]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/socket.c
Merge branch 'linux-5.6' of git://github.com/skeggsb/linux into drm-fixes
[mirror_ubuntu-jammy-kernel.git] / net / socket.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107
108 #ifdef CONFIG_NET_RX_BUSY_POLL
109 unsigned int sysctl_net_busy_read __read_mostly;
110 unsigned int sysctl_net_busy_poll __read_mostly;
111 #endif
112
113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
115 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
116
117 static int sock_close(struct inode *inode, struct file *file);
118 static __poll_t sock_poll(struct file *file,
119 struct poll_table_struct *wait);
120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
121 #ifdef CONFIG_COMPAT
122 static long compat_sock_ioctl(struct file *file,
123 unsigned int cmd, unsigned long arg);
124 #endif
125 static int sock_fasync(int fd, struct file *filp, int on);
126 static ssize_t sock_sendpage(struct file *file, struct page *page,
127 int offset, size_t size, loff_t *ppos, int more);
128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
129 struct pipe_inode_info *pipe, size_t len,
130 unsigned int flags);
131
132 #ifdef CONFIG_PROC_FS
133 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
134 {
135 struct socket *sock = f->private_data;
136
137 if (sock->ops->show_fdinfo)
138 sock->ops->show_fdinfo(m, sock);
139 }
140 #else
141 #define sock_show_fdinfo NULL
142 #endif
143
144 /*
145 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
146 * in the operation structures but are done directly via the socketcall() multiplexor.
147 */
148
149 static const struct file_operations socket_file_ops = {
150 .owner = THIS_MODULE,
151 .llseek = no_llseek,
152 .read_iter = sock_read_iter,
153 .write_iter = sock_write_iter,
154 .poll = sock_poll,
155 .unlocked_ioctl = sock_ioctl,
156 #ifdef CONFIG_COMPAT
157 .compat_ioctl = compat_sock_ioctl,
158 #endif
159 .mmap = sock_mmap,
160 .release = sock_close,
161 .fasync = sock_fasync,
162 .sendpage = sock_sendpage,
163 .splice_write = generic_splice_sendpage,
164 .splice_read = sock_splice_read,
165 .show_fdinfo = sock_show_fdinfo,
166 };
167
168 /*
169 * The protocol list. Each protocol is registered in here.
170 */
171
172 static DEFINE_SPINLOCK(net_family_lock);
173 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
174
175 /*
176 * Support routines.
177 * Move socket addresses back and forth across the kernel/user
178 * divide and look after the messy bits.
179 */
180
181 /**
182 * move_addr_to_kernel - copy a socket address into kernel space
183 * @uaddr: Address in user space
184 * @kaddr: Address in kernel space
185 * @ulen: Length in user space
186 *
187 * The address is copied into kernel space. If the provided address is
188 * too long an error code of -EINVAL is returned. If the copy gives
189 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 */
191
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 return -EINVAL;
196 if (ulen == 0)
197 return 0;
198 if (copy_from_user(kaddr, uaddr, ulen))
199 return -EFAULT;
200 return audit_sockaddr(ulen, kaddr);
201 }
202
203 /**
204 * move_addr_to_user - copy an address to user space
205 * @kaddr: kernel space address
206 * @klen: length of address in kernel
207 * @uaddr: user space address
208 * @ulen: pointer to user length field
209 *
210 * The value pointed to by ulen on entry is the buffer length available.
211 * This is overwritten with the buffer space used. -EINVAL is returned
212 * if an overlong buffer is specified or a negative buffer size. -EFAULT
213 * is returned if either the buffer or the length field are not
214 * accessible.
215 * After copying the data up to the limit the user specifies, the true
216 * length of the data is written over the length limit the user
217 * specified. Zero is returned for a success.
218 */
219
220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 void __user *uaddr, int __user *ulen)
222 {
223 int err;
224 int len;
225
226 BUG_ON(klen > sizeof(struct sockaddr_storage));
227 err = get_user(len, ulen);
228 if (err)
229 return err;
230 if (len > klen)
231 len = klen;
232 if (len < 0)
233 return -EINVAL;
234 if (len) {
235 if (audit_sockaddr(klen, kaddr))
236 return -ENOMEM;
237 if (copy_to_user(uaddr, kaddr, len))
238 return -EFAULT;
239 }
240 /*
241 * "fromlen shall refer to the value before truncation.."
242 * 1003.1g
243 */
244 return __put_user(klen, ulen);
245 }
246
247 static struct kmem_cache *sock_inode_cachep __ro_after_init;
248
249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 struct socket_alloc *ei;
252
253 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 if (!ei)
255 return NULL;
256 init_waitqueue_head(&ei->socket.wq.wait);
257 ei->socket.wq.fasync_list = NULL;
258 ei->socket.wq.flags = 0;
259
260 ei->socket.state = SS_UNCONNECTED;
261 ei->socket.flags = 0;
262 ei->socket.ops = NULL;
263 ei->socket.sk = NULL;
264 ei->socket.file = NULL;
265
266 return &ei->vfs_inode;
267 }
268
269 static void sock_free_inode(struct inode *inode)
270 {
271 struct socket_alloc *ei;
272
273 ei = container_of(inode, struct socket_alloc, vfs_inode);
274 kmem_cache_free(sock_inode_cachep, ei);
275 }
276
277 static void init_once(void *foo)
278 {
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
280
281 inode_init_once(&ei->vfs_inode);
282 }
283
284 static void init_inodecache(void)
285 {
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
288 0,
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 init_once);
293 BUG_ON(sock_inode_cachep == NULL);
294 }
295
296 static const struct super_operations sockfs_ops = {
297 .alloc_inode = sock_alloc_inode,
298 .free_inode = sock_free_inode,
299 .statfs = simple_statfs,
300 };
301
302 /*
303 * sockfs_dname() is called from d_path().
304 */
305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 {
307 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 d_inode(dentry)->i_ino);
309 }
310
311 static const struct dentry_operations sockfs_dentry_operations = {
312 .d_dname = sockfs_dname,
313 };
314
315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 struct dentry *dentry, struct inode *inode,
317 const char *suffix, void *value, size_t size)
318 {
319 if (value) {
320 if (dentry->d_name.len + 1 > size)
321 return -ERANGE;
322 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
323 }
324 return dentry->d_name.len + 1;
325 }
326
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
330
331 static const struct xattr_handler sockfs_xattr_handler = {
332 .name = XATTR_NAME_SOCKPROTONAME,
333 .get = sockfs_xattr_get,
334 };
335
336 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
337 struct dentry *dentry, struct inode *inode,
338 const char *suffix, const void *value,
339 size_t size, int flags)
340 {
341 /* Handled by LSM. */
342 return -EAGAIN;
343 }
344
345 static const struct xattr_handler sockfs_security_xattr_handler = {
346 .prefix = XATTR_SECURITY_PREFIX,
347 .set = sockfs_security_xattr_set,
348 };
349
350 static const struct xattr_handler *sockfs_xattr_handlers[] = {
351 &sockfs_xattr_handler,
352 &sockfs_security_xattr_handler,
353 NULL
354 };
355
356 static int sockfs_init_fs_context(struct fs_context *fc)
357 {
358 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
359 if (!ctx)
360 return -ENOMEM;
361 ctx->ops = &sockfs_ops;
362 ctx->dops = &sockfs_dentry_operations;
363 ctx->xattr = sockfs_xattr_handlers;
364 return 0;
365 }
366
367 static struct vfsmount *sock_mnt __read_mostly;
368
369 static struct file_system_type sock_fs_type = {
370 .name = "sockfs",
371 .init_fs_context = sockfs_init_fs_context,
372 .kill_sb = kill_anon_super,
373 };
374
375 /*
376 * Obtains the first available file descriptor and sets it up for use.
377 *
378 * These functions create file structures and maps them to fd space
379 * of the current process. On success it returns file descriptor
380 * and file struct implicitly stored in sock->file.
381 * Note that another thread may close file descriptor before we return
382 * from this function. We use the fact that now we do not refer
383 * to socket after mapping. If one day we will need it, this
384 * function will increment ref. count on file by 1.
385 *
386 * In any case returned fd MAY BE not valid!
387 * This race condition is unavoidable
388 * with shared fd spaces, we cannot solve it inside kernel,
389 * but we take care of internal coherence yet.
390 */
391
392 /**
393 * sock_alloc_file - Bind a &socket to a &file
394 * @sock: socket
395 * @flags: file status flags
396 * @dname: protocol name
397 *
398 * Returns the &file bound with @sock, implicitly storing it
399 * in sock->file. If dname is %NULL, sets to "".
400 * On failure the return is a ERR pointer (see linux/err.h).
401 * This function uses GFP_KERNEL internally.
402 */
403
404 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
405 {
406 struct file *file;
407
408 if (!dname)
409 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
410
411 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
412 O_RDWR | (flags & O_NONBLOCK),
413 &socket_file_ops);
414 if (IS_ERR(file)) {
415 sock_release(sock);
416 return file;
417 }
418
419 sock->file = file;
420 file->private_data = sock;
421 stream_open(SOCK_INODE(sock), file);
422 return file;
423 }
424 EXPORT_SYMBOL(sock_alloc_file);
425
426 static int sock_map_fd(struct socket *sock, int flags)
427 {
428 struct file *newfile;
429 int fd = get_unused_fd_flags(flags);
430 if (unlikely(fd < 0)) {
431 sock_release(sock);
432 return fd;
433 }
434
435 newfile = sock_alloc_file(sock, flags, NULL);
436 if (!IS_ERR(newfile)) {
437 fd_install(fd, newfile);
438 return fd;
439 }
440
441 put_unused_fd(fd);
442 return PTR_ERR(newfile);
443 }
444
445 /**
446 * sock_from_file - Return the &socket bounded to @file.
447 * @file: file
448 * @err: pointer to an error code return
449 *
450 * On failure returns %NULL and assigns -ENOTSOCK to @err.
451 */
452
453 struct socket *sock_from_file(struct file *file, int *err)
454 {
455 if (file->f_op == &socket_file_ops)
456 return file->private_data; /* set in sock_map_fd */
457
458 *err = -ENOTSOCK;
459 return NULL;
460 }
461 EXPORT_SYMBOL(sock_from_file);
462
463 /**
464 * sockfd_lookup - Go from a file number to its socket slot
465 * @fd: file handle
466 * @err: pointer to an error code return
467 *
468 * The file handle passed in is locked and the socket it is bound
469 * to is returned. If an error occurs the err pointer is overwritten
470 * with a negative errno code and NULL is returned. The function checks
471 * for both invalid handles and passing a handle which is not a socket.
472 *
473 * On a success the socket object pointer is returned.
474 */
475
476 struct socket *sockfd_lookup(int fd, int *err)
477 {
478 struct file *file;
479 struct socket *sock;
480
481 file = fget(fd);
482 if (!file) {
483 *err = -EBADF;
484 return NULL;
485 }
486
487 sock = sock_from_file(file, err);
488 if (!sock)
489 fput(file);
490 return sock;
491 }
492 EXPORT_SYMBOL(sockfd_lookup);
493
494 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
495 {
496 struct fd f = fdget(fd);
497 struct socket *sock;
498
499 *err = -EBADF;
500 if (f.file) {
501 sock = sock_from_file(f.file, err);
502 if (likely(sock)) {
503 *fput_needed = f.flags;
504 return sock;
505 }
506 fdput(f);
507 }
508 return NULL;
509 }
510
511 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
512 size_t size)
513 {
514 ssize_t len;
515 ssize_t used = 0;
516
517 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
518 if (len < 0)
519 return len;
520 used += len;
521 if (buffer) {
522 if (size < used)
523 return -ERANGE;
524 buffer += len;
525 }
526
527 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
528 used += len;
529 if (buffer) {
530 if (size < used)
531 return -ERANGE;
532 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
533 buffer += len;
534 }
535
536 return used;
537 }
538
539 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
540 {
541 int err = simple_setattr(dentry, iattr);
542
543 if (!err && (iattr->ia_valid & ATTR_UID)) {
544 struct socket *sock = SOCKET_I(d_inode(dentry));
545
546 if (sock->sk)
547 sock->sk->sk_uid = iattr->ia_uid;
548 else
549 err = -ENOENT;
550 }
551
552 return err;
553 }
554
555 static const struct inode_operations sockfs_inode_ops = {
556 .listxattr = sockfs_listxattr,
557 .setattr = sockfs_setattr,
558 };
559
560 /**
561 * sock_alloc - allocate a socket
562 *
563 * Allocate a new inode and socket object. The two are bound together
564 * and initialised. The socket is then returned. If we are out of inodes
565 * NULL is returned. This functions uses GFP_KERNEL internally.
566 */
567
568 struct socket *sock_alloc(void)
569 {
570 struct inode *inode;
571 struct socket *sock;
572
573 inode = new_inode_pseudo(sock_mnt->mnt_sb);
574 if (!inode)
575 return NULL;
576
577 sock = SOCKET_I(inode);
578
579 inode->i_ino = get_next_ino();
580 inode->i_mode = S_IFSOCK | S_IRWXUGO;
581 inode->i_uid = current_fsuid();
582 inode->i_gid = current_fsgid();
583 inode->i_op = &sockfs_inode_ops;
584
585 return sock;
586 }
587 EXPORT_SYMBOL(sock_alloc);
588
589 /**
590 * sock_release - close a socket
591 * @sock: socket to close
592 *
593 * The socket is released from the protocol stack if it has a release
594 * callback, and the inode is then released if the socket is bound to
595 * an inode not a file.
596 */
597
598 static void __sock_release(struct socket *sock, struct inode *inode)
599 {
600 if (sock->ops) {
601 struct module *owner = sock->ops->owner;
602
603 if (inode)
604 inode_lock(inode);
605 sock->ops->release(sock);
606 sock->sk = NULL;
607 if (inode)
608 inode_unlock(inode);
609 sock->ops = NULL;
610 module_put(owner);
611 }
612
613 if (sock->wq.fasync_list)
614 pr_err("%s: fasync list not empty!\n", __func__);
615
616 if (!sock->file) {
617 iput(SOCK_INODE(sock));
618 return;
619 }
620 sock->file = NULL;
621 }
622
623 void sock_release(struct socket *sock)
624 {
625 __sock_release(sock, NULL);
626 }
627 EXPORT_SYMBOL(sock_release);
628
629 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
630 {
631 u8 flags = *tx_flags;
632
633 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
634 flags |= SKBTX_HW_TSTAMP;
635
636 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
637 flags |= SKBTX_SW_TSTAMP;
638
639 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
640 flags |= SKBTX_SCHED_TSTAMP;
641
642 *tx_flags = flags;
643 }
644 EXPORT_SYMBOL(__sock_tx_timestamp);
645
646 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
647 size_t));
648 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
649 size_t));
650 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
651 {
652 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
653 inet_sendmsg, sock, msg,
654 msg_data_left(msg));
655 BUG_ON(ret == -EIOCBQUEUED);
656 return ret;
657 }
658
659 /**
660 * sock_sendmsg - send a message through @sock
661 * @sock: socket
662 * @msg: message to send
663 *
664 * Sends @msg through @sock, passing through LSM.
665 * Returns the number of bytes sent, or an error code.
666 */
667 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
668 {
669 int err = security_socket_sendmsg(sock, msg,
670 msg_data_left(msg));
671
672 return err ?: sock_sendmsg_nosec(sock, msg);
673 }
674 EXPORT_SYMBOL(sock_sendmsg);
675
676 /**
677 * kernel_sendmsg - send a message through @sock (kernel-space)
678 * @sock: socket
679 * @msg: message header
680 * @vec: kernel vec
681 * @num: vec array length
682 * @size: total message data size
683 *
684 * Builds the message data with @vec and sends it through @sock.
685 * Returns the number of bytes sent, or an error code.
686 */
687
688 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
689 struct kvec *vec, size_t num, size_t size)
690 {
691 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
692 return sock_sendmsg(sock, msg);
693 }
694 EXPORT_SYMBOL(kernel_sendmsg);
695
696 /**
697 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
698 * @sk: sock
699 * @msg: message header
700 * @vec: output s/g array
701 * @num: output s/g array length
702 * @size: total message data size
703 *
704 * Builds the message data with @vec and sends it through @sock.
705 * Returns the number of bytes sent, or an error code.
706 * Caller must hold @sk.
707 */
708
709 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
710 struct kvec *vec, size_t num, size_t size)
711 {
712 struct socket *sock = sk->sk_socket;
713
714 if (!sock->ops->sendmsg_locked)
715 return sock_no_sendmsg_locked(sk, msg, size);
716
717 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
718
719 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
720 }
721 EXPORT_SYMBOL(kernel_sendmsg_locked);
722
723 static bool skb_is_err_queue(const struct sk_buff *skb)
724 {
725 /* pkt_type of skbs enqueued on the error queue are set to
726 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
727 * in recvmsg, since skbs received on a local socket will never
728 * have a pkt_type of PACKET_OUTGOING.
729 */
730 return skb->pkt_type == PACKET_OUTGOING;
731 }
732
733 /* On transmit, software and hardware timestamps are returned independently.
734 * As the two skb clones share the hardware timestamp, which may be updated
735 * before the software timestamp is received, a hardware TX timestamp may be
736 * returned only if there is no software TX timestamp. Ignore false software
737 * timestamps, which may be made in the __sock_recv_timestamp() call when the
738 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
739 * hardware timestamp.
740 */
741 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
742 {
743 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
744 }
745
746 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
747 {
748 struct scm_ts_pktinfo ts_pktinfo;
749 struct net_device *orig_dev;
750
751 if (!skb_mac_header_was_set(skb))
752 return;
753
754 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
755
756 rcu_read_lock();
757 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
758 if (orig_dev)
759 ts_pktinfo.if_index = orig_dev->ifindex;
760 rcu_read_unlock();
761
762 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
763 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
764 sizeof(ts_pktinfo), &ts_pktinfo);
765 }
766
767 /*
768 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
769 */
770 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
771 struct sk_buff *skb)
772 {
773 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
774 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
775 struct scm_timestamping_internal tss;
776
777 int empty = 1, false_tstamp = 0;
778 struct skb_shared_hwtstamps *shhwtstamps =
779 skb_hwtstamps(skb);
780
781 /* Race occurred between timestamp enabling and packet
782 receiving. Fill in the current time for now. */
783 if (need_software_tstamp && skb->tstamp == 0) {
784 __net_timestamp(skb);
785 false_tstamp = 1;
786 }
787
788 if (need_software_tstamp) {
789 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
790 if (new_tstamp) {
791 struct __kernel_sock_timeval tv;
792
793 skb_get_new_timestamp(skb, &tv);
794 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
795 sizeof(tv), &tv);
796 } else {
797 struct __kernel_old_timeval tv;
798
799 skb_get_timestamp(skb, &tv);
800 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
801 sizeof(tv), &tv);
802 }
803 } else {
804 if (new_tstamp) {
805 struct __kernel_timespec ts;
806
807 skb_get_new_timestampns(skb, &ts);
808 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
809 sizeof(ts), &ts);
810 } else {
811 struct __kernel_old_timespec ts;
812
813 skb_get_timestampns(skb, &ts);
814 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
815 sizeof(ts), &ts);
816 }
817 }
818 }
819
820 memset(&tss, 0, sizeof(tss));
821 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
822 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
823 empty = 0;
824 if (shhwtstamps &&
825 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
826 !skb_is_swtx_tstamp(skb, false_tstamp) &&
827 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
828 empty = 0;
829 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
830 !skb_is_err_queue(skb))
831 put_ts_pktinfo(msg, skb);
832 }
833 if (!empty) {
834 if (sock_flag(sk, SOCK_TSTAMP_NEW))
835 put_cmsg_scm_timestamping64(msg, &tss);
836 else
837 put_cmsg_scm_timestamping(msg, &tss);
838
839 if (skb_is_err_queue(skb) && skb->len &&
840 SKB_EXT_ERR(skb)->opt_stats)
841 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
842 skb->len, skb->data);
843 }
844 }
845 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
846
847 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
848 struct sk_buff *skb)
849 {
850 int ack;
851
852 if (!sock_flag(sk, SOCK_WIFI_STATUS))
853 return;
854 if (!skb->wifi_acked_valid)
855 return;
856
857 ack = skb->wifi_acked;
858
859 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
860 }
861 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
862
863 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
864 struct sk_buff *skb)
865 {
866 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
867 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
868 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
869 }
870
871 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
872 struct sk_buff *skb)
873 {
874 sock_recv_timestamp(msg, sk, skb);
875 sock_recv_drops(msg, sk, skb);
876 }
877 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
878
879 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
880 size_t, int));
881 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
882 size_t, int));
883 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
884 int flags)
885 {
886 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
887 inet_recvmsg, sock, msg, msg_data_left(msg),
888 flags);
889 }
890
891 /**
892 * sock_recvmsg - receive a message from @sock
893 * @sock: socket
894 * @msg: message to receive
895 * @flags: message flags
896 *
897 * Receives @msg from @sock, passing through LSM. Returns the total number
898 * of bytes received, or an error.
899 */
900 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
901 {
902 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
903
904 return err ?: sock_recvmsg_nosec(sock, msg, flags);
905 }
906 EXPORT_SYMBOL(sock_recvmsg);
907
908 /**
909 * kernel_recvmsg - Receive a message from a socket (kernel space)
910 * @sock: The socket to receive the message from
911 * @msg: Received message
912 * @vec: Input s/g array for message data
913 * @num: Size of input s/g array
914 * @size: Number of bytes to read
915 * @flags: Message flags (MSG_DONTWAIT, etc...)
916 *
917 * On return the msg structure contains the scatter/gather array passed in the
918 * vec argument. The array is modified so that it consists of the unfilled
919 * portion of the original array.
920 *
921 * The returned value is the total number of bytes received, or an error.
922 */
923
924 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
925 struct kvec *vec, size_t num, size_t size, int flags)
926 {
927 mm_segment_t oldfs = get_fs();
928 int result;
929
930 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
931 set_fs(KERNEL_DS);
932 result = sock_recvmsg(sock, msg, flags);
933 set_fs(oldfs);
934 return result;
935 }
936 EXPORT_SYMBOL(kernel_recvmsg);
937
938 static ssize_t sock_sendpage(struct file *file, struct page *page,
939 int offset, size_t size, loff_t *ppos, int more)
940 {
941 struct socket *sock;
942 int flags;
943
944 sock = file->private_data;
945
946 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
947 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
948 flags |= more;
949
950 return kernel_sendpage(sock, page, offset, size, flags);
951 }
952
953 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
954 struct pipe_inode_info *pipe, size_t len,
955 unsigned int flags)
956 {
957 struct socket *sock = file->private_data;
958
959 if (unlikely(!sock->ops->splice_read))
960 return generic_file_splice_read(file, ppos, pipe, len, flags);
961
962 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
963 }
964
965 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
966 {
967 struct file *file = iocb->ki_filp;
968 struct socket *sock = file->private_data;
969 struct msghdr msg = {.msg_iter = *to,
970 .msg_iocb = iocb};
971 ssize_t res;
972
973 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
974 msg.msg_flags = MSG_DONTWAIT;
975
976 if (iocb->ki_pos != 0)
977 return -ESPIPE;
978
979 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
980 return 0;
981
982 res = sock_recvmsg(sock, &msg, msg.msg_flags);
983 *to = msg.msg_iter;
984 return res;
985 }
986
987 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
988 {
989 struct file *file = iocb->ki_filp;
990 struct socket *sock = file->private_data;
991 struct msghdr msg = {.msg_iter = *from,
992 .msg_iocb = iocb};
993 ssize_t res;
994
995 if (iocb->ki_pos != 0)
996 return -ESPIPE;
997
998 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
999 msg.msg_flags = MSG_DONTWAIT;
1000
1001 if (sock->type == SOCK_SEQPACKET)
1002 msg.msg_flags |= MSG_EOR;
1003
1004 res = sock_sendmsg(sock, &msg);
1005 *from = msg.msg_iter;
1006 return res;
1007 }
1008
1009 /*
1010 * Atomic setting of ioctl hooks to avoid race
1011 * with module unload.
1012 */
1013
1014 static DEFINE_MUTEX(br_ioctl_mutex);
1015 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1016
1017 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1018 {
1019 mutex_lock(&br_ioctl_mutex);
1020 br_ioctl_hook = hook;
1021 mutex_unlock(&br_ioctl_mutex);
1022 }
1023 EXPORT_SYMBOL(brioctl_set);
1024
1025 static DEFINE_MUTEX(vlan_ioctl_mutex);
1026 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1027
1028 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1029 {
1030 mutex_lock(&vlan_ioctl_mutex);
1031 vlan_ioctl_hook = hook;
1032 mutex_unlock(&vlan_ioctl_mutex);
1033 }
1034 EXPORT_SYMBOL(vlan_ioctl_set);
1035
1036 static DEFINE_MUTEX(dlci_ioctl_mutex);
1037 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1038
1039 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1040 {
1041 mutex_lock(&dlci_ioctl_mutex);
1042 dlci_ioctl_hook = hook;
1043 mutex_unlock(&dlci_ioctl_mutex);
1044 }
1045 EXPORT_SYMBOL(dlci_ioctl_set);
1046
1047 static long sock_do_ioctl(struct net *net, struct socket *sock,
1048 unsigned int cmd, unsigned long arg)
1049 {
1050 int err;
1051 void __user *argp = (void __user *)arg;
1052
1053 err = sock->ops->ioctl(sock, cmd, arg);
1054
1055 /*
1056 * If this ioctl is unknown try to hand it down
1057 * to the NIC driver.
1058 */
1059 if (err != -ENOIOCTLCMD)
1060 return err;
1061
1062 if (cmd == SIOCGIFCONF) {
1063 struct ifconf ifc;
1064 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1065 return -EFAULT;
1066 rtnl_lock();
1067 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1068 rtnl_unlock();
1069 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1070 err = -EFAULT;
1071 } else {
1072 struct ifreq ifr;
1073 bool need_copyout;
1074 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1075 return -EFAULT;
1076 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1077 if (!err && need_copyout)
1078 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1079 return -EFAULT;
1080 }
1081 return err;
1082 }
1083
1084 /*
1085 * With an ioctl, arg may well be a user mode pointer, but we don't know
1086 * what to do with it - that's up to the protocol still.
1087 */
1088
1089 /**
1090 * get_net_ns - increment the refcount of the network namespace
1091 * @ns: common namespace (net)
1092 *
1093 * Returns the net's common namespace.
1094 */
1095
1096 struct ns_common *get_net_ns(struct ns_common *ns)
1097 {
1098 return &get_net(container_of(ns, struct net, ns))->ns;
1099 }
1100 EXPORT_SYMBOL_GPL(get_net_ns);
1101
1102 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1103 {
1104 struct socket *sock;
1105 struct sock *sk;
1106 void __user *argp = (void __user *)arg;
1107 int pid, err;
1108 struct net *net;
1109
1110 sock = file->private_data;
1111 sk = sock->sk;
1112 net = sock_net(sk);
1113 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1114 struct ifreq ifr;
1115 bool need_copyout;
1116 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1117 return -EFAULT;
1118 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1119 if (!err && need_copyout)
1120 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1121 return -EFAULT;
1122 } else
1123 #ifdef CONFIG_WEXT_CORE
1124 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1125 err = wext_handle_ioctl(net, cmd, argp);
1126 } else
1127 #endif
1128 switch (cmd) {
1129 case FIOSETOWN:
1130 case SIOCSPGRP:
1131 err = -EFAULT;
1132 if (get_user(pid, (int __user *)argp))
1133 break;
1134 err = f_setown(sock->file, pid, 1);
1135 break;
1136 case FIOGETOWN:
1137 case SIOCGPGRP:
1138 err = put_user(f_getown(sock->file),
1139 (int __user *)argp);
1140 break;
1141 case SIOCGIFBR:
1142 case SIOCSIFBR:
1143 case SIOCBRADDBR:
1144 case SIOCBRDELBR:
1145 err = -ENOPKG;
1146 if (!br_ioctl_hook)
1147 request_module("bridge");
1148
1149 mutex_lock(&br_ioctl_mutex);
1150 if (br_ioctl_hook)
1151 err = br_ioctl_hook(net, cmd, argp);
1152 mutex_unlock(&br_ioctl_mutex);
1153 break;
1154 case SIOCGIFVLAN:
1155 case SIOCSIFVLAN:
1156 err = -ENOPKG;
1157 if (!vlan_ioctl_hook)
1158 request_module("8021q");
1159
1160 mutex_lock(&vlan_ioctl_mutex);
1161 if (vlan_ioctl_hook)
1162 err = vlan_ioctl_hook(net, argp);
1163 mutex_unlock(&vlan_ioctl_mutex);
1164 break;
1165 case SIOCADDDLCI:
1166 case SIOCDELDLCI:
1167 err = -ENOPKG;
1168 if (!dlci_ioctl_hook)
1169 request_module("dlci");
1170
1171 mutex_lock(&dlci_ioctl_mutex);
1172 if (dlci_ioctl_hook)
1173 err = dlci_ioctl_hook(cmd, argp);
1174 mutex_unlock(&dlci_ioctl_mutex);
1175 break;
1176 case SIOCGSKNS:
1177 err = -EPERM;
1178 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1179 break;
1180
1181 err = open_related_ns(&net->ns, get_net_ns);
1182 break;
1183 case SIOCGSTAMP_OLD:
1184 case SIOCGSTAMPNS_OLD:
1185 if (!sock->ops->gettstamp) {
1186 err = -ENOIOCTLCMD;
1187 break;
1188 }
1189 err = sock->ops->gettstamp(sock, argp,
1190 cmd == SIOCGSTAMP_OLD,
1191 !IS_ENABLED(CONFIG_64BIT));
1192 break;
1193 case SIOCGSTAMP_NEW:
1194 case SIOCGSTAMPNS_NEW:
1195 if (!sock->ops->gettstamp) {
1196 err = -ENOIOCTLCMD;
1197 break;
1198 }
1199 err = sock->ops->gettstamp(sock, argp,
1200 cmd == SIOCGSTAMP_NEW,
1201 false);
1202 break;
1203 default:
1204 err = sock_do_ioctl(net, sock, cmd, arg);
1205 break;
1206 }
1207 return err;
1208 }
1209
1210 /**
1211 * sock_create_lite - creates a socket
1212 * @family: protocol family (AF_INET, ...)
1213 * @type: communication type (SOCK_STREAM, ...)
1214 * @protocol: protocol (0, ...)
1215 * @res: new socket
1216 *
1217 * Creates a new socket and assigns it to @res, passing through LSM.
1218 * The new socket initialization is not complete, see kernel_accept().
1219 * Returns 0 or an error. On failure @res is set to %NULL.
1220 * This function internally uses GFP_KERNEL.
1221 */
1222
1223 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1224 {
1225 int err;
1226 struct socket *sock = NULL;
1227
1228 err = security_socket_create(family, type, protocol, 1);
1229 if (err)
1230 goto out;
1231
1232 sock = sock_alloc();
1233 if (!sock) {
1234 err = -ENOMEM;
1235 goto out;
1236 }
1237
1238 sock->type = type;
1239 err = security_socket_post_create(sock, family, type, protocol, 1);
1240 if (err)
1241 goto out_release;
1242
1243 out:
1244 *res = sock;
1245 return err;
1246 out_release:
1247 sock_release(sock);
1248 sock = NULL;
1249 goto out;
1250 }
1251 EXPORT_SYMBOL(sock_create_lite);
1252
1253 /* No kernel lock held - perfect */
1254 static __poll_t sock_poll(struct file *file, poll_table *wait)
1255 {
1256 struct socket *sock = file->private_data;
1257 __poll_t events = poll_requested_events(wait), flag = 0;
1258
1259 if (!sock->ops->poll)
1260 return 0;
1261
1262 if (sk_can_busy_loop(sock->sk)) {
1263 /* poll once if requested by the syscall */
1264 if (events & POLL_BUSY_LOOP)
1265 sk_busy_loop(sock->sk, 1);
1266
1267 /* if this socket can poll_ll, tell the system call */
1268 flag = POLL_BUSY_LOOP;
1269 }
1270
1271 return sock->ops->poll(file, sock, wait) | flag;
1272 }
1273
1274 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1275 {
1276 struct socket *sock = file->private_data;
1277
1278 return sock->ops->mmap(file, sock, vma);
1279 }
1280
1281 static int sock_close(struct inode *inode, struct file *filp)
1282 {
1283 __sock_release(SOCKET_I(inode), inode);
1284 return 0;
1285 }
1286
1287 /*
1288 * Update the socket async list
1289 *
1290 * Fasync_list locking strategy.
1291 *
1292 * 1. fasync_list is modified only under process context socket lock
1293 * i.e. under semaphore.
1294 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1295 * or under socket lock
1296 */
1297
1298 static int sock_fasync(int fd, struct file *filp, int on)
1299 {
1300 struct socket *sock = filp->private_data;
1301 struct sock *sk = sock->sk;
1302 struct socket_wq *wq = &sock->wq;
1303
1304 if (sk == NULL)
1305 return -EINVAL;
1306
1307 lock_sock(sk);
1308 fasync_helper(fd, filp, on, &wq->fasync_list);
1309
1310 if (!wq->fasync_list)
1311 sock_reset_flag(sk, SOCK_FASYNC);
1312 else
1313 sock_set_flag(sk, SOCK_FASYNC);
1314
1315 release_sock(sk);
1316 return 0;
1317 }
1318
1319 /* This function may be called only under rcu_lock */
1320
1321 int sock_wake_async(struct socket_wq *wq, int how, int band)
1322 {
1323 if (!wq || !wq->fasync_list)
1324 return -1;
1325
1326 switch (how) {
1327 case SOCK_WAKE_WAITD:
1328 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1329 break;
1330 goto call_kill;
1331 case SOCK_WAKE_SPACE:
1332 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1333 break;
1334 /* fall through */
1335 case SOCK_WAKE_IO:
1336 call_kill:
1337 kill_fasync(&wq->fasync_list, SIGIO, band);
1338 break;
1339 case SOCK_WAKE_URG:
1340 kill_fasync(&wq->fasync_list, SIGURG, band);
1341 }
1342
1343 return 0;
1344 }
1345 EXPORT_SYMBOL(sock_wake_async);
1346
1347 /**
1348 * __sock_create - creates a socket
1349 * @net: net namespace
1350 * @family: protocol family (AF_INET, ...)
1351 * @type: communication type (SOCK_STREAM, ...)
1352 * @protocol: protocol (0, ...)
1353 * @res: new socket
1354 * @kern: boolean for kernel space sockets
1355 *
1356 * Creates a new socket and assigns it to @res, passing through LSM.
1357 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1358 * be set to true if the socket resides in kernel space.
1359 * This function internally uses GFP_KERNEL.
1360 */
1361
1362 int __sock_create(struct net *net, int family, int type, int protocol,
1363 struct socket **res, int kern)
1364 {
1365 int err;
1366 struct socket *sock;
1367 const struct net_proto_family *pf;
1368
1369 /*
1370 * Check protocol is in range
1371 */
1372 if (family < 0 || family >= NPROTO)
1373 return -EAFNOSUPPORT;
1374 if (type < 0 || type >= SOCK_MAX)
1375 return -EINVAL;
1376
1377 /* Compatibility.
1378
1379 This uglymoron is moved from INET layer to here to avoid
1380 deadlock in module load.
1381 */
1382 if (family == PF_INET && type == SOCK_PACKET) {
1383 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1384 current->comm);
1385 family = PF_PACKET;
1386 }
1387
1388 err = security_socket_create(family, type, protocol, kern);
1389 if (err)
1390 return err;
1391
1392 /*
1393 * Allocate the socket and allow the family to set things up. if
1394 * the protocol is 0, the family is instructed to select an appropriate
1395 * default.
1396 */
1397 sock = sock_alloc();
1398 if (!sock) {
1399 net_warn_ratelimited("socket: no more sockets\n");
1400 return -ENFILE; /* Not exactly a match, but its the
1401 closest posix thing */
1402 }
1403
1404 sock->type = type;
1405
1406 #ifdef CONFIG_MODULES
1407 /* Attempt to load a protocol module if the find failed.
1408 *
1409 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1410 * requested real, full-featured networking support upon configuration.
1411 * Otherwise module support will break!
1412 */
1413 if (rcu_access_pointer(net_families[family]) == NULL)
1414 request_module("net-pf-%d", family);
1415 #endif
1416
1417 rcu_read_lock();
1418 pf = rcu_dereference(net_families[family]);
1419 err = -EAFNOSUPPORT;
1420 if (!pf)
1421 goto out_release;
1422
1423 /*
1424 * We will call the ->create function, that possibly is in a loadable
1425 * module, so we have to bump that loadable module refcnt first.
1426 */
1427 if (!try_module_get(pf->owner))
1428 goto out_release;
1429
1430 /* Now protected by module ref count */
1431 rcu_read_unlock();
1432
1433 err = pf->create(net, sock, protocol, kern);
1434 if (err < 0)
1435 goto out_module_put;
1436
1437 /*
1438 * Now to bump the refcnt of the [loadable] module that owns this
1439 * socket at sock_release time we decrement its refcnt.
1440 */
1441 if (!try_module_get(sock->ops->owner))
1442 goto out_module_busy;
1443
1444 /*
1445 * Now that we're done with the ->create function, the [loadable]
1446 * module can have its refcnt decremented
1447 */
1448 module_put(pf->owner);
1449 err = security_socket_post_create(sock, family, type, protocol, kern);
1450 if (err)
1451 goto out_sock_release;
1452 *res = sock;
1453
1454 return 0;
1455
1456 out_module_busy:
1457 err = -EAFNOSUPPORT;
1458 out_module_put:
1459 sock->ops = NULL;
1460 module_put(pf->owner);
1461 out_sock_release:
1462 sock_release(sock);
1463 return err;
1464
1465 out_release:
1466 rcu_read_unlock();
1467 goto out_sock_release;
1468 }
1469 EXPORT_SYMBOL(__sock_create);
1470
1471 /**
1472 * sock_create - creates a socket
1473 * @family: protocol family (AF_INET, ...)
1474 * @type: communication type (SOCK_STREAM, ...)
1475 * @protocol: protocol (0, ...)
1476 * @res: new socket
1477 *
1478 * A wrapper around __sock_create().
1479 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1480 */
1481
1482 int sock_create(int family, int type, int protocol, struct socket **res)
1483 {
1484 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1485 }
1486 EXPORT_SYMBOL(sock_create);
1487
1488 /**
1489 * sock_create_kern - creates a socket (kernel space)
1490 * @net: net namespace
1491 * @family: protocol family (AF_INET, ...)
1492 * @type: communication type (SOCK_STREAM, ...)
1493 * @protocol: protocol (0, ...)
1494 * @res: new socket
1495 *
1496 * A wrapper around __sock_create().
1497 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1498 */
1499
1500 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1501 {
1502 return __sock_create(net, family, type, protocol, res, 1);
1503 }
1504 EXPORT_SYMBOL(sock_create_kern);
1505
1506 int __sys_socket(int family, int type, int protocol)
1507 {
1508 int retval;
1509 struct socket *sock;
1510 int flags;
1511
1512 /* Check the SOCK_* constants for consistency. */
1513 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1514 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1515 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1516 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1517
1518 flags = type & ~SOCK_TYPE_MASK;
1519 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1520 return -EINVAL;
1521 type &= SOCK_TYPE_MASK;
1522
1523 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1524 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1525
1526 retval = sock_create(family, type, protocol, &sock);
1527 if (retval < 0)
1528 return retval;
1529
1530 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1531 }
1532
1533 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1534 {
1535 return __sys_socket(family, type, protocol);
1536 }
1537
1538 /*
1539 * Create a pair of connected sockets.
1540 */
1541
1542 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1543 {
1544 struct socket *sock1, *sock2;
1545 int fd1, fd2, err;
1546 struct file *newfile1, *newfile2;
1547 int flags;
1548
1549 flags = type & ~SOCK_TYPE_MASK;
1550 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1551 return -EINVAL;
1552 type &= SOCK_TYPE_MASK;
1553
1554 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1555 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1556
1557 /*
1558 * reserve descriptors and make sure we won't fail
1559 * to return them to userland.
1560 */
1561 fd1 = get_unused_fd_flags(flags);
1562 if (unlikely(fd1 < 0))
1563 return fd1;
1564
1565 fd2 = get_unused_fd_flags(flags);
1566 if (unlikely(fd2 < 0)) {
1567 put_unused_fd(fd1);
1568 return fd2;
1569 }
1570
1571 err = put_user(fd1, &usockvec[0]);
1572 if (err)
1573 goto out;
1574
1575 err = put_user(fd2, &usockvec[1]);
1576 if (err)
1577 goto out;
1578
1579 /*
1580 * Obtain the first socket and check if the underlying protocol
1581 * supports the socketpair call.
1582 */
1583
1584 err = sock_create(family, type, protocol, &sock1);
1585 if (unlikely(err < 0))
1586 goto out;
1587
1588 err = sock_create(family, type, protocol, &sock2);
1589 if (unlikely(err < 0)) {
1590 sock_release(sock1);
1591 goto out;
1592 }
1593
1594 err = security_socket_socketpair(sock1, sock2);
1595 if (unlikely(err)) {
1596 sock_release(sock2);
1597 sock_release(sock1);
1598 goto out;
1599 }
1600
1601 err = sock1->ops->socketpair(sock1, sock2);
1602 if (unlikely(err < 0)) {
1603 sock_release(sock2);
1604 sock_release(sock1);
1605 goto out;
1606 }
1607
1608 newfile1 = sock_alloc_file(sock1, flags, NULL);
1609 if (IS_ERR(newfile1)) {
1610 err = PTR_ERR(newfile1);
1611 sock_release(sock2);
1612 goto out;
1613 }
1614
1615 newfile2 = sock_alloc_file(sock2, flags, NULL);
1616 if (IS_ERR(newfile2)) {
1617 err = PTR_ERR(newfile2);
1618 fput(newfile1);
1619 goto out;
1620 }
1621
1622 audit_fd_pair(fd1, fd2);
1623
1624 fd_install(fd1, newfile1);
1625 fd_install(fd2, newfile2);
1626 return 0;
1627
1628 out:
1629 put_unused_fd(fd2);
1630 put_unused_fd(fd1);
1631 return err;
1632 }
1633
1634 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1635 int __user *, usockvec)
1636 {
1637 return __sys_socketpair(family, type, protocol, usockvec);
1638 }
1639
1640 /*
1641 * Bind a name to a socket. Nothing much to do here since it's
1642 * the protocol's responsibility to handle the local address.
1643 *
1644 * We move the socket address to kernel space before we call
1645 * the protocol layer (having also checked the address is ok).
1646 */
1647
1648 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1649 {
1650 struct socket *sock;
1651 struct sockaddr_storage address;
1652 int err, fput_needed;
1653
1654 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1655 if (sock) {
1656 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1657 if (!err) {
1658 err = security_socket_bind(sock,
1659 (struct sockaddr *)&address,
1660 addrlen);
1661 if (!err)
1662 err = sock->ops->bind(sock,
1663 (struct sockaddr *)
1664 &address, addrlen);
1665 }
1666 fput_light(sock->file, fput_needed);
1667 }
1668 return err;
1669 }
1670
1671 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1672 {
1673 return __sys_bind(fd, umyaddr, addrlen);
1674 }
1675
1676 /*
1677 * Perform a listen. Basically, we allow the protocol to do anything
1678 * necessary for a listen, and if that works, we mark the socket as
1679 * ready for listening.
1680 */
1681
1682 int __sys_listen(int fd, int backlog)
1683 {
1684 struct socket *sock;
1685 int err, fput_needed;
1686 int somaxconn;
1687
1688 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1689 if (sock) {
1690 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1691 if ((unsigned int)backlog > somaxconn)
1692 backlog = somaxconn;
1693
1694 err = security_socket_listen(sock, backlog);
1695 if (!err)
1696 err = sock->ops->listen(sock, backlog);
1697
1698 fput_light(sock->file, fput_needed);
1699 }
1700 return err;
1701 }
1702
1703 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1704 {
1705 return __sys_listen(fd, backlog);
1706 }
1707
1708 int __sys_accept4_file(struct file *file, unsigned file_flags,
1709 struct sockaddr __user *upeer_sockaddr,
1710 int __user *upeer_addrlen, int flags)
1711 {
1712 struct socket *sock, *newsock;
1713 struct file *newfile;
1714 int err, len, newfd;
1715 struct sockaddr_storage address;
1716
1717 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1718 return -EINVAL;
1719
1720 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1721 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1722
1723 sock = sock_from_file(file, &err);
1724 if (!sock)
1725 goto out;
1726
1727 err = -ENFILE;
1728 newsock = sock_alloc();
1729 if (!newsock)
1730 goto out;
1731
1732 newsock->type = sock->type;
1733 newsock->ops = sock->ops;
1734
1735 /*
1736 * We don't need try_module_get here, as the listening socket (sock)
1737 * has the protocol module (sock->ops->owner) held.
1738 */
1739 __module_get(newsock->ops->owner);
1740
1741 newfd = get_unused_fd_flags(flags);
1742 if (unlikely(newfd < 0)) {
1743 err = newfd;
1744 sock_release(newsock);
1745 goto out;
1746 }
1747 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1748 if (IS_ERR(newfile)) {
1749 err = PTR_ERR(newfile);
1750 put_unused_fd(newfd);
1751 goto out;
1752 }
1753
1754 err = security_socket_accept(sock, newsock);
1755 if (err)
1756 goto out_fd;
1757
1758 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1759 false);
1760 if (err < 0)
1761 goto out_fd;
1762
1763 if (upeer_sockaddr) {
1764 len = newsock->ops->getname(newsock,
1765 (struct sockaddr *)&address, 2);
1766 if (len < 0) {
1767 err = -ECONNABORTED;
1768 goto out_fd;
1769 }
1770 err = move_addr_to_user(&address,
1771 len, upeer_sockaddr, upeer_addrlen);
1772 if (err < 0)
1773 goto out_fd;
1774 }
1775
1776 /* File flags are not inherited via accept() unlike another OSes. */
1777
1778 fd_install(newfd, newfile);
1779 err = newfd;
1780 out:
1781 return err;
1782 out_fd:
1783 fput(newfile);
1784 put_unused_fd(newfd);
1785 goto out;
1786
1787 }
1788
1789 /*
1790 * For accept, we attempt to create a new socket, set up the link
1791 * with the client, wake up the client, then return the new
1792 * connected fd. We collect the address of the connector in kernel
1793 * space and move it to user at the very end. This is unclean because
1794 * we open the socket then return an error.
1795 *
1796 * 1003.1g adds the ability to recvmsg() to query connection pending
1797 * status to recvmsg. We need to add that support in a way thats
1798 * clean when we restructure accept also.
1799 */
1800
1801 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1802 int __user *upeer_addrlen, int flags)
1803 {
1804 int ret = -EBADF;
1805 struct fd f;
1806
1807 f = fdget(fd);
1808 if (f.file) {
1809 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1810 upeer_addrlen, flags);
1811 if (f.flags)
1812 fput(f.file);
1813 }
1814
1815 return ret;
1816 }
1817
1818 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1819 int __user *, upeer_addrlen, int, flags)
1820 {
1821 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1822 }
1823
1824 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1825 int __user *, upeer_addrlen)
1826 {
1827 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1828 }
1829
1830 /*
1831 * Attempt to connect to a socket with the server address. The address
1832 * is in user space so we verify it is OK and move it to kernel space.
1833 *
1834 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1835 * break bindings
1836 *
1837 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1838 * other SEQPACKET protocols that take time to connect() as it doesn't
1839 * include the -EINPROGRESS status for such sockets.
1840 */
1841
1842 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1843 int addrlen, int file_flags)
1844 {
1845 struct socket *sock;
1846 int err;
1847
1848 sock = sock_from_file(file, &err);
1849 if (!sock)
1850 goto out;
1851
1852 err =
1853 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1854 if (err)
1855 goto out;
1856
1857 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1858 sock->file->f_flags | file_flags);
1859 out:
1860 return err;
1861 }
1862
1863 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1864 {
1865 int ret = -EBADF;
1866 struct fd f;
1867
1868 f = fdget(fd);
1869 if (f.file) {
1870 struct sockaddr_storage address;
1871
1872 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1873 if (!ret)
1874 ret = __sys_connect_file(f.file, &address, addrlen, 0);
1875 if (f.flags)
1876 fput(f.file);
1877 }
1878
1879 return ret;
1880 }
1881
1882 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1883 int, addrlen)
1884 {
1885 return __sys_connect(fd, uservaddr, addrlen);
1886 }
1887
1888 /*
1889 * Get the local address ('name') of a socket object. Move the obtained
1890 * name to user space.
1891 */
1892
1893 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1894 int __user *usockaddr_len)
1895 {
1896 struct socket *sock;
1897 struct sockaddr_storage address;
1898 int err, fput_needed;
1899
1900 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1901 if (!sock)
1902 goto out;
1903
1904 err = security_socket_getsockname(sock);
1905 if (err)
1906 goto out_put;
1907
1908 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1909 if (err < 0)
1910 goto out_put;
1911 /* "err" is actually length in this case */
1912 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1913
1914 out_put:
1915 fput_light(sock->file, fput_needed);
1916 out:
1917 return err;
1918 }
1919
1920 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1921 int __user *, usockaddr_len)
1922 {
1923 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1924 }
1925
1926 /*
1927 * Get the remote address ('name') of a socket object. Move the obtained
1928 * name to user space.
1929 */
1930
1931 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1932 int __user *usockaddr_len)
1933 {
1934 struct socket *sock;
1935 struct sockaddr_storage address;
1936 int err, fput_needed;
1937
1938 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1939 if (sock != NULL) {
1940 err = security_socket_getpeername(sock);
1941 if (err) {
1942 fput_light(sock->file, fput_needed);
1943 return err;
1944 }
1945
1946 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1947 if (err >= 0)
1948 /* "err" is actually length in this case */
1949 err = move_addr_to_user(&address, err, usockaddr,
1950 usockaddr_len);
1951 fput_light(sock->file, fput_needed);
1952 }
1953 return err;
1954 }
1955
1956 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1957 int __user *, usockaddr_len)
1958 {
1959 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1960 }
1961
1962 /*
1963 * Send a datagram to a given address. We move the address into kernel
1964 * space and check the user space data area is readable before invoking
1965 * the protocol.
1966 */
1967 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1968 struct sockaddr __user *addr, int addr_len)
1969 {
1970 struct socket *sock;
1971 struct sockaddr_storage address;
1972 int err;
1973 struct msghdr msg;
1974 struct iovec iov;
1975 int fput_needed;
1976
1977 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1978 if (unlikely(err))
1979 return err;
1980 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1981 if (!sock)
1982 goto out;
1983
1984 msg.msg_name = NULL;
1985 msg.msg_control = NULL;
1986 msg.msg_controllen = 0;
1987 msg.msg_namelen = 0;
1988 if (addr) {
1989 err = move_addr_to_kernel(addr, addr_len, &address);
1990 if (err < 0)
1991 goto out_put;
1992 msg.msg_name = (struct sockaddr *)&address;
1993 msg.msg_namelen = addr_len;
1994 }
1995 if (sock->file->f_flags & O_NONBLOCK)
1996 flags |= MSG_DONTWAIT;
1997 msg.msg_flags = flags;
1998 err = sock_sendmsg(sock, &msg);
1999
2000 out_put:
2001 fput_light(sock->file, fput_needed);
2002 out:
2003 return err;
2004 }
2005
2006 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2007 unsigned int, flags, struct sockaddr __user *, addr,
2008 int, addr_len)
2009 {
2010 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2011 }
2012
2013 /*
2014 * Send a datagram down a socket.
2015 */
2016
2017 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2018 unsigned int, flags)
2019 {
2020 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2021 }
2022
2023 /*
2024 * Receive a frame from the socket and optionally record the address of the
2025 * sender. We verify the buffers are writable and if needed move the
2026 * sender address from kernel to user space.
2027 */
2028 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2029 struct sockaddr __user *addr, int __user *addr_len)
2030 {
2031 struct socket *sock;
2032 struct iovec iov;
2033 struct msghdr msg;
2034 struct sockaddr_storage address;
2035 int err, err2;
2036 int fput_needed;
2037
2038 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2039 if (unlikely(err))
2040 return err;
2041 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2042 if (!sock)
2043 goto out;
2044
2045 msg.msg_control = NULL;
2046 msg.msg_controllen = 0;
2047 /* Save some cycles and don't copy the address if not needed */
2048 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2049 /* We assume all kernel code knows the size of sockaddr_storage */
2050 msg.msg_namelen = 0;
2051 msg.msg_iocb = NULL;
2052 msg.msg_flags = 0;
2053 if (sock->file->f_flags & O_NONBLOCK)
2054 flags |= MSG_DONTWAIT;
2055 err = sock_recvmsg(sock, &msg, flags);
2056
2057 if (err >= 0 && addr != NULL) {
2058 err2 = move_addr_to_user(&address,
2059 msg.msg_namelen, addr, addr_len);
2060 if (err2 < 0)
2061 err = err2;
2062 }
2063
2064 fput_light(sock->file, fput_needed);
2065 out:
2066 return err;
2067 }
2068
2069 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2070 unsigned int, flags, struct sockaddr __user *, addr,
2071 int __user *, addr_len)
2072 {
2073 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2074 }
2075
2076 /*
2077 * Receive a datagram from a socket.
2078 */
2079
2080 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2081 unsigned int, flags)
2082 {
2083 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2084 }
2085
2086 /*
2087 * Set a socket option. Because we don't know the option lengths we have
2088 * to pass the user mode parameter for the protocols to sort out.
2089 */
2090
2091 static int __sys_setsockopt(int fd, int level, int optname,
2092 char __user *optval, int optlen)
2093 {
2094 mm_segment_t oldfs = get_fs();
2095 char *kernel_optval = NULL;
2096 int err, fput_needed;
2097 struct socket *sock;
2098
2099 if (optlen < 0)
2100 return -EINVAL;
2101
2102 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2103 if (sock != NULL) {
2104 err = security_socket_setsockopt(sock, level, optname);
2105 if (err)
2106 goto out_put;
2107
2108 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level,
2109 &optname, optval, &optlen,
2110 &kernel_optval);
2111
2112 if (err < 0) {
2113 goto out_put;
2114 } else if (err > 0) {
2115 err = 0;
2116 goto out_put;
2117 }
2118
2119 if (kernel_optval) {
2120 set_fs(KERNEL_DS);
2121 optval = (char __user __force *)kernel_optval;
2122 }
2123
2124 if (level == SOL_SOCKET)
2125 err =
2126 sock_setsockopt(sock, level, optname, optval,
2127 optlen);
2128 else
2129 err =
2130 sock->ops->setsockopt(sock, level, optname, optval,
2131 optlen);
2132
2133 if (kernel_optval) {
2134 set_fs(oldfs);
2135 kfree(kernel_optval);
2136 }
2137 out_put:
2138 fput_light(sock->file, fput_needed);
2139 }
2140 return err;
2141 }
2142
2143 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2144 char __user *, optval, int, optlen)
2145 {
2146 return __sys_setsockopt(fd, level, optname, optval, optlen);
2147 }
2148
2149 /*
2150 * Get a socket option. Because we don't know the option lengths we have
2151 * to pass a user mode parameter for the protocols to sort out.
2152 */
2153
2154 static int __sys_getsockopt(int fd, int level, int optname,
2155 char __user *optval, int __user *optlen)
2156 {
2157 int err, fput_needed;
2158 struct socket *sock;
2159 int max_optlen;
2160
2161 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2162 if (sock != NULL) {
2163 err = security_socket_getsockopt(sock, level, optname);
2164 if (err)
2165 goto out_put;
2166
2167 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2168
2169 if (level == SOL_SOCKET)
2170 err =
2171 sock_getsockopt(sock, level, optname, optval,
2172 optlen);
2173 else
2174 err =
2175 sock->ops->getsockopt(sock, level, optname, optval,
2176 optlen);
2177
2178 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2179 optval, optlen,
2180 max_optlen, err);
2181 out_put:
2182 fput_light(sock->file, fput_needed);
2183 }
2184 return err;
2185 }
2186
2187 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2188 char __user *, optval, int __user *, optlen)
2189 {
2190 return __sys_getsockopt(fd, level, optname, optval, optlen);
2191 }
2192
2193 /*
2194 * Shutdown a socket.
2195 */
2196
2197 int __sys_shutdown(int fd, int how)
2198 {
2199 int err, fput_needed;
2200 struct socket *sock;
2201
2202 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2203 if (sock != NULL) {
2204 err = security_socket_shutdown(sock, how);
2205 if (!err)
2206 err = sock->ops->shutdown(sock, how);
2207 fput_light(sock->file, fput_needed);
2208 }
2209 return err;
2210 }
2211
2212 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2213 {
2214 return __sys_shutdown(fd, how);
2215 }
2216
2217 /* A couple of helpful macros for getting the address of the 32/64 bit
2218 * fields which are the same type (int / unsigned) on our platforms.
2219 */
2220 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2221 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2222 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2223
2224 struct used_address {
2225 struct sockaddr_storage name;
2226 unsigned int name_len;
2227 };
2228
2229 static int copy_msghdr_from_user(struct msghdr *kmsg,
2230 struct user_msghdr __user *umsg,
2231 struct sockaddr __user **save_addr,
2232 struct iovec **iov)
2233 {
2234 struct user_msghdr msg;
2235 ssize_t err;
2236
2237 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2238 return -EFAULT;
2239
2240 kmsg->msg_control = (void __force *)msg.msg_control;
2241 kmsg->msg_controllen = msg.msg_controllen;
2242 kmsg->msg_flags = msg.msg_flags;
2243
2244 kmsg->msg_namelen = msg.msg_namelen;
2245 if (!msg.msg_name)
2246 kmsg->msg_namelen = 0;
2247
2248 if (kmsg->msg_namelen < 0)
2249 return -EINVAL;
2250
2251 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2252 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2253
2254 if (save_addr)
2255 *save_addr = msg.msg_name;
2256
2257 if (msg.msg_name && kmsg->msg_namelen) {
2258 if (!save_addr) {
2259 err = move_addr_to_kernel(msg.msg_name,
2260 kmsg->msg_namelen,
2261 kmsg->msg_name);
2262 if (err < 0)
2263 return err;
2264 }
2265 } else {
2266 kmsg->msg_name = NULL;
2267 kmsg->msg_namelen = 0;
2268 }
2269
2270 if (msg.msg_iovlen > UIO_MAXIOV)
2271 return -EMSGSIZE;
2272
2273 kmsg->msg_iocb = NULL;
2274
2275 err = import_iovec(save_addr ? READ : WRITE,
2276 msg.msg_iov, msg.msg_iovlen,
2277 UIO_FASTIOV, iov, &kmsg->msg_iter);
2278 return err < 0 ? err : 0;
2279 }
2280
2281 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2282 unsigned int flags, struct used_address *used_address,
2283 unsigned int allowed_msghdr_flags)
2284 {
2285 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2286 __aligned(sizeof(__kernel_size_t));
2287 /* 20 is size of ipv6_pktinfo */
2288 unsigned char *ctl_buf = ctl;
2289 int ctl_len;
2290 ssize_t err;
2291
2292 err = -ENOBUFS;
2293
2294 if (msg_sys->msg_controllen > INT_MAX)
2295 goto out;
2296 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2297 ctl_len = msg_sys->msg_controllen;
2298 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2299 err =
2300 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2301 sizeof(ctl));
2302 if (err)
2303 goto out;
2304 ctl_buf = msg_sys->msg_control;
2305 ctl_len = msg_sys->msg_controllen;
2306 } else if (ctl_len) {
2307 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2308 CMSG_ALIGN(sizeof(struct cmsghdr)));
2309 if (ctl_len > sizeof(ctl)) {
2310 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2311 if (ctl_buf == NULL)
2312 goto out;
2313 }
2314 err = -EFAULT;
2315 /*
2316 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2317 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2318 * checking falls down on this.
2319 */
2320 if (copy_from_user(ctl_buf,
2321 (void __user __force *)msg_sys->msg_control,
2322 ctl_len))
2323 goto out_freectl;
2324 msg_sys->msg_control = ctl_buf;
2325 }
2326 msg_sys->msg_flags = flags;
2327
2328 if (sock->file->f_flags & O_NONBLOCK)
2329 msg_sys->msg_flags |= MSG_DONTWAIT;
2330 /*
2331 * If this is sendmmsg() and current destination address is same as
2332 * previously succeeded address, omit asking LSM's decision.
2333 * used_address->name_len is initialized to UINT_MAX so that the first
2334 * destination address never matches.
2335 */
2336 if (used_address && msg_sys->msg_name &&
2337 used_address->name_len == msg_sys->msg_namelen &&
2338 !memcmp(&used_address->name, msg_sys->msg_name,
2339 used_address->name_len)) {
2340 err = sock_sendmsg_nosec(sock, msg_sys);
2341 goto out_freectl;
2342 }
2343 err = sock_sendmsg(sock, msg_sys);
2344 /*
2345 * If this is sendmmsg() and sending to current destination address was
2346 * successful, remember it.
2347 */
2348 if (used_address && err >= 0) {
2349 used_address->name_len = msg_sys->msg_namelen;
2350 if (msg_sys->msg_name)
2351 memcpy(&used_address->name, msg_sys->msg_name,
2352 used_address->name_len);
2353 }
2354
2355 out_freectl:
2356 if (ctl_buf != ctl)
2357 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2358 out:
2359 return err;
2360 }
2361
2362 int sendmsg_copy_msghdr(struct msghdr *msg,
2363 struct user_msghdr __user *umsg, unsigned flags,
2364 struct iovec **iov)
2365 {
2366 int err;
2367
2368 if (flags & MSG_CMSG_COMPAT) {
2369 struct compat_msghdr __user *msg_compat;
2370
2371 msg_compat = (struct compat_msghdr __user *) umsg;
2372 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2373 } else {
2374 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2375 }
2376 if (err < 0)
2377 return err;
2378
2379 return 0;
2380 }
2381
2382 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2383 struct msghdr *msg_sys, unsigned int flags,
2384 struct used_address *used_address,
2385 unsigned int allowed_msghdr_flags)
2386 {
2387 struct sockaddr_storage address;
2388 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2389 ssize_t err;
2390
2391 msg_sys->msg_name = &address;
2392
2393 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2394 if (err < 0)
2395 return err;
2396
2397 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2398 allowed_msghdr_flags);
2399 kfree(iov);
2400 return err;
2401 }
2402
2403 /*
2404 * BSD sendmsg interface
2405 */
2406 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2407 unsigned int flags)
2408 {
2409 /* disallow ancillary data requests from this path */
2410 if (msg->msg_control || msg->msg_controllen)
2411 return -EINVAL;
2412
2413 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2414 }
2415
2416 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2417 bool forbid_cmsg_compat)
2418 {
2419 int fput_needed, err;
2420 struct msghdr msg_sys;
2421 struct socket *sock;
2422
2423 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2424 return -EINVAL;
2425
2426 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2427 if (!sock)
2428 goto out;
2429
2430 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2431
2432 fput_light(sock->file, fput_needed);
2433 out:
2434 return err;
2435 }
2436
2437 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2438 {
2439 return __sys_sendmsg(fd, msg, flags, true);
2440 }
2441
2442 /*
2443 * Linux sendmmsg interface
2444 */
2445
2446 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2447 unsigned int flags, bool forbid_cmsg_compat)
2448 {
2449 int fput_needed, err, datagrams;
2450 struct socket *sock;
2451 struct mmsghdr __user *entry;
2452 struct compat_mmsghdr __user *compat_entry;
2453 struct msghdr msg_sys;
2454 struct used_address used_address;
2455 unsigned int oflags = flags;
2456
2457 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2458 return -EINVAL;
2459
2460 if (vlen > UIO_MAXIOV)
2461 vlen = UIO_MAXIOV;
2462
2463 datagrams = 0;
2464
2465 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2466 if (!sock)
2467 return err;
2468
2469 used_address.name_len = UINT_MAX;
2470 entry = mmsg;
2471 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2472 err = 0;
2473 flags |= MSG_BATCH;
2474
2475 while (datagrams < vlen) {
2476 if (datagrams == vlen - 1)
2477 flags = oflags;
2478
2479 if (MSG_CMSG_COMPAT & flags) {
2480 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2481 &msg_sys, flags, &used_address, MSG_EOR);
2482 if (err < 0)
2483 break;
2484 err = __put_user(err, &compat_entry->msg_len);
2485 ++compat_entry;
2486 } else {
2487 err = ___sys_sendmsg(sock,
2488 (struct user_msghdr __user *)entry,
2489 &msg_sys, flags, &used_address, MSG_EOR);
2490 if (err < 0)
2491 break;
2492 err = put_user(err, &entry->msg_len);
2493 ++entry;
2494 }
2495
2496 if (err)
2497 break;
2498 ++datagrams;
2499 if (msg_data_left(&msg_sys))
2500 break;
2501 cond_resched();
2502 }
2503
2504 fput_light(sock->file, fput_needed);
2505
2506 /* We only return an error if no datagrams were able to be sent */
2507 if (datagrams != 0)
2508 return datagrams;
2509
2510 return err;
2511 }
2512
2513 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2514 unsigned int, vlen, unsigned int, flags)
2515 {
2516 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2517 }
2518
2519 int recvmsg_copy_msghdr(struct msghdr *msg,
2520 struct user_msghdr __user *umsg, unsigned flags,
2521 struct sockaddr __user **uaddr,
2522 struct iovec **iov)
2523 {
2524 ssize_t err;
2525
2526 if (MSG_CMSG_COMPAT & flags) {
2527 struct compat_msghdr __user *msg_compat;
2528
2529 msg_compat = (struct compat_msghdr __user *) umsg;
2530 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2531 } else {
2532 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2533 }
2534 if (err < 0)
2535 return err;
2536
2537 return 0;
2538 }
2539
2540 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2541 struct user_msghdr __user *msg,
2542 struct sockaddr __user *uaddr,
2543 unsigned int flags, int nosec)
2544 {
2545 struct compat_msghdr __user *msg_compat =
2546 (struct compat_msghdr __user *) msg;
2547 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2548 struct sockaddr_storage addr;
2549 unsigned long cmsg_ptr;
2550 int len;
2551 ssize_t err;
2552
2553 msg_sys->msg_name = &addr;
2554 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2555 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2556
2557 /* We assume all kernel code knows the size of sockaddr_storage */
2558 msg_sys->msg_namelen = 0;
2559
2560 if (sock->file->f_flags & O_NONBLOCK)
2561 flags |= MSG_DONTWAIT;
2562
2563 if (unlikely(nosec))
2564 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2565 else
2566 err = sock_recvmsg(sock, msg_sys, flags);
2567
2568 if (err < 0)
2569 goto out;
2570 len = err;
2571
2572 if (uaddr != NULL) {
2573 err = move_addr_to_user(&addr,
2574 msg_sys->msg_namelen, uaddr,
2575 uaddr_len);
2576 if (err < 0)
2577 goto out;
2578 }
2579 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2580 COMPAT_FLAGS(msg));
2581 if (err)
2582 goto out;
2583 if (MSG_CMSG_COMPAT & flags)
2584 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2585 &msg_compat->msg_controllen);
2586 else
2587 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2588 &msg->msg_controllen);
2589 if (err)
2590 goto out;
2591 err = len;
2592 out:
2593 return err;
2594 }
2595
2596 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2597 struct msghdr *msg_sys, unsigned int flags, int nosec)
2598 {
2599 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2600 /* user mode address pointers */
2601 struct sockaddr __user *uaddr;
2602 ssize_t err;
2603
2604 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2605 if (err < 0)
2606 return err;
2607
2608 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2609 kfree(iov);
2610 return err;
2611 }
2612
2613 /*
2614 * BSD recvmsg interface
2615 */
2616
2617 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2618 struct user_msghdr __user *umsg,
2619 struct sockaddr __user *uaddr, unsigned int flags)
2620 {
2621 /* disallow ancillary data requests from this path */
2622 if (msg->msg_control || msg->msg_controllen)
2623 return -EINVAL;
2624
2625 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2626 }
2627
2628 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2629 bool forbid_cmsg_compat)
2630 {
2631 int fput_needed, err;
2632 struct msghdr msg_sys;
2633 struct socket *sock;
2634
2635 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2636 return -EINVAL;
2637
2638 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2639 if (!sock)
2640 goto out;
2641
2642 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2643
2644 fput_light(sock->file, fput_needed);
2645 out:
2646 return err;
2647 }
2648
2649 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2650 unsigned int, flags)
2651 {
2652 return __sys_recvmsg(fd, msg, flags, true);
2653 }
2654
2655 /*
2656 * Linux recvmmsg interface
2657 */
2658
2659 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2660 unsigned int vlen, unsigned int flags,
2661 struct timespec64 *timeout)
2662 {
2663 int fput_needed, err, datagrams;
2664 struct socket *sock;
2665 struct mmsghdr __user *entry;
2666 struct compat_mmsghdr __user *compat_entry;
2667 struct msghdr msg_sys;
2668 struct timespec64 end_time;
2669 struct timespec64 timeout64;
2670
2671 if (timeout &&
2672 poll_select_set_timeout(&end_time, timeout->tv_sec,
2673 timeout->tv_nsec))
2674 return -EINVAL;
2675
2676 datagrams = 0;
2677
2678 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2679 if (!sock)
2680 return err;
2681
2682 if (likely(!(flags & MSG_ERRQUEUE))) {
2683 err = sock_error(sock->sk);
2684 if (err) {
2685 datagrams = err;
2686 goto out_put;
2687 }
2688 }
2689
2690 entry = mmsg;
2691 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2692
2693 while (datagrams < vlen) {
2694 /*
2695 * No need to ask LSM for more than the first datagram.
2696 */
2697 if (MSG_CMSG_COMPAT & flags) {
2698 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2699 &msg_sys, flags & ~MSG_WAITFORONE,
2700 datagrams);
2701 if (err < 0)
2702 break;
2703 err = __put_user(err, &compat_entry->msg_len);
2704 ++compat_entry;
2705 } else {
2706 err = ___sys_recvmsg(sock,
2707 (struct user_msghdr __user *)entry,
2708 &msg_sys, flags & ~MSG_WAITFORONE,
2709 datagrams);
2710 if (err < 0)
2711 break;
2712 err = put_user(err, &entry->msg_len);
2713 ++entry;
2714 }
2715
2716 if (err)
2717 break;
2718 ++datagrams;
2719
2720 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2721 if (flags & MSG_WAITFORONE)
2722 flags |= MSG_DONTWAIT;
2723
2724 if (timeout) {
2725 ktime_get_ts64(&timeout64);
2726 *timeout = timespec64_sub(end_time, timeout64);
2727 if (timeout->tv_sec < 0) {
2728 timeout->tv_sec = timeout->tv_nsec = 0;
2729 break;
2730 }
2731
2732 /* Timeout, return less than vlen datagrams */
2733 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2734 break;
2735 }
2736
2737 /* Out of band data, return right away */
2738 if (msg_sys.msg_flags & MSG_OOB)
2739 break;
2740 cond_resched();
2741 }
2742
2743 if (err == 0)
2744 goto out_put;
2745
2746 if (datagrams == 0) {
2747 datagrams = err;
2748 goto out_put;
2749 }
2750
2751 /*
2752 * We may return less entries than requested (vlen) if the
2753 * sock is non block and there aren't enough datagrams...
2754 */
2755 if (err != -EAGAIN) {
2756 /*
2757 * ... or if recvmsg returns an error after we
2758 * received some datagrams, where we record the
2759 * error to return on the next call or if the
2760 * app asks about it using getsockopt(SO_ERROR).
2761 */
2762 sock->sk->sk_err = -err;
2763 }
2764 out_put:
2765 fput_light(sock->file, fput_needed);
2766
2767 return datagrams;
2768 }
2769
2770 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2771 unsigned int vlen, unsigned int flags,
2772 struct __kernel_timespec __user *timeout,
2773 struct old_timespec32 __user *timeout32)
2774 {
2775 int datagrams;
2776 struct timespec64 timeout_sys;
2777
2778 if (timeout && get_timespec64(&timeout_sys, timeout))
2779 return -EFAULT;
2780
2781 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2782 return -EFAULT;
2783
2784 if (!timeout && !timeout32)
2785 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2786
2787 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2788
2789 if (datagrams <= 0)
2790 return datagrams;
2791
2792 if (timeout && put_timespec64(&timeout_sys, timeout))
2793 datagrams = -EFAULT;
2794
2795 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2796 datagrams = -EFAULT;
2797
2798 return datagrams;
2799 }
2800
2801 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2802 unsigned int, vlen, unsigned int, flags,
2803 struct __kernel_timespec __user *, timeout)
2804 {
2805 if (flags & MSG_CMSG_COMPAT)
2806 return -EINVAL;
2807
2808 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2809 }
2810
2811 #ifdef CONFIG_COMPAT_32BIT_TIME
2812 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2813 unsigned int, vlen, unsigned int, flags,
2814 struct old_timespec32 __user *, timeout)
2815 {
2816 if (flags & MSG_CMSG_COMPAT)
2817 return -EINVAL;
2818
2819 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2820 }
2821 #endif
2822
2823 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2824 /* Argument list sizes for sys_socketcall */
2825 #define AL(x) ((x) * sizeof(unsigned long))
2826 static const unsigned char nargs[21] = {
2827 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2828 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2829 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2830 AL(4), AL(5), AL(4)
2831 };
2832
2833 #undef AL
2834
2835 /*
2836 * System call vectors.
2837 *
2838 * Argument checking cleaned up. Saved 20% in size.
2839 * This function doesn't need to set the kernel lock because
2840 * it is set by the callees.
2841 */
2842
2843 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2844 {
2845 unsigned long a[AUDITSC_ARGS];
2846 unsigned long a0, a1;
2847 int err;
2848 unsigned int len;
2849
2850 if (call < 1 || call > SYS_SENDMMSG)
2851 return -EINVAL;
2852 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2853
2854 len = nargs[call];
2855 if (len > sizeof(a))
2856 return -EINVAL;
2857
2858 /* copy_from_user should be SMP safe. */
2859 if (copy_from_user(a, args, len))
2860 return -EFAULT;
2861
2862 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2863 if (err)
2864 return err;
2865
2866 a0 = a[0];
2867 a1 = a[1];
2868
2869 switch (call) {
2870 case SYS_SOCKET:
2871 err = __sys_socket(a0, a1, a[2]);
2872 break;
2873 case SYS_BIND:
2874 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2875 break;
2876 case SYS_CONNECT:
2877 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2878 break;
2879 case SYS_LISTEN:
2880 err = __sys_listen(a0, a1);
2881 break;
2882 case SYS_ACCEPT:
2883 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2884 (int __user *)a[2], 0);
2885 break;
2886 case SYS_GETSOCKNAME:
2887 err =
2888 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2889 (int __user *)a[2]);
2890 break;
2891 case SYS_GETPEERNAME:
2892 err =
2893 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2894 (int __user *)a[2]);
2895 break;
2896 case SYS_SOCKETPAIR:
2897 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2898 break;
2899 case SYS_SEND:
2900 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2901 NULL, 0);
2902 break;
2903 case SYS_SENDTO:
2904 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2905 (struct sockaddr __user *)a[4], a[5]);
2906 break;
2907 case SYS_RECV:
2908 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2909 NULL, NULL);
2910 break;
2911 case SYS_RECVFROM:
2912 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2913 (struct sockaddr __user *)a[4],
2914 (int __user *)a[5]);
2915 break;
2916 case SYS_SHUTDOWN:
2917 err = __sys_shutdown(a0, a1);
2918 break;
2919 case SYS_SETSOCKOPT:
2920 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2921 a[4]);
2922 break;
2923 case SYS_GETSOCKOPT:
2924 err =
2925 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2926 (int __user *)a[4]);
2927 break;
2928 case SYS_SENDMSG:
2929 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2930 a[2], true);
2931 break;
2932 case SYS_SENDMMSG:
2933 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2934 a[3], true);
2935 break;
2936 case SYS_RECVMSG:
2937 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2938 a[2], true);
2939 break;
2940 case SYS_RECVMMSG:
2941 if (IS_ENABLED(CONFIG_64BIT))
2942 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2943 a[2], a[3],
2944 (struct __kernel_timespec __user *)a[4],
2945 NULL);
2946 else
2947 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2948 a[2], a[3], NULL,
2949 (struct old_timespec32 __user *)a[4]);
2950 break;
2951 case SYS_ACCEPT4:
2952 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2953 (int __user *)a[2], a[3]);
2954 break;
2955 default:
2956 err = -EINVAL;
2957 break;
2958 }
2959 return err;
2960 }
2961
2962 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2963
2964 /**
2965 * sock_register - add a socket protocol handler
2966 * @ops: description of protocol
2967 *
2968 * This function is called by a protocol handler that wants to
2969 * advertise its address family, and have it linked into the
2970 * socket interface. The value ops->family corresponds to the
2971 * socket system call protocol family.
2972 */
2973 int sock_register(const struct net_proto_family *ops)
2974 {
2975 int err;
2976
2977 if (ops->family >= NPROTO) {
2978 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2979 return -ENOBUFS;
2980 }
2981
2982 spin_lock(&net_family_lock);
2983 if (rcu_dereference_protected(net_families[ops->family],
2984 lockdep_is_held(&net_family_lock)))
2985 err = -EEXIST;
2986 else {
2987 rcu_assign_pointer(net_families[ops->family], ops);
2988 err = 0;
2989 }
2990 spin_unlock(&net_family_lock);
2991
2992 pr_info("NET: Registered protocol family %d\n", ops->family);
2993 return err;
2994 }
2995 EXPORT_SYMBOL(sock_register);
2996
2997 /**
2998 * sock_unregister - remove a protocol handler
2999 * @family: protocol family to remove
3000 *
3001 * This function is called by a protocol handler that wants to
3002 * remove its address family, and have it unlinked from the
3003 * new socket creation.
3004 *
3005 * If protocol handler is a module, then it can use module reference
3006 * counts to protect against new references. If protocol handler is not
3007 * a module then it needs to provide its own protection in
3008 * the ops->create routine.
3009 */
3010 void sock_unregister(int family)
3011 {
3012 BUG_ON(family < 0 || family >= NPROTO);
3013
3014 spin_lock(&net_family_lock);
3015 RCU_INIT_POINTER(net_families[family], NULL);
3016 spin_unlock(&net_family_lock);
3017
3018 synchronize_rcu();
3019
3020 pr_info("NET: Unregistered protocol family %d\n", family);
3021 }
3022 EXPORT_SYMBOL(sock_unregister);
3023
3024 bool sock_is_registered(int family)
3025 {
3026 return family < NPROTO && rcu_access_pointer(net_families[family]);
3027 }
3028
3029 static int __init sock_init(void)
3030 {
3031 int err;
3032 /*
3033 * Initialize the network sysctl infrastructure.
3034 */
3035 err = net_sysctl_init();
3036 if (err)
3037 goto out;
3038
3039 /*
3040 * Initialize skbuff SLAB cache
3041 */
3042 skb_init();
3043
3044 /*
3045 * Initialize the protocols module.
3046 */
3047
3048 init_inodecache();
3049
3050 err = register_filesystem(&sock_fs_type);
3051 if (err)
3052 goto out_fs;
3053 sock_mnt = kern_mount(&sock_fs_type);
3054 if (IS_ERR(sock_mnt)) {
3055 err = PTR_ERR(sock_mnt);
3056 goto out_mount;
3057 }
3058
3059 /* The real protocol initialization is performed in later initcalls.
3060 */
3061
3062 #ifdef CONFIG_NETFILTER
3063 err = netfilter_init();
3064 if (err)
3065 goto out;
3066 #endif
3067
3068 ptp_classifier_init();
3069
3070 out:
3071 return err;
3072
3073 out_mount:
3074 unregister_filesystem(&sock_fs_type);
3075 out_fs:
3076 goto out;
3077 }
3078
3079 core_initcall(sock_init); /* early initcall */
3080
3081 #ifdef CONFIG_PROC_FS
3082 void socket_seq_show(struct seq_file *seq)
3083 {
3084 seq_printf(seq, "sockets: used %d\n",
3085 sock_inuse_get(seq->private));
3086 }
3087 #endif /* CONFIG_PROC_FS */
3088
3089 #ifdef CONFIG_COMPAT
3090 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3091 {
3092 struct compat_ifconf ifc32;
3093 struct ifconf ifc;
3094 int err;
3095
3096 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3097 return -EFAULT;
3098
3099 ifc.ifc_len = ifc32.ifc_len;
3100 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3101
3102 rtnl_lock();
3103 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3104 rtnl_unlock();
3105 if (err)
3106 return err;
3107
3108 ifc32.ifc_len = ifc.ifc_len;
3109 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3110 return -EFAULT;
3111
3112 return 0;
3113 }
3114
3115 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3116 {
3117 struct compat_ethtool_rxnfc __user *compat_rxnfc;
3118 bool convert_in = false, convert_out = false;
3119 size_t buf_size = 0;
3120 struct ethtool_rxnfc __user *rxnfc = NULL;
3121 struct ifreq ifr;
3122 u32 rule_cnt = 0, actual_rule_cnt;
3123 u32 ethcmd;
3124 u32 data;
3125 int ret;
3126
3127 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3128 return -EFAULT;
3129
3130 compat_rxnfc = compat_ptr(data);
3131
3132 if (get_user(ethcmd, &compat_rxnfc->cmd))
3133 return -EFAULT;
3134
3135 /* Most ethtool structures are defined without padding.
3136 * Unfortunately struct ethtool_rxnfc is an exception.
3137 */
3138 switch (ethcmd) {
3139 default:
3140 break;
3141 case ETHTOOL_GRXCLSRLALL:
3142 /* Buffer size is variable */
3143 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3144 return -EFAULT;
3145 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3146 return -ENOMEM;
3147 buf_size += rule_cnt * sizeof(u32);
3148 /* fall through */
3149 case ETHTOOL_GRXRINGS:
3150 case ETHTOOL_GRXCLSRLCNT:
3151 case ETHTOOL_GRXCLSRULE:
3152 case ETHTOOL_SRXCLSRLINS:
3153 convert_out = true;
3154 /* fall through */
3155 case ETHTOOL_SRXCLSRLDEL:
3156 buf_size += sizeof(struct ethtool_rxnfc);
3157 convert_in = true;
3158 rxnfc = compat_alloc_user_space(buf_size);
3159 break;
3160 }
3161
3162 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3163 return -EFAULT;
3164
3165 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3166
3167 if (convert_in) {
3168 /* We expect there to be holes between fs.m_ext and
3169 * fs.ring_cookie and at the end of fs, but nowhere else.
3170 */
3171 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3172 sizeof(compat_rxnfc->fs.m_ext) !=
3173 offsetof(struct ethtool_rxnfc, fs.m_ext) +
3174 sizeof(rxnfc->fs.m_ext));
3175 BUILD_BUG_ON(
3176 offsetof(struct compat_ethtool_rxnfc, fs.location) -
3177 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3178 offsetof(struct ethtool_rxnfc, fs.location) -
3179 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3180
3181 if (copy_in_user(rxnfc, compat_rxnfc,
3182 (void __user *)(&rxnfc->fs.m_ext + 1) -
3183 (void __user *)rxnfc) ||
3184 copy_in_user(&rxnfc->fs.ring_cookie,
3185 &compat_rxnfc->fs.ring_cookie,
3186 (void __user *)(&rxnfc->fs.location + 1) -
3187 (void __user *)&rxnfc->fs.ring_cookie))
3188 return -EFAULT;
3189 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3190 if (put_user(rule_cnt, &rxnfc->rule_cnt))
3191 return -EFAULT;
3192 } else if (copy_in_user(&rxnfc->rule_cnt,
3193 &compat_rxnfc->rule_cnt,
3194 sizeof(rxnfc->rule_cnt)))
3195 return -EFAULT;
3196 }
3197
3198 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3199 if (ret)
3200 return ret;
3201
3202 if (convert_out) {
3203 if (copy_in_user(compat_rxnfc, rxnfc,
3204 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3205 (const void __user *)rxnfc) ||
3206 copy_in_user(&compat_rxnfc->fs.ring_cookie,
3207 &rxnfc->fs.ring_cookie,
3208 (const void __user *)(&rxnfc->fs.location + 1) -
3209 (const void __user *)&rxnfc->fs.ring_cookie) ||
3210 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3211 sizeof(rxnfc->rule_cnt)))
3212 return -EFAULT;
3213
3214 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3215 /* As an optimisation, we only copy the actual
3216 * number of rules that the underlying
3217 * function returned. Since Mallory might
3218 * change the rule count in user memory, we
3219 * check that it is less than the rule count
3220 * originally given (as the user buffer size),
3221 * which has been range-checked.
3222 */
3223 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3224 return -EFAULT;
3225 if (actual_rule_cnt < rule_cnt)
3226 rule_cnt = actual_rule_cnt;
3227 if (copy_in_user(&compat_rxnfc->rule_locs[0],
3228 &rxnfc->rule_locs[0],
3229 rule_cnt * sizeof(u32)))
3230 return -EFAULT;
3231 }
3232 }
3233
3234 return 0;
3235 }
3236
3237 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3238 {
3239 compat_uptr_t uptr32;
3240 struct ifreq ifr;
3241 void __user *saved;
3242 int err;
3243
3244 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3245 return -EFAULT;
3246
3247 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3248 return -EFAULT;
3249
3250 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3251 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3252
3253 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3254 if (!err) {
3255 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3256 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3257 err = -EFAULT;
3258 }
3259 return err;
3260 }
3261
3262 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3263 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3264 struct compat_ifreq __user *u_ifreq32)
3265 {
3266 struct ifreq ifreq;
3267 u32 data32;
3268
3269 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3270 return -EFAULT;
3271 if (get_user(data32, &u_ifreq32->ifr_data))
3272 return -EFAULT;
3273 ifreq.ifr_data = compat_ptr(data32);
3274
3275 return dev_ioctl(net, cmd, &ifreq, NULL);
3276 }
3277
3278 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3279 unsigned int cmd,
3280 struct compat_ifreq __user *uifr32)
3281 {
3282 struct ifreq __user *uifr;
3283 int err;
3284
3285 /* Handle the fact that while struct ifreq has the same *layout* on
3286 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3287 * which are handled elsewhere, it still has different *size* due to
3288 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3289 * resulting in struct ifreq being 32 and 40 bytes respectively).
3290 * As a result, if the struct happens to be at the end of a page and
3291 * the next page isn't readable/writable, we get a fault. To prevent
3292 * that, copy back and forth to the full size.
3293 */
3294
3295 uifr = compat_alloc_user_space(sizeof(*uifr));
3296 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3297 return -EFAULT;
3298
3299 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3300
3301 if (!err) {
3302 switch (cmd) {
3303 case SIOCGIFFLAGS:
3304 case SIOCGIFMETRIC:
3305 case SIOCGIFMTU:
3306 case SIOCGIFMEM:
3307 case SIOCGIFHWADDR:
3308 case SIOCGIFINDEX:
3309 case SIOCGIFADDR:
3310 case SIOCGIFBRDADDR:
3311 case SIOCGIFDSTADDR:
3312 case SIOCGIFNETMASK:
3313 case SIOCGIFPFLAGS:
3314 case SIOCGIFTXQLEN:
3315 case SIOCGMIIPHY:
3316 case SIOCGMIIREG:
3317 case SIOCGIFNAME:
3318 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3319 err = -EFAULT;
3320 break;
3321 }
3322 }
3323 return err;
3324 }
3325
3326 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3327 struct compat_ifreq __user *uifr32)
3328 {
3329 struct ifreq ifr;
3330 struct compat_ifmap __user *uifmap32;
3331 int err;
3332
3333 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3334 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3335 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3336 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3337 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3338 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3339 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3340 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3341 if (err)
3342 return -EFAULT;
3343
3344 err = dev_ioctl(net, cmd, &ifr, NULL);
3345
3346 if (cmd == SIOCGIFMAP && !err) {
3347 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3348 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3349 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3350 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3351 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3352 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3353 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3354 if (err)
3355 err = -EFAULT;
3356 }
3357 return err;
3358 }
3359
3360 struct rtentry32 {
3361 u32 rt_pad1;
3362 struct sockaddr rt_dst; /* target address */
3363 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3364 struct sockaddr rt_genmask; /* target network mask (IP) */
3365 unsigned short rt_flags;
3366 short rt_pad2;
3367 u32 rt_pad3;
3368 unsigned char rt_tos;
3369 unsigned char rt_class;
3370 short rt_pad4;
3371 short rt_metric; /* +1 for binary compatibility! */
3372 /* char * */ u32 rt_dev; /* forcing the device at add */
3373 u32 rt_mtu; /* per route MTU/Window */
3374 u32 rt_window; /* Window clamping */
3375 unsigned short rt_irtt; /* Initial RTT */
3376 };
3377
3378 struct in6_rtmsg32 {
3379 struct in6_addr rtmsg_dst;
3380 struct in6_addr rtmsg_src;
3381 struct in6_addr rtmsg_gateway;
3382 u32 rtmsg_type;
3383 u16 rtmsg_dst_len;
3384 u16 rtmsg_src_len;
3385 u32 rtmsg_metric;
3386 u32 rtmsg_info;
3387 u32 rtmsg_flags;
3388 s32 rtmsg_ifindex;
3389 };
3390
3391 static int routing_ioctl(struct net *net, struct socket *sock,
3392 unsigned int cmd, void __user *argp)
3393 {
3394 int ret;
3395 void *r = NULL;
3396 struct in6_rtmsg r6;
3397 struct rtentry r4;
3398 char devname[16];
3399 u32 rtdev;
3400 mm_segment_t old_fs = get_fs();
3401
3402 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3403 struct in6_rtmsg32 __user *ur6 = argp;
3404 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3405 3 * sizeof(struct in6_addr));
3406 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3407 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3408 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3409 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3410 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3411 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3412 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3413
3414 r = (void *) &r6;
3415 } else { /* ipv4 */
3416 struct rtentry32 __user *ur4 = argp;
3417 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3418 3 * sizeof(struct sockaddr));
3419 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3420 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3421 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3422 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3423 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3424 ret |= get_user(rtdev, &(ur4->rt_dev));
3425 if (rtdev) {
3426 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3427 r4.rt_dev = (char __user __force *)devname;
3428 devname[15] = 0;
3429 } else
3430 r4.rt_dev = NULL;
3431
3432 r = (void *) &r4;
3433 }
3434
3435 if (ret) {
3436 ret = -EFAULT;
3437 goto out;
3438 }
3439
3440 set_fs(KERNEL_DS);
3441 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3442 set_fs(old_fs);
3443
3444 out:
3445 return ret;
3446 }
3447
3448 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3449 * for some operations; this forces use of the newer bridge-utils that
3450 * use compatible ioctls
3451 */
3452 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3453 {
3454 compat_ulong_t tmp;
3455
3456 if (get_user(tmp, argp))
3457 return -EFAULT;
3458 if (tmp == BRCTL_GET_VERSION)
3459 return BRCTL_VERSION + 1;
3460 return -EINVAL;
3461 }
3462
3463 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3464 unsigned int cmd, unsigned long arg)
3465 {
3466 void __user *argp = compat_ptr(arg);
3467 struct sock *sk = sock->sk;
3468 struct net *net = sock_net(sk);
3469
3470 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3471 return compat_ifr_data_ioctl(net, cmd, argp);
3472
3473 switch (cmd) {
3474 case SIOCSIFBR:
3475 case SIOCGIFBR:
3476 return old_bridge_ioctl(argp);
3477 case SIOCGIFCONF:
3478 return compat_dev_ifconf(net, argp);
3479 case SIOCETHTOOL:
3480 return ethtool_ioctl(net, argp);
3481 case SIOCWANDEV:
3482 return compat_siocwandev(net, argp);
3483 case SIOCGIFMAP:
3484 case SIOCSIFMAP:
3485 return compat_sioc_ifmap(net, cmd, argp);
3486 case SIOCADDRT:
3487 case SIOCDELRT:
3488 return routing_ioctl(net, sock, cmd, argp);
3489 case SIOCGSTAMP_OLD:
3490 case SIOCGSTAMPNS_OLD:
3491 if (!sock->ops->gettstamp)
3492 return -ENOIOCTLCMD;
3493 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3494 !COMPAT_USE_64BIT_TIME);
3495
3496 case SIOCBONDSLAVEINFOQUERY:
3497 case SIOCBONDINFOQUERY:
3498 case SIOCSHWTSTAMP:
3499 case SIOCGHWTSTAMP:
3500 return compat_ifr_data_ioctl(net, cmd, argp);
3501
3502 case FIOSETOWN:
3503 case SIOCSPGRP:
3504 case FIOGETOWN:
3505 case SIOCGPGRP:
3506 case SIOCBRADDBR:
3507 case SIOCBRDELBR:
3508 case SIOCGIFVLAN:
3509 case SIOCSIFVLAN:
3510 case SIOCADDDLCI:
3511 case SIOCDELDLCI:
3512 case SIOCGSKNS:
3513 case SIOCGSTAMP_NEW:
3514 case SIOCGSTAMPNS_NEW:
3515 return sock_ioctl(file, cmd, arg);
3516
3517 case SIOCGIFFLAGS:
3518 case SIOCSIFFLAGS:
3519 case SIOCGIFMETRIC:
3520 case SIOCSIFMETRIC:
3521 case SIOCGIFMTU:
3522 case SIOCSIFMTU:
3523 case SIOCGIFMEM:
3524 case SIOCSIFMEM:
3525 case SIOCGIFHWADDR:
3526 case SIOCSIFHWADDR:
3527 case SIOCADDMULTI:
3528 case SIOCDELMULTI:
3529 case SIOCGIFINDEX:
3530 case SIOCGIFADDR:
3531 case SIOCSIFADDR:
3532 case SIOCSIFHWBROADCAST:
3533 case SIOCDIFADDR:
3534 case SIOCGIFBRDADDR:
3535 case SIOCSIFBRDADDR:
3536 case SIOCGIFDSTADDR:
3537 case SIOCSIFDSTADDR:
3538 case SIOCGIFNETMASK:
3539 case SIOCSIFNETMASK:
3540 case SIOCSIFPFLAGS:
3541 case SIOCGIFPFLAGS:
3542 case SIOCGIFTXQLEN:
3543 case SIOCSIFTXQLEN:
3544 case SIOCBRADDIF:
3545 case SIOCBRDELIF:
3546 case SIOCGIFNAME:
3547 case SIOCSIFNAME:
3548 case SIOCGMIIPHY:
3549 case SIOCGMIIREG:
3550 case SIOCSMIIREG:
3551 case SIOCBONDENSLAVE:
3552 case SIOCBONDRELEASE:
3553 case SIOCBONDSETHWADDR:
3554 case SIOCBONDCHANGEACTIVE:
3555 return compat_ifreq_ioctl(net, sock, cmd, argp);
3556
3557 case SIOCSARP:
3558 case SIOCGARP:
3559 case SIOCDARP:
3560 case SIOCOUTQ:
3561 case SIOCOUTQNSD:
3562 case SIOCATMARK:
3563 return sock_do_ioctl(net, sock, cmd, arg);
3564 }
3565
3566 return -ENOIOCTLCMD;
3567 }
3568
3569 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3570 unsigned long arg)
3571 {
3572 struct socket *sock = file->private_data;
3573 int ret = -ENOIOCTLCMD;
3574 struct sock *sk;
3575 struct net *net;
3576
3577 sk = sock->sk;
3578 net = sock_net(sk);
3579
3580 if (sock->ops->compat_ioctl)
3581 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3582
3583 if (ret == -ENOIOCTLCMD &&
3584 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3585 ret = compat_wext_handle_ioctl(net, cmd, arg);
3586
3587 if (ret == -ENOIOCTLCMD)
3588 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3589
3590 return ret;
3591 }
3592 #endif
3593
3594 /**
3595 * kernel_bind - bind an address to a socket (kernel space)
3596 * @sock: socket
3597 * @addr: address
3598 * @addrlen: length of address
3599 *
3600 * Returns 0 or an error.
3601 */
3602
3603 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3604 {
3605 return sock->ops->bind(sock, addr, addrlen);
3606 }
3607 EXPORT_SYMBOL(kernel_bind);
3608
3609 /**
3610 * kernel_listen - move socket to listening state (kernel space)
3611 * @sock: socket
3612 * @backlog: pending connections queue size
3613 *
3614 * Returns 0 or an error.
3615 */
3616
3617 int kernel_listen(struct socket *sock, int backlog)
3618 {
3619 return sock->ops->listen(sock, backlog);
3620 }
3621 EXPORT_SYMBOL(kernel_listen);
3622
3623 /**
3624 * kernel_accept - accept a connection (kernel space)
3625 * @sock: listening socket
3626 * @newsock: new connected socket
3627 * @flags: flags
3628 *
3629 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3630 * If it fails, @newsock is guaranteed to be %NULL.
3631 * Returns 0 or an error.
3632 */
3633
3634 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3635 {
3636 struct sock *sk = sock->sk;
3637 int err;
3638
3639 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3640 newsock);
3641 if (err < 0)
3642 goto done;
3643
3644 err = sock->ops->accept(sock, *newsock, flags, true);
3645 if (err < 0) {
3646 sock_release(*newsock);
3647 *newsock = NULL;
3648 goto done;
3649 }
3650
3651 (*newsock)->ops = sock->ops;
3652 __module_get((*newsock)->ops->owner);
3653
3654 done:
3655 return err;
3656 }
3657 EXPORT_SYMBOL(kernel_accept);
3658
3659 /**
3660 * kernel_connect - connect a socket (kernel space)
3661 * @sock: socket
3662 * @addr: address
3663 * @addrlen: address length
3664 * @flags: flags (O_NONBLOCK, ...)
3665 *
3666 * For datagram sockets, @addr is the addres to which datagrams are sent
3667 * by default, and the only address from which datagrams are received.
3668 * For stream sockets, attempts to connect to @addr.
3669 * Returns 0 or an error code.
3670 */
3671
3672 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3673 int flags)
3674 {
3675 return sock->ops->connect(sock, addr, addrlen, flags);
3676 }
3677 EXPORT_SYMBOL(kernel_connect);
3678
3679 /**
3680 * kernel_getsockname - get the address which the socket is bound (kernel space)
3681 * @sock: socket
3682 * @addr: address holder
3683 *
3684 * Fills the @addr pointer with the address which the socket is bound.
3685 * Returns 0 or an error code.
3686 */
3687
3688 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3689 {
3690 return sock->ops->getname(sock, addr, 0);
3691 }
3692 EXPORT_SYMBOL(kernel_getsockname);
3693
3694 /**
3695 * kernel_peername - get the address which the socket is connected (kernel space)
3696 * @sock: socket
3697 * @addr: address holder
3698 *
3699 * Fills the @addr pointer with the address which the socket is connected.
3700 * Returns 0 or an error code.
3701 */
3702
3703 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3704 {
3705 return sock->ops->getname(sock, addr, 1);
3706 }
3707 EXPORT_SYMBOL(kernel_getpeername);
3708
3709 /**
3710 * kernel_getsockopt - get a socket option (kernel space)
3711 * @sock: socket
3712 * @level: API level (SOL_SOCKET, ...)
3713 * @optname: option tag
3714 * @optval: option value
3715 * @optlen: option length
3716 *
3717 * Assigns the option length to @optlen.
3718 * Returns 0 or an error.
3719 */
3720
3721 int kernel_getsockopt(struct socket *sock, int level, int optname,
3722 char *optval, int *optlen)
3723 {
3724 mm_segment_t oldfs = get_fs();
3725 char __user *uoptval;
3726 int __user *uoptlen;
3727 int err;
3728
3729 uoptval = (char __user __force *) optval;
3730 uoptlen = (int __user __force *) optlen;
3731
3732 set_fs(KERNEL_DS);
3733 if (level == SOL_SOCKET)
3734 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3735 else
3736 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3737 uoptlen);
3738 set_fs(oldfs);
3739 return err;
3740 }
3741 EXPORT_SYMBOL(kernel_getsockopt);
3742
3743 /**
3744 * kernel_setsockopt - set a socket option (kernel space)
3745 * @sock: socket
3746 * @level: API level (SOL_SOCKET, ...)
3747 * @optname: option tag
3748 * @optval: option value
3749 * @optlen: option length
3750 *
3751 * Returns 0 or an error.
3752 */
3753
3754 int kernel_setsockopt(struct socket *sock, int level, int optname,
3755 char *optval, unsigned int optlen)
3756 {
3757 mm_segment_t oldfs = get_fs();
3758 char __user *uoptval;
3759 int err;
3760
3761 uoptval = (char __user __force *) optval;
3762
3763 set_fs(KERNEL_DS);
3764 if (level == SOL_SOCKET)
3765 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3766 else
3767 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3768 optlen);
3769 set_fs(oldfs);
3770 return err;
3771 }
3772 EXPORT_SYMBOL(kernel_setsockopt);
3773
3774 /**
3775 * kernel_sendpage - send a &page through a socket (kernel space)
3776 * @sock: socket
3777 * @page: page
3778 * @offset: page offset
3779 * @size: total size in bytes
3780 * @flags: flags (MSG_DONTWAIT, ...)
3781 *
3782 * Returns the total amount sent in bytes or an error.
3783 */
3784
3785 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3786 size_t size, int flags)
3787 {
3788 if (sock->ops->sendpage)
3789 return sock->ops->sendpage(sock, page, offset, size, flags);
3790
3791 return sock_no_sendpage(sock, page, offset, size, flags);
3792 }
3793 EXPORT_SYMBOL(kernel_sendpage);
3794
3795 /**
3796 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3797 * @sk: sock
3798 * @page: page
3799 * @offset: page offset
3800 * @size: total size in bytes
3801 * @flags: flags (MSG_DONTWAIT, ...)
3802 *
3803 * Returns the total amount sent in bytes or an error.
3804 * Caller must hold @sk.
3805 */
3806
3807 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3808 size_t size, int flags)
3809 {
3810 struct socket *sock = sk->sk_socket;
3811
3812 if (sock->ops->sendpage_locked)
3813 return sock->ops->sendpage_locked(sk, page, offset, size,
3814 flags);
3815
3816 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3817 }
3818 EXPORT_SYMBOL(kernel_sendpage_locked);
3819
3820 /**
3821 * kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3822 * @sock: socket
3823 * @how: connection part
3824 *
3825 * Returns 0 or an error.
3826 */
3827
3828 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3829 {
3830 return sock->ops->shutdown(sock, how);
3831 }
3832 EXPORT_SYMBOL(kernel_sock_shutdown);
3833
3834 /**
3835 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3836 * @sk: socket
3837 *
3838 * This routine returns the IP overhead imposed by a socket i.e.
3839 * the length of the underlying IP header, depending on whether
3840 * this is an IPv4 or IPv6 socket and the length from IP options turned
3841 * on at the socket. Assumes that the caller has a lock on the socket.
3842 */
3843
3844 u32 kernel_sock_ip_overhead(struct sock *sk)
3845 {
3846 struct inet_sock *inet;
3847 struct ip_options_rcu *opt;
3848 u32 overhead = 0;
3849 #if IS_ENABLED(CONFIG_IPV6)
3850 struct ipv6_pinfo *np;
3851 struct ipv6_txoptions *optv6 = NULL;
3852 #endif /* IS_ENABLED(CONFIG_IPV6) */
3853
3854 if (!sk)
3855 return overhead;
3856
3857 switch (sk->sk_family) {
3858 case AF_INET:
3859 inet = inet_sk(sk);
3860 overhead += sizeof(struct iphdr);
3861 opt = rcu_dereference_protected(inet->inet_opt,
3862 sock_owned_by_user(sk));
3863 if (opt)
3864 overhead += opt->opt.optlen;
3865 return overhead;
3866 #if IS_ENABLED(CONFIG_IPV6)
3867 case AF_INET6:
3868 np = inet6_sk(sk);
3869 overhead += sizeof(struct ipv6hdr);
3870 if (np)
3871 optv6 = rcu_dereference_protected(np->opt,
3872 sock_owned_by_user(sk));
3873 if (optv6)
3874 overhead += (optv6->opt_flen + optv6->opt_nflen);
3875 return overhead;
3876 #endif /* IS_ENABLED(CONFIG_IPV6) */
3877 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3878 return overhead;
3879 }
3880 }
3881 EXPORT_SYMBOL(kernel_sock_ip_overhead);