *tx_flags = flags;
628 }
629 EXPORT_SYMBOL(__sock_tx_timestamp);
630
631 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
632 size_t));
633 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
634 size_t));
635 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
636 {
637 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
638 inet_sendmsg, sock, msg,
639 msg_data_left(msg));
640 BUG_ON(ret == -EIOCBQUEUED);
641 return ret;
642 }
643
644 /**
645 * sock_sendmsg - send a message through @sock
646 * @sock: socket
647 * @msg: message to send
648 *
649 * Sends @msg through @sock, passing through LSM.
650 * Returns the number of bytes sent, or an error code.
651 */
652 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
653 {
654 int err = security_socket_sendmsg(sock, msg,
655 msg_data_left(msg));
656
657 return err ?: sock_sendmsg_nosec(sock, msg);
658 }
659 EXPORT_SYMBOL(sock_sendmsg);
660
661 /**
662 * kernel_sendmsg - send a message through @sock (kernel-space)
663 * @sock: socket
664 * @msg: message header
665 * @vec: kernel vec
666 * @num: vec array length
667 * @size: total message data size
668 *
669 * Builds the message data with @vec and sends it through @sock.
670 * Returns the number of bytes sent, or an error code.
671 */
672
673 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
674 struct kvec *vec, size_t num, size_t size)
675 {
676 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
677 return sock_sendmsg(sock, msg);
678 }
679 EXPORT_SYMBOL(kernel_sendmsg);
680
681 /**
682 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
683 * @sk: sock
684 * @msg: message header
685 * @vec: output s/g array
686 * @num: output s/g array length
687 * @size: total message data size
688 *
689 * Builds the message data with @vec and sends it through @sock.
690 * Returns the number of bytes sent, or an error code.
691 * Caller must hold @sk.
692 */
693
694 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
695 struct kvec *vec, size_t num, size_t size)
696 {
697 struct socket *sock = sk->sk_socket;
698
699 if (!sock->ops->sendmsg_locked)
700 return sock_no_sendmsg_locked(sk, msg, size);
701
702 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
703
704 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
705 }
706 EXPORT_SYMBOL(kernel_sendmsg_locked);
707
708 static bool skb_is_err_queue(const struct sk_buff *skb)
709 {
710 /* pkt_type of skbs enqueued on the error queue are set to
711 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
712 * in recvmsg, since skbs received on a local socket will never
713 * have a pkt_type of PACKET_OUTGOING.
714 */
715 return skb->pkt_type == PACKET_OUTGOING;
716 }
717
718 /* On transmit, software and hardware timestamps are returned independently.
719 * As the two skb clones share the hardware timestamp, which may be updated
720 * before the software timestamp is received, a hardware TX timestamp may be
721 * returned only if there is no software TX timestamp. Ignore false software
722 * timestamps, which may be made in the __sock_recv_timestamp() call when the
723 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
724 * hardware timestamp.
725 */
726 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
727 {
728 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
729 }
730
731 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
732 {
733 struct scm_ts_pktinfo ts_pktinfo;
734 struct net_device *orig_dev;
735
736 if (!skb_mac_header_was_set(skb))
737 return;
738
739 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
740
741 rcu_read_lock();
742 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
743 if (orig_dev)
744 ts_pktinfo.if_index = orig_dev->ifindex;
745 rcu_read_unlock();
746
747 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
748 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
749 sizeof(ts_pktinfo), &ts_pktinfo);
750 }
751
752 /*
753 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
754 */
755 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
756 struct sk_buff *skb)
757 {
758 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
759 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
760 struct scm_timestamping_internal tss;
761
762 int empty = 1, false_tstamp = 0;
763 struct skb_shared_hwtstamps *shhwtstamps =
764 skb_hwtstamps(skb);
765
766 /* Race occurred between timestamp enabling and packet
767 receiving. Fill in the current time for now. */
768 if (need_software_tstamp && skb->tstamp == 0) {
769 __net_timestamp(skb);
770 false_tstamp = 1;
771 }
772
773 if (need_software_tstamp) {
774 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
775 if (new_tstamp) {
776 struct __kernel_sock_timeval tv;
777
778 skb_get_new_timestamp(skb, &tv);
779 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
780 sizeof(tv), &tv);
781 } else {
782 struct __kernel_old_timeval tv;
783
784 skb_get_timestamp(skb, &tv);
785 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
786 sizeof(tv), &tv);
787 }
788 } else {
789 if (new_tstamp) {
790 struct __kernel_timespec ts;
791
792 skb_get_new_timestampns(skb, &ts);
793 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
794 sizeof(ts), &ts);
795 } else {
796 struct timespec ts;
797
798 skb_get_timestampns(skb, &ts);
799 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
800 sizeof(ts), &ts);
801 }
802 }
803 }
804
805 memset(&tss, 0, sizeof(tss));
806 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
807 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
808 empty = 0;
809 if (shhwtstamps &&
810 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
811 !skb_is_swtx_tstamp(skb, false_tstamp) &&
812 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
813 empty = 0;
814 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
815 !skb_is_err_queue(skb))
816 put_ts_pktinfo(msg, skb);
817 }
818 if (!empty) {
819 if (sock_flag(sk, SOCK_TSTAMP_NEW))
820 put_cmsg_scm_timestamping64(msg, &tss);
821 else
822 put_cmsg_scm_timestamping(msg, &tss);
823
824 if (skb_is_err_queue(skb) && skb->len &&
825 SKB_EXT_ERR(skb)->opt_stats)
826 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
827 skb->len, skb->data);
828 }
829 }
830 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
831
832 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
833 struct sk_buff *skb)
834 {
835 int ack;
836
837 if (!sock_flag(sk, SOCK_WIFI_STATUS))
838 return;
839 if (!skb->wifi_acked_valid)
840 return;
841
842 ack = skb->wifi_acked;
843
844 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
845 }
846 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
847
848 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
849 struct sk_buff *skb)
850 {
851 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
852 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
853 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
854 }
855
856 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
857 struct sk_buff *skb)
858 {
859 sock_recv_timestamp(msg, sk, skb);
860 sock_recv_drops(msg, sk, skb);
861 }
862 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
863
864 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
865 size_t, int));
866 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
867 size_t, int));
868 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
869 int flags)
870 {
871 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
872 inet_recvmsg, sock, msg, msg_data_left(msg),
873 flags);
874 }
875
876 /**
877 * sock_recvmsg - receive a message from @sock
878 * @sock: socket
879 * @msg: message to receive
880 * @flags: message flags
881 *
882 * Receives @msg from @sock, passing through LSM. Returns the total number
883 * of bytes received, or an error.
884 */
885 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
886 {
887 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
888
889 return err ?: sock_recvmsg_nosec(sock, msg, flags);
890 }
891 EXPORT_SYMBOL(sock_recvmsg);
892
893 /**
894 * kernel_recvmsg - Receive a message from a socket (kernel space)
895 * @sock: The socket to receive the message from
896 * @msg: Received message
897 * @vec: Input s/g array for message data
898 * @num: Size of input s/g array
899 * @size: Number of bytes to read
900 * @flags: Message flags (MSG_DONTWAIT, etc...)
901 *
902 * On return the msg structure contains the scatter/gather array passed in the
903 * vec argument. The array is modified so that it consists of the unfilled
904 * portion of the original array.
905 *
906 * The returned value is the total number of bytes received, or an error.
907 */
908
909 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
910 struct kvec *vec, size_t num, size_t size, int flags)
911 {
912 mm_segment_t oldfs = get_fs();
913 int result;
914
915 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
916 set_fs(KERNEL_DS);
917 result = sock_recvmsg(sock, msg, flags);
918 set_fs(oldfs);
919 return result;
920 }
921 EXPORT_SYMBOL(kernel_recvmsg);
922
923 static ssize_t sock_sendpage(struct file *file, struct page *page,
924 int offset, size_t size, loff_t *ppos, int more)
925 {
926 struct socket *sock;
927 int flags;
928
929 sock = file->private_data;
930
931 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
932 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
933 flags |= more;
934
935 return kernel_sendpage(sock, page, offset, size, flags);
936 }
937
938 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
939 struct pipe_inode_info *pipe, size_t len,
940 unsigned int flags)
941 {
942 struct socket *sock = file->private_data;
943
944 if (unlikely(!sock->ops->splice_read))
945 return generic_file_splice_read(file, ppos, pipe, len, flags);
946
947 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
948 }
949
950 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
951 {
952 struct file *file = iocb->ki_filp;
953 struct socket *sock = file->private_data;
954 struct msghdr msg = {.msg_iter = *to,
955 .msg_iocb = iocb};
956 ssize_t res;
957
958 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
959 msg.msg_flags = MSG_DONTWAIT;
960
961 if (iocb->ki_pos != 0)
962 return -ESPIPE;
963
964 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
965 return 0;
966
967 res = sock_recvmsg(sock, &msg, msg.msg_flags);
968 *to = msg.msg_iter;
969 return res;
970 }
971
972 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
973 {
974 struct file *file = iocb->ki_filp;
975 struct socket *sock = file->private_data;
976 struct msghdr msg = {.msg_iter = *from,
977 .msg_iocb = iocb};
978 ssize_t res;
979
980 if (iocb->ki_pos != 0)
981 return -ESPIPE;
982
983 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
984 msg.msg_flags = MSG_DONTWAIT;
985
986 if (sock->type == SOCK_SEQPACKET)
987 msg.msg_flags |= MSG_EOR;
988
989 res = sock_sendmsg(sock, &msg);
990 *from = msg.msg_iter;
991 return res;
992 }
993
994 /*
995 * Atomic setting of ioctl hooks to avoid race
996 * with module unload.
997 */
998
999 static DEFINE_MUTEX(br_ioctl_mutex);
1000 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1001
1002 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1003 {
1004 mutex_lock(&br_ioctl_mutex);
1005 br_ioctl_hook = hook;
1006 mutex_unlock(&br_ioctl_mutex);
1007 }
1008 EXPORT_SYMBOL(brioctl_set);
1009
1010 static DEFINE_MUTEX(vlan_ioctl_mutex);
1011 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1012
1013 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1014 {
1015 mutex_lock(&vlan_ioctl_mutex);
1016 vlan_ioctl_hook = hook;
1017 mutex_unlock(&vlan_ioctl_mutex);
1018 }
1019 EXPORT_SYMBOL(vlan_ioctl_set);
1020
1021 static DEFINE_MUTEX(dlci_ioctl_mutex);
1022 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1023
1024 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1025 {
1026 mutex_lock(&dlci_ioctl_mutex);
1027 dlci_ioctl_hook = hook;
1028 mutex_unlock(&dlci_ioctl_mutex);
1029 }
1030 EXPORT_SYMBOL(dlci_ioctl_set);
1031
1032 static long sock_do_ioctl(struct net *net, struct socket *sock,
1033 unsigned int cmd, unsigned long arg)
1034 {
1035 int err;
1036 void __user *argp = (void __user *)arg;
1037
1038 err = sock->ops->ioctl(sock, cmd, arg);
1039
1040 /*
1041 * If this ioctl is unknown try to hand it down
1042 * to the NIC driver.
1043 */
1044 if (err != -ENOIOCTLCMD)
1045 return err;
1046
1047 if (cmd == SIOCGIFCONF) {
1048 struct ifconf ifc;
1049 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1050 return -EFAULT;
1051 rtnl_lock();
1052 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1053 rtnl_unlock();
1054 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1055 err = -EFAULT;
1056 } else if (is_socket_ioctl_cmd(cmd)) {
1057 struct ifreq ifr;
1058 bool need_copyout;
1059 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1060 return -EFAULT;
1061 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1062 if (!err && need_copyout)
1063 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1064 return -EFAULT;
1065 } else {
1066 err = -ENOTTY;
1067 }
1068 return err;
1069 }
1070
1071 /*
1072 * With an ioctl, arg may well be a user mode pointer, but we don't know
1073 * what to do with it - that's up to the protocol still.
1074 */
1075
1076 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1077 {
1078 struct socket *sock;
1079 struct sock *sk;
1080 void __user *argp = (void __user *)arg;
1081 int pid, err;
1082 struct net *net;
1083
1084 sock = file->private_data;
1085 sk = sock->sk;
1086 net = sock_net(sk);
1087 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1088 struct ifreq ifr;
1089 bool need_copyout;
1090 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1091 return -EFAULT;
1092 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1093 if (!err && need_copyout)
1094 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1095 return -EFAULT;
1096 } else
1097 #ifdef CONFIG_WEXT_CORE
1098 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1099 err = wext_handle_ioctl(net, cmd, argp);
1100 } else
1101 #endif
1102 switch (cmd) {
1103 case FIOSETOWN:
1104 case SIOCSPGRP:
1105 err = -EFAULT;
1106 if (get_user(pid, (int __user *)argp))
1107 break;
1108 err = f_setown(sock->file, pid, 1);
1109 break;
1110 case FIOGETOWN:
1111 case SIOCGPGRP:
1112 err = put_user(f_getown(sock->file),
1113 (int __user *)argp);
1114 break;
1115 case SIOCGIFBR:
1116 case SIOCSIFBR:
1117 case SIOCBRADDBR:
1118 case SIOCBRDELBR:
1119 err = -ENOPKG;
1120 if (!br_ioctl_hook)
1121 request_module("bridge");
1122
1123 mutex_lock(&br_ioctl_mutex);
1124 if (br_ioctl_hook)
1125 err = br_ioctl_hook(net, cmd, argp);
1126 mutex_unlock(&br_ioctl_mutex);
1127 break;
1128 case SIOCGIFVLAN:
1129 case SIOCSIFVLAN:
1130 err = -ENOPKG;
1131 if (!vlan_ioctl_hook)
1132 request_module("8021q");
1133
1134 mutex_lock(&vlan_ioctl_mutex);
1135 if (vlan_ioctl_hook)
1136 err = vlan_ioctl_hook(net, argp);
1137 mutex_unlock(&vlan_ioctl_mutex);
1138 break;
1139 case SIOCADDDLCI:
1140 case SIOCDELDLCI:
1141 err = -ENOPKG;
1142 if (!dlci_ioctl_hook)
1143 request_module("dlci");
1144
1145 mutex_lock(&dlci_ioctl_mutex);
1146 if (dlci_ioctl_hook)
1147 err = dlci_ioctl_hook(cmd, argp);
1148 mutex_unlock(&dlci_ioctl_mutex);
1149 break;
1150 case SIOCGSKNS:
1151 err = -EPERM;
1152 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1153 break;
1154
1155 err = open_related_ns(&net->ns, get_net_ns);
1156 break;
1157 case SIOCGSTAMP_OLD:
1158 case SIOCGSTAMPNS_OLD:
1159 if (!sock->ops->gettstamp) {
1160 err = -ENOIOCTLCMD;
1161 break;
1162 }
1163 err = sock->ops->gettstamp(sock, argp,
1164 cmd == SIOCGSTAMP_OLD,
1165 !IS_ENABLED(CONFIG_64BIT));
1166 break;
1167 case SIOCGSTAMP_NEW:
1168 case SIOCGSTAMPNS_NEW:
1169 if (!sock->ops->gettstamp) {
1170 err = -ENOIOCTLCMD;
1171 break;
1172 }
1173 err = sock->ops->gettstamp(sock, argp,
1174 cmd == SIOCGSTAMP_NEW,
1175 false);
1176 break;
1177 default:
1178 err = sock_do_ioctl(net, sock, cmd, arg);
1179 break;
1180 }
1181 return err;
1182 }
1183
1184 /**
1185 * sock_create_lite - creates a socket
1186 * @family: protocol family (AF_INET, ...)
1187 * @type: communication type (SOCK_STREAM, ...)
1188 * @protocol: protocol (0, ...)
1189 * @res: new socket
1190 *
1191 * Creates a new socket and assigns it to @res, passing through LSM.
1192 * The new socket initialization is not complete, see kernel_accept().
1193 * Returns 0 or an error. On failure @res is set to %NULL.
1194 * This function internally uses GFP_KERNEL.
1195 */
1196
1197 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1198 {
1199 int err;
1200 struct socket *sock = NULL;
1201
1202 err = security_socket_create(family, type, protocol, 1);
1203 if (err)
1204 goto out;
1205
1206 sock = sock_alloc();
1207 if (!sock) {
1208 err = -ENOMEM;
1209 goto out;
1210 }
1211
1212 sock->type = type;
1213 err = security_socket_post_create(sock, family, type, protocol, 1);
1214 if (err)
1215 goto out_release;
1216
1217 out:
1218 *res = sock;
1219 return err;
1220 out_release:
1221 sock_release(sock);
1222 sock = NULL;
1223 goto out;
1224 }
1225 EXPORT_SYMBOL(sock_create_lite);
1226
1227 /* No kernel lock held - perfect */
1228 static __poll_t sock_poll(struct file *file, poll_table *wait)
1229 {
1230 struct socket *sock = file->private_data;
1231 __poll_t events = poll_requested_events(wait), flag = 0;
1232
1233 if (!sock->ops->poll)
1234 return 0;
1235
1236 if (sk_can_busy_loop(sock->sk)) {
1237 /* poll once if requested by the syscall */
1238 if (events & POLL_BUSY_LOOP)
1239 sk_busy_loop(sock->sk, 1);
1240
1241 /* if this socket can poll_ll, tell the system call */
1242 flag = POLL_BUSY_LOOP;
1243 }
1244
1245 return sock->ops->poll(file, sock, wait) | flag;
1246 }
1247
1248 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1249 {
1250 struct socket *sock = file->private_data;
1251
1252 return sock->ops->mmap(file, sock, vma);
1253 }
1254
1255 static int sock_close(struct inode *inode, struct file *filp)
1256 {
1257 __sock_release(SOCKET_I(inode), inode);
1258 return 0;
1259 }
1260
1261 /*
1262 * Update the socket async list
1263 *
1264 * Fasync_list locking strategy.
1265 *
1266 * 1. fasync_list is modified only under process context socket lock
1267 * i.e. under semaphore.
1268 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1269 * or under socket lock
1270 */
1271
1272 static int sock_fasync(int fd, struct file *filp, int on)
1273 {
1274 struct socket *sock = filp->private_data;
1275 struct sock *sk = sock->sk;
1276 struct socket_wq *wq = &sock->wq;
1277
1278 if (sk == NULL)
1279 return -EINVAL;
1280
1281 lock_sock(sk);
1282 fasync_helper(fd, filp, on, &wq->fasync_list);
1283
1284 if (!wq->fasync_list)
1285 sock_reset_flag(sk, SOCK_FASYNC);
1286 else
1287 sock_set_flag(sk, SOCK_FASYNC);
1288
1289 release_sock(sk);
1290 return 0;
1291 }
1292
1293 /* This function may be called only under rcu_lock */
1294
1295 int sock_wake_async(struct socket_wq *wq, int how, int band)
1296 {
1297 if (!wq || !wq->fasync_list)
1298 return -1;
1299
1300 switch (how) {
1301 case SOCK_WAKE_WAITD:
1302 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1303 break;
1304 goto call_kill;
1305 case SOCK_WAKE_SPACE:
1306 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1307 break;
1308 /* fall through */
1309 case SOCK_WAKE_IO:
1310 call_kill:
1311 kill_fasync(&wq->fasync_list, SIGIO, band);
1312 break;
1313 case SOCK_WAKE_URG:
1314 kill_fasync(&wq->fasync_list, SIGURG, band);
1315 }
1316
1317 return 0;
1318 }
1319 EXPORT_SYMBOL(sock_wake_async);
1320
1321 /**
1322 * __sock_create - creates a socket
1323 * @net: net namespace
1324 * @family: protocol family (AF_INET, ...)
1325 * @type: communication type (SOCK_STREAM, ...)
1326 * @protocol: protocol (0, ...)
1327 * @res: new socket
1328 * @kern: boolean for kernel space sockets
1329 *
1330 * Creates a new socket and assigns it to @res, passing through LSM.
1331 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1332 * be set to true if the socket resides in kernel space.
1333 * This function internally uses GFP_KERNEL.
1334 */
1335
1336 int __sock_create(struct net *net, int family, int type, int protocol,
1337 struct socket **res, int kern)
1338 {
1339 int err;
1340 struct socket *sock;
1341 const struct net_proto_family *pf;
1342
1343 /*
1344 * Check protocol is in range
1345 */
1346 if (family < 0 || family >= NPROTO)
1347 return -EAFNOSUPPORT;
1348 if (type < 0 || type >= SOCK_MAX)
1349 return -EINVAL;
1350
1351 /* Compatibility.
1352
1353 This uglymoron is moved from INET layer to here to avoid
1354 deadlock in module load.
1355 */
1356 if (family == PF_INET && type == SOCK_PACKET) {
1357 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1358 current->comm);
1359 family = PF_PACKET;
1360 }
1361
1362 err = security_socket_create(family, type, protocol, kern);
1363 if (err)
1364 return err;
1365
1366 /*
1367 * Allocate the socket and allow the family to set things up. if
1368 * the protocol is 0, the family is instructed to select an appropriate
1369 * default.
1370 */
1371 sock = sock_alloc();
1372 if (!sock) {
1373 net_warn_ratelimited("socket: no more sockets\n");
1374 return -ENFILE; /* Not exactly a match, but its the
1375 closest posix thing */
1376 }
1377
1378 sock->type = type;
1379
1380 #ifdef CONFIG_MODULES
1381 /* Attempt to load a protocol module if the find failed.
1382 *
1383 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1384 * requested real, full-featured networking support upon configuration.
1385 * Otherwise module support will break!
1386 */
1387 if (rcu_access_pointer(net_families[family]) == NULL)
1388 request_module("net-pf-%d", family);
1389 #endif
1390
1391 rcu_read_lock();
1392 pf = rcu_dereference(net_families[family]);
1393 err = -EAFNOSUPPORT;
1394 if (!pf)
1395 goto out_release;
1396
1397 /*
1398 * We will call the ->create function, that possibly is in a loadable
1399 * module, so we have to bump that loadable module refcnt first.
1400 */
1401 if (!try_module_get(pf->owner))
1402 goto out_release;
1403
1404 /* Now protected by module ref count */
1405 rcu_read_unlock();
1406
1407 err = pf->create(net, sock, protocol, kern);
1408 if (err < 0)
1409 goto out_module_put;
1410
1411 /*
1412 * Now to bump the refcnt of the [loadable] module that owns this
1413 * socket at sock_release time we decrement its refcnt.
1414 */
1415 if (!try_module_get(sock->ops->owner))
1416 goto out_module_busy;
1417
1418 /*
1419 * Now that we're done with the ->create function, the [loadable]
1420 * module can have its refcnt decremented
1421 */
1422 module_put(pf->owner);
1423 err = security_socket_post_create(sock, family, type, protocol, kern);
1424 if (err)
1425 goto out_sock_release;
1426 *res = sock;
1427
1428 return 0;
1429
1430 out_module_busy:
1431 err = -EAFNOSUPPORT;
1432 out_module_put:
1433 sock->ops = NULL;
1434 module_put(pf->owner);
1435 out_sock_release:
1436 sock_release(sock);
1437 return err;
1438
1439 out_release:
1440 rcu_read_unlock();
1441 goto out_sock_release;
1442 }
1443 EXPORT_SYMBOL(__sock_create);
1444
1445 /**
1446 * sock_create - creates a socket
1447 * @family: protocol family (AF_INET, ...)
1448 * @type: communication type (SOCK_STREAM, ...)
1449 * @protocol: protocol (0, ...)
1450 * @res: new socket
1451 *
1452 * A wrapper around __sock_create().
1453 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1454 */
1455
1456 int sock_create(int family, int type, int protocol, struct socket **res)
1457 {
1458 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1459 }
1460 EXPORT_SYMBOL(sock_create);
1461
1462 /**
1463 * sock_create_kern - creates a socket (kernel space)
1464 * @net: net namespace
1465 * @family: protocol family (AF_INET, ...)
1466 * @type: communication type (SOCK_STREAM, ...)
1467 * @protocol: protocol (0, ...)
1468 * @res: new socket
1469 *
1470 * A wrapper around __sock_create().
1471 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1472 */
1473
1474 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1475 {
1476 return __sock_create(net, family, type, protocol, res, 1);
1477 }
1478 EXPORT_SYMBOL(sock_create_kern);
1479
1480 int __sys_socket(int family, int type, int protocol)
1481 {
1482 int retval;
1483 struct socket *sock;
1484 int flags;
1485
1486 /* Check the SOCK_* constants for consistency. */
1487 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1488 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1489 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1490 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1491
1492 flags = type & ~SOCK_TYPE_MASK;
1493 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1494 return -EINVAL;
1495 type &= SOCK_TYPE_MASK;
1496
1497 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1498 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1499
1500 retval = sock_create(family, type, protocol, &sock);
1501 if (retval < 0)
1502 return retval;
1503
1504 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1505 }
1506
1507 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1508 {
1509 return __sys_socket(family, type, protocol);
1510 }
1511
1512 /*
1513 * Create a pair of connected sockets.
1514 */
1515
1516 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1517 {
1518 struct socket *sock1, *sock2;
1519 int fd1, fd2, err;
1520 struct file *newfile1, *newfile2;
1521 int flags;
1522
1523 flags = type & ~SOCK_TYPE_MASK;
1524 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1525 return -EINVAL;
1526 type &= SOCK_TYPE_MASK;
1527
1528 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1529 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1530
1531 /*
1532 * reserve descriptors and make sure we won't fail
1533 * to return them to userland.
1534 */
1535 fd1 = get_unused_fd_flags(flags);
1536 if (unlikely(fd1 < 0))
1537 return fd1;
1538
1539 fd2 = get_unused_fd_flags(flags);
1540 if (unlikely(fd2 < 0)) {
1541 put_unused_fd(fd1);
1542 return fd2;
1543 }
1544
1545 err = put_user(fd1, &usockvec[0]);
1546 if (err)
1547 goto out;
1548
1549 err = put_user(fd2, &usockvec[1]);
1550 if (err)
1551 goto out;
1552
1553 /*
1554 * Obtain the first socket and check if the underlying protocol
1555 * supports the socketpair call.
1556 */
1557
1558 err = sock_create(family, type, protocol, &sock1);
1559 if (unlikely(err < 0))
1560 goto out;
1561
1562 err = sock_create(family, type, protocol, &sock2);
1563 if (unlikely(err < 0)) {
1564 sock_release(sock1);
1565 goto out;
1566 }
1567
1568 err = security_socket_socketpair(sock1, sock2);
1569 if (unlikely(err)) {
1570 sock_release(sock2);
1571 sock_release(sock1);
1572 goto out;
1573 }
1574
1575 err = sock1->ops->socketpair(sock1, sock2);
1576 if (unlikely(err < 0)) {
1577 sock_release(sock2);
1578 sock_release(sock1);
1579 goto out;
1580 }
1581
1582 newfile1 = sock_alloc_file(sock1, flags, NULL);
1583 if (IS_ERR(newfile1)) {
1584 err = PTR_ERR(newfile1);
1585 sock_release(sock2);
1586 goto out;
1587 }
1588
1589 newfile2 = sock_alloc_file(sock2, flags, NULL);
1590 if (IS_ERR(newfile2)) {
1591 err = PTR_ERR(newfile2);
1592 fput(newfile1);
1593 goto out;
1594 }
1595
1596 audit_fd_pair(fd1, fd2);
1597
1598 fd_install(fd1, newfile1);
1599 fd_install(fd2, newfile2);
1600 return 0;
1601
1602 out:
1603 put_unused_fd(fd2);
1604 put_unused_fd(fd1);
1605 return err;
1606 }
1607
1608 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1609 int __user *, usockvec)
1610 {
1611 return __sys_socketpair(family, type, protocol, usockvec);
1612 }
1613
1614 /*
1615 * Bind a name to a socket. Nothing much to do here since it's
1616 * the protocol's responsibility to handle the local address.
1617 *
1618 * We move the socket address to kernel space before we call
1619 * the protocol layer (having also checked the address is ok).
1620 */
1621
1622 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1623 {
1624 struct socket *sock;
1625 struct sockaddr_storage address;
1626 int err, fput_needed;
1627
1628 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1629 if (sock) {
1630 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1631 if (!err) {
1632 err = security_socket_bind(sock,
1633 (struct sockaddr *)&address,
1634 addrlen);
1635 if (!err)
1636 err = sock->ops->bind(sock,
1637 (struct sockaddr *)
1638 &address, addrlen);
1639 }
1640 fput_light(sock->file, fput_needed);
1641 }
1642 return err;
1643 }
1644
1645 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1646 {
1647 return __sys_bind(fd, umyaddr, addrlen);
1648 }
1649
1650 /*
1651 * Perform a listen. Basically, we allow the protocol to do anything
1652 * necessary for a listen, and if that works, we mark the socket as
1653 * ready for listening.
1654 */
1655
1656 int __sys_listen(int fd, int backlog)
1657 {
1658 struct socket *sock;
1659 int err, fput_needed;
1660 int somaxconn;
1661
1662 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1663 if (sock) {
1664 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1665 if ((unsigned int)backlog > somaxconn)
1666 backlog = somaxconn;
1667
1668 err = security_socket_listen(sock, backlog);
1669 if (!err)
1670 err = sock->ops->listen(sock, backlog);
1671
1672 fput_light(sock->file, fput_needed);
1673 }
1674 return err;
1675 }
1676
1677 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1678 {
1679 return __sys_listen(fd, backlog);
1680 }
1681
1682 /*
1683 * For accept, we attempt to create a new socket, set up the link
1684 * with the client, wake up the client, then return the new
1685 * connected fd. We collect the address of the connector in kernel
1686 * space and move it to user at the very end. This is unclean because
1687 * we open the socket then return an error.
1688 *
1689 * 1003.1g adds the ability to recvmsg() to query connection pending
1690 * status to recvmsg. We need to add that support in a way thats
1691 * clean when we restructure accept also.
1692 */
1693
1694 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1695 int __user *upeer_addrlen, int flags)
1696 {
1697 struct socket *sock, *newsock;
1698 struct file *newfile;
1699 int err, len, newfd, fput_needed;
1700 struct sockaddr_storage address;
1701
1702 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1703 return -EINVAL;
1704
1705 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1706 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1707
1708 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1709 if (!sock)
1710 goto out;
1711
1712 err = -ENFILE;
1713 newsock = sock_alloc();
1714 if (!newsock)
1715 goto out_put;
1716
1717 newsock->type = sock->type;
1718 newsock->ops = sock->ops;
1719
1720 /*
1721 * We don't need try_module_get here, as the listening socket (sock)
1722 * has the protocol module (sock->ops->owner) held.
1723 */
1724 __module_get(newsock->ops->owner);
1725
1726 newfd = get_unused_fd_flags(flags);
1727 if (unlikely(newfd < 0)) {
1728 err = newfd;
1729 sock_release(newsock);
1730 goto out_put;
1731 }
1732 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1733 if (IS_ERR(newfile)) {
1734 err = PTR_ERR(newfile);
1735 put_unused_fd(newfd);
1736 goto out_put;
1737 }
1738
1739 err = security_socket_accept(sock, newsock);
1740 if (err)
1741 goto out_fd;
1742
1743 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1744 if (err < 0)
1745 goto out_fd;
1746
1747 if (upeer_sockaddr) {
1748 len = newsock->ops->getname(newsock,
1749 (struct sockaddr *)&address, 2);
1750 if (len < 0) {
1751 err = -ECONNABORTED;
1752 goto out_fd;
1753 }
1754 err = move_addr_to_user(&address,
1755 len, upeer_sockaddr, upeer_addrlen);
1756 if (err < 0)
1757 goto out_fd;
1758 }
1759
1760 /* File flags are not inherited via accept() unlike another OSes. */
1761
1762 fd_install(newfd, newfile);
1763 err = newfd;
1764
1765 out_put:
1766 fput_light(sock->file, fput_needed);
1767 out:
1768 return err;
1769 out_fd:
1770 fput(newfile);
1771 put_unused_fd(newfd);
1772 goto out_put;
1773 }
1774
1775 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1776 int __user *, upeer_addrlen, int, flags)
1777 {
1778 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1779 }
1780
1781 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1782 int __user *, upeer_addrlen)
1783 {
1784 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1785 }
1786
1787 /*
1788 * Attempt to connect to a socket with the server address. The address
1789 * is in user space so we verify it is OK and move it to kernel space.
1790 *
1791 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1792 * break bindings
1793 *
1794 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1795 * other SEQPACKET protocols that take time to connect() as it doesn't
1796 * include the -EINPROGRESS status for such sockets.
1797 */
1798
1799 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1800 {
1801 struct socket *sock;
1802 struct sockaddr_storage address;
1803 int err, fput_needed;
1804
1805 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1806 if (!sock)
1807 goto out;
1808 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1809 if (err < 0)
1810 goto out_put;
1811
1812 err =
1813 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1814 if (err)
1815 goto out_put;
1816
1817 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1818 sock->file->f_flags);
1819 out_put:
1820 fput_light(sock->file, fput_needed);
1821 out:
1822 return err;
1823 }
1824
1825 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1826 int, addrlen)
1827 {
1828 return __sys_connect(fd, uservaddr, addrlen);
1829 }
1830
1831 /*
1832 * Get the local address ('name') of a socket object. Move the obtained
1833 * name to user space.
1834 */
1835
1836 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1837 int __user *usockaddr_len)
1838 {
1839 struct socket *sock;
1840 struct sockaddr_storage address;
1841 int err, fput_needed;
1842
1843 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1844 if (!sock)
1845 goto out;
1846
1847 err = security_socket_getsockname(sock);
1848 if (err)
1849 goto out_put;
1850
1851 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1852 if (err < 0)
1853 goto out_put;
1854 /* "err" is actually length in this case */
1855 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1856
1857 out_put:
1858 fput_light(sock->file, fput_needed);
1859 out:
1860 return err;
1861 }
1862
1863 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1864 int __user *, usockaddr_len)
1865 {
1866 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1867 }
1868
1869 /*
1870 * Get the remote address ('name') of a socket object. Move the obtained
1871 * name to user space.
1872 */
1873
1874 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1875 int __user *usockaddr_len)
1876 {
1877 struct socket *sock;
1878 struct sockaddr_storage address;
1879 int err, fput_needed;
1880
1881 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1882 if (sock != NULL) {
1883 err = security_socket_getpeername(sock);
1884 if (err) {
1885 fput_light(sock->file, fput_needed);
1886 return err;
1887 }
1888
1889 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1890 if (err >= 0)
1891 /* "err" is actually length in this case */
1892 err = move_addr_to_user(&address, err, usockaddr,
1893 usockaddr_len);
1894 fput_light(sock->file, fput_needed);
1895 }
1896 return err;
1897 }
1898
1899 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1900 int __user *, usockaddr_len)
1901 {
1902 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1903 }
1904
1905 /*
1906 * Send a datagram to a given address. We move the address into kernel
1907 * space and check the user space data area is readable before invoking
1908 * the protocol.
1909 */
1910 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1911 struct sockaddr __user *addr, int addr_len)
1912 {
1913 struct socket *sock;
1914 struct sockaddr_storage address;
1915 int err;
1916 struct msghdr msg;
1917 struct iovec iov;
1918 int fput_needed;
1919
1920 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1921 if (unlikely(err))
1922 return err;
1923 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1924 if (!sock)
1925 goto out;
1926
1927 msg.msg_name = NULL;
1928 msg.msg_control = NULL;
1929 msg.msg_controllen = 0;
1930 msg.msg_namelen = 0;
1931 if (addr) {
1932 err = move_addr_to_kernel(addr, addr_len, &address);
1933 if (err < 0)
1934 goto out_put;
1935 msg.msg_name = (struct sockaddr *)&address;
1936 msg.msg_namelen = addr_len;
1937 }
1938 if (sock->file->f_flags & O_NONBLOCK)
1939 flags |= MSG_DONTWAIT;
1940 msg.msg_flags = flags;
1941 err = sock_sendmsg(sock, &msg);
1942
1943 out_put:
1944 fput_light(sock->file, fput_needed);
1945 out:
1946 return err;
1947 }
1948
1949 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1950 unsigned int, flags, struct sockaddr __user *, addr,
1951 int, addr_len)
1952 {
1953 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1954 }
1955
1956 /*
1957 * Send a datagram down a socket.
1958 */
1959
1960 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1961 unsigned int, flags)
1962 {
1963 return __sys_sendto(fd, buff, len, flags, NULL, 0);
1964 }
1965
1966 /*
1967 * Receive a frame from the socket and optionally record the address of the
1968 * sender. We verify the buffers are writable and if needed move the
1969 * sender address from kernel to user space.
1970 */
1971 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1972 struct sockaddr __user *addr, int __user *addr_len)
1973 {
1974 struct socket *sock;
1975 struct iovec iov;
1976 struct msghdr msg;
1977 struct sockaddr_storage address;
1978 int err, err2;
1979 int fput_needed;
1980
1981 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1982 if (unlikely(err))
1983 return err;
1984 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1985 if (!sock)
1986 goto out;
1987
1988 msg.msg_control = NULL;
1989 msg.msg_controllen = 0;
1990 /* Save some cycles and don't copy the address if not needed */
1991 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1992 /* We assume all kernel code knows the size of sockaddr_storage */
1993 msg.msg_namelen = 0;
1994 msg.msg_iocb = NULL;
1995 msg.msg_flags = 0;
1996 if (sock->file->f_flags & O_NONBLOCK)
1997 flags |= MSG_DONTWAIT;
1998 err = sock_recvmsg(sock, &msg, flags);
1999
2000 if (err >= 0 && addr != NULL) {
2001 err2 = move_addr_to_user(&address,
2002 msg.msg_namelen, addr, addr_len);
2003 if (err2 < 0)
2004 err = err2;
2005 }
2006
2007 fput_light(sock->file, fput_needed);
2008 out:
2009 return err;
2010 }
2011
2012 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2013 unsigned int, flags, struct sockaddr __user *, addr,
2014 int __user *, addr_len)
2015 {
2016 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2017 }
2018
2019 /*
2020 * Receive a datagram from a socket.
2021 */
2022
2023 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2024 unsigned int, flags)
2025 {
2026 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2027 }
2028
2029 /*
2030 * Set a socket option. Because we don't know the option lengths we have
2031 * to pass the user mode parameter for the protocols to sort out.
2032 */
2033
2034 static int __sys_setsockopt(int fd, int level, int optname,
2035 char __user *optval, int optlen)
2036 {
2037 mm_segment_t oldfs = get_fs();
2038 char *kernel_optval = NULL;
2039 int err, fput_needed;
2040 struct socket *sock;
2041
2042 if (optlen < 0)
2043 return -EINVAL;
2044
2045 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2046 if (sock != NULL) {
2047 err = security_socket_setsockopt(sock, level, optname);
2048 if (err)
2049 goto out_put;
2050
2051 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level,
2052 &optname, optval, &optlen,
2053 &kernel_optval);
2054
2055 if (err < 0) {
2056 goto out_put;
2057 } else if (err > 0) {
2058 err = 0;
2059 goto out_put;
2060 }
2061
2062 if (kernel_optval) {
2063 set_fs(KERNEL_DS);
2064 optval = (char __user __force *)kernel_optval;
2065 }
2066
2067 if (level == SOL_SOCKET)
2068 err =
2069 sock_setsockopt(sock, level, optname, optval,
2070 optlen);
2071 else
2072 err =
2073 sock->ops->setsockopt(sock, level, optname, optval,
2074 optlen);
2075
2076 if (kernel_optval) {
2077 set_fs(oldfs);
2078 kfree(kernel_optval);
2079 }
2080 out_put:
2081 fput_light(sock->file, fput_needed);
2082 }
2083 return err;
2084 }
2085
2086 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2087 char __user *, optval, int, optlen)
2088 {
2089 return __sys_setsockopt(fd, level, optname, optval, optlen);
2090 }
2091
2092 /*
2093 * Get a socket option. Because we don't know the option lengths we have
2094 * to pass a user mode parameter for the protocols to sort out.
2095 */
2096
2097 static int __sys_getsockopt(int fd, int level, int optname,
2098 char __user *optval, int __user *optlen)
2099 {
2100 int err, fput_needed;
2101 struct socket *sock;
2102 int max_optlen;
2103
2104 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2105 if (sock != NULL) {
2106 err = security_socket_getsockopt(sock, level, optname);
2107 if (err)
2108 goto out_put;
2109
2110 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2111
2112 if (level == SOL_SOCKET)
2113 err =
2114 sock_getsockopt(sock, level, optname, optval,
2115 optlen);
2116 else
2117 err =
2118 sock->ops->getsockopt(sock, level, optname, optval,
2119 optlen);
2120
2121 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2122 optval, optlen,
2123 max_optlen, err);
2124 out_put:
2125 fput_light(sock->file, fput_needed);
2126 }
2127 return err;
2128 }
2129
2130 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2131 char __user *, optval, int __user *, optlen)
2132 {
2133 return __sys_getsockopt(fd, level, optname, optval, optlen);
2134 }
2135
2136 /*
2137 * Shutdown a socket.
2138 */
2139
2140 int __sys_shutdown(int fd, int how)
2141 {
2142 int err, fput_needed;
2143 struct socket *sock;
2144
2145 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2146 if (sock != NULL) {
2147 err = security_socket_shutdown(sock, how);
2148 if (!err)
2149 err = sock->ops->shutdown(sock, how);
2150 fput_light(sock->file, fput_needed);
2151 }
2152 return err;
2153 }
2154
2155 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2156 {
2157 return __sys_shutdown(fd, how);
2158 }
2159
2160 /* A couple of helpful macros for getting the address of the 32/64 bit
2161 * fields which are the same type (int / unsigned) on our platforms.
2162 */
2163 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2164 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2165 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2166
2167 struct used_address {
2168 struct sockaddr_storage name;
2169 unsigned int name_len;
2170 };
2171
2172 static int copy_msghdr_from_user(struct msghdr *kmsg,
2173 struct user_msghdr __user *umsg,
2174 struct sockaddr __user **save_addr,
2175 struct iovec **iov)
2176 {
2177 struct user_msghdr msg;
2178 ssize_t err;
2179
2180 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2181 return -EFAULT;
2182
2183 kmsg->msg_control = (void __force *)msg.msg_control;
2184 kmsg->msg_controllen = msg.msg_controllen;
2185 kmsg->msg_flags = msg.msg_flags;
2186
2187 kmsg->msg_namelen = msg.msg_namelen;
2188 if (!msg.msg_name)
2189 kmsg->msg_namelen = 0;
2190
2191 if (kmsg->msg_namelen < 0)
2192 return -EINVAL;
2193
2194 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2195 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2196
2197 if (save_addr)
2198 *save_addr = msg.msg_name;
2199
2200 if (msg.msg_name && kmsg->msg_namelen) {
2201 if (!save_addr) {
2202 err = move_addr_to_kernel(msg.msg_name,
2203 kmsg->msg_namelen,
2204 kmsg->msg_name);
2205 if (err < 0)
2206 return err;
2207 }
2208 } else {
2209 kmsg->msg_name = NULL;
2210 kmsg->msg_namelen = 0;
2211 }
2212
2213 if (msg.msg_iovlen > UIO_MAXIOV)
2214 return -EMSGSIZE;
2215
2216 kmsg->msg_iocb = NULL;
2217
2218 err = import_iovec(save_addr ? READ : WRITE,
2219 msg.msg_iov, msg.msg_iovlen,
2220 UIO_FASTIOV, iov, &kmsg->msg_iter);
2221 return err < 0 ? err : 0;
2222 }
2223
2224 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2225 unsigned int flags, struct used_address *used_address,
2226 unsigned int allowed_msghdr_flags)
2227 {
2228 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2229 __aligned(sizeof(__kernel_size_t));
2230 /* 20 is size of ipv6_pktinfo */
2231 unsigned char *ctl_buf = ctl;
2232 int ctl_len;
2233 ssize_t err;
2234
2235 err = -ENOBUFS;
2236
2237 if (msg_sys->msg_controllen > INT_MAX)
2238 goto out;
2239 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2240 ctl_len = msg_sys->msg_controllen;
2241 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2242 err =
2243 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2244 sizeof(ctl));
2245 if (err)
2246 goto out;
2247 ctl_buf = msg_sys->msg_control;
2248 ctl_len = msg_sys->msg_controllen;
2249 } else if (ctl_len) {
2250 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2251 CMSG_ALIGN(sizeof(struct cmsghdr)));
2252 if (ctl_len > sizeof(ctl)) {
2253 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2254 if (ctl_buf == NULL)
2255 goto out;
2256 }
2257 err = -EFAULT;
2258 /*
2259 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2260 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2261 * checking falls down on this.
2262 */
2263 if (copy_from_user(ctl_buf,
2264 (void __user __force *)msg_sys->msg_control,
2265 ctl_len))
2266 goto out_freectl;
2267 msg_sys->msg_control = ctl_buf;
2268 }
2269 msg_sys->msg_flags = flags;
2270
2271 if (sock->file->f_flags & O_NONBLOCK)
2272 msg_sys->msg_flags |= MSG_DONTWAIT;
2273 /*
2274 * If this is sendmmsg() and current destination address is same as
2275 * previously succeeded address, omit asking LSM's decision.
2276 * used_address->name_len is initialized to UINT_MAX so that the first
2277 * destination address never matches.
2278 */
2279 if (used_address && msg_sys->msg_name &&
2280 used_address->name_len == msg_sys->msg_namelen &&
2281 !memcmp(&used_address->name, msg_sys->msg_name,
2282 used_address->name_len)) {
2283 err = sock_sendmsg_nosec(sock, msg_sys);
2284 goto out_freectl;
2285 }
2286 err = sock_sendmsg(sock, msg_sys);
2287 /*
2288 * If this is sendmmsg() and sending to current destination address was
2289 * successful, remember it.
2290 */
2291 if (used_address && err >= 0) {
2292 used_address->name_len = msg_sys->msg_namelen;
2293 if (msg_sys->msg_name)
2294 memcpy(&used_address->name, msg_sys->msg_name,
2295 used_address->name_len);
2296 }
2297
2298 out_freectl:
2299 if (ctl_buf != ctl)
2300 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2301 out:
2302 return err;
2303 }
2304
2305 static int sendmsg_copy_msghdr(struct msghdr *msg,
2306 struct user_msghdr __user *umsg, unsigned flags,
2307 struct iovec **iov)
2308 {
2309 int err;
2310
2311 if (flags & MSG_CMSG_COMPAT) {
2312 struct compat_msghdr __user *msg_compat;
2313
2314 msg_compat = (struct compat_msghdr __user *) umsg;
2315 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2316 } else {
2317 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2318 }
2319 if (err < 0)
2320 return err;
2321
2322 return 0;
2323 }
2324
2325 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2326 struct msghdr *msg_sys, unsigned int flags,
2327 struct used_address *used_address,
2328 unsigned int allowed_msghdr_flags)
2329 {
2330 struct sockaddr_storage address;
2331 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2332 ssize_t err;
2333
2334 msg_sys->msg_name = &address;
2335
2336 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2337 if (err < 0)
2338 return err;
2339
2340 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2341 allowed_msghdr_flags);
2342 kfree(iov);
2343 return err;
2344 }
2345
2346 /*
2347 * BSD sendmsg interface
2348 */
2349 long __sys_sendmsg_sock(struct socket *sock, struct user_msghdr __user *umsg,
2350 unsigned int flags)
2351 {
2352 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2353 struct sockaddr_storage address;
2354 struct msghdr msg = { .msg_name = &address };
2355 ssize_t err;
2356
2357 err = sendmsg_copy_msghdr(&msg, umsg, flags, &iov);
2358 if (err)
2359 return err;
2360 /* disallow ancillary data requests from this path */
2361 if (msg.msg_control || msg.msg_controllen) {
2362 err = -EINVAL;
2363 goto out;
2364 }
2365
2366 err = ____sys_sendmsg(sock, &msg, flags, NULL, 0);
2367 out:
2368 kfree(iov);
2369 return err;
2370 }
2371
2372 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2373 bool forbid_cmsg_compat)
2374 {
2375 int fput_needed, err;
2376 struct msghdr msg_sys;
2377 struct socket *sock;
2378
2379 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2380 return -EINVAL;
2381
2382 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2383 if (!sock)
2384 goto out;
2385
2386 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2387
2388 fput_light(sock->file, fput_needed);
2389 out:
2390 return err;
2391 }
2392
2393 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2394 {
2395 return __sys_sendmsg(fd, msg, flags, true);
2396 }
2397
2398 /*
2399 * Linux sendmmsg interface
2400 */
2401
2402 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2403 unsigned int flags, bool forbid_cmsg_compat)
2404 {
2405 int fput_needed, err, datagrams;
2406 struct socket *sock;
2407 struct mmsghdr __user *entry;
2408 struct compat_mmsghdr __user *compat_entry;
2409 struct msghdr msg_sys;
2410 struct used_address used_address;
2411 unsigned int oflags = flags;
2412
2413 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2414 return -EINVAL;
2415
2416 if (vlen > UIO_MAXIOV)
2417 vlen = UIO_MAXIOV;
2418
2419 datagrams = 0;
2420
2421 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2422 if (!sock)
2423 return err;
2424
2425 used_address.name_len = UINT_MAX;
2426 entry = mmsg;
2427 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2428 err = 0;
2429 flags |= MSG_BATCH;
2430
2431 while (datagrams < vlen) {
2432 if (datagrams == vlen - 1)
2433 flags = oflags;
2434
2435 if (MSG_CMSG_COMPAT & flags) {
2436 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2437 &msg_sys, flags, &used_address, MSG_EOR);
2438 if (err < 0)
2439 break;
2440 err = __put_user(err, &compat_entry->msg_len);
2441 ++compat_entry;
2442 } else {
2443 err = ___sys_sendmsg(sock,
2444 (struct user_msghdr __user *)entry,
2445 &msg_sys, flags, &used_address, MSG_EOR);
2446 if (err < 0)
2447 break;
2448 err = put_user(err, &entry->msg_len);
2449 ++entry;
2450 }
2451
2452 if (err)
2453 break;
2454 ++datagrams;
2455 if (msg_data_left(&msg_sys))
2456 break;
2457 cond_resched();
2458 }
2459
2460 fput_light(sock->file, fput_needed);
2461
2462 /* We only return an error if no datagrams were able to be sent */
2463 if (datagrams != 0)
2464 return datagrams;
2465
2466 return err;
2467 }
2468
2469 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2470 unsigned int, vlen, unsigned int, flags)
2471 {
2472 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2473 }
2474
2475 static int recvmsg_copy_msghdr(struct msghdr *msg,
2476 struct user_msghdr __user *umsg, unsigned flags,
2477 struct sockaddr __user **uaddr,
2478 struct iovec **iov)
2479 {
2480 ssize_t err;
2481
2482 if (MSG_CMSG_COMPAT & flags) {
2483 struct compat_msghdr __user *msg_compat;
2484
2485 msg_compat = (struct compat_msghdr __user *) umsg;
2486 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2487 } else {
2488 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2489 }
2490 if (err < 0)
2491 return err;
2492
2493 return 0;
2494 }
2495
2496 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2497 struct user_msghdr __user *msg,
2498 struct sockaddr __user *uaddr,
2499 unsigned int flags, int nosec)
2500 {
2501 struct compat_msghdr __user *msg_compat =
2502 (struct compat_msghdr __user *) msg;
2503 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2504 struct sockaddr_storage addr;
2505 unsigned long cmsg_ptr;
2506 int len;
2507 ssize_t err;
2508
2509 msg_sys->msg_name = &addr;
2510 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2511 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2512
2513 /* We assume all kernel code knows the size of sockaddr_storage */
2514 msg_sys->msg_namelen = 0;
2515
2516 if (sock->file->f_flags & O_NONBLOCK)
2517 flags |= MSG_DONTWAIT;
2518 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2519 if (err < 0)
2520 goto out;
2521 len = err;
2522
2523 if (uaddr != NULL) {
2524 err = move_addr_to_user(&addr,
2525 msg_sys->msg_namelen, uaddr,
2526 uaddr_len);
2527 if (err < 0)
2528 goto out;
2529 }
2530 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2531 COMPAT_FLAGS(msg));
2532 if (err)
2533 goto out;
2534 if (MSG_CMSG_COMPAT & flags)
2535 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2536 &msg_compat->msg_controllen);
2537 else
2538 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2539 &msg->msg_controllen);
2540 if (err)
2541 goto out;
2542 err = len;
2543 out:
2544 return err;
2545 }
2546
2547 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2548 struct msghdr *msg_sys, unsigned int flags, int nosec)
2549 {
2550 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2551 /* user mode address pointers */
2552 struct sockaddr __user *uaddr;
2553 ssize_t err;
2554
2555 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2556 if (err < 0)
2557 return err;
2558
2559 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2560 kfree(iov);
2561 return err;
2562 }
2563
2564 /*
2565 * BSD recvmsg interface
2566 */
2567
2568 long __sys_recvmsg_sock(struct socket *sock, struct user_msghdr __user *umsg,
2569 unsigned int flags)
2570 {
2571 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2572 struct sockaddr_storage address;
2573 struct msghdr msg = { .msg_name = &address };
2574 struct sockaddr __user *uaddr;
2575 ssize_t err;
2576
2577 err = recvmsg_copy_msghdr(&msg, umsg, flags, &uaddr, &iov);
2578 if (err)
2579 return err;
2580 /* disallow ancillary data requests from this path */
2581 if (msg.msg_control || msg.msg_controllen) {
2582 err = -EINVAL;
2583 goto out;
2584 }
2585
2586 err = ____sys_recvmsg(sock, &msg, umsg, uaddr, flags, 0);
2587 out:
2588 kfree(iov);
2589 return err;
2590 }
2591
2592 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2593 bool forbid_cmsg_compat)
2594 {
2595 int fput_needed, err;
2596 struct msghdr msg_sys;
2597 struct socket *sock;
2598
2599 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2600 return -EINVAL;
2601
2602 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2603 if (!sock)
2604 goto out;
2605
2606 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2607
2608 fput_light(sock->file, fput_needed);
2609 out:
2610 return err;
2611 }
2612
2613 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2614 unsigned int, flags)
2615 {
2616 return __sys_recvmsg(fd, msg, flags, true);
2617 }
2618
2619 /*
2620 * Linux recvmmsg interface
2621 */
2622
2623 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2624 unsigned int vlen, unsigned int flags,
2625 struct timespec64 *timeout)
2626 {
2627 int fput_needed, err, datagrams;
2628 struct socket *sock;
2629 struct mmsghdr __user *entry;
2630 struct compat_mmsghdr __user *compat_entry;
2631 struct msghdr msg_sys;
2632 struct timespec64 end_time;
2633 struct timespec64 timeout64;
2634
2635 if (timeout &&
2636 poll_select_set_timeout(&end_time, timeout->tv_sec,
2637 timeout->tv_nsec))
2638 return -EINVAL;
2639
2640 datagrams = 0;
2641
2642 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2643 if (!sock)
2644 return err;
2645
2646 if (likely(!(flags & MSG_ERRQUEUE))) {
2647 err = sock_error(sock->sk);
2648 if (err) {
2649 datagrams = err;
2650 goto out_put;
2651 }
2652 }
2653
2654 entry = mmsg;
2655 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2656
2657 while (datagrams < vlen) {
2658 /*
2659 * No need to ask LSM for more than the first datagram.
2660 */
2661 if (MSG_CMSG_COMPAT & flags) {
2662 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2663 &msg_sys, flags & ~MSG_WAITFORONE,
2664 datagrams);
2665 if (err < 0)
2666 break;
2667 err = __put_user(err, &compat_entry->msg_len);
2668 ++compat_entry;
2669 } else {
2670 err = ___sys_recvmsg(sock,
2671 (struct user_msghdr __user *)entry,
2672 &msg_sys, flags & ~MSG_WAITFORONE,
2673 datagrams);
2674 if (err < 0)
2675 break;
2676 err = put_user(err, &entry->msg_len);
2677 ++entry;
2678 }
2679
2680 if (err)
2681 break;
2682 ++datagrams;
2683
2684 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2685 if (flags & MSG_WAITFORONE)
2686 flags |= MSG_DONTWAIT;
2687
2688 if (timeout) {
2689 ktime_get_ts64(&timeout64);
2690 *timeout = timespec64_sub(end_time, timeout64);
2691 if (timeout->tv_sec < 0) {
2692 timeout->tv_sec = timeout->tv_nsec = 0;
2693 break;
2694 }
2695
2696 /* Timeout, return less than vlen datagrams */
2697 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2698 break;
2699 }
2700
2701 /* Out of band data, return right away */
2702 if (msg_sys.msg_flags & MSG_OOB)
2703 break;
2704 cond_resched();
2705 }
2706
2707 if (err == 0)
2708 goto out_put;
2709
2710 if (datagrams == 0) {
2711 datagrams = err;
2712 goto out_put;
2713 }
2714
2715 /*
2716 * We may return less entries than requested (vlen) if the
2717 * sock is non block and there aren't enough datagrams...
2718 */
2719 if (err != -EAGAIN) {
2720 /*
2721 * ... or if recvmsg returns an error after we
2722 * received some datagrams, where we record the
2723 * error to return on the next call or if the
2724 * app asks about it using getsockopt(SO_ERROR).
2725 */
2726 sock->sk->sk_err = -err;
2727 }
2728 out_put:
2729 fput_light(sock->file, fput_needed);
2730
2731 return datagrams;
2732 }
2733
2734 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2735 unsigned int vlen, unsigned int flags,
2736 struct __kernel_timespec __user *timeout,
2737 struct old_timespec32 __user *timeout32)
2738 {
2739 int datagrams;
2740 struct timespec64 timeout_sys;
2741
2742 if (timeout && get_timespec64(&timeout_sys, timeout))
2743 return -EFAULT;
2744
2745 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2746 return -EFAULT;
2747
2748 if (!timeout && !timeout32)
2749 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2750
2751 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2752
2753 if (datagrams <= 0)
2754 return datagrams;
2755
2756 if (timeout && put_timespec64(&timeout_sys, timeout))
2757 datagrams = -EFAULT;
2758
2759 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2760 datagrams = -EFAULT;
2761
2762 return datagrams;
2763 }
2764
2765 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2766 unsigned int, vlen, unsigned int, flags,
2767 struct __kernel_timespec __user *, timeout)
2768 {
2769 if (flags & MSG_CMSG_COMPAT)
2770 return -EINVAL;
2771
2772 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2773 }
2774
2775 #ifdef CONFIG_COMPAT_32BIT_TIME
2776 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2777 unsigned int, vlen, unsigned int, flags,
2778 struct old_timespec32 __user *, timeout)
2779 {
2780 if (flags & MSG_CMSG_COMPAT)
2781 return -EINVAL;
2782
2783 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2784 }
2785 #endif
2786
2787 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2788 /* Argument list sizes for sys_socketcall */
2789 #define AL(x) ((x) * sizeof(unsigned long))
2790 static const unsigned char nargs[21] = {
2791 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2792 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2793 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2794 AL(4), AL(5), AL(4)
2795 };
2796
2797 #undef AL
2798
2799 /*
2800 * System call vectors.
2801 *
2802 * Argument checking cleaned up. Saved 20% in size.
2803 * This function doesn't need to set the kernel lock because
2804 * it is set by the callees.
2805 */
2806
2807 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2808 {
2809 unsigned long a[AUDITSC_ARGS];
2810 unsigned long a0, a1;
2811 int err;
2812 unsigned int len;
2813
2814 if (call < 1 || call > SYS_SENDMMSG)
2815 return -EINVAL;
2816 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2817
2818 len = nargs[call];
2819 if (len > sizeof(a))
2820 return -EINVAL;
2821
2822 /* copy_from_user should be SMP safe. */
2823 if (copy_from_user(a, args, len))
2824 return -EFAULT;
2825
2826 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2827 if (err)
2828 return err;
2829
2830 a0 = a[0];
2831 a1 = a[1];
2832
2833 switch (call) {
2834 case SYS_SOCKET:
2835 err = __sys_socket(a0, a1, a[2]);
2836 break;
2837 case SYS_BIND:
2838 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2839 break;
2840 case SYS_CONNECT:
2841 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2842 break;
2843 case SYS_LISTEN:
2844 err = __sys_listen(a0, a1);
2845 break;
2846 case SYS_ACCEPT:
2847 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2848 (int __user *)a[2], 0);
2849 break;
2850 case SYS_GETSOCKNAME:
2851 err =
2852 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2853 (int __user *)a[2]);
2854 break;
2855 case SYS_GETPEERNAME:
2856 err =
2857 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2858 (int __user *)a[2]);
2859 break;
2860 case SYS_SOCKETPAIR:
2861 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2862 break;
2863 case SYS_SEND:
2864 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2865 NULL, 0);
2866 break;
2867 case SYS_SENDTO:
2868 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2869 (struct sockaddr __user *)a[4], a[5]);
2870 break;
2871 case SYS_RECV:
2872 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2873 NULL, NULL);
2874 break;
2875 case SYS_RECVFROM:
2876 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2877 (struct sockaddr __user *)a[4],
2878 (int __user *)a[5]);
2879 break;
2880 case SYS_SHUTDOWN:
2881 err = __sys_shutdown(a0, a1);
2882 break;
2883 case SYS_SETSOCKOPT:
2884 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2885 a[4]);
2886 break;
2887 case SYS_GETSOCKOPT:
2888 err =
2889 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2890 (int __user *)a[4]);
2891 break;
2892 case SYS_SENDMSG:
2893 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2894 a[2], true);
2895 break;
2896 case SYS_SENDMMSG:
2897 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2898 a[3], true);
2899 break;
2900 case SYS_RECVMSG:
2901 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2902 a[2], true);
2903 break;
2904 case SYS_RECVMMSG:
2905 if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME))
2906 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2907 a[2], a[3],
2908 (struct __kernel_timespec __user *)a[4],
2909 NULL);
2910 else
2911 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2912 a[2], a[3], NULL,
2913 (struct old_timespec32 __user *)a[4]);
2914 break;
2915 case SYS_ACCEPT4:
2916 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2917 (int __user *)a[2], a[3]);
2918 break;
2919 default:
2920 err = -EINVAL;
2921 break;
2922 }
2923 return err;
2924 }
2925
2926 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2927
2928 /**
2929 * sock_register - add a socket protocol handler
2930 * @ops: description of protocol
2931 *
2932 * This function is called by a protocol handler that wants to
2933 * advertise its address family, and have it linked into the
2934 * socket interface. The value ops->family corresponds to the
2935 * socket system call protocol family.
2936 */
2937 int sock_register(const struct net_proto_family *ops)
2938 {
2939 int err;
2940
2941 if (ops->family >= NPROTO) {
2942 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2943 return -ENOBUFS;
2944 }
2945
2946 spin_lock(&net_family_lock);
2947 if (rcu_dereference_protected(net_families[ops->family],
2948 lockdep_is_held(&net_family_lock)))
2949 err = -EEXIST;
2950 else {
2951 rcu_assign_pointer(net_families[ops->family], ops);
2952 err = 0;
2953 }
2954 spin_unlock(&net_family_lock);
2955
2956 pr_info("NET: Registered protocol family %d\n", ops->family);
2957 return err;
2958 }
2959 EXPORT_SYMBOL(sock_register);
2960
2961 /**
2962 * sock_unregister - remove a protocol handler
2963 * @family: protocol family to remove
2964 *
2965 * This function is called by a protocol handler that wants to
2966 * remove its address family, and have it unlinked from the
2967 * new socket creation.
2968 *
2969 * If protocol handler is a module, then it can use module reference
2970 * counts to protect against new references. If protocol handler is not
2971 * a module then it needs to provide its own protection in
2972 * the ops->create routine.
2973 */
2974 void sock_unregister(int family)
2975 {
2976 BUG_ON(family < 0 || family >= NPROTO);
2977
2978 spin_lock(&net_family_lock);
2979 RCU_INIT_POINTER(net_families[family], NULL);
2980 spin_unlock(&net_family_lock);
2981
2982 synchronize_rcu();
2983
2984 pr_info("NET: Unregistered protocol family %d\n", family);
2985 }
2986 EXPORT_SYMBOL(sock_unregister);
2987
2988 bool sock_is_registered(int family)
2989 {
2990 return family < NPROTO && rcu_access_pointer(net_families[family]);
2991 }
2992
2993 static int __init sock_init(void)
2994 {
2995 int err;
2996 /*
2997 * Initialize the network sysctl infrastructure.
2998 */
2999 err = net_sysctl_init();
3000 if (err)
3001 goto out;
3002
3003 /*
3004 * Initialize skbuff SLAB cache
3005 */
3006 skb_init();
3007
3008 /*
3009 * Initialize the protocols module.
3010 */
3011
3012 init_inodecache();
3013
3014 err = register_filesystem(&sock_fs_type);
3015 if (err)
3016 goto out_fs;
3017 sock_mnt = kern_mount(&sock_fs_type);
3018 if (IS_ERR(sock_mnt)) {
3019 err = PTR_ERR(sock_mnt);
3020 goto out_mount;
3021 }
3022
3023 /* The real protocol initialization is performed in later initcalls.
3024 */
3025
3026 #ifdef CONFIG_NETFILTER
3027 err = netfilter_init();
3028 if (err)
3029 goto out;
3030 #endif
3031
3032 ptp_classifier_init();
3033
3034 out:
3035 return err;
3036
3037 out_mount:
3038 unregister_filesystem(&sock_fs_type);
3039 out_fs:
3040 goto out;
3041 }
3042
3043 core_initcall(sock_init); /* early initcall */
3044
3045 #ifdef CONFIG_PROC_FS
3046 void socket_seq_show(struct seq_file *seq)
3047 {
3048 seq_printf(seq, "sockets: used %d\n",
3049 sock_inuse_get(seq->private));
3050 }
3051 #endif /* CONFIG_PROC_FS */
3052
3053 #ifdef CONFIG_COMPAT
3054 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3055 {
3056 struct compat_ifconf ifc32;
3057 struct ifconf ifc;
3058 int err;
3059
3060 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3061 return -EFAULT;
3062
3063 ifc.ifc_len = ifc32.ifc_len;
3064 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3065
3066 rtnl_lock();
3067 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3068 rtnl_unlock();
3069 if (err)
3070 return err;
3071
3072 ifc32.ifc_len = ifc.ifc_len;
3073 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3074 return -EFAULT;
3075
3076 return 0;
3077 }
3078
3079 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3080 {
3081 struct compat_ethtool_rxnfc __user *compat_rxnfc;
3082 bool convert_in = false, convert_out = false;
3083 size_t buf_size = 0;
3084 struct ethtool_rxnfc __user *rxnfc = NULL;
3085 struct ifreq ifr;
3086 u32 rule_cnt = 0, actual_rule_cnt;
3087 u32 ethcmd;
3088 u32 data;
3089 int ret;
3090
3091 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3092 return -EFAULT;
3093
3094 compat_rxnfc = compat_ptr(data);
3095
3096 if (get_user(ethcmd, &compat_rxnfc->cmd))
3097 return -EFAULT;
3098
3099 /* Most ethtool structures are defined without padding.
3100 * Unfortunately struct ethtool_rxnfc is an exception.
3101 */
3102 switch (ethcmd) {
3103 default:
3104 break;
3105 case ETHTOOL_GRXCLSRLALL:
3106 /* Buffer size is variable */
3107 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3108 return -EFAULT;
3109 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3110 return -ENOMEM;
3111 buf_size += rule_cnt * sizeof(u32);
3112 /* fall through */
3113 case ETHTOOL_GRXRINGS:
3114 case ETHTOOL_GRXCLSRLCNT:
3115 case ETHTOOL_GRXCLSRULE:
3116 case ETHTOOL_SRXCLSRLINS:
3117 convert_out = true;
3118 /* fall through */
3119 case ETHTOOL_SRXCLSRLDEL:
3120 buf_size += sizeof(struct ethtool_rxnfc);
3121 convert_in = true;
3122 rxnfc = compat_alloc_user_space(buf_size);
3123 break;
3124 }
3125
3126 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3127 return -EFAULT;
3128
3129 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3130
3131 if (convert_in) {
3132 /* We expect there to be holes between fs.m_ext and
3133 * fs.ring_cookie and at the end of fs, but nowhere else.
3134 */
3135 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3136 sizeof(compat_rxnfc->fs.m_ext) !=
3137 offsetof(struct ethtool_rxnfc, fs.m_ext) +
3138 sizeof(rxnfc->fs.m_ext));
3139 BUILD_BUG_ON(
3140 offsetof(struct compat_ethtool_rxnfc, fs.location) -
3141 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3142 offsetof(struct ethtool_rxnfc, fs.location) -
3143 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3144
3145 if (copy_in_user(rxnfc, compat_rxnfc,
3146 (void __user *)(&rxnfc->fs.m_ext + 1) -
3147 (void __user *)rxnfc) ||
3148 copy_in_user(&rxnfc->fs.ring_cookie,
3149 &compat_rxnfc->fs.ring_cookie,
3150 (void __user *)(&rxnfc->fs.location + 1) -
3151 (void __user *)&rxnfc->fs.ring_cookie))
3152 return -EFAULT;
3153 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3154 if (put_user(rule_cnt, &rxnfc->rule_cnt))
3155 return -EFAULT;
3156 } else if (copy_in_user(&rxnfc->rule_cnt,
3157 &compat_rxnfc->rule_cnt,
3158 sizeof(rxnfc->rule_cnt)))
3159 return -EFAULT;
3160 }
3161
3162 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3163 if (ret)
3164 return ret;
3165
3166 if (convert_out) {
3167 if (copy_in_user(compat_rxnfc, rxnfc,
3168 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3169 (const void __user *)rxnfc) ||
3170 copy_in_user(&compat_rxnfc->fs.ring_cookie,
3171 &rxnfc->fs.ring_cookie,
3172 (const void __user *)(&rxnfc->fs.location + 1) -
3173 (const void __user *)&rxnfc->fs.ring_cookie) ||
3174 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3175 sizeof(rxnfc->rule_cnt)))
3176 return -EFAULT;
3177
3178 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3179 /* As an optimisation, we only copy the actual
3180 * number of rules that the underlying
3181 * function returned. Since Mallory might
3182 * change the rule count in user memory, we
3183 * check that it is less than the rule count
3184 * originally given (as the user buffer size),
3185 * which has been range-checked.
3186 */
3187 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3188 return -EFAULT;
3189 if (actual_rule_cnt < rule_cnt)
3190 rule_cnt = actual_rule_cnt;
3191 if (copy_in_user(&compat_rxnfc->rule_locs[0],
3192 &rxnfc->rule_locs[0],
3193 rule_cnt * sizeof(u32)))
3194 return -EFAULT;
3195 }
3196 }
3197
3198 return 0;
3199 }
3200
3201 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3202 {
3203 compat_uptr_t uptr32;
3204 struct ifreq ifr;
3205 void __user *saved;
3206 int err;
3207
3208 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3209 return -EFAULT;
3210
3211 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3212 return -EFAULT;
3213
3214 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3215 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3216
3217 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3218 if (!err) {
3219 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3220 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3221 err = -EFAULT;
3222 }
3223 return err;
3224 }
3225
3226 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3227 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3228 struct compat_ifreq __user *u_ifreq32)
3229 {
3230 struct ifreq ifreq;
3231 u32 data32;
3232
3233 if (!is_socket_ioctl_cmd(cmd))
3234 return -ENOTTY;
3235 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3236 return -EFAULT;
3237 if (get_user(data32, &u_ifreq32->ifr_data))
3238 return -EFAULT;
3239 ifreq.ifr_data = compat_ptr(data32);
3240
3241 return dev_ioctl(net, cmd, &ifreq, NULL);
3242 }
3243
3244 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3245 unsigned int cmd,
3246 struct compat_ifreq __user *uifr32)
3247 {
3248 struct ifreq __user *uifr;
3249 int err;
3250
3251 /* Handle the fact that while struct ifreq has the same *layout* on
3252 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3253 * which are handled elsewhere, it still has different *size* due to
3254 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3255 * resulting in struct ifreq being 32 and 40 bytes respectively).
3256 * As a result, if the struct happens to be at the end of a page and
3257 * the next page isn't readable/writable, we get a fault. To prevent
3258 * that, copy back and forth to the full size.
3259 */
3260
3261 uifr = compat_alloc_user_space(sizeof(*uifr));
3262 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3263 return -EFAULT;
3264
3265 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3266
3267 if (!err) {
3268 switch (cmd) {
3269 case SIOCGIFFLAGS:
3270 case SIOCGIFMETRIC:
3271 case SIOCGIFMTU:
3272 case SIOCGIFMEM:
3273 case SIOCGIFHWADDR:
3274 case SIOCGIFINDEX:
3275 case SIOCGIFADDR:
3276 case SIOCGIFBRDADDR:
3277 case SIOCGIFDSTADDR:
3278 case SIOCGIFNETMASK:
3279 case SIOCGIFPFLAGS:
3280 case SIOCGIFTXQLEN:
3281 case SIOCGMIIPHY:
3282 case SIOCGMIIREG:
3283 case SIOCGIFNAME:
3284 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3285 err = -EFAULT;
3286 break;
3287 }
3288 }
3289 return err;
3290 }
3291
3292 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3293 struct compat_ifreq __user *uifr32)
3294 {
3295 struct ifreq ifr;
3296 struct compat_ifmap __user *uifmap32;
3297 int err;
3298
3299 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3300 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3301 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3302 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3303 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3304 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3305 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3306 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3307 if (err)
3308 return -EFAULT;
3309
3310 err = dev_ioctl(net, cmd, &ifr, NULL);
3311
3312 if (cmd == SIOCGIFMAP && !err) {
3313 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3314 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3315 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3316 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3317 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3318 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3319 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3320 if (err)
3321 err = -EFAULT;
3322 }
3323 return err;
3324 }
3325
3326 struct rtentry32 {
3327 u32 rt_pad1;
3328 struct sockaddr rt_dst; /* target address */
3329 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3330 struct sockaddr rt_genmask; /* target network mask (IP) */
3331 unsigned short rt_flags;
3332 short rt_pad2;
3333 u32 rt_pad3;
3334 unsigned char rt_tos;
3335 unsigned char rt_class;
3336 short rt_pad4;
3337 short rt_metric; /* +1 for binary compatibility! */
3338 /* char * */ u32 rt_dev; /* forcing the device at add */
3339 u32 rt_mtu; /* per route MTU/Window */
3340 u32 rt_window; /* Window clamping */
3341 unsigned short rt_irtt; /* Initial RTT */
3342 };
3343
3344 struct in6_rtmsg32 {
3345 struct in6_addr rtmsg_dst;
3346 struct in6_addr rtmsg_src;
3347 struct in6_addr rtmsg_gateway;
3348 u32 rtmsg_type;
3349 u16 rtmsg_dst_len;
3350 u16 rtmsg_src_len;
3351 u32 rtmsg_metric;
3352 u32 rtmsg_info;
3353 u32 rtmsg_flags;
3354 s32 rtmsg_ifindex;
3355 };
3356
3357 static int routing_ioctl(struct net *net, struct socket *sock,
3358 unsigned int cmd, void __user *argp)
3359 {
3360 int ret;
3361 void *r = NULL;
3362 struct in6_rtmsg r6;
3363 struct rtentry r4;
3364 char devname[16];
3365 u32 rtdev;
3366 mm_segment_t old_fs = get_fs();
3367
3368 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3369 struct in6_rtmsg32 __user *ur6 = argp;
3370 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3371 3 * sizeof(struct in6_addr));
3372 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3373 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3374 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3375 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3376 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3377 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3378 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3379
3380 r = (void *) &r6;
3381 } else { /* ipv4 */
3382 struct rtentry32 __user *ur4 = argp;
3383 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3384 3 * sizeof(struct sockaddr));
3385 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3386 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3387 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3388 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3389 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3390 ret |= get_user(rtdev, &(ur4->rt_dev));
3391 if (rtdev) {
3392 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3393 r4.rt_dev = (char __user __force *)devname;
3394 devname[15] = 0;
3395 } else
3396 r4.rt_dev = NULL;
3397
3398 r = (void *) &r4;
3399 }
3400
3401 if (ret) {
3402 ret = -EFAULT;
3403 goto out;
3404 }
3405
3406 set_fs(KERNEL_DS);
3407 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3408 set_fs(old_fs);
3409
3410 out:
3411 return ret;
3412 }
3413
3414 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3415 * for some operations; this forces use of the newer bridge-utils that
3416 * use compatible ioctls
3417 */
3418 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3419 {
3420 compat_ulong_t tmp;
3421
3422 if (get_user(tmp, argp))
3423 return -EFAULT;
3424 if (tmp == BRCTL_GET_VERSION)
3425 return BRCTL_VERSION + 1;
3426 return -EINVAL;
3427 }
3428
3429 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3430 unsigned int cmd, unsigned long arg)
3431 {
3432 void __user *argp = compat_ptr(arg);
3433 struct sock *sk = sock->sk;
3434 struct net *net = sock_net(sk);
3435
3436 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3437 return compat_ifr_data_ioctl(net, cmd, argp);
3438
3439 switch (cmd) {
3440 case SIOCSIFBR:
3441 case SIOCGIFBR:
3442 return old_bridge_ioctl(argp);
3443 case SIOCGIFCONF:
3444 return compat_dev_ifconf(net, argp);
3445 case SIOCETHTOOL:
3446 return ethtool_ioctl(net, argp);
3447 case SIOCWANDEV:
3448 return compat_siocwandev(net, argp);
3449 case SIOCGIFMAP:
3450 case SIOCSIFMAP:
3451 return compat_sioc_ifmap(net, cmd, argp);
3452 case SIOCADDRT:
3453 case SIOCDELRT:
3454 return routing_ioctl(net, sock, cmd, argp);
3455 case SIOCGSTAMP_OLD:
3456 case SIOCGSTAMPNS_OLD:
3457 if (!sock->ops->gettstamp)
3458 return -ENOIOCTLCMD;
3459 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3460 !COMPAT_USE_64BIT_TIME);
3461
3462 case SIOCBONDSLAVEINFOQUERY:
3463 case SIOCBONDINFOQUERY:
3464 case SIOCSHWTSTAMP:
3465 case SIOCGHWTSTAMP:
3466 return compat_ifr_data_ioctl(net, cmd, argp);
3467
3468 case FIOSETOWN:
3469 case SIOCSPGRP:
3470 case FIOGETOWN:
3471 case SIOCGPGRP:
3472 case SIOCBRADDBR:
3473 case SIOCBRDELBR:
3474 case SIOCGIFVLAN:
3475 case SIOCSIFVLAN:
3476 case SIOCADDDLCI:
3477 case SIOCDELDLCI:
3478 case SIOCGSKNS:
3479 case SIOCGSTAMP_NEW:
3480 case SIOCGSTAMPNS_NEW:
3481 return sock_ioctl(file, cmd, arg);
3482
3483 case SIOCGIFFLAGS:
3484 case SIOCSIFFLAGS:
3485 case SIOCGIFMETRIC:
3486 case SIOCSIFMETRIC:
3487 case SIOCGIFMTU:
3488 case SIOCSIFMTU:
3489 case SIOCGIFMEM:
3490 case SIOCSIFMEM:
3491 case SIOCGIFHWADDR:
3492 case SIOCSIFHWADDR:
3493 case SIOCADDMULTI:
3494 case SIOCDELMULTI:
3495 case SIOCGIFINDEX:
3496 case SIOCGIFADDR:
3497 case SIOCSIFADDR:
3498 case SIOCSIFHWBROADCAST:
3499 case SIOCDIFADDR:
3500 case SIOCGIFBRDADDR:
3501 case SIOCSIFBRDADDR:
3502 case SIOCGIFDSTADDR:
3503 case SIOCSIFDSTADDR:
3504 case SIOCGIFNETMASK:
3505 case SIOCSIFNETMASK:
3506 case SIOCSIFPFLAGS:
3507 case SIOCGIFPFLAGS:
3508 case SIOCGIFTXQLEN:
3509 case SIOCSIFTXQLEN:
3510 case SIOCBRADDIF:
3511 case SIOCBRDELIF:
3512 case SIOCGIFNAME:
3513 case SIOCSIFNAME:
3514 case SIOCGMIIPHY:
3515 case SIOCGMIIREG:
3516 case SIOCSMIIREG:
3517 case SIOCBONDENSLAVE:
3518 case SIOCBONDRELEASE:
3519 case SIOCBONDSETHWADDR:
3520 case SIOCBONDCHANGEACTIVE:
3521 return compat_ifreq_ioctl(net, sock, cmd, argp);
3522
3523 case SIOCSARP:
3524 case SIOCGARP:
3525 case SIOCDARP:
3526 case SIOCOUTQNSD:
3527 case SIOCATMARK:
3528 return sock_do_ioctl(net, sock, cmd, arg);
3529 }
3530
3531 return -ENOIOCTLCMD;
3532 }
3533
3534 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3535 unsigned long arg)
3536 {
3537 struct socket *sock = file->private_data;
3538 int ret = -ENOIOCTLCMD;
3539 struct sock *sk;
3540 struct net *net;
3541
3542 sk = sock->sk;
3543 net = sock_net(sk);
3544
3545 if (sock->ops->compat_ioctl)
3546 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3547
3548 if (ret == -ENOIOCTLCMD &&
3549 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3550 ret = compat_wext_handle_ioctl(net, cmd, arg);
3551
3552 if (ret == -ENOIOCTLCMD)
3553 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3554
3555 return ret;
3556 }
3557 #endif
3558
3559 /**
3560 * kernel_bind - bind an address to a socket (kernel space)
3561 * @sock: socket
3562 * @addr: address
3563 * @addrlen: length of address
3564 *
3565 * Returns 0 or an error.
3566 */
3567
3568 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3569 {
3570 return sock->ops->bind(sock, addr, addrlen);
3571 }
3572 EXPORT_SYMBOL(kernel_bind);
3573
3574 /**
3575 * kernel_listen - move socket to listening state (kernel space)
3576 * @sock: socket
3577 * @backlog: pending connections queue size
3578 *
3579 * Returns 0 or an error.
3580 */
3581
3582 int kernel_listen(struct socket *sock, int backlog)
3583 {
3584 return sock->ops->listen(sock, backlog);
3585 }
3586 EXPORT_SYMBOL(kernel_listen);
3587
3588 /**
3589 * kernel_accept - accept a connection (kernel space)
3590 * @sock: listening socket
3591 * @newsock: new connected socket
3592 * @flags: flags
3593 *
3594 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3595 * If it fails, @newsock is guaranteed to be %NULL.
3596 * Returns 0 or an error.
3597 */
3598
3599 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3600 {
3601 struct sock *sk = sock->sk;
3602 int err;
3603
3604 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3605 newsock);
3606 if (err < 0)
3607 goto done;
3608
3609 err = sock->ops->accept(sock, *newsock, flags, true);
3610 if (err < 0) {
3611 sock_release(*newsock);
3612 *newsock = NULL;
3613 goto done;
3614 }
3615
3616 (*newsock)->ops = sock->ops;
3617 __module_get((*newsock)->ops->owner);
3618
3619 done:
3620 return err;
3621 }
3622 EXPORT_SYMBOL(kernel_accept);
3623
3624 /**
3625 * kernel_connect - connect a socket (kernel space)
3626 * @sock: socket
3627 * @addr: address
3628 * @addrlen: address length
3629 * @flags: flags (O_NONBLOCK, ...)
3630 *
3631 * For datagram sockets, @addr is the addres to which datagrams are sent
3632 * by default, and the only address from which datagrams are received.
3633 * For stream sockets, attempts to connect to @addr.
3634 * Returns 0 or an error code.
3635 */
3636
3637 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3638 int flags)
3639 {
3640 return sock->ops->connect(sock, addr, addrlen, flags);
3641 }
3642 EXPORT_SYMBOL(kernel_connect);
3643
3644 /**
3645 * kernel_getsockname - get the address which the socket is bound (kernel space)
3646 * @sock: socket
3647 * @addr: address holder
3648 *
3649 * Fills the @addr pointer with the address which the socket is bound.
3650 * Returns 0 or an error code.
3651 */
3652
3653 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3654 {
3655 return sock->ops->getname(sock, addr, 0);
3656 }
3657 EXPORT_SYMBOL(kernel_getsockname);
3658
3659 /**
3660 * kernel_peername - get the address which the socket is connected (kernel space)
3661 * @sock: socket
3662 * @addr: address holder
3663 *
3664 * Fills the @addr pointer with the address which the socket is connected.
3665 * Returns 0 or an error code.
3666 */
3667
3668 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3669 {
3670 return sock->ops->getname(sock, addr, 1);
3671 }
3672 EXPORT_SYMBOL(kernel_getpeername);
3673
3674 /**
3675 * kernel_getsockopt - get a socket option (kernel space)
3676 * @sock: socket
3677 * @level: API level (SOL_SOCKET, ...)
3678 * @optname: option tag
3679 * @optval: option value
3680 * @optlen: option length
3681 *
3682 * Assigns the option length to @optlen.
3683 * Returns 0 or an error.
3684 */
3685
3686 int kernel_getsockopt(struct socket *sock, int level, int optname,
3687 char *optval, int *optlen)
3688 {
3689 mm_segment_t oldfs = get_fs();
3690 char __user *uoptval;
3691 int __user *uoptlen;
3692 int err;
3693
3694 uoptval = (char __user __force *) optval;
3695 uoptlen = (int __user __force *) optlen;
3696
3697 set_fs(KERNEL_DS);
3698 if (level == SOL_SOCKET)
3699 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3700 else
3701 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3702 uoptlen);
3703 set_fs(oldfs);
3704 return err;
3705 }
3706 EXPORT_SYMBOL(kernel_getsockopt);
3707
3708 /**
3709 * kernel_setsockopt - set a socket option (kernel space)
3710 * @sock: socket
3711 * @level: API level (SOL_SOCKET, ...)
3712 * @optname: option tag
3713 * @optval: option value
3714 * @optlen: option length
3715 *
3716 * Returns 0 or an error.
3717 */
3718
3719 int kernel_setsockopt(struct socket *sock, int level, int optname,
3720 char *optval, unsigned int optlen)
3721 {
3722 mm_segment_t oldfs = get_fs();
3723 char __user *uoptval;
3724 int err;
3725
3726 uoptval = (char __user __force *) optval;
3727
3728 set_fs(KERNEL_DS);
3729 if (level == SOL_SOCKET)
3730 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3731 else
3732 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3733 optlen);
3734 set_fs(oldfs);
3735 return err;
3736 }
3737 EXPORT_SYMBOL(kernel_setsockopt);
3738
3739 /**
3740 * kernel_sendpage - send a &page through a socket (kernel space)
3741 * @sock: socket
3742 * @page: page
3743 * @offset: page offset
3744 * @size: total size in bytes
3745 * @flags: flags (MSG_DONTWAIT, ...)
3746 *
3747 * Returns the total amount sent in bytes or an error.
3748 */
3749
3750 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3751 size_t size, int flags)
3752 {
3753 if (sock->ops->sendpage)
3754 return sock->ops->sendpage(sock, page, offset, size, flags);
3755
3756 return sock_no_sendpage(sock, page, offset, size, flags);
3757 }
3758 EXPORT_SYMBOL(kernel_sendpage);
3759
3760 /**
3761 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3762 * @sk: sock
3763 * @page: page
3764 * @offset: page offset
3765 * @size: total size in bytes
3766 * @flags: flags (MSG_DONTWAIT, ...)
3767 *
3768 * Returns the total amount sent in bytes or an error.
3769 * Caller must hold @sk.
3770 */
3771
3772 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3773 size_t size, int flags)
3774 {
3775 struct socket *sock = sk->sk_socket;
3776
3777 if (sock->ops->sendpage_locked)
3778 return sock->ops->sendpage_locked(sk, page, offset, size,
3779 flags);
3780
3781 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3782 }
3783 EXPORT_SYMBOL(kernel_sendpage_locked);
3784
3785 /**
3786 * kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3787 * @sock: socket
3788 * @how: connection part
3789 *
3790 * Returns 0 or an error.
3791 */
3792
3793 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3794 {
3795 return sock->ops->shutdown(sock, how);
3796 }
3797 EXPORT_SYMBOL(kernel_sock_shutdown);
3798
3799 /**
3800 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3801 * @sk: socket
3802 *
3803 * This routine returns the IP overhead imposed by a socket i.e.
3804 * the length of the underlying IP header, depending on whether
3805 * this is an IPv4 or IPv6 socket and the length from IP options turned
3806 * on at the socket. Assumes that the caller has a lock on the socket.
3807 */
3808
3809 u32 kernel_sock_ip_overhead(struct sock *sk)
3810 {
3811 struct inet_sock *inet;
3812 struct ip_options_rcu *opt;
3813 u32 overhead = 0;
3814 #if IS_ENABLED(CONFIG_IPV6)
3815 struct ipv6_pinfo *np;
3816 struct ipv6_txoptions *optv6 = NULL;
3817 #endif /* IS_ENABLED(CONFIG_IPV6) */
3818
3819 if (!sk)
3820 return overhead;
3821
3822 switch (sk->sk_family) {
3823 case AF_INET:
3824 inet = inet_sk(sk);
3825 overhead += sizeof(struct iphdr);
3826 opt = rcu_dereference_protected(inet->inet_opt,
3827 sock_owned_by_user(sk));
3828 if (opt)
3829 overhead += opt->opt.optlen;
3830 return overhead;
3831 #if IS_ENABLED(CONFIG_IPV6)
3832 case AF_INET6:
3833 np = inet6_sk(sk);
3834 overhead += sizeof(struct ipv6hdr);
3835 if (np)
3836 optv6 = rcu_dereference_protected(np->opt,
3837 sock_owned_by_user(sk));
3838 if (optv6)
3839 overhead += (optv6->opt_flen + optv6->opt_nflen);
3840 return overhead;
3841 #endif /* IS_ENABLED(CONFIG_IPV6) */
3842 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3843 return overhead;
3844 }
3845 }
3846 EXPORT_SYMBOL(kernel_sock_ip_overhead);