]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/socket.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156 };
157
158 /*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165 /*
166 * Statistics counters of the socket lists
167 */
168
169 static DEFINE_PER_CPU(int, sockets_in_use);
170
171 /*
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
175 */
176
177 /**
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
182 *
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
186 */
187
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
197 }
198
199 /**
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
205 *
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
214 */
215
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
218 {
219 int err;
220 int len;
221
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
235 }
236 /*
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
239 */
240 return __put_user(klen, ulen);
241 }
242
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
249
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
257 }
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 wq->flags = 0;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
262
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
268
269 return &ei->vfs_inode;
270 }
271
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
276
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
281 }
282
283 static void init_once(void *foo)
284 {
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
286
287 inode_init_once(&ei->vfs_inode);
288 }
289
290 static void init_inodecache(void)
291 {
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
294 0,
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 init_once);
299 BUG_ON(sock_inode_cachep == NULL);
300 }
301
302 static const struct super_operations sockfs_ops = {
303 .alloc_inode = sock_alloc_inode,
304 .destroy_inode = sock_destroy_inode,
305 .statfs = simple_statfs,
306 };
307
308 /*
309 * sockfs_dname() is called from d_path().
310 */
311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
312 {
313 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
314 d_inode(dentry)->i_ino);
315 }
316
317 static const struct dentry_operations sockfs_dentry_operations = {
318 .d_dname = sockfs_dname,
319 };
320
321 static int sockfs_xattr_get(const struct xattr_handler *handler,
322 struct dentry *dentry, struct inode *inode,
323 const char *suffix, void *value, size_t size)
324 {
325 if (value) {
326 if (dentry->d_name.len + 1 > size)
327 return -ERANGE;
328 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
329 }
330 return dentry->d_name.len + 1;
331 }
332
333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
336
337 static const struct xattr_handler sockfs_xattr_handler = {
338 .name = XATTR_NAME_SOCKPROTONAME,
339 .get = sockfs_xattr_get,
340 };
341
342 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
343 struct dentry *dentry, struct inode *inode,
344 const char *suffix, const void *value,
345 size_t size, int flags)
346 {
347 /* Handled by LSM. */
348 return -EAGAIN;
349 }
350
351 static const struct xattr_handler sockfs_security_xattr_handler = {
352 .prefix = XATTR_SECURITY_PREFIX,
353 .set = sockfs_security_xattr_set,
354 };
355
356 static const struct xattr_handler *sockfs_xattr_handlers[] = {
357 &sockfs_xattr_handler,
358 &sockfs_security_xattr_handler,
359 NULL
360 };
361
362 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
363 int flags, const char *dev_name, void *data)
364 {
365 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
366 sockfs_xattr_handlers,
367 &sockfs_dentry_operations, SOCKFS_MAGIC);
368 }
369
370 static struct vfsmount *sock_mnt __read_mostly;
371
372 static struct file_system_type sock_fs_type = {
373 .name = "sockfs",
374 .mount = sockfs_mount,
375 .kill_sb = kill_anon_super,
376 };
377
378 /*
379 * Obtains the first available file descriptor and sets it up for use.
380 *
381 * These functions create file structures and maps them to fd space
382 * of the current process. On success it returns file descriptor
383 * and file struct implicitly stored in sock->file.
384 * Note that another thread may close file descriptor before we return
385 * from this function. We use the fact that now we do not refer
386 * to socket after mapping. If one day we will need it, this
387 * function will increment ref. count on file by 1.
388 *
389 * In any case returned fd MAY BE not valid!
390 * This race condition is unavoidable
391 * with shared fd spaces, we cannot solve it inside kernel,
392 * but we take care of internal coherence yet.
393 */
394
395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
396 {
397 struct qstr name = { .name = "" };
398 struct path path;
399 struct file *file;
400
401 if (dname) {
402 name.name = dname;
403 name.len = strlen(name.name);
404 } else if (sock->sk) {
405 name.name = sock->sk->sk_prot_creator->name;
406 name.len = strlen(name.name);
407 }
408 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
409 if (unlikely(!path.dentry))
410 return ERR_PTR(-ENOMEM);
411 path.mnt = mntget(sock_mnt);
412
413 d_instantiate(path.dentry, SOCK_INODE(sock));
414
415 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
416 &socket_file_ops);
417 if (IS_ERR(file)) {
418 /* drop dentry, keep inode */
419 ihold(d_inode(path.dentry));
420 path_put(&path);
421 return file;
422 }
423
424 sock->file = file;
425 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
426 file->private_data = sock;
427 return file;
428 }
429 EXPORT_SYMBOL(sock_alloc_file);
430
431 static int sock_map_fd(struct socket *sock, int flags)
432 {
433 struct file *newfile;
434 int fd = get_unused_fd_flags(flags);
435 if (unlikely(fd < 0))
436 return fd;
437
438 newfile = sock_alloc_file(sock, flags, NULL);
439 if (likely(!IS_ERR(newfile))) {
440 fd_install(fd, newfile);
441 return fd;
442 }
443
444 put_unused_fd(fd);
445 return PTR_ERR(newfile);
446 }
447
448 struct socket *sock_from_file(struct file *file, int *err)
449 {
450 if (file->f_op == &socket_file_ops)
451 return file->private_data; /* set in sock_map_fd */
452
453 *err = -ENOTSOCK;
454 return NULL;
455 }
456 EXPORT_SYMBOL(sock_from_file);
457
458 /**
459 * sockfd_lookup - Go from a file number to its socket slot
460 * @fd: file handle
461 * @err: pointer to an error code return
462 *
463 * The file handle passed in is locked and the socket it is bound
464 * to is returned. If an error occurs the err pointer is overwritten
465 * with a negative errno code and NULL is returned. The function checks
466 * for both invalid handles and passing a handle which is not a socket.
467 *
468 * On a success the socket object pointer is returned.
469 */
470
471 struct socket *sockfd_lookup(int fd, int *err)
472 {
473 struct file *file;
474 struct socket *sock;
475
476 file = fget(fd);
477 if (!file) {
478 *err = -EBADF;
479 return NULL;
480 }
481
482 sock = sock_from_file(file, err);
483 if (!sock)
484 fput(file);
485 return sock;
486 }
487 EXPORT_SYMBOL(sockfd_lookup);
488
489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
490 {
491 struct fd f = fdget(fd);
492 struct socket *sock;
493
494 *err = -EBADF;
495 if (f.file) {
496 sock = sock_from_file(f.file, err);
497 if (likely(sock)) {
498 *fput_needed = f.flags;
499 return sock;
500 }
501 fdput(f);
502 }
503 return NULL;
504 }
505
506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
507 size_t size)
508 {
509 ssize_t len;
510 ssize_t used = 0;
511
512 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
513 if (len < 0)
514 return len;
515 used += len;
516 if (buffer) {
517 if (size < used)
518 return -ERANGE;
519 buffer += len;
520 }
521
522 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
523 used += len;
524 if (buffer) {
525 if (size < used)
526 return -ERANGE;
527 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
528 buffer += len;
529 }
530
531 return used;
532 }
533
534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
535 {
536 int err = simple_setattr(dentry, iattr);
537
538 if (!err && (iattr->ia_valid & ATTR_UID)) {
539 struct socket *sock = SOCKET_I(d_inode(dentry));
540
541 sock->sk->sk_uid = iattr->ia_uid;
542 }
543
544 return err;
545 }
546
547 static const struct inode_operations sockfs_inode_ops = {
548 .listxattr = sockfs_listxattr,
549 .setattr = sockfs_setattr,
550 };
551
552 /**
553 * sock_alloc - allocate a socket
554 *
555 * Allocate a new inode and socket object. The two are bound together
556 * and initialised. The socket is then returned. If we are out of inodes
557 * NULL is returned.
558 */
559
560 struct socket *sock_alloc(void)
561 {
562 struct inode *inode;
563 struct socket *sock;
564
565 inode = new_inode_pseudo(sock_mnt->mnt_sb);
566 if (!inode)
567 return NULL;
568
569 sock = SOCKET_I(inode);
570
571 kmemcheck_annotate_bitfield(sock, type);
572 inode->i_ino = get_next_ino();
573 inode->i_mode = S_IFSOCK | S_IRWXUGO;
574 inode->i_uid = current_fsuid();
575 inode->i_gid = current_fsgid();
576 inode->i_op = &sockfs_inode_ops;
577
578 this_cpu_add(sockets_in_use, 1);
579 return sock;
580 }
581 EXPORT_SYMBOL(sock_alloc);
582
583 /**
584 * sock_release - close a socket
585 * @sock: socket to close
586 *
587 * The socket is released from the protocol stack if it has a release
588 * callback, and the inode is then released if the socket is bound to
589 * an inode not a file.
590 */
591
592 void sock_release(struct socket *sock)
593 {
594 if (sock->ops) {
595 struct module *owner = sock->ops->owner;
596
597 sock->ops->release(sock);
598 sock->ops = NULL;
599 module_put(owner);
600 }
601
602 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
603 pr_err("%s: fasync list not empty!\n", __func__);
604
605 this_cpu_sub(sockets_in_use, 1);
606 if (!sock->file) {
607 iput(SOCK_INODE(sock));
608 return;
609 }
610 sock->file = NULL;
611 }
612 EXPORT_SYMBOL(sock_release);
613
614 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
615 {
616 u8 flags = *tx_flags;
617
618 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
619 flags |= SKBTX_HW_TSTAMP;
620
621 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
622 flags |= SKBTX_SW_TSTAMP;
623
624 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
625 flags |= SKBTX_SCHED_TSTAMP;
626
627 *tx_flags = flags;
628 }
629 EXPORT_SYMBOL(__sock_tx_timestamp);
630
631 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
632 {
633 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
634 BUG_ON(ret == -EIOCBQUEUED);
635 return ret;
636 }
637
638 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
639 {
640 int err = security_socket_sendmsg(sock, msg,
641 msg_data_left(msg));
642
643 return err ?: sock_sendmsg_nosec(sock, msg);
644 }
645 EXPORT_SYMBOL(sock_sendmsg);
646
647 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
648 struct kvec *vec, size_t num, size_t size)
649 {
650 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
651 return sock_sendmsg(sock, msg);
652 }
653 EXPORT_SYMBOL(kernel_sendmsg);
654
655 static bool skb_is_err_queue(const struct sk_buff *skb)
656 {
657 /* pkt_type of skbs enqueued on the error queue are set to
658 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
659 * in recvmsg, since skbs received on a local socket will never
660 * have a pkt_type of PACKET_OUTGOING.
661 */
662 return skb->pkt_type == PACKET_OUTGOING;
663 }
664
665 /* On transmit, software and hardware timestamps are returned independently.
666 * As the two skb clones share the hardware timestamp, which may be updated
667 * before the software timestamp is received, a hardware TX timestamp may be
668 * returned only if there is no software TX timestamp. Ignore false software
669 * timestamps, which may be made in the __sock_recv_timestamp() call when the
670 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
671 * hardware timestamp.
672 */
673 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
674 {
675 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
676 }
677
678 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
679 {
680 struct scm_ts_pktinfo ts_pktinfo;
681 struct net_device *orig_dev;
682
683 if (!skb_mac_header_was_set(skb))
684 return;
685
686 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
687
688 rcu_read_lock();
689 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
690 if (orig_dev)
691 ts_pktinfo.if_index = orig_dev->ifindex;
692 rcu_read_unlock();
693
694 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
695 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
696 sizeof(ts_pktinfo), &ts_pktinfo);
697 }
698
699 /*
700 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
701 */
702 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
703 struct sk_buff *skb)
704 {
705 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
706 struct scm_timestamping tss;
707 int empty = 1, false_tstamp = 0;
708 struct skb_shared_hwtstamps *shhwtstamps =
709 skb_hwtstamps(skb);
710
711 /* Race occurred between timestamp enabling and packet
712 receiving. Fill in the current time for now. */
713 if (need_software_tstamp && skb->tstamp == 0) {
714 __net_timestamp(skb);
715 false_tstamp = 1;
716 }
717
718 if (need_software_tstamp) {
719 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
720 struct timeval tv;
721 skb_get_timestamp(skb, &tv);
722 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
723 sizeof(tv), &tv);
724 } else {
725 struct timespec ts;
726 skb_get_timestampns(skb, &ts);
727 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
728 sizeof(ts), &ts);
729 }
730 }
731
732 memset(&tss, 0, sizeof(tss));
733 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
734 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
735 empty = 0;
736 if (shhwtstamps &&
737 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
738 !skb_is_swtx_tstamp(skb, false_tstamp) &&
739 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
740 empty = 0;
741 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
742 !skb_is_err_queue(skb))
743 put_ts_pktinfo(msg, skb);
744 }
745 if (!empty) {
746 put_cmsg(msg, SOL_SOCKET,
747 SCM_TIMESTAMPING, sizeof(tss), &tss);
748
749 if (skb_is_err_queue(skb) && skb->len &&
750 SKB_EXT_ERR(skb)->opt_stats)
751 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
752 skb->len, skb->data);
753 }
754 }
755 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
756
757 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
758 struct sk_buff *skb)
759 {
760 int ack;
761
762 if (!sock_flag(sk, SOCK_WIFI_STATUS))
763 return;
764 if (!skb->wifi_acked_valid)
765 return;
766
767 ack = skb->wifi_acked;
768
769 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
770 }
771 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
772
773 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
774 struct sk_buff *skb)
775 {
776 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
777 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
778 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
779 }
780
781 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
782 struct sk_buff *skb)
783 {
784 sock_recv_timestamp(msg, sk, skb);
785 sock_recv_drops(msg, sk, skb);
786 }
787 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
788
789 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
790 int flags)
791 {
792 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
793 }
794
795 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
796 {
797 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
798
799 return err ?: sock_recvmsg_nosec(sock, msg, flags);
800 }
801 EXPORT_SYMBOL(sock_recvmsg);
802
803 /**
804 * kernel_recvmsg - Receive a message from a socket (kernel space)
805 * @sock: The socket to receive the message from
806 * @msg: Received message
807 * @vec: Input s/g array for message data
808 * @num: Size of input s/g array
809 * @size: Number of bytes to read
810 * @flags: Message flags (MSG_DONTWAIT, etc...)
811 *
812 * On return the msg structure contains the scatter/gather array passed in the
813 * vec argument. The array is modified so that it consists of the unfilled
814 * portion of the original array.
815 *
816 * The returned value is the total number of bytes received, or an error.
817 */
818 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
819 struct kvec *vec, size_t num, size_t size, int flags)
820 {
821 mm_segment_t oldfs = get_fs();
822 int result;
823
824 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
825 set_fs(KERNEL_DS);
826 result = sock_recvmsg(sock, msg, flags);
827 set_fs(oldfs);
828 return result;
829 }
830 EXPORT_SYMBOL(kernel_recvmsg);
831
832 static ssize_t sock_sendpage(struct file *file, struct page *page,
833 int offset, size_t size, loff_t *ppos, int more)
834 {
835 struct socket *sock;
836 int flags;
837
838 sock = file->private_data;
839
840 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
841 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
842 flags |= more;
843
844 return kernel_sendpage(sock, page, offset, size, flags);
845 }
846
847 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
848 struct pipe_inode_info *pipe, size_t len,
849 unsigned int flags)
850 {
851 struct socket *sock = file->private_data;
852
853 if (unlikely(!sock->ops->splice_read))
854 return -EINVAL;
855
856 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
857 }
858
859 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
860 {
861 struct file *file = iocb->ki_filp;
862 struct socket *sock = file->private_data;
863 struct msghdr msg = {.msg_iter = *to,
864 .msg_iocb = iocb};
865 ssize_t res;
866
867 if (file->f_flags & O_NONBLOCK)
868 msg.msg_flags = MSG_DONTWAIT;
869
870 if (iocb->ki_pos != 0)
871 return -ESPIPE;
872
873 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
874 return 0;
875
876 res = sock_recvmsg(sock, &msg, msg.msg_flags);
877 *to = msg.msg_iter;
878 return res;
879 }
880
881 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
882 {
883 struct file *file = iocb->ki_filp;
884 struct socket *sock = file->private_data;
885 struct msghdr msg = {.msg_iter = *from,
886 .msg_iocb = iocb};
887 ssize_t res;
888
889 if (iocb->ki_pos != 0)
890 return -ESPIPE;
891
892 if (file->f_flags & O_NONBLOCK)
893 msg.msg_flags = MSG_DONTWAIT;
894
895 if (sock->type == SOCK_SEQPACKET)
896 msg.msg_flags |= MSG_EOR;
897
898 res = sock_sendmsg(sock, &msg);
899 *from = msg.msg_iter;
900 return res;
901 }
902
903 /*
904 * Atomic setting of ioctl hooks to avoid race
905 * with module unload.
906 */
907
908 static DEFINE_MUTEX(br_ioctl_mutex);
909 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
910
911 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
912 {
913 mutex_lock(&br_ioctl_mutex);
914 br_ioctl_hook = hook;
915 mutex_unlock(&br_ioctl_mutex);
916 }
917 EXPORT_SYMBOL(brioctl_set);
918
919 static DEFINE_MUTEX(vlan_ioctl_mutex);
920 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
921
922 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
923 {
924 mutex_lock(&vlan_ioctl_mutex);
925 vlan_ioctl_hook = hook;
926 mutex_unlock(&vlan_ioctl_mutex);
927 }
928 EXPORT_SYMBOL(vlan_ioctl_set);
929
930 static DEFINE_MUTEX(dlci_ioctl_mutex);
931 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
932
933 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
934 {
935 mutex_lock(&dlci_ioctl_mutex);
936 dlci_ioctl_hook = hook;
937 mutex_unlock(&dlci_ioctl_mutex);
938 }
939 EXPORT_SYMBOL(dlci_ioctl_set);
940
941 static long sock_do_ioctl(struct net *net, struct socket *sock,
942 unsigned int cmd, unsigned long arg)
943 {
944 int err;
945 void __user *argp = (void __user *)arg;
946
947 err = sock->ops->ioctl(sock, cmd, arg);
948
949 /*
950 * If this ioctl is unknown try to hand it down
951 * to the NIC driver.
952 */
953 if (err == -ENOIOCTLCMD)
954 err = dev_ioctl(net, cmd, argp);
955
956 return err;
957 }
958
959 /*
960 * With an ioctl, arg may well be a user mode pointer, but we don't know
961 * what to do with it - that's up to the protocol still.
962 */
963
964 static struct ns_common *get_net_ns(struct ns_common *ns)
965 {
966 return &get_net(container_of(ns, struct net, ns))->ns;
967 }
968
969 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
970 {
971 struct socket *sock;
972 struct sock *sk;
973 void __user *argp = (void __user *)arg;
974 int pid, err;
975 struct net *net;
976
977 sock = file->private_data;
978 sk = sock->sk;
979 net = sock_net(sk);
980 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
981 err = dev_ioctl(net, cmd, argp);
982 } else
983 #ifdef CONFIG_WEXT_CORE
984 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
985 err = dev_ioctl(net, cmd, argp);
986 } else
987 #endif
988 switch (cmd) {
989 case FIOSETOWN:
990 case SIOCSPGRP:
991 err = -EFAULT;
992 if (get_user(pid, (int __user *)argp))
993 break;
994 err = f_setown(sock->file, pid, 1);
995 break;
996 case FIOGETOWN:
997 case SIOCGPGRP:
998 err = put_user(f_getown(sock->file),
999 (int __user *)argp);
1000 break;
1001 case SIOCGIFBR:
1002 case SIOCSIFBR:
1003 case SIOCBRADDBR:
1004 case SIOCBRDELBR:
1005 err = -ENOPKG;
1006 if (!br_ioctl_hook)
1007 request_module("bridge");
1008
1009 mutex_lock(&br_ioctl_mutex);
1010 if (br_ioctl_hook)
1011 err = br_ioctl_hook(net, cmd, argp);
1012 mutex_unlock(&br_ioctl_mutex);
1013 break;
1014 case SIOCGIFVLAN:
1015 case SIOCSIFVLAN:
1016 err = -ENOPKG;
1017 if (!vlan_ioctl_hook)
1018 request_module("8021q");
1019
1020 mutex_lock(&vlan_ioctl_mutex);
1021 if (vlan_ioctl_hook)
1022 err = vlan_ioctl_hook(net, argp);
1023 mutex_unlock(&vlan_ioctl_mutex);
1024 break;
1025 case SIOCADDDLCI:
1026 case SIOCDELDLCI:
1027 err = -ENOPKG;
1028 if (!dlci_ioctl_hook)
1029 request_module("dlci");
1030
1031 mutex_lock(&dlci_ioctl_mutex);
1032 if (dlci_ioctl_hook)
1033 err = dlci_ioctl_hook(cmd, argp);
1034 mutex_unlock(&dlci_ioctl_mutex);
1035 break;
1036 case SIOCGSKNS:
1037 err = -EPERM;
1038 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1039 break;
1040
1041 err = open_related_ns(&net->ns, get_net_ns);
1042 break;
1043 default:
1044 err = sock_do_ioctl(net, sock, cmd, arg);
1045 break;
1046 }
1047 return err;
1048 }
1049
1050 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1051 {
1052 int err;
1053 struct socket *sock = NULL;
1054
1055 err = security_socket_create(family, type, protocol, 1);
1056 if (err)
1057 goto out;
1058
1059 sock = sock_alloc();
1060 if (!sock) {
1061 err = -ENOMEM;
1062 goto out;
1063 }
1064
1065 sock->type = type;
1066 err = security_socket_post_create(sock, family, type, protocol, 1);
1067 if (err)
1068 goto out_release;
1069
1070 out:
1071 *res = sock;
1072 return err;
1073 out_release:
1074 sock_release(sock);
1075 sock = NULL;
1076 goto out;
1077 }
1078 EXPORT_SYMBOL(sock_create_lite);
1079
1080 /* No kernel lock held - perfect */
1081 static unsigned int sock_poll(struct file *file, poll_table *wait)
1082 {
1083 unsigned int busy_flag = 0;
1084 struct socket *sock;
1085
1086 /*
1087 * We can't return errors to poll, so it's either yes or no.
1088 */
1089 sock = file->private_data;
1090
1091 if (sk_can_busy_loop(sock->sk)) {
1092 /* this socket can poll_ll so tell the system call */
1093 busy_flag = POLL_BUSY_LOOP;
1094
1095 /* once, only if requested by syscall */
1096 if (wait && (wait->_key & POLL_BUSY_LOOP))
1097 sk_busy_loop(sock->sk, 1);
1098 }
1099
1100 return busy_flag | sock->ops->poll(file, sock, wait);
1101 }
1102
1103 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1104 {
1105 struct socket *sock = file->private_data;
1106
1107 return sock->ops->mmap(file, sock, vma);
1108 }
1109
1110 static int sock_close(struct inode *inode, struct file *filp)
1111 {
1112 sock_release(SOCKET_I(inode));
1113 return 0;
1114 }
1115
1116 /*
1117 * Update the socket async list
1118 *
1119 * Fasync_list locking strategy.
1120 *
1121 * 1. fasync_list is modified only under process context socket lock
1122 * i.e. under semaphore.
1123 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1124 * or under socket lock
1125 */
1126
1127 static int sock_fasync(int fd, struct file *filp, int on)
1128 {
1129 struct socket *sock = filp->private_data;
1130 struct sock *sk = sock->sk;
1131 struct socket_wq *wq;
1132
1133 if (sk == NULL)
1134 return -EINVAL;
1135
1136 lock_sock(sk);
1137 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1138 fasync_helper(fd, filp, on, &wq->fasync_list);
1139
1140 if (!wq->fasync_list)
1141 sock_reset_flag(sk, SOCK_FASYNC);
1142 else
1143 sock_set_flag(sk, SOCK_FASYNC);
1144
1145 release_sock(sk);
1146 return 0;
1147 }
1148
1149 /* This function may be called only under rcu_lock */
1150
1151 int sock_wake_async(struct socket_wq *wq, int how, int band)
1152 {
1153 if (!wq || !wq->fasync_list)
1154 return -1;
1155
1156 switch (how) {
1157 case SOCK_WAKE_WAITD:
1158 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1159 break;
1160 goto call_kill;
1161 case SOCK_WAKE_SPACE:
1162 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1163 break;
1164 /* fall through */
1165 case SOCK_WAKE_IO:
1166 call_kill:
1167 kill_fasync(&wq->fasync_list, SIGIO, band);
1168 break;
1169 case SOCK_WAKE_URG:
1170 kill_fasync(&wq->fasync_list, SIGURG, band);
1171 }
1172
1173 return 0;
1174 }
1175 EXPORT_SYMBOL(sock_wake_async);
1176
1177 int __sock_create(struct net *net, int family, int type, int protocol,
1178 struct socket **res, int kern)
1179 {
1180 int err;
1181 struct socket *sock;
1182 const struct net_proto_family *pf;
1183
1184 /*
1185 * Check protocol is in range
1186 */
1187 if (family < 0 || family >= NPROTO)
1188 return -EAFNOSUPPORT;
1189 if (type < 0 || type >= SOCK_MAX)
1190 return -EINVAL;
1191
1192 /* Compatibility.
1193
1194 This uglymoron is moved from INET layer to here to avoid
1195 deadlock in module load.
1196 */
1197 if (family == PF_INET && type == SOCK_PACKET) {
1198 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1199 current->comm);
1200 family = PF_PACKET;
1201 }
1202
1203 err = security_socket_create(family, type, protocol, kern);
1204 if (err)
1205 return err;
1206
1207 /*
1208 * Allocate the socket and allow the family to set things up. if
1209 * the protocol is 0, the family is instructed to select an appropriate
1210 * default.
1211 */
1212 sock = sock_alloc();
1213 if (!sock) {
1214 net_warn_ratelimited("socket: no more sockets\n");
1215 return -ENFILE; /* Not exactly a match, but its the
1216 closest posix thing */
1217 }
1218
1219 sock->type = type;
1220
1221 #ifdef CONFIG_MODULES
1222 /* Attempt to load a protocol module if the find failed.
1223 *
1224 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1225 * requested real, full-featured networking support upon configuration.
1226 * Otherwise module support will break!
1227 */
1228 if (rcu_access_pointer(net_families[family]) == NULL)
1229 request_module("net-pf-%d", family);
1230 #endif
1231
1232 rcu_read_lock();
1233 pf = rcu_dereference(net_families[family]);
1234 err = -EAFNOSUPPORT;
1235 if (!pf)
1236 goto out_release;
1237
1238 /*
1239 * We will call the ->create function, that possibly is in a loadable
1240 * module, so we have to bump that loadable module refcnt first.
1241 */
1242 if (!try_module_get(pf->owner))
1243 goto out_release;
1244
1245 /* Now protected by module ref count */
1246 rcu_read_unlock();
1247
1248 err = pf->create(net, sock, protocol, kern);
1249 if (err < 0)
1250 goto out_module_put;
1251
1252 /*
1253 * Now to bump the refcnt of the [loadable] module that owns this
1254 * socket at sock_release time we decrement its refcnt.
1255 */
1256 if (!try_module_get(sock->ops->owner))
1257 goto out_module_busy;
1258
1259 /*
1260 * Now that we're done with the ->create function, the [loadable]
1261 * module can have its refcnt decremented
1262 */
1263 module_put(pf->owner);
1264 err = security_socket_post_create(sock, family, type, protocol, kern);
1265 if (err)
1266 goto out_sock_release;
1267 *res = sock;
1268
1269 return 0;
1270
1271 out_module_busy:
1272 err = -EAFNOSUPPORT;
1273 out_module_put:
1274 sock->ops = NULL;
1275 module_put(pf->owner);
1276 out_sock_release:
1277 sock_release(sock);
1278 return err;
1279
1280 out_release:
1281 rcu_read_unlock();
1282 goto out_sock_release;
1283 }
1284 EXPORT_SYMBOL(__sock_create);
1285
1286 int sock_create(int family, int type, int protocol, struct socket **res)
1287 {
1288 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1289 }
1290 EXPORT_SYMBOL(sock_create);
1291
1292 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1293 {
1294 return __sock_create(net, family, type, protocol, res, 1);
1295 }
1296 EXPORT_SYMBOL(sock_create_kern);
1297
1298 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1299 {
1300 int retval;
1301 struct socket *sock;
1302 int flags;
1303
1304 /* Check the SOCK_* constants for consistency. */
1305 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1306 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1307 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1308 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1309
1310 flags = type & ~SOCK_TYPE_MASK;
1311 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1312 return -EINVAL;
1313 type &= SOCK_TYPE_MASK;
1314
1315 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1316 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1317
1318 retval = sock_create(family, type, protocol, &sock);
1319 if (retval < 0)
1320 goto out;
1321
1322 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1323 if (retval < 0)
1324 goto out_release;
1325
1326 out:
1327 /* It may be already another descriptor 8) Not kernel problem. */
1328 return retval;
1329
1330 out_release:
1331 sock_release(sock);
1332 return retval;
1333 }
1334
1335 /*
1336 * Create a pair of connected sockets.
1337 */
1338
1339 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1340 int __user *, usockvec)
1341 {
1342 struct socket *sock1, *sock2;
1343 int fd1, fd2, err;
1344 struct file *newfile1, *newfile2;
1345 int flags;
1346
1347 flags = type & ~SOCK_TYPE_MASK;
1348 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1349 return -EINVAL;
1350 type &= SOCK_TYPE_MASK;
1351
1352 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1353 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1354
1355 /*
1356 * Obtain the first socket and check if the underlying protocol
1357 * supports the socketpair call.
1358 */
1359
1360 err = sock_create(family, type, protocol, &sock1);
1361 if (err < 0)
1362 goto out;
1363
1364 err = sock_create(family, type, protocol, &sock2);
1365 if (err < 0)
1366 goto out_release_1;
1367
1368 err = sock1->ops->socketpair(sock1, sock2);
1369 if (err < 0)
1370 goto out_release_both;
1371
1372 fd1 = get_unused_fd_flags(flags);
1373 if (unlikely(fd1 < 0)) {
1374 err = fd1;
1375 goto out_release_both;
1376 }
1377
1378 fd2 = get_unused_fd_flags(flags);
1379 if (unlikely(fd2 < 0)) {
1380 err = fd2;
1381 goto out_put_unused_1;
1382 }
1383
1384 newfile1 = sock_alloc_file(sock1, flags, NULL);
1385 if (IS_ERR(newfile1)) {
1386 err = PTR_ERR(newfile1);
1387 goto out_put_unused_both;
1388 }
1389
1390 newfile2 = sock_alloc_file(sock2, flags, NULL);
1391 if (IS_ERR(newfile2)) {
1392 err = PTR_ERR(newfile2);
1393 goto out_fput_1;
1394 }
1395
1396 err = put_user(fd1, &usockvec[0]);
1397 if (err)
1398 goto out_fput_both;
1399
1400 err = put_user(fd2, &usockvec[1]);
1401 if (err)
1402 goto out_fput_both;
1403
1404 audit_fd_pair(fd1, fd2);
1405
1406 fd_install(fd1, newfile1);
1407 fd_install(fd2, newfile2);
1408 /* fd1 and fd2 may be already another descriptors.
1409 * Not kernel problem.
1410 */
1411
1412 return 0;
1413
1414 out_fput_both:
1415 fput(newfile2);
1416 fput(newfile1);
1417 put_unused_fd(fd2);
1418 put_unused_fd(fd1);
1419 goto out;
1420
1421 out_fput_1:
1422 fput(newfile1);
1423 put_unused_fd(fd2);
1424 put_unused_fd(fd1);
1425 sock_release(sock2);
1426 goto out;
1427
1428 out_put_unused_both:
1429 put_unused_fd(fd2);
1430 out_put_unused_1:
1431 put_unused_fd(fd1);
1432 out_release_both:
1433 sock_release(sock2);
1434 out_release_1:
1435 sock_release(sock1);
1436 out:
1437 return err;
1438 }
1439
1440 /*
1441 * Bind a name to a socket. Nothing much to do here since it's
1442 * the protocol's responsibility to handle the local address.
1443 *
1444 * We move the socket address to kernel space before we call
1445 * the protocol layer (having also checked the address is ok).
1446 */
1447
1448 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1449 {
1450 struct socket *sock;
1451 struct sockaddr_storage address;
1452 int err, fput_needed;
1453
1454 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1455 if (sock) {
1456 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1457 if (err >= 0) {
1458 err = security_socket_bind(sock,
1459 (struct sockaddr *)&address,
1460 addrlen);
1461 if (!err)
1462 err = sock->ops->bind(sock,
1463 (struct sockaddr *)
1464 &address, addrlen);
1465 }
1466 fput_light(sock->file, fput_needed);
1467 }
1468 return err;
1469 }
1470
1471 /*
1472 * Perform a listen. Basically, we allow the protocol to do anything
1473 * necessary for a listen, and if that works, we mark the socket as
1474 * ready for listening.
1475 */
1476
1477 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1478 {
1479 struct socket *sock;
1480 int err, fput_needed;
1481 int somaxconn;
1482
1483 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1484 if (sock) {
1485 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1486 if ((unsigned int)backlog > somaxconn)
1487 backlog = somaxconn;
1488
1489 err = security_socket_listen(sock, backlog);
1490 if (!err)
1491 err = sock->ops->listen(sock, backlog);
1492
1493 fput_light(sock->file, fput_needed);
1494 }
1495 return err;
1496 }
1497
1498 /*
1499 * For accept, we attempt to create a new socket, set up the link
1500 * with the client, wake up the client, then return the new
1501 * connected fd. We collect the address of the connector in kernel
1502 * space and move it to user at the very end. This is unclean because
1503 * we open the socket then return an error.
1504 *
1505 * 1003.1g adds the ability to recvmsg() to query connection pending
1506 * status to recvmsg. We need to add that support in a way thats
1507 * clean when we restucture accept also.
1508 */
1509
1510 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1511 int __user *, upeer_addrlen, int, flags)
1512 {
1513 struct socket *sock, *newsock;
1514 struct file *newfile;
1515 int err, len, newfd, fput_needed;
1516 struct sockaddr_storage address;
1517
1518 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1519 return -EINVAL;
1520
1521 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1522 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1523
1524 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1525 if (!sock)
1526 goto out;
1527
1528 err = -ENFILE;
1529 newsock = sock_alloc();
1530 if (!newsock)
1531 goto out_put;
1532
1533 newsock->type = sock->type;
1534 newsock->ops = sock->ops;
1535
1536 /*
1537 * We don't need try_module_get here, as the listening socket (sock)
1538 * has the protocol module (sock->ops->owner) held.
1539 */
1540 __module_get(newsock->ops->owner);
1541
1542 newfd = get_unused_fd_flags(flags);
1543 if (unlikely(newfd < 0)) {
1544 err = newfd;
1545 sock_release(newsock);
1546 goto out_put;
1547 }
1548 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1549 if (IS_ERR(newfile)) {
1550 err = PTR_ERR(newfile);
1551 put_unused_fd(newfd);
1552 sock_release(newsock);
1553 goto out_put;
1554 }
1555
1556 err = security_socket_accept(sock, newsock);
1557 if (err)
1558 goto out_fd;
1559
1560 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1561 if (err < 0)
1562 goto out_fd;
1563
1564 if (upeer_sockaddr) {
1565 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1566 &len, 2) < 0) {
1567 err = -ECONNABORTED;
1568 goto out_fd;
1569 }
1570 err = move_addr_to_user(&address,
1571 len, upeer_sockaddr, upeer_addrlen);
1572 if (err < 0)
1573 goto out_fd;
1574 }
1575
1576 /* File flags are not inherited via accept() unlike another OSes. */
1577
1578 fd_install(newfd, newfile);
1579 err = newfd;
1580
1581 out_put:
1582 fput_light(sock->file, fput_needed);
1583 out:
1584 return err;
1585 out_fd:
1586 fput(newfile);
1587 put_unused_fd(newfd);
1588 goto out_put;
1589 }
1590
1591 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1592 int __user *, upeer_addrlen)
1593 {
1594 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1595 }
1596
1597 /*
1598 * Attempt to connect to a socket with the server address. The address
1599 * is in user space so we verify it is OK and move it to kernel space.
1600 *
1601 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1602 * break bindings
1603 *
1604 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1605 * other SEQPACKET protocols that take time to connect() as it doesn't
1606 * include the -EINPROGRESS status for such sockets.
1607 */
1608
1609 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1610 int, addrlen)
1611 {
1612 struct socket *sock;
1613 struct sockaddr_storage address;
1614 int err, fput_needed;
1615
1616 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1617 if (!sock)
1618 goto out;
1619 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1620 if (err < 0)
1621 goto out_put;
1622
1623 err =
1624 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1625 if (err)
1626 goto out_put;
1627
1628 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1629 sock->file->f_flags);
1630 out_put:
1631 fput_light(sock->file, fput_needed);
1632 out:
1633 return err;
1634 }
1635
1636 /*
1637 * Get the local address ('name') of a socket object. Move the obtained
1638 * name to user space.
1639 */
1640
1641 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1642 int __user *, usockaddr_len)
1643 {
1644 struct socket *sock;
1645 struct sockaddr_storage address;
1646 int len, err, fput_needed;
1647
1648 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1649 if (!sock)
1650 goto out;
1651
1652 err = security_socket_getsockname(sock);
1653 if (err)
1654 goto out_put;
1655
1656 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1657 if (err)
1658 goto out_put;
1659 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1660
1661 out_put:
1662 fput_light(sock->file, fput_needed);
1663 out:
1664 return err;
1665 }
1666
1667 /*
1668 * Get the remote address ('name') of a socket object. Move the obtained
1669 * name to user space.
1670 */
1671
1672 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1673 int __user *, usockaddr_len)
1674 {
1675 struct socket *sock;
1676 struct sockaddr_storage address;
1677 int len, err, fput_needed;
1678
1679 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1680 if (sock != NULL) {
1681 err = security_socket_getpeername(sock);
1682 if (err) {
1683 fput_light(sock->file, fput_needed);
1684 return err;
1685 }
1686
1687 err =
1688 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1689 1);
1690 if (!err)
1691 err = move_addr_to_user(&address, len, usockaddr,
1692 usockaddr_len);
1693 fput_light(sock->file, fput_needed);
1694 }
1695 return err;
1696 }
1697
1698 /*
1699 * Send a datagram to a given address. We move the address into kernel
1700 * space and check the user space data area is readable before invoking
1701 * the protocol.
1702 */
1703
1704 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1705 unsigned int, flags, struct sockaddr __user *, addr,
1706 int, addr_len)
1707 {
1708 struct socket *sock;
1709 struct sockaddr_storage address;
1710 int err;
1711 struct msghdr msg;
1712 struct iovec iov;
1713 int fput_needed;
1714
1715 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1716 if (unlikely(err))
1717 return err;
1718 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1719 if (!sock)
1720 goto out;
1721
1722 msg.msg_name = NULL;
1723 msg.msg_control = NULL;
1724 msg.msg_controllen = 0;
1725 msg.msg_namelen = 0;
1726 if (addr) {
1727 err = move_addr_to_kernel(addr, addr_len, &address);
1728 if (err < 0)
1729 goto out_put;
1730 msg.msg_name = (struct sockaddr *)&address;
1731 msg.msg_namelen = addr_len;
1732 }
1733 if (sock->file->f_flags & O_NONBLOCK)
1734 flags |= MSG_DONTWAIT;
1735 msg.msg_flags = flags;
1736 err = sock_sendmsg(sock, &msg);
1737
1738 out_put:
1739 fput_light(sock->file, fput_needed);
1740 out:
1741 return err;
1742 }
1743
1744 /*
1745 * Send a datagram down a socket.
1746 */
1747
1748 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1749 unsigned int, flags)
1750 {
1751 return sys_sendto(fd, buff, len, flags, NULL, 0);
1752 }
1753
1754 /*
1755 * Receive a frame from the socket and optionally record the address of the
1756 * sender. We verify the buffers are writable and if needed move the
1757 * sender address from kernel to user space.
1758 */
1759
1760 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1761 unsigned int, flags, struct sockaddr __user *, addr,
1762 int __user *, addr_len)
1763 {
1764 struct socket *sock;
1765 struct iovec iov;
1766 struct msghdr msg;
1767 struct sockaddr_storage address;
1768 int err, err2;
1769 int fput_needed;
1770
1771 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1772 if (unlikely(err))
1773 return err;
1774 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1775 if (!sock)
1776 goto out;
1777
1778 msg.msg_control = NULL;
1779 msg.msg_controllen = 0;
1780 /* Save some cycles and don't copy the address if not needed */
1781 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1782 /* We assume all kernel code knows the size of sockaddr_storage */
1783 msg.msg_namelen = 0;
1784 msg.msg_iocb = NULL;
1785 msg.msg_flags = 0;
1786 if (sock->file->f_flags & O_NONBLOCK)
1787 flags |= MSG_DONTWAIT;
1788 err = sock_recvmsg(sock, &msg, flags);
1789
1790 if (err >= 0 && addr != NULL) {
1791 err2 = move_addr_to_user(&address,
1792 msg.msg_namelen, addr, addr_len);
1793 if (err2 < 0)
1794 err = err2;
1795 }
1796
1797 fput_light(sock->file, fput_needed);
1798 out:
1799 return err;
1800 }
1801
1802 /*
1803 * Receive a datagram from a socket.
1804 */
1805
1806 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1807 unsigned int, flags)
1808 {
1809 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1810 }
1811
1812 /*
1813 * Set a socket option. Because we don't know the option lengths we have
1814 * to pass the user mode parameter for the protocols to sort out.
1815 */
1816
1817 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1818 char __user *, optval, int, optlen)
1819 {
1820 int err, fput_needed;
1821 struct socket *sock;
1822
1823 if (optlen < 0)
1824 return -EINVAL;
1825
1826 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1827 if (sock != NULL) {
1828 err = security_socket_setsockopt(sock, level, optname);
1829 if (err)
1830 goto out_put;
1831
1832 if (level == SOL_SOCKET)
1833 err =
1834 sock_setsockopt(sock, level, optname, optval,
1835 optlen);
1836 else
1837 err =
1838 sock->ops->setsockopt(sock, level, optname, optval,
1839 optlen);
1840 out_put:
1841 fput_light(sock->file, fput_needed);
1842 }
1843 return err;
1844 }
1845
1846 /*
1847 * Get a socket option. Because we don't know the option lengths we have
1848 * to pass a user mode parameter for the protocols to sort out.
1849 */
1850
1851 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1852 char __user *, optval, int __user *, optlen)
1853 {
1854 int err, fput_needed;
1855 struct socket *sock;
1856
1857 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1858 if (sock != NULL) {
1859 err = security_socket_getsockopt(sock, level, optname);
1860 if (err)
1861 goto out_put;
1862
1863 if (level == SOL_SOCKET)
1864 err =
1865 sock_getsockopt(sock, level, optname, optval,
1866 optlen);
1867 else
1868 err =
1869 sock->ops->getsockopt(sock, level, optname, optval,
1870 optlen);
1871 out_put:
1872 fput_light(sock->file, fput_needed);
1873 }
1874 return err;
1875 }
1876
1877 /*
1878 * Shutdown a socket.
1879 */
1880
1881 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1882 {
1883 int err, fput_needed;
1884 struct socket *sock;
1885
1886 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1887 if (sock != NULL) {
1888 err = security_socket_shutdown(sock, how);
1889 if (!err)
1890 err = sock->ops->shutdown(sock, how);
1891 fput_light(sock->file, fput_needed);
1892 }
1893 return err;
1894 }
1895
1896 /* A couple of helpful macros for getting the address of the 32/64 bit
1897 * fields which are the same type (int / unsigned) on our platforms.
1898 */
1899 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1900 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1901 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1902
1903 struct used_address {
1904 struct sockaddr_storage name;
1905 unsigned int name_len;
1906 };
1907
1908 static int copy_msghdr_from_user(struct msghdr *kmsg,
1909 struct user_msghdr __user *umsg,
1910 struct sockaddr __user **save_addr,
1911 struct iovec **iov)
1912 {
1913 struct user_msghdr msg;
1914 ssize_t err;
1915
1916 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1917 return -EFAULT;
1918
1919 kmsg->msg_control = msg.msg_control;
1920 kmsg->msg_controllen = msg.msg_controllen;
1921 kmsg->msg_flags = msg.msg_flags;
1922
1923 kmsg->msg_namelen = msg.msg_namelen;
1924 if (!msg.msg_name)
1925 kmsg->msg_namelen = 0;
1926
1927 if (kmsg->msg_namelen < 0)
1928 return -EINVAL;
1929
1930 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1931 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1932
1933 if (save_addr)
1934 *save_addr = msg.msg_name;
1935
1936 if (msg.msg_name && kmsg->msg_namelen) {
1937 if (!save_addr) {
1938 err = move_addr_to_kernel(msg.msg_name, kmsg->msg_namelen,
1939 kmsg->msg_name);
1940 if (err < 0)
1941 return err;
1942 }
1943 } else {
1944 kmsg->msg_name = NULL;
1945 kmsg->msg_namelen = 0;
1946 }
1947
1948 if (msg.msg_iovlen > UIO_MAXIOV)
1949 return -EMSGSIZE;
1950
1951 kmsg->msg_iocb = NULL;
1952
1953 return import_iovec(save_addr ? READ : WRITE,
1954 msg.msg_iov, msg.msg_iovlen,
1955 UIO_FASTIOV, iov, &kmsg->msg_iter);
1956 }
1957
1958 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1959 struct msghdr *msg_sys, unsigned int flags,
1960 struct used_address *used_address,
1961 unsigned int allowed_msghdr_flags)
1962 {
1963 struct compat_msghdr __user *msg_compat =
1964 (struct compat_msghdr __user *)msg;
1965 struct sockaddr_storage address;
1966 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1967 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1968 __aligned(sizeof(__kernel_size_t));
1969 /* 20 is size of ipv6_pktinfo */
1970 unsigned char *ctl_buf = ctl;
1971 int ctl_len;
1972 ssize_t err;
1973
1974 msg_sys->msg_name = &address;
1975
1976 if (MSG_CMSG_COMPAT & flags)
1977 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1978 else
1979 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1980 if (err < 0)
1981 return err;
1982
1983 err = -ENOBUFS;
1984
1985 if (msg_sys->msg_controllen > INT_MAX)
1986 goto out_freeiov;
1987 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1988 ctl_len = msg_sys->msg_controllen;
1989 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1990 err =
1991 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1992 sizeof(ctl));
1993 if (err)
1994 goto out_freeiov;
1995 ctl_buf = msg_sys->msg_control;
1996 ctl_len = msg_sys->msg_controllen;
1997 } else if (ctl_len) {
1998 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
1999 CMSG_ALIGN(sizeof(struct cmsghdr)));
2000 if (ctl_len > sizeof(ctl)) {
2001 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2002 if (ctl_buf == NULL)
2003 goto out_freeiov;
2004 }
2005 err = -EFAULT;
2006 /*
2007 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2008 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2009 * checking falls down on this.
2010 */
2011 if (copy_from_user(ctl_buf,
2012 (void __user __force *)msg_sys->msg_control,
2013 ctl_len))
2014 goto out_freectl;
2015 msg_sys->msg_control = ctl_buf;
2016 }
2017 msg_sys->msg_flags = flags;
2018
2019 if (sock->file->f_flags & O_NONBLOCK)
2020 msg_sys->msg_flags |= MSG_DONTWAIT;
2021 /*
2022 * If this is sendmmsg() and current destination address is same as
2023 * previously succeeded address, omit asking LSM's decision.
2024 * used_address->name_len is initialized to UINT_MAX so that the first
2025 * destination address never matches.
2026 */
2027 if (used_address && msg_sys->msg_name &&
2028 used_address->name_len == msg_sys->msg_namelen &&
2029 !memcmp(&used_address->name, msg_sys->msg_name,
2030 used_address->name_len)) {
2031 err = sock_sendmsg_nosec(sock, msg_sys);
2032 goto out_freectl;
2033 }
2034 err = sock_sendmsg(sock, msg_sys);
2035 /*
2036 * If this is sendmmsg() and sending to current destination address was
2037 * successful, remember it.
2038 */
2039 if (used_address && err >= 0) {
2040 used_address->name_len = msg_sys->msg_namelen;
2041 if (msg_sys->msg_name)
2042 memcpy(&used_address->name, msg_sys->msg_name,
2043 used_address->name_len);
2044 }
2045
2046 out_freectl:
2047 if (ctl_buf != ctl)
2048 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2049 out_freeiov:
2050 kfree(iov);
2051 return err;
2052 }
2053
2054 /*
2055 * BSD sendmsg interface
2056 */
2057
2058 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2059 {
2060 int fput_needed, err;
2061 struct msghdr msg_sys;
2062 struct socket *sock;
2063
2064 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2065 if (!sock)
2066 goto out;
2067
2068 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2069
2070 fput_light(sock->file, fput_needed);
2071 out:
2072 return err;
2073 }
2074
2075 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2076 {
2077 if (flags & MSG_CMSG_COMPAT)
2078 return -EINVAL;
2079 return __sys_sendmsg(fd, msg, flags);
2080 }
2081
2082 /*
2083 * Linux sendmmsg interface
2084 */
2085
2086 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2087 unsigned int flags)
2088 {
2089 int fput_needed, err, datagrams;
2090 struct socket *sock;
2091 struct mmsghdr __user *entry;
2092 struct compat_mmsghdr __user *compat_entry;
2093 struct msghdr msg_sys;
2094 struct used_address used_address;
2095 unsigned int oflags = flags;
2096
2097 if (vlen > UIO_MAXIOV)
2098 vlen = UIO_MAXIOV;
2099
2100 datagrams = 0;
2101
2102 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2103 if (!sock)
2104 return err;
2105
2106 used_address.name_len = UINT_MAX;
2107 entry = mmsg;
2108 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2109 err = 0;
2110 flags |= MSG_BATCH;
2111
2112 while (datagrams < vlen) {
2113 if (datagrams == vlen - 1)
2114 flags = oflags;
2115
2116 if (MSG_CMSG_COMPAT & flags) {
2117 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2118 &msg_sys, flags, &used_address, MSG_EOR);
2119 if (err < 0)
2120 break;
2121 err = __put_user(err, &compat_entry->msg_len);
2122 ++compat_entry;
2123 } else {
2124 err = ___sys_sendmsg(sock,
2125 (struct user_msghdr __user *)entry,
2126 &msg_sys, flags, &used_address, MSG_EOR);
2127 if (err < 0)
2128 break;
2129 err = put_user(err, &entry->msg_len);
2130 ++entry;
2131 }
2132
2133 if (err)
2134 break;
2135 ++datagrams;
2136 if (msg_data_left(&msg_sys))
2137 break;
2138 cond_resched();
2139 }
2140
2141 fput_light(sock->file, fput_needed);
2142
2143 /* We only return an error if no datagrams were able to be sent */
2144 if (datagrams != 0)
2145 return datagrams;
2146
2147 return err;
2148 }
2149
2150 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2151 unsigned int, vlen, unsigned int, flags)
2152 {
2153 if (flags & MSG_CMSG_COMPAT)
2154 return -EINVAL;
2155 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2156 }
2157
2158 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2159 struct msghdr *msg_sys, unsigned int flags, int nosec)
2160 {
2161 struct compat_msghdr __user *msg_compat =
2162 (struct compat_msghdr __user *)msg;
2163 struct iovec iovstack[UIO_FASTIOV];
2164 struct iovec *iov = iovstack;
2165 unsigned long cmsg_ptr;
2166 int len;
2167 ssize_t err;
2168
2169 /* kernel mode address */
2170 struct sockaddr_storage addr;
2171
2172 /* user mode address pointers */
2173 struct sockaddr __user *uaddr;
2174 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2175
2176 msg_sys->msg_name = &addr;
2177
2178 if (MSG_CMSG_COMPAT & flags)
2179 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2180 else
2181 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2182 if (err < 0)
2183 return err;
2184
2185 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2186 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2187
2188 /* We assume all kernel code knows the size of sockaddr_storage */
2189 msg_sys->msg_namelen = 0;
2190
2191 if (sock->file->f_flags & O_NONBLOCK)
2192 flags |= MSG_DONTWAIT;
2193 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2194 if (err < 0)
2195 goto out_freeiov;
2196 len = err;
2197
2198 if (uaddr != NULL) {
2199 err = move_addr_to_user(&addr,
2200 msg_sys->msg_namelen, uaddr,
2201 uaddr_len);
2202 if (err < 0)
2203 goto out_freeiov;
2204 }
2205 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2206 COMPAT_FLAGS(msg));
2207 if (err)
2208 goto out_freeiov;
2209 if (MSG_CMSG_COMPAT & flags)
2210 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2211 &msg_compat->msg_controllen);
2212 else
2213 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2214 &msg->msg_controllen);
2215 if (err)
2216 goto out_freeiov;
2217 err = len;
2218
2219 out_freeiov:
2220 kfree(iov);
2221 return err;
2222 }
2223
2224 /*
2225 * BSD recvmsg interface
2226 */
2227
2228 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2229 {
2230 int fput_needed, err;
2231 struct msghdr msg_sys;
2232 struct socket *sock;
2233
2234 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2235 if (!sock)
2236 goto out;
2237
2238 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2239
2240 fput_light(sock->file, fput_needed);
2241 out:
2242 return err;
2243 }
2244
2245 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2246 unsigned int, flags)
2247 {
2248 if (flags & MSG_CMSG_COMPAT)
2249 return -EINVAL;
2250 return __sys_recvmsg(fd, msg, flags);
2251 }
2252
2253 /*
2254 * Linux recvmmsg interface
2255 */
2256
2257 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2258 unsigned int flags, struct timespec *timeout)
2259 {
2260 int fput_needed, err, datagrams;
2261 struct socket *sock;
2262 struct mmsghdr __user *entry;
2263 struct compat_mmsghdr __user *compat_entry;
2264 struct msghdr msg_sys;
2265 struct timespec64 end_time;
2266 struct timespec64 timeout64;
2267
2268 if (timeout &&
2269 poll_select_set_timeout(&end_time, timeout->tv_sec,
2270 timeout->tv_nsec))
2271 return -EINVAL;
2272
2273 datagrams = 0;
2274
2275 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2276 if (!sock)
2277 return err;
2278
2279 err = sock_error(sock->sk);
2280 if (err) {
2281 datagrams = err;
2282 goto out_put;
2283 }
2284
2285 entry = mmsg;
2286 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2287
2288 while (datagrams < vlen) {
2289 /*
2290 * No need to ask LSM for more than the first datagram.
2291 */
2292 if (MSG_CMSG_COMPAT & flags) {
2293 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2294 &msg_sys, flags & ~MSG_WAITFORONE,
2295 datagrams);
2296 if (err < 0)
2297 break;
2298 err = __put_user(err, &compat_entry->msg_len);
2299 ++compat_entry;
2300 } else {
2301 err = ___sys_recvmsg(sock,
2302 (struct user_msghdr __user *)entry,
2303 &msg_sys, flags & ~MSG_WAITFORONE,
2304 datagrams);
2305 if (err < 0)
2306 break;
2307 err = put_user(err, &entry->msg_len);
2308 ++entry;
2309 }
2310
2311 if (err)
2312 break;
2313 ++datagrams;
2314
2315 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2316 if (flags & MSG_WAITFORONE)
2317 flags |= MSG_DONTWAIT;
2318
2319 if (timeout) {
2320 ktime_get_ts64(&timeout64);
2321 *timeout = timespec64_to_timespec(
2322 timespec64_sub(end_time, timeout64));
2323 if (timeout->tv_sec < 0) {
2324 timeout->tv_sec = timeout->tv_nsec = 0;
2325 break;
2326 }
2327
2328 /* Timeout, return less than vlen datagrams */
2329 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2330 break;
2331 }
2332
2333 /* Out of band data, return right away */
2334 if (msg_sys.msg_flags & MSG_OOB)
2335 break;
2336 cond_resched();
2337 }
2338
2339 if (err == 0)
2340 goto out_put;
2341
2342 if (datagrams == 0) {
2343 datagrams = err;
2344 goto out_put;
2345 }
2346
2347 /*
2348 * We may return less entries than requested (vlen) if the
2349 * sock is non block and there aren't enough datagrams...
2350 */
2351 if (err != -EAGAIN) {
2352 /*
2353 * ... or if recvmsg returns an error after we
2354 * received some datagrams, where we record the
2355 * error to return on the next call or if the
2356 * app asks about it using getsockopt(SO_ERROR).
2357 */
2358 sock->sk->sk_err = -err;
2359 }
2360 out_put:
2361 fput_light(sock->file, fput_needed);
2362
2363 return datagrams;
2364 }
2365
2366 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2367 unsigned int, vlen, unsigned int, flags,
2368 struct timespec __user *, timeout)
2369 {
2370 int datagrams;
2371 struct timespec timeout_sys;
2372
2373 if (flags & MSG_CMSG_COMPAT)
2374 return -EINVAL;
2375
2376 if (!timeout)
2377 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2378
2379 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2380 return -EFAULT;
2381
2382 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2383
2384 if (datagrams > 0 &&
2385 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2386 datagrams = -EFAULT;
2387
2388 return datagrams;
2389 }
2390
2391 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2392 /* Argument list sizes for sys_socketcall */
2393 #define AL(x) ((x) * sizeof(unsigned long))
2394 static const unsigned char nargs[21] = {
2395 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2396 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2397 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2398 AL(4), AL(5), AL(4)
2399 };
2400
2401 #undef AL
2402
2403 /*
2404 * System call vectors.
2405 *
2406 * Argument checking cleaned up. Saved 20% in size.
2407 * This function doesn't need to set the kernel lock because
2408 * it is set by the callees.
2409 */
2410
2411 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2412 {
2413 unsigned long a[AUDITSC_ARGS];
2414 unsigned long a0, a1;
2415 int err;
2416 unsigned int len;
2417
2418 if (call < 1 || call > SYS_SENDMMSG)
2419 return -EINVAL;
2420
2421 len = nargs[call];
2422 if (len > sizeof(a))
2423 return -EINVAL;
2424
2425 /* copy_from_user should be SMP safe. */
2426 if (copy_from_user(a, args, len))
2427 return -EFAULT;
2428
2429 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2430 if (err)
2431 return err;
2432
2433 a0 = a[0];
2434 a1 = a[1];
2435
2436 switch (call) {
2437 case SYS_SOCKET:
2438 err = sys_socket(a0, a1, a[2]);
2439 break;
2440 case SYS_BIND:
2441 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2442 break;
2443 case SYS_CONNECT:
2444 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2445 break;
2446 case SYS_LISTEN:
2447 err = sys_listen(a0, a1);
2448 break;
2449 case SYS_ACCEPT:
2450 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2451 (int __user *)a[2], 0);
2452 break;
2453 case SYS_GETSOCKNAME:
2454 err =
2455 sys_getsockname(a0, (struct sockaddr __user *)a1,
2456 (int __user *)a[2]);
2457 break;
2458 case SYS_GETPEERNAME:
2459 err =
2460 sys_getpeername(a0, (struct sockaddr __user *)a1,
2461 (int __user *)a[2]);
2462 break;
2463 case SYS_SOCKETPAIR:
2464 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2465 break;
2466 case SYS_SEND:
2467 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2468 break;
2469 case SYS_SENDTO:
2470 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2471 (struct sockaddr __user *)a[4], a[5]);
2472 break;
2473 case SYS_RECV:
2474 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2475 break;
2476 case SYS_RECVFROM:
2477 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2478 (struct sockaddr __user *)a[4],
2479 (int __user *)a[5]);
2480 break;
2481 case SYS_SHUTDOWN:
2482 err = sys_shutdown(a0, a1);
2483 break;
2484 case SYS_SETSOCKOPT:
2485 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2486 break;
2487 case SYS_GETSOCKOPT:
2488 err =
2489 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2490 (int __user *)a[4]);
2491 break;
2492 case SYS_SENDMSG:
2493 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2494 break;
2495 case SYS_SENDMMSG:
2496 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2497 break;
2498 case SYS_RECVMSG:
2499 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2500 break;
2501 case SYS_RECVMMSG:
2502 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2503 (struct timespec __user *)a[4]);
2504 break;
2505 case SYS_ACCEPT4:
2506 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2507 (int __user *)a[2], a[3]);
2508 break;
2509 default:
2510 err = -EINVAL;
2511 break;
2512 }
2513 return err;
2514 }
2515
2516 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2517
2518 /**
2519 * sock_register - add a socket protocol handler
2520 * @ops: description of protocol
2521 *
2522 * This function is called by a protocol handler that wants to
2523 * advertise its address family, and have it linked into the
2524 * socket interface. The value ops->family corresponds to the
2525 * socket system call protocol family.
2526 */
2527 int sock_register(const struct net_proto_family *ops)
2528 {
2529 int err;
2530
2531 if (ops->family >= NPROTO) {
2532 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2533 return -ENOBUFS;
2534 }
2535
2536 spin_lock(&net_family_lock);
2537 if (rcu_dereference_protected(net_families[ops->family],
2538 lockdep_is_held(&net_family_lock)))
2539 err = -EEXIST;
2540 else {
2541 rcu_assign_pointer(net_families[ops->family], ops);
2542 err = 0;
2543 }
2544 spin_unlock(&net_family_lock);
2545
2546 pr_info("NET: Registered protocol family %d\n", ops->family);
2547 return err;
2548 }
2549 EXPORT_SYMBOL(sock_register);
2550
2551 /**
2552 * sock_unregister - remove a protocol handler
2553 * @family: protocol family to remove
2554 *
2555 * This function is called by a protocol handler that wants to
2556 * remove its address family, and have it unlinked from the
2557 * new socket creation.
2558 *
2559 * If protocol handler is a module, then it can use module reference
2560 * counts to protect against new references. If protocol handler is not
2561 * a module then it needs to provide its own protection in
2562 * the ops->create routine.
2563 */
2564 void sock_unregister(int family)
2565 {
2566 BUG_ON(family < 0 || family >= NPROTO);
2567
2568 spin_lock(&net_family_lock);
2569 RCU_INIT_POINTER(net_families[family], NULL);
2570 spin_unlock(&net_family_lock);
2571
2572 synchronize_rcu();
2573
2574 pr_info("NET: Unregistered protocol family %d\n", family);
2575 }
2576 EXPORT_SYMBOL(sock_unregister);
2577
2578 static int __init sock_init(void)
2579 {
2580 int err;
2581 /*
2582 * Initialize the network sysctl infrastructure.
2583 */
2584 err = net_sysctl_init();
2585 if (err)
2586 goto out;
2587
2588 /*
2589 * Initialize skbuff SLAB cache
2590 */
2591 skb_init();
2592
2593 /*
2594 * Initialize the protocols module.
2595 */
2596
2597 init_inodecache();
2598
2599 err = register_filesystem(&sock_fs_type);
2600 if (err)
2601 goto out_fs;
2602 sock_mnt = kern_mount(&sock_fs_type);
2603 if (IS_ERR(sock_mnt)) {
2604 err = PTR_ERR(sock_mnt);
2605 goto out_mount;
2606 }
2607
2608 /* The real protocol initialization is performed in later initcalls.
2609 */
2610
2611 #ifdef CONFIG_NETFILTER
2612 err = netfilter_init();
2613 if (err)
2614 goto out;
2615 #endif
2616
2617 ptp_classifier_init();
2618
2619 out:
2620 return err;
2621
2622 out_mount:
2623 unregister_filesystem(&sock_fs_type);
2624 out_fs:
2625 goto out;
2626 }
2627
2628 core_initcall(sock_init); /* early initcall */
2629
2630 #ifdef CONFIG_PROC_FS
2631 void socket_seq_show(struct seq_file *seq)
2632 {
2633 int cpu;
2634 int counter = 0;
2635
2636 for_each_possible_cpu(cpu)
2637 counter += per_cpu(sockets_in_use, cpu);
2638
2639 /* It can be negative, by the way. 8) */
2640 if (counter < 0)
2641 counter = 0;
2642
2643 seq_printf(seq, "sockets: used %d\n", counter);
2644 }
2645 #endif /* CONFIG_PROC_FS */
2646
2647 #ifdef CONFIG_COMPAT
2648 static int do_siocgstamp(struct net *net, struct socket *sock,
2649 unsigned int cmd, void __user *up)
2650 {
2651 mm_segment_t old_fs = get_fs();
2652 struct timeval ktv;
2653 int err;
2654
2655 set_fs(KERNEL_DS);
2656 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2657 set_fs(old_fs);
2658 if (!err)
2659 err = compat_put_timeval(&ktv, up);
2660
2661 return err;
2662 }
2663
2664 static int do_siocgstampns(struct net *net, struct socket *sock,
2665 unsigned int cmd, void __user *up)
2666 {
2667 mm_segment_t old_fs = get_fs();
2668 struct timespec kts;
2669 int err;
2670
2671 set_fs(KERNEL_DS);
2672 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2673 set_fs(old_fs);
2674 if (!err)
2675 err = compat_put_timespec(&kts, up);
2676
2677 return err;
2678 }
2679
2680 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2681 {
2682 struct ifreq __user *uifr;
2683 int err;
2684
2685 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2686 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2687 return -EFAULT;
2688
2689 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2690 if (err)
2691 return err;
2692
2693 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2694 return -EFAULT;
2695
2696 return 0;
2697 }
2698
2699 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2700 {
2701 struct compat_ifconf ifc32;
2702 struct ifconf ifc;
2703 struct ifconf __user *uifc;
2704 struct compat_ifreq __user *ifr32;
2705 struct ifreq __user *ifr;
2706 unsigned int i, j;
2707 int err;
2708
2709 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2710 return -EFAULT;
2711
2712 memset(&ifc, 0, sizeof(ifc));
2713 if (ifc32.ifcbuf == 0) {
2714 ifc32.ifc_len = 0;
2715 ifc.ifc_len = 0;
2716 ifc.ifc_req = NULL;
2717 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2718 } else {
2719 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2720 sizeof(struct ifreq);
2721 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2722 ifc.ifc_len = len;
2723 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2724 ifr32 = compat_ptr(ifc32.ifcbuf);
2725 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2726 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2727 return -EFAULT;
2728 ifr++;
2729 ifr32++;
2730 }
2731 }
2732 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2733 return -EFAULT;
2734
2735 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2736 if (err)
2737 return err;
2738
2739 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2740 return -EFAULT;
2741
2742 ifr = ifc.ifc_req;
2743 ifr32 = compat_ptr(ifc32.ifcbuf);
2744 for (i = 0, j = 0;
2745 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2746 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2747 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2748 return -EFAULT;
2749 ifr32++;
2750 ifr++;
2751 }
2752
2753 if (ifc32.ifcbuf == 0) {
2754 /* Translate from 64-bit structure multiple to
2755 * a 32-bit one.
2756 */
2757 i = ifc.ifc_len;
2758 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2759 ifc32.ifc_len = i;
2760 } else {
2761 ifc32.ifc_len = i;
2762 }
2763 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2764 return -EFAULT;
2765
2766 return 0;
2767 }
2768
2769 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2770 {
2771 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2772 bool convert_in = false, convert_out = false;
2773 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2774 struct ethtool_rxnfc __user *rxnfc;
2775 struct ifreq __user *ifr;
2776 u32 rule_cnt = 0, actual_rule_cnt;
2777 u32 ethcmd;
2778 u32 data;
2779 int ret;
2780
2781 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2782 return -EFAULT;
2783
2784 compat_rxnfc = compat_ptr(data);
2785
2786 if (get_user(ethcmd, &compat_rxnfc->cmd))
2787 return -EFAULT;
2788
2789 /* Most ethtool structures are defined without padding.
2790 * Unfortunately struct ethtool_rxnfc is an exception.
2791 */
2792 switch (ethcmd) {
2793 default:
2794 break;
2795 case ETHTOOL_GRXCLSRLALL:
2796 /* Buffer size is variable */
2797 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2798 return -EFAULT;
2799 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2800 return -ENOMEM;
2801 buf_size += rule_cnt * sizeof(u32);
2802 /* fall through */
2803 case ETHTOOL_GRXRINGS:
2804 case ETHTOOL_GRXCLSRLCNT:
2805 case ETHTOOL_GRXCLSRULE:
2806 case ETHTOOL_SRXCLSRLINS:
2807 convert_out = true;
2808 /* fall through */
2809 case ETHTOOL_SRXCLSRLDEL:
2810 buf_size += sizeof(struct ethtool_rxnfc);
2811 convert_in = true;
2812 break;
2813 }
2814
2815 ifr = compat_alloc_user_space(buf_size);
2816 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2817
2818 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2819 return -EFAULT;
2820
2821 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2822 &ifr->ifr_ifru.ifru_data))
2823 return -EFAULT;
2824
2825 if (convert_in) {
2826 /* We expect there to be holes between fs.m_ext and
2827 * fs.ring_cookie and at the end of fs, but nowhere else.
2828 */
2829 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2830 sizeof(compat_rxnfc->fs.m_ext) !=
2831 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2832 sizeof(rxnfc->fs.m_ext));
2833 BUILD_BUG_ON(
2834 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2835 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2836 offsetof(struct ethtool_rxnfc, fs.location) -
2837 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2838
2839 if (copy_in_user(rxnfc, compat_rxnfc,
2840 (void __user *)(&rxnfc->fs.m_ext + 1) -
2841 (void __user *)rxnfc) ||
2842 copy_in_user(&rxnfc->fs.ring_cookie,
2843 &compat_rxnfc->fs.ring_cookie,
2844 (void __user *)(&rxnfc->fs.location + 1) -
2845 (void __user *)&rxnfc->fs.ring_cookie) ||
2846 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2847 sizeof(rxnfc->rule_cnt)))
2848 return -EFAULT;
2849 }
2850
2851 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2852 if (ret)
2853 return ret;
2854
2855 if (convert_out) {
2856 if (copy_in_user(compat_rxnfc, rxnfc,
2857 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2858 (const void __user *)rxnfc) ||
2859 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2860 &rxnfc->fs.ring_cookie,
2861 (const void __user *)(&rxnfc->fs.location + 1) -
2862 (const void __user *)&rxnfc->fs.ring_cookie) ||
2863 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2864 sizeof(rxnfc->rule_cnt)))
2865 return -EFAULT;
2866
2867 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2868 /* As an optimisation, we only copy the actual
2869 * number of rules that the underlying
2870 * function returned. Since Mallory might
2871 * change the rule count in user memory, we
2872 * check that it is less than the rule count
2873 * originally given (as the user buffer size),
2874 * which has been range-checked.
2875 */
2876 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2877 return -EFAULT;
2878 if (actual_rule_cnt < rule_cnt)
2879 rule_cnt = actual_rule_cnt;
2880 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2881 &rxnfc->rule_locs[0],
2882 rule_cnt * sizeof(u32)))
2883 return -EFAULT;
2884 }
2885 }
2886
2887 return 0;
2888 }
2889
2890 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2891 {
2892 void __user *uptr;
2893 compat_uptr_t uptr32;
2894 struct ifreq __user *uifr;
2895
2896 uifr = compat_alloc_user_space(sizeof(*uifr));
2897 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2898 return -EFAULT;
2899
2900 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2901 return -EFAULT;
2902
2903 uptr = compat_ptr(uptr32);
2904
2905 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2906 return -EFAULT;
2907
2908 return dev_ioctl(net, SIOCWANDEV, uifr);
2909 }
2910
2911 static int bond_ioctl(struct net *net, unsigned int cmd,
2912 struct compat_ifreq __user *ifr32)
2913 {
2914 struct ifreq kifr;
2915 mm_segment_t old_fs;
2916 int err;
2917
2918 switch (cmd) {
2919 case SIOCBONDENSLAVE:
2920 case SIOCBONDRELEASE:
2921 case SIOCBONDSETHWADDR:
2922 case SIOCBONDCHANGEACTIVE:
2923 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2924 return -EFAULT;
2925
2926 old_fs = get_fs();
2927 set_fs(KERNEL_DS);
2928 err = dev_ioctl(net, cmd,
2929 (struct ifreq __user __force *) &kifr);
2930 set_fs(old_fs);
2931
2932 return err;
2933 default:
2934 return -ENOIOCTLCMD;
2935 }
2936 }
2937
2938 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2939 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2940 struct compat_ifreq __user *u_ifreq32)
2941 {
2942 struct ifreq __user *u_ifreq64;
2943 char tmp_buf[IFNAMSIZ];
2944 void __user *data64;
2945 u32 data32;
2946
2947 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2948 IFNAMSIZ))
2949 return -EFAULT;
2950 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2951 return -EFAULT;
2952 data64 = compat_ptr(data32);
2953
2954 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2955
2956 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2957 IFNAMSIZ))
2958 return -EFAULT;
2959 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2960 return -EFAULT;
2961
2962 return dev_ioctl(net, cmd, u_ifreq64);
2963 }
2964
2965 static int dev_ifsioc(struct net *net, struct socket *sock,
2966 unsigned int cmd, struct compat_ifreq __user *uifr32)
2967 {
2968 struct ifreq __user *uifr;
2969 int err;
2970
2971 uifr = compat_alloc_user_space(sizeof(*uifr));
2972 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2973 return -EFAULT;
2974
2975 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2976
2977 if (!err) {
2978 switch (cmd) {
2979 case SIOCGIFFLAGS:
2980 case SIOCGIFMETRIC:
2981 case SIOCGIFMTU:
2982 case SIOCGIFMEM:
2983 case SIOCGIFHWADDR:
2984 case SIOCGIFINDEX:
2985 case SIOCGIFADDR:
2986 case SIOCGIFBRDADDR:
2987 case SIOCGIFDSTADDR:
2988 case SIOCGIFNETMASK:
2989 case SIOCGIFPFLAGS:
2990 case SIOCGIFTXQLEN:
2991 case SIOCGMIIPHY:
2992 case SIOCGMIIREG:
2993 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2994 err = -EFAULT;
2995 break;
2996 }
2997 }
2998 return err;
2999 }
3000
3001 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3002 struct compat_ifreq __user *uifr32)
3003 {
3004 struct ifreq ifr;
3005 struct compat_ifmap __user *uifmap32;
3006 mm_segment_t old_fs;
3007 int err;
3008
3009 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3010 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3011 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3012 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3013 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3014 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3015 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3016 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3017 if (err)
3018 return -EFAULT;
3019
3020 old_fs = get_fs();
3021 set_fs(KERNEL_DS);
3022 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3023 set_fs(old_fs);
3024
3025 if (cmd == SIOCGIFMAP && !err) {
3026 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3027 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3028 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3029 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3030 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3031 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3032 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3033 if (err)
3034 err = -EFAULT;
3035 }
3036 return err;
3037 }
3038
3039 struct rtentry32 {
3040 u32 rt_pad1;
3041 struct sockaddr rt_dst; /* target address */
3042 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3043 struct sockaddr rt_genmask; /* target network mask (IP) */
3044 unsigned short rt_flags;
3045 short rt_pad2;
3046 u32 rt_pad3;
3047 unsigned char rt_tos;
3048 unsigned char rt_class;
3049 short rt_pad4;
3050 short rt_metric; /* +1 for binary compatibility! */
3051 /* char * */ u32 rt_dev; /* forcing the device at add */
3052 u32 rt_mtu; /* per route MTU/Window */
3053 u32 rt_window; /* Window clamping */
3054 unsigned short rt_irtt; /* Initial RTT */
3055 };
3056
3057 struct in6_rtmsg32 {
3058 struct in6_addr rtmsg_dst;
3059 struct in6_addr rtmsg_src;
3060 struct in6_addr rtmsg_gateway;
3061 u32 rtmsg_type;
3062 u16 rtmsg_dst_len;
3063 u16 rtmsg_src_len;
3064 u32 rtmsg_metric;
3065 u32 rtmsg_info;
3066 u32 rtmsg_flags;
3067 s32 rtmsg_ifindex;
3068 };
3069
3070 static int routing_ioctl(struct net *net, struct socket *sock,
3071 unsigned int cmd, void __user *argp)
3072 {
3073 int ret;
3074 void *r = NULL;
3075 struct in6_rtmsg r6;
3076 struct rtentry r4;
3077 char devname[16];
3078 u32 rtdev;
3079 mm_segment_t old_fs = get_fs();
3080
3081 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3082 struct in6_rtmsg32 __user *ur6 = argp;
3083 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3084 3 * sizeof(struct in6_addr));
3085 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3086 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3087 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3088 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3089 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3090 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3091 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3092
3093 r = (void *) &r6;
3094 } else { /* ipv4 */
3095 struct rtentry32 __user *ur4 = argp;
3096 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3097 3 * sizeof(struct sockaddr));
3098 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3099 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3100 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3101 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3102 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3103 ret |= get_user(rtdev, &(ur4->rt_dev));
3104 if (rtdev) {
3105 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3106 r4.rt_dev = (char __user __force *)devname;
3107 devname[15] = 0;
3108 } else
3109 r4.rt_dev = NULL;
3110
3111 r = (void *) &r4;
3112 }
3113
3114 if (ret) {
3115 ret = -EFAULT;
3116 goto out;
3117 }
3118
3119 set_fs(KERNEL_DS);
3120 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3121 set_fs(old_fs);
3122
3123 out:
3124 return ret;
3125 }
3126
3127 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3128 * for some operations; this forces use of the newer bridge-utils that
3129 * use compatible ioctls
3130 */
3131 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3132 {
3133 compat_ulong_t tmp;
3134
3135 if (get_user(tmp, argp))
3136 return -EFAULT;
3137 if (tmp == BRCTL_GET_VERSION)
3138 return BRCTL_VERSION + 1;
3139 return -EINVAL;
3140 }
3141
3142 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3143 unsigned int cmd, unsigned long arg)
3144 {
3145 void __user *argp = compat_ptr(arg);
3146 struct sock *sk = sock->sk;
3147 struct net *net = sock_net(sk);
3148
3149 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3150 return compat_ifr_data_ioctl(net, cmd, argp);
3151
3152 switch (cmd) {
3153 case SIOCSIFBR:
3154 case SIOCGIFBR:
3155 return old_bridge_ioctl(argp);
3156 case SIOCGIFNAME:
3157 return dev_ifname32(net, argp);
3158 case SIOCGIFCONF:
3159 return dev_ifconf(net, argp);
3160 case SIOCETHTOOL:
3161 return ethtool_ioctl(net, argp);
3162 case SIOCWANDEV:
3163 return compat_siocwandev(net, argp);
3164 case SIOCGIFMAP:
3165 case SIOCSIFMAP:
3166 return compat_sioc_ifmap(net, cmd, argp);
3167 case SIOCBONDENSLAVE:
3168 case SIOCBONDRELEASE:
3169 case SIOCBONDSETHWADDR:
3170 case SIOCBONDCHANGEACTIVE:
3171 return bond_ioctl(net, cmd, argp);
3172 case SIOCADDRT:
3173 case SIOCDELRT:
3174 return routing_ioctl(net, sock, cmd, argp);
3175 case SIOCGSTAMP:
3176 return do_siocgstamp(net, sock, cmd, argp);
3177 case SIOCGSTAMPNS:
3178 return do_siocgstampns(net, sock, cmd, argp);
3179 case SIOCBONDSLAVEINFOQUERY:
3180 case SIOCBONDINFOQUERY:
3181 case SIOCSHWTSTAMP:
3182 case SIOCGHWTSTAMP:
3183 return compat_ifr_data_ioctl(net, cmd, argp);
3184
3185 case FIOSETOWN:
3186 case SIOCSPGRP:
3187 case FIOGETOWN:
3188 case SIOCGPGRP:
3189 case SIOCBRADDBR:
3190 case SIOCBRDELBR:
3191 case SIOCGIFVLAN:
3192 case SIOCSIFVLAN:
3193 case SIOCADDDLCI:
3194 case SIOCDELDLCI:
3195 case SIOCGSKNS:
3196 return sock_ioctl(file, cmd, arg);
3197
3198 case SIOCGIFFLAGS:
3199 case SIOCSIFFLAGS:
3200 case SIOCGIFMETRIC:
3201 case SIOCSIFMETRIC:
3202 case SIOCGIFMTU:
3203 case SIOCSIFMTU:
3204 case SIOCGIFMEM:
3205 case SIOCSIFMEM:
3206 case SIOCGIFHWADDR:
3207 case SIOCSIFHWADDR:
3208 case SIOCADDMULTI:
3209 case SIOCDELMULTI:
3210 case SIOCGIFINDEX:
3211 case SIOCGIFADDR:
3212 case SIOCSIFADDR:
3213 case SIOCSIFHWBROADCAST:
3214 case SIOCDIFADDR:
3215 case SIOCGIFBRDADDR:
3216 case SIOCSIFBRDADDR:
3217 case SIOCGIFDSTADDR:
3218 case SIOCSIFDSTADDR:
3219 case SIOCGIFNETMASK:
3220 case SIOCSIFNETMASK:
3221 case SIOCSIFPFLAGS:
3222 case SIOCGIFPFLAGS:
3223 case SIOCGIFTXQLEN:
3224 case SIOCSIFTXQLEN:
3225 case SIOCBRADDIF:
3226 case SIOCBRDELIF:
3227 case SIOCSIFNAME:
3228 case SIOCGMIIPHY:
3229 case SIOCGMIIREG:
3230 case SIOCSMIIREG:
3231 return dev_ifsioc(net, sock, cmd, argp);
3232
3233 case SIOCSARP:
3234 case SIOCGARP:
3235 case SIOCDARP:
3236 case SIOCATMARK:
3237 return sock_do_ioctl(net, sock, cmd, arg);
3238 }
3239
3240 return -ENOIOCTLCMD;
3241 }
3242
3243 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3244 unsigned long arg)
3245 {
3246 struct socket *sock = file->private_data;
3247 int ret = -ENOIOCTLCMD;
3248 struct sock *sk;
3249 struct net *net;
3250
3251 sk = sock->sk;
3252 net = sock_net(sk);
3253
3254 if (sock->ops->compat_ioctl)
3255 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3256
3257 if (ret == -ENOIOCTLCMD &&
3258 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3259 ret = compat_wext_handle_ioctl(net, cmd, arg);
3260
3261 if (ret == -ENOIOCTLCMD)
3262 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3263
3264 return ret;
3265 }
3266 #endif
3267
3268 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3269 {
3270 return sock->ops->bind(sock, addr, addrlen);
3271 }
3272 EXPORT_SYMBOL(kernel_bind);
3273
3274 int kernel_listen(struct socket *sock, int backlog)
3275 {
3276 return sock->ops->listen(sock, backlog);
3277 }
3278 EXPORT_SYMBOL(kernel_listen);
3279
3280 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3281 {
3282 struct sock *sk = sock->sk;
3283 int err;
3284
3285 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3286 newsock);
3287 if (err < 0)
3288 goto done;
3289
3290 err = sock->ops->accept(sock, *newsock, flags, true);
3291 if (err < 0) {
3292 sock_release(*newsock);
3293 *newsock = NULL;
3294 goto done;
3295 }
3296
3297 (*newsock)->ops = sock->ops;
3298 __module_get((*newsock)->ops->owner);
3299
3300 done:
3301 return err;
3302 }
3303 EXPORT_SYMBOL(kernel_accept);
3304
3305 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3306 int flags)
3307 {
3308 return sock->ops->connect(sock, addr, addrlen, flags);
3309 }
3310 EXPORT_SYMBOL(kernel_connect);
3311
3312 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3313 int *addrlen)
3314 {
3315 return sock->ops->getname(sock, addr, addrlen, 0);
3316 }
3317 EXPORT_SYMBOL(kernel_getsockname);
3318
3319 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3320 int *addrlen)
3321 {
3322 return sock->ops->getname(sock, addr, addrlen, 1);
3323 }
3324 EXPORT_SYMBOL(kernel_getpeername);
3325
3326 int kernel_getsockopt(struct socket *sock, int level, int optname,
3327 char *optval, int *optlen)
3328 {
3329 mm_segment_t oldfs = get_fs();
3330 char __user *uoptval;
3331 int __user *uoptlen;
3332 int err;
3333
3334 uoptval = (char __user __force *) optval;
3335 uoptlen = (int __user __force *) optlen;
3336
3337 set_fs(KERNEL_DS);
3338 if (level == SOL_SOCKET)
3339 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3340 else
3341 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3342 uoptlen);
3343 set_fs(oldfs);
3344 return err;
3345 }
3346 EXPORT_SYMBOL(kernel_getsockopt);
3347
3348 int kernel_setsockopt(struct socket *sock, int level, int optname,
3349 char *optval, unsigned int optlen)
3350 {
3351 mm_segment_t oldfs = get_fs();
3352 char __user *uoptval;
3353 int err;
3354
3355 uoptval = (char __user __force *) optval;
3356
3357 set_fs(KERNEL_DS);
3358 if (level == SOL_SOCKET)
3359 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3360 else
3361 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3362 optlen);
3363 set_fs(oldfs);
3364 return err;
3365 }
3366 EXPORT_SYMBOL(kernel_setsockopt);
3367
3368 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3369 size_t size, int flags)
3370 {
3371 if (sock->ops->sendpage)
3372 return sock->ops->sendpage(sock, page, offset, size, flags);
3373
3374 return sock_no_sendpage(sock, page, offset, size, flags);
3375 }
3376 EXPORT_SYMBOL(kernel_sendpage);
3377
3378 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3379 {
3380 mm_segment_t oldfs = get_fs();
3381 int err;
3382
3383 set_fs(KERNEL_DS);
3384 err = sock->ops->ioctl(sock, cmd, arg);
3385 set_fs(oldfs);
3386
3387 return err;
3388 }
3389 EXPORT_SYMBOL(kernel_sock_ioctl);
3390
3391 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3392 {
3393 return sock->ops->shutdown(sock, how);
3394 }
3395 EXPORT_SYMBOL(kernel_sock_shutdown);
3396
3397 /* This routine returns the IP overhead imposed by a socket i.e.
3398 * the length of the underlying IP header, depending on whether
3399 * this is an IPv4 or IPv6 socket and the length from IP options turned
3400 * on at the socket. Assumes that the caller has a lock on the socket.
3401 */
3402 u32 kernel_sock_ip_overhead(struct sock *sk)
3403 {
3404 struct inet_sock *inet;
3405 struct ip_options_rcu *opt;
3406 u32 overhead = 0;
3407 bool owned_by_user;
3408 #if IS_ENABLED(CONFIG_IPV6)
3409 struct ipv6_pinfo *np;
3410 struct ipv6_txoptions *optv6 = NULL;
3411 #endif /* IS_ENABLED(CONFIG_IPV6) */
3412
3413 if (!sk)
3414 return overhead;
3415
3416 owned_by_user = sock_owned_by_user(sk);
3417 switch (sk->sk_family) {
3418 case AF_INET:
3419 inet = inet_sk(sk);
3420 overhead += sizeof(struct iphdr);
3421 opt = rcu_dereference_protected(inet->inet_opt,
3422 owned_by_user);
3423 if (opt)
3424 overhead += opt->opt.optlen;
3425 return overhead;
3426 #if IS_ENABLED(CONFIG_IPV6)
3427 case AF_INET6:
3428 np = inet6_sk(sk);
3429 overhead += sizeof(struct ipv6hdr);
3430 if (np)
3431 optv6 = rcu_dereference_protected(np->opt,
3432 owned_by_user);
3433 if (optv6)
3434 overhead += (optv6->opt_flen + optv6->opt_nflen);
3435 return overhead;
3436 #endif /* IS_ENABLED(CONFIG_IPV6) */
3437 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3438 return overhead;
3439 }
3440 }
3441 EXPORT_SYMBOL(kernel_sock_ip_overhead);