]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/socket.c
i2c: octeon: Cleanup i2c-octeon driver
[mirror_ubuntu-artful-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156 };
157
158 /*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165 /*
166 * Statistics counters of the socket lists
167 */
168
169 static DEFINE_PER_CPU(int, sockets_in_use);
170
171 /*
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
175 */
176
177 /**
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
182 *
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
186 */
187
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
197 }
198
199 /**
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
205 *
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
214 */
215
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
218 {
219 int err;
220 int len;
221
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
235 }
236 /*
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
239 */
240 return __put_user(klen, ulen);
241 }
242
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
249
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
257 }
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 wq->flags = 0;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
262
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
268
269 return &ei->vfs_inode;
270 }
271
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
276
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
281 }
282
283 static void init_once(void *foo)
284 {
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
286
287 inode_init_once(&ei->vfs_inode);
288 }
289
290 static int init_inodecache(void)
291 {
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
294 0,
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 init_once);
299 if (sock_inode_cachep == NULL)
300 return -ENOMEM;
301 return 0;
302 }
303
304 static const struct super_operations sockfs_ops = {
305 .alloc_inode = sock_alloc_inode,
306 .destroy_inode = sock_destroy_inode,
307 .statfs = simple_statfs,
308 };
309
310 /*
311 * sockfs_dname() is called from d_path().
312 */
313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
314 {
315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 d_inode(dentry)->i_ino);
317 }
318
319 static const struct dentry_operations sockfs_dentry_operations = {
320 .d_dname = sockfs_dname,
321 };
322
323 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
324 int flags, const char *dev_name, void *data)
325 {
326 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
327 &sockfs_dentry_operations, SOCKFS_MAGIC);
328 }
329
330 static struct vfsmount *sock_mnt __read_mostly;
331
332 static struct file_system_type sock_fs_type = {
333 .name = "sockfs",
334 .mount = sockfs_mount,
335 .kill_sb = kill_anon_super,
336 };
337
338 /*
339 * Obtains the first available file descriptor and sets it up for use.
340 *
341 * These functions create file structures and maps them to fd space
342 * of the current process. On success it returns file descriptor
343 * and file struct implicitly stored in sock->file.
344 * Note that another thread may close file descriptor before we return
345 * from this function. We use the fact that now we do not refer
346 * to socket after mapping. If one day we will need it, this
347 * function will increment ref. count on file by 1.
348 *
349 * In any case returned fd MAY BE not valid!
350 * This race condition is unavoidable
351 * with shared fd spaces, we cannot solve it inside kernel,
352 * but we take care of internal coherence yet.
353 */
354
355 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
356 {
357 struct qstr name = { .name = "" };
358 struct path path;
359 struct file *file;
360
361 if (dname) {
362 name.name = dname;
363 name.len = strlen(name.name);
364 } else if (sock->sk) {
365 name.name = sock->sk->sk_prot_creator->name;
366 name.len = strlen(name.name);
367 }
368 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
369 if (unlikely(!path.dentry))
370 return ERR_PTR(-ENOMEM);
371 path.mnt = mntget(sock_mnt);
372
373 d_instantiate(path.dentry, SOCK_INODE(sock));
374
375 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
376 &socket_file_ops);
377 if (IS_ERR(file)) {
378 /* drop dentry, keep inode */
379 ihold(d_inode(path.dentry));
380 path_put(&path);
381 return file;
382 }
383
384 sock->file = file;
385 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
386 file->private_data = sock;
387 return file;
388 }
389 EXPORT_SYMBOL(sock_alloc_file);
390
391 static int sock_map_fd(struct socket *sock, int flags)
392 {
393 struct file *newfile;
394 int fd = get_unused_fd_flags(flags);
395 if (unlikely(fd < 0))
396 return fd;
397
398 newfile = sock_alloc_file(sock, flags, NULL);
399 if (likely(!IS_ERR(newfile))) {
400 fd_install(fd, newfile);
401 return fd;
402 }
403
404 put_unused_fd(fd);
405 return PTR_ERR(newfile);
406 }
407
408 struct socket *sock_from_file(struct file *file, int *err)
409 {
410 if (file->f_op == &socket_file_ops)
411 return file->private_data; /* set in sock_map_fd */
412
413 *err = -ENOTSOCK;
414 return NULL;
415 }
416 EXPORT_SYMBOL(sock_from_file);
417
418 /**
419 * sockfd_lookup - Go from a file number to its socket slot
420 * @fd: file handle
421 * @err: pointer to an error code return
422 *
423 * The file handle passed in is locked and the socket it is bound
424 * too is returned. If an error occurs the err pointer is overwritten
425 * with a negative errno code and NULL is returned. The function checks
426 * for both invalid handles and passing a handle which is not a socket.
427 *
428 * On a success the socket object pointer is returned.
429 */
430
431 struct socket *sockfd_lookup(int fd, int *err)
432 {
433 struct file *file;
434 struct socket *sock;
435
436 file = fget(fd);
437 if (!file) {
438 *err = -EBADF;
439 return NULL;
440 }
441
442 sock = sock_from_file(file, err);
443 if (!sock)
444 fput(file);
445 return sock;
446 }
447 EXPORT_SYMBOL(sockfd_lookup);
448
449 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
450 {
451 struct fd f = fdget(fd);
452 struct socket *sock;
453
454 *err = -EBADF;
455 if (f.file) {
456 sock = sock_from_file(f.file, err);
457 if (likely(sock)) {
458 *fput_needed = f.flags;
459 return sock;
460 }
461 fdput(f);
462 }
463 return NULL;
464 }
465
466 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
467 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
468 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
469 static ssize_t sockfs_getxattr(struct dentry *dentry,
470 const char *name, void *value, size_t size)
471 {
472 const char *proto_name;
473 size_t proto_size;
474 int error;
475
476 error = -ENODATA;
477 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
478 proto_name = dentry->d_name.name;
479 proto_size = strlen(proto_name);
480
481 if (value) {
482 error = -ERANGE;
483 if (proto_size + 1 > size)
484 goto out;
485
486 strncpy(value, proto_name, proto_size + 1);
487 }
488 error = proto_size + 1;
489 }
490
491 out:
492 return error;
493 }
494
495 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
496 size_t size)
497 {
498 ssize_t len;
499 ssize_t used = 0;
500
501 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
502 if (len < 0)
503 return len;
504 used += len;
505 if (buffer) {
506 if (size < used)
507 return -ERANGE;
508 buffer += len;
509 }
510
511 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
512 used += len;
513 if (buffer) {
514 if (size < used)
515 return -ERANGE;
516 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
517 buffer += len;
518 }
519
520 return used;
521 }
522
523 static const struct inode_operations sockfs_inode_ops = {
524 .getxattr = sockfs_getxattr,
525 .listxattr = sockfs_listxattr,
526 };
527
528 /**
529 * sock_alloc - allocate a socket
530 *
531 * Allocate a new inode and socket object. The two are bound together
532 * and initialised. The socket is then returned. If we are out of inodes
533 * NULL is returned.
534 */
535
536 static struct socket *sock_alloc(void)
537 {
538 struct inode *inode;
539 struct socket *sock;
540
541 inode = new_inode_pseudo(sock_mnt->mnt_sb);
542 if (!inode)
543 return NULL;
544
545 sock = SOCKET_I(inode);
546
547 kmemcheck_annotate_bitfield(sock, type);
548 inode->i_ino = get_next_ino();
549 inode->i_mode = S_IFSOCK | S_IRWXUGO;
550 inode->i_uid = current_fsuid();
551 inode->i_gid = current_fsgid();
552 inode->i_op = &sockfs_inode_ops;
553
554 this_cpu_add(sockets_in_use, 1);
555 return sock;
556 }
557
558 /**
559 * sock_release - close a socket
560 * @sock: socket to close
561 *
562 * The socket is released from the protocol stack if it has a release
563 * callback, and the inode is then released if the socket is bound to
564 * an inode not a file.
565 */
566
567 void sock_release(struct socket *sock)
568 {
569 if (sock->ops) {
570 struct module *owner = sock->ops->owner;
571
572 sock->ops->release(sock);
573 sock->ops = NULL;
574 module_put(owner);
575 }
576
577 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
578 pr_err("%s: fasync list not empty!\n", __func__);
579
580 this_cpu_sub(sockets_in_use, 1);
581 if (!sock->file) {
582 iput(SOCK_INODE(sock));
583 return;
584 }
585 sock->file = NULL;
586 }
587 EXPORT_SYMBOL(sock_release);
588
589 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
590 {
591 u8 flags = *tx_flags;
592
593 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
594 flags |= SKBTX_HW_TSTAMP;
595
596 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
597 flags |= SKBTX_SW_TSTAMP;
598
599 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
600 flags |= SKBTX_SCHED_TSTAMP;
601
602 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
603 flags |= SKBTX_ACK_TSTAMP;
604
605 *tx_flags = flags;
606 }
607 EXPORT_SYMBOL(__sock_tx_timestamp);
608
609 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
610 {
611 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
612 BUG_ON(ret == -EIOCBQUEUED);
613 return ret;
614 }
615
616 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
617 {
618 int err = security_socket_sendmsg(sock, msg,
619 msg_data_left(msg));
620
621 return err ?: sock_sendmsg_nosec(sock, msg);
622 }
623 EXPORT_SYMBOL(sock_sendmsg);
624
625 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
626 struct kvec *vec, size_t num, size_t size)
627 {
628 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
629 return sock_sendmsg(sock, msg);
630 }
631 EXPORT_SYMBOL(kernel_sendmsg);
632
633 /*
634 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
635 */
636 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
637 struct sk_buff *skb)
638 {
639 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
640 struct scm_timestamping tss;
641 int empty = 1;
642 struct skb_shared_hwtstamps *shhwtstamps =
643 skb_hwtstamps(skb);
644
645 /* Race occurred between timestamp enabling and packet
646 receiving. Fill in the current time for now. */
647 if (need_software_tstamp && skb->tstamp.tv64 == 0)
648 __net_timestamp(skb);
649
650 if (need_software_tstamp) {
651 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
652 struct timeval tv;
653 skb_get_timestamp(skb, &tv);
654 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
655 sizeof(tv), &tv);
656 } else {
657 struct timespec ts;
658 skb_get_timestampns(skb, &ts);
659 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
660 sizeof(ts), &ts);
661 }
662 }
663
664 memset(&tss, 0, sizeof(tss));
665 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
666 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
667 empty = 0;
668 if (shhwtstamps &&
669 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
670 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
671 empty = 0;
672 if (!empty)
673 put_cmsg(msg, SOL_SOCKET,
674 SCM_TIMESTAMPING, sizeof(tss), &tss);
675 }
676 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
677
678 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
679 struct sk_buff *skb)
680 {
681 int ack;
682
683 if (!sock_flag(sk, SOCK_WIFI_STATUS))
684 return;
685 if (!skb->wifi_acked_valid)
686 return;
687
688 ack = skb->wifi_acked;
689
690 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
691 }
692 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
693
694 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
695 struct sk_buff *skb)
696 {
697 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
698 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
699 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
700 }
701
702 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
703 struct sk_buff *skb)
704 {
705 sock_recv_timestamp(msg, sk, skb);
706 sock_recv_drops(msg, sk, skb);
707 }
708 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
709
710 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
711 size_t size, int flags)
712 {
713 return sock->ops->recvmsg(sock, msg, size, flags);
714 }
715
716 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
717 int flags)
718 {
719 int err = security_socket_recvmsg(sock, msg, size, flags);
720
721 return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
722 }
723 EXPORT_SYMBOL(sock_recvmsg);
724
725 /**
726 * kernel_recvmsg - Receive a message from a socket (kernel space)
727 * @sock: The socket to receive the message from
728 * @msg: Received message
729 * @vec: Input s/g array for message data
730 * @num: Size of input s/g array
731 * @size: Number of bytes to read
732 * @flags: Message flags (MSG_DONTWAIT, etc...)
733 *
734 * On return the msg structure contains the scatter/gather array passed in the
735 * vec argument. The array is modified so that it consists of the unfilled
736 * portion of the original array.
737 *
738 * The returned value is the total number of bytes received, or an error.
739 */
740 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
741 struct kvec *vec, size_t num, size_t size, int flags)
742 {
743 mm_segment_t oldfs = get_fs();
744 int result;
745
746 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
747 set_fs(KERNEL_DS);
748 result = sock_recvmsg(sock, msg, size, flags);
749 set_fs(oldfs);
750 return result;
751 }
752 EXPORT_SYMBOL(kernel_recvmsg);
753
754 static ssize_t sock_sendpage(struct file *file, struct page *page,
755 int offset, size_t size, loff_t *ppos, int more)
756 {
757 struct socket *sock;
758 int flags;
759
760 sock = file->private_data;
761
762 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
763 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
764 flags |= more;
765
766 return kernel_sendpage(sock, page, offset, size, flags);
767 }
768
769 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
770 struct pipe_inode_info *pipe, size_t len,
771 unsigned int flags)
772 {
773 struct socket *sock = file->private_data;
774
775 if (unlikely(!sock->ops->splice_read))
776 return -EINVAL;
777
778 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
779 }
780
781 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
782 {
783 struct file *file = iocb->ki_filp;
784 struct socket *sock = file->private_data;
785 struct msghdr msg = {.msg_iter = *to,
786 .msg_iocb = iocb};
787 ssize_t res;
788
789 if (file->f_flags & O_NONBLOCK)
790 msg.msg_flags = MSG_DONTWAIT;
791
792 if (iocb->ki_pos != 0)
793 return -ESPIPE;
794
795 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
796 return 0;
797
798 res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags);
799 *to = msg.msg_iter;
800 return res;
801 }
802
803 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
804 {
805 struct file *file = iocb->ki_filp;
806 struct socket *sock = file->private_data;
807 struct msghdr msg = {.msg_iter = *from,
808 .msg_iocb = iocb};
809 ssize_t res;
810
811 if (iocb->ki_pos != 0)
812 return -ESPIPE;
813
814 if (file->f_flags & O_NONBLOCK)
815 msg.msg_flags = MSG_DONTWAIT;
816
817 if (sock->type == SOCK_SEQPACKET)
818 msg.msg_flags |= MSG_EOR;
819
820 res = sock_sendmsg(sock, &msg);
821 *from = msg.msg_iter;
822 return res;
823 }
824
825 /*
826 * Atomic setting of ioctl hooks to avoid race
827 * with module unload.
828 */
829
830 static DEFINE_MUTEX(br_ioctl_mutex);
831 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
832
833 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
834 {
835 mutex_lock(&br_ioctl_mutex);
836 br_ioctl_hook = hook;
837 mutex_unlock(&br_ioctl_mutex);
838 }
839 EXPORT_SYMBOL(brioctl_set);
840
841 static DEFINE_MUTEX(vlan_ioctl_mutex);
842 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
843
844 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
845 {
846 mutex_lock(&vlan_ioctl_mutex);
847 vlan_ioctl_hook = hook;
848 mutex_unlock(&vlan_ioctl_mutex);
849 }
850 EXPORT_SYMBOL(vlan_ioctl_set);
851
852 static DEFINE_MUTEX(dlci_ioctl_mutex);
853 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
854
855 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
856 {
857 mutex_lock(&dlci_ioctl_mutex);
858 dlci_ioctl_hook = hook;
859 mutex_unlock(&dlci_ioctl_mutex);
860 }
861 EXPORT_SYMBOL(dlci_ioctl_set);
862
863 static long sock_do_ioctl(struct net *net, struct socket *sock,
864 unsigned int cmd, unsigned long arg)
865 {
866 int err;
867 void __user *argp = (void __user *)arg;
868
869 err = sock->ops->ioctl(sock, cmd, arg);
870
871 /*
872 * If this ioctl is unknown try to hand it down
873 * to the NIC driver.
874 */
875 if (err == -ENOIOCTLCMD)
876 err = dev_ioctl(net, cmd, argp);
877
878 return err;
879 }
880
881 /*
882 * With an ioctl, arg may well be a user mode pointer, but we don't know
883 * what to do with it - that's up to the protocol still.
884 */
885
886 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
887 {
888 struct socket *sock;
889 struct sock *sk;
890 void __user *argp = (void __user *)arg;
891 int pid, err;
892 struct net *net;
893
894 sock = file->private_data;
895 sk = sock->sk;
896 net = sock_net(sk);
897 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
898 err = dev_ioctl(net, cmd, argp);
899 } else
900 #ifdef CONFIG_WEXT_CORE
901 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
902 err = dev_ioctl(net, cmd, argp);
903 } else
904 #endif
905 switch (cmd) {
906 case FIOSETOWN:
907 case SIOCSPGRP:
908 err = -EFAULT;
909 if (get_user(pid, (int __user *)argp))
910 break;
911 f_setown(sock->file, pid, 1);
912 err = 0;
913 break;
914 case FIOGETOWN:
915 case SIOCGPGRP:
916 err = put_user(f_getown(sock->file),
917 (int __user *)argp);
918 break;
919 case SIOCGIFBR:
920 case SIOCSIFBR:
921 case SIOCBRADDBR:
922 case SIOCBRDELBR:
923 err = -ENOPKG;
924 if (!br_ioctl_hook)
925 request_module("bridge");
926
927 mutex_lock(&br_ioctl_mutex);
928 if (br_ioctl_hook)
929 err = br_ioctl_hook(net, cmd, argp);
930 mutex_unlock(&br_ioctl_mutex);
931 break;
932 case SIOCGIFVLAN:
933 case SIOCSIFVLAN:
934 err = -ENOPKG;
935 if (!vlan_ioctl_hook)
936 request_module("8021q");
937
938 mutex_lock(&vlan_ioctl_mutex);
939 if (vlan_ioctl_hook)
940 err = vlan_ioctl_hook(net, argp);
941 mutex_unlock(&vlan_ioctl_mutex);
942 break;
943 case SIOCADDDLCI:
944 case SIOCDELDLCI:
945 err = -ENOPKG;
946 if (!dlci_ioctl_hook)
947 request_module("dlci");
948
949 mutex_lock(&dlci_ioctl_mutex);
950 if (dlci_ioctl_hook)
951 err = dlci_ioctl_hook(cmd, argp);
952 mutex_unlock(&dlci_ioctl_mutex);
953 break;
954 default:
955 err = sock_do_ioctl(net, sock, cmd, arg);
956 break;
957 }
958 return err;
959 }
960
961 int sock_create_lite(int family, int type, int protocol, struct socket **res)
962 {
963 int err;
964 struct socket *sock = NULL;
965
966 err = security_socket_create(family, type, protocol, 1);
967 if (err)
968 goto out;
969
970 sock = sock_alloc();
971 if (!sock) {
972 err = -ENOMEM;
973 goto out;
974 }
975
976 sock->type = type;
977 err = security_socket_post_create(sock, family, type, protocol, 1);
978 if (err)
979 goto out_release;
980
981 out:
982 *res = sock;
983 return err;
984 out_release:
985 sock_release(sock);
986 sock = NULL;
987 goto out;
988 }
989 EXPORT_SYMBOL(sock_create_lite);
990
991 /* No kernel lock held - perfect */
992 static unsigned int sock_poll(struct file *file, poll_table *wait)
993 {
994 unsigned int busy_flag = 0;
995 struct socket *sock;
996
997 /*
998 * We can't return errors to poll, so it's either yes or no.
999 */
1000 sock = file->private_data;
1001
1002 if (sk_can_busy_loop(sock->sk)) {
1003 /* this socket can poll_ll so tell the system call */
1004 busy_flag = POLL_BUSY_LOOP;
1005
1006 /* once, only if requested by syscall */
1007 if (wait && (wait->_key & POLL_BUSY_LOOP))
1008 sk_busy_loop(sock->sk, 1);
1009 }
1010
1011 return busy_flag | sock->ops->poll(file, sock, wait);
1012 }
1013
1014 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1015 {
1016 struct socket *sock = file->private_data;
1017
1018 return sock->ops->mmap(file, sock, vma);
1019 }
1020
1021 static int sock_close(struct inode *inode, struct file *filp)
1022 {
1023 sock_release(SOCKET_I(inode));
1024 return 0;
1025 }
1026
1027 /*
1028 * Update the socket async list
1029 *
1030 * Fasync_list locking strategy.
1031 *
1032 * 1. fasync_list is modified only under process context socket lock
1033 * i.e. under semaphore.
1034 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1035 * or under socket lock
1036 */
1037
1038 static int sock_fasync(int fd, struct file *filp, int on)
1039 {
1040 struct socket *sock = filp->private_data;
1041 struct sock *sk = sock->sk;
1042 struct socket_wq *wq;
1043
1044 if (sk == NULL)
1045 return -EINVAL;
1046
1047 lock_sock(sk);
1048 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1049 fasync_helper(fd, filp, on, &wq->fasync_list);
1050
1051 if (!wq->fasync_list)
1052 sock_reset_flag(sk, SOCK_FASYNC);
1053 else
1054 sock_set_flag(sk, SOCK_FASYNC);
1055
1056 release_sock(sk);
1057 return 0;
1058 }
1059
1060 /* This function may be called only under rcu_lock */
1061
1062 int sock_wake_async(struct socket_wq *wq, int how, int band)
1063 {
1064 if (!wq || !wq->fasync_list)
1065 return -1;
1066
1067 switch (how) {
1068 case SOCK_WAKE_WAITD:
1069 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1070 break;
1071 goto call_kill;
1072 case SOCK_WAKE_SPACE:
1073 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1074 break;
1075 /* fall through */
1076 case SOCK_WAKE_IO:
1077 call_kill:
1078 kill_fasync(&wq->fasync_list, SIGIO, band);
1079 break;
1080 case SOCK_WAKE_URG:
1081 kill_fasync(&wq->fasync_list, SIGURG, band);
1082 }
1083
1084 return 0;
1085 }
1086 EXPORT_SYMBOL(sock_wake_async);
1087
1088 int __sock_create(struct net *net, int family, int type, int protocol,
1089 struct socket **res, int kern)
1090 {
1091 int err;
1092 struct socket *sock;
1093 const struct net_proto_family *pf;
1094
1095 /*
1096 * Check protocol is in range
1097 */
1098 if (family < 0 || family >= NPROTO)
1099 return -EAFNOSUPPORT;
1100 if (type < 0 || type >= SOCK_MAX)
1101 return -EINVAL;
1102
1103 /* Compatibility.
1104
1105 This uglymoron is moved from INET layer to here to avoid
1106 deadlock in module load.
1107 */
1108 if (family == PF_INET && type == SOCK_PACKET) {
1109 static int warned;
1110 if (!warned) {
1111 warned = 1;
1112 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1113 current->comm);
1114 }
1115 family = PF_PACKET;
1116 }
1117
1118 err = security_socket_create(family, type, protocol, kern);
1119 if (err)
1120 return err;
1121
1122 /*
1123 * Allocate the socket and allow the family to set things up. if
1124 * the protocol is 0, the family is instructed to select an appropriate
1125 * default.
1126 */
1127 sock = sock_alloc();
1128 if (!sock) {
1129 net_warn_ratelimited("socket: no more sockets\n");
1130 return -ENFILE; /* Not exactly a match, but its the
1131 closest posix thing */
1132 }
1133
1134 sock->type = type;
1135
1136 #ifdef CONFIG_MODULES
1137 /* Attempt to load a protocol module if the find failed.
1138 *
1139 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1140 * requested real, full-featured networking support upon configuration.
1141 * Otherwise module support will break!
1142 */
1143 if (rcu_access_pointer(net_families[family]) == NULL)
1144 request_module("net-pf-%d", family);
1145 #endif
1146
1147 rcu_read_lock();
1148 pf = rcu_dereference(net_families[family]);
1149 err = -EAFNOSUPPORT;
1150 if (!pf)
1151 goto out_release;
1152
1153 /*
1154 * We will call the ->create function, that possibly is in a loadable
1155 * module, so we have to bump that loadable module refcnt first.
1156 */
1157 if (!try_module_get(pf->owner))
1158 goto out_release;
1159
1160 /* Now protected by module ref count */
1161 rcu_read_unlock();
1162
1163 err = pf->create(net, sock, protocol, kern);
1164 if (err < 0)
1165 goto out_module_put;
1166
1167 /*
1168 * Now to bump the refcnt of the [loadable] module that owns this
1169 * socket at sock_release time we decrement its refcnt.
1170 */
1171 if (!try_module_get(sock->ops->owner))
1172 goto out_module_busy;
1173
1174 /*
1175 * Now that we're done with the ->create function, the [loadable]
1176 * module can have its refcnt decremented
1177 */
1178 module_put(pf->owner);
1179 err = security_socket_post_create(sock, family, type, protocol, kern);
1180 if (err)
1181 goto out_sock_release;
1182 *res = sock;
1183
1184 return 0;
1185
1186 out_module_busy:
1187 err = -EAFNOSUPPORT;
1188 out_module_put:
1189 sock->ops = NULL;
1190 module_put(pf->owner);
1191 out_sock_release:
1192 sock_release(sock);
1193 return err;
1194
1195 out_release:
1196 rcu_read_unlock();
1197 goto out_sock_release;
1198 }
1199 EXPORT_SYMBOL(__sock_create);
1200
1201 int sock_create(int family, int type, int protocol, struct socket **res)
1202 {
1203 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1204 }
1205 EXPORT_SYMBOL(sock_create);
1206
1207 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1208 {
1209 return __sock_create(net, family, type, protocol, res, 1);
1210 }
1211 EXPORT_SYMBOL(sock_create_kern);
1212
1213 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1214 {
1215 int retval;
1216 struct socket *sock;
1217 int flags;
1218
1219 /* Check the SOCK_* constants for consistency. */
1220 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1221 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1222 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1223 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1224
1225 flags = type & ~SOCK_TYPE_MASK;
1226 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1227 return -EINVAL;
1228 type &= SOCK_TYPE_MASK;
1229
1230 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1231 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1232
1233 retval = sock_create(family, type, protocol, &sock);
1234 if (retval < 0)
1235 goto out;
1236
1237 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1238 if (retval < 0)
1239 goto out_release;
1240
1241 out:
1242 /* It may be already another descriptor 8) Not kernel problem. */
1243 return retval;
1244
1245 out_release:
1246 sock_release(sock);
1247 return retval;
1248 }
1249
1250 /*
1251 * Create a pair of connected sockets.
1252 */
1253
1254 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1255 int __user *, usockvec)
1256 {
1257 struct socket *sock1, *sock2;
1258 int fd1, fd2, err;
1259 struct file *newfile1, *newfile2;
1260 int flags;
1261
1262 flags = type & ~SOCK_TYPE_MASK;
1263 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1264 return -EINVAL;
1265 type &= SOCK_TYPE_MASK;
1266
1267 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1268 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1269
1270 /*
1271 * Obtain the first socket and check if the underlying protocol
1272 * supports the socketpair call.
1273 */
1274
1275 err = sock_create(family, type, protocol, &sock1);
1276 if (err < 0)
1277 goto out;
1278
1279 err = sock_create(family, type, protocol, &sock2);
1280 if (err < 0)
1281 goto out_release_1;
1282
1283 err = sock1->ops->socketpair(sock1, sock2);
1284 if (err < 0)
1285 goto out_release_both;
1286
1287 fd1 = get_unused_fd_flags(flags);
1288 if (unlikely(fd1 < 0)) {
1289 err = fd1;
1290 goto out_release_both;
1291 }
1292
1293 fd2 = get_unused_fd_flags(flags);
1294 if (unlikely(fd2 < 0)) {
1295 err = fd2;
1296 goto out_put_unused_1;
1297 }
1298
1299 newfile1 = sock_alloc_file(sock1, flags, NULL);
1300 if (IS_ERR(newfile1)) {
1301 err = PTR_ERR(newfile1);
1302 goto out_put_unused_both;
1303 }
1304
1305 newfile2 = sock_alloc_file(sock2, flags, NULL);
1306 if (IS_ERR(newfile2)) {
1307 err = PTR_ERR(newfile2);
1308 goto out_fput_1;
1309 }
1310
1311 err = put_user(fd1, &usockvec[0]);
1312 if (err)
1313 goto out_fput_both;
1314
1315 err = put_user(fd2, &usockvec[1]);
1316 if (err)
1317 goto out_fput_both;
1318
1319 audit_fd_pair(fd1, fd2);
1320
1321 fd_install(fd1, newfile1);
1322 fd_install(fd2, newfile2);
1323 /* fd1 and fd2 may be already another descriptors.
1324 * Not kernel problem.
1325 */
1326
1327 return 0;
1328
1329 out_fput_both:
1330 fput(newfile2);
1331 fput(newfile1);
1332 put_unused_fd(fd2);
1333 put_unused_fd(fd1);
1334 goto out;
1335
1336 out_fput_1:
1337 fput(newfile1);
1338 put_unused_fd(fd2);
1339 put_unused_fd(fd1);
1340 sock_release(sock2);
1341 goto out;
1342
1343 out_put_unused_both:
1344 put_unused_fd(fd2);
1345 out_put_unused_1:
1346 put_unused_fd(fd1);
1347 out_release_both:
1348 sock_release(sock2);
1349 out_release_1:
1350 sock_release(sock1);
1351 out:
1352 return err;
1353 }
1354
1355 /*
1356 * Bind a name to a socket. Nothing much to do here since it's
1357 * the protocol's responsibility to handle the local address.
1358 *
1359 * We move the socket address to kernel space before we call
1360 * the protocol layer (having also checked the address is ok).
1361 */
1362
1363 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1364 {
1365 struct socket *sock;
1366 struct sockaddr_storage address;
1367 int err, fput_needed;
1368
1369 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1370 if (sock) {
1371 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1372 if (err >= 0) {
1373 err = security_socket_bind(sock,
1374 (struct sockaddr *)&address,
1375 addrlen);
1376 if (!err)
1377 err = sock->ops->bind(sock,
1378 (struct sockaddr *)
1379 &address, addrlen);
1380 }
1381 fput_light(sock->file, fput_needed);
1382 }
1383 return err;
1384 }
1385
1386 /*
1387 * Perform a listen. Basically, we allow the protocol to do anything
1388 * necessary for a listen, and if that works, we mark the socket as
1389 * ready for listening.
1390 */
1391
1392 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1393 {
1394 struct socket *sock;
1395 int err, fput_needed;
1396 int somaxconn;
1397
1398 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1399 if (sock) {
1400 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1401 if ((unsigned int)backlog > somaxconn)
1402 backlog = somaxconn;
1403
1404 err = security_socket_listen(sock, backlog);
1405 if (!err)
1406 err = sock->ops->listen(sock, backlog);
1407
1408 fput_light(sock->file, fput_needed);
1409 }
1410 return err;
1411 }
1412
1413 /*
1414 * For accept, we attempt to create a new socket, set up the link
1415 * with the client, wake up the client, then return the new
1416 * connected fd. We collect the address of the connector in kernel
1417 * space and move it to user at the very end. This is unclean because
1418 * we open the socket then return an error.
1419 *
1420 * 1003.1g adds the ability to recvmsg() to query connection pending
1421 * status to recvmsg. We need to add that support in a way thats
1422 * clean when we restucture accept also.
1423 */
1424
1425 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1426 int __user *, upeer_addrlen, int, flags)
1427 {
1428 struct socket *sock, *newsock;
1429 struct file *newfile;
1430 int err, len, newfd, fput_needed;
1431 struct sockaddr_storage address;
1432
1433 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1434 return -EINVAL;
1435
1436 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1437 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1438
1439 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1440 if (!sock)
1441 goto out;
1442
1443 err = -ENFILE;
1444 newsock = sock_alloc();
1445 if (!newsock)
1446 goto out_put;
1447
1448 newsock->type = sock->type;
1449 newsock->ops = sock->ops;
1450
1451 /*
1452 * We don't need try_module_get here, as the listening socket (sock)
1453 * has the protocol module (sock->ops->owner) held.
1454 */
1455 __module_get(newsock->ops->owner);
1456
1457 newfd = get_unused_fd_flags(flags);
1458 if (unlikely(newfd < 0)) {
1459 err = newfd;
1460 sock_release(newsock);
1461 goto out_put;
1462 }
1463 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1464 if (IS_ERR(newfile)) {
1465 err = PTR_ERR(newfile);
1466 put_unused_fd(newfd);
1467 sock_release(newsock);
1468 goto out_put;
1469 }
1470
1471 err = security_socket_accept(sock, newsock);
1472 if (err)
1473 goto out_fd;
1474
1475 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1476 if (err < 0)
1477 goto out_fd;
1478
1479 if (upeer_sockaddr) {
1480 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1481 &len, 2) < 0) {
1482 err = -ECONNABORTED;
1483 goto out_fd;
1484 }
1485 err = move_addr_to_user(&address,
1486 len, upeer_sockaddr, upeer_addrlen);
1487 if (err < 0)
1488 goto out_fd;
1489 }
1490
1491 /* File flags are not inherited via accept() unlike another OSes. */
1492
1493 fd_install(newfd, newfile);
1494 err = newfd;
1495
1496 out_put:
1497 fput_light(sock->file, fput_needed);
1498 out:
1499 return err;
1500 out_fd:
1501 fput(newfile);
1502 put_unused_fd(newfd);
1503 goto out_put;
1504 }
1505
1506 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1507 int __user *, upeer_addrlen)
1508 {
1509 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1510 }
1511
1512 /*
1513 * Attempt to connect to a socket with the server address. The address
1514 * is in user space so we verify it is OK and move it to kernel space.
1515 *
1516 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1517 * break bindings
1518 *
1519 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1520 * other SEQPACKET protocols that take time to connect() as it doesn't
1521 * include the -EINPROGRESS status for such sockets.
1522 */
1523
1524 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1525 int, addrlen)
1526 {
1527 struct socket *sock;
1528 struct sockaddr_storage address;
1529 int err, fput_needed;
1530
1531 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1532 if (!sock)
1533 goto out;
1534 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1535 if (err < 0)
1536 goto out_put;
1537
1538 err =
1539 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1540 if (err)
1541 goto out_put;
1542
1543 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1544 sock->file->f_flags);
1545 out_put:
1546 fput_light(sock->file, fput_needed);
1547 out:
1548 return err;
1549 }
1550
1551 /*
1552 * Get the local address ('name') of a socket object. Move the obtained
1553 * name to user space.
1554 */
1555
1556 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1557 int __user *, usockaddr_len)
1558 {
1559 struct socket *sock;
1560 struct sockaddr_storage address;
1561 int len, err, fput_needed;
1562
1563 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1564 if (!sock)
1565 goto out;
1566
1567 err = security_socket_getsockname(sock);
1568 if (err)
1569 goto out_put;
1570
1571 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1572 if (err)
1573 goto out_put;
1574 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1575
1576 out_put:
1577 fput_light(sock->file, fput_needed);
1578 out:
1579 return err;
1580 }
1581
1582 /*
1583 * Get the remote address ('name') of a socket object. Move the obtained
1584 * name to user space.
1585 */
1586
1587 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1588 int __user *, usockaddr_len)
1589 {
1590 struct socket *sock;
1591 struct sockaddr_storage address;
1592 int len, err, fput_needed;
1593
1594 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1595 if (sock != NULL) {
1596 err = security_socket_getpeername(sock);
1597 if (err) {
1598 fput_light(sock->file, fput_needed);
1599 return err;
1600 }
1601
1602 err =
1603 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1604 1);
1605 if (!err)
1606 err = move_addr_to_user(&address, len, usockaddr,
1607 usockaddr_len);
1608 fput_light(sock->file, fput_needed);
1609 }
1610 return err;
1611 }
1612
1613 /*
1614 * Send a datagram to a given address. We move the address into kernel
1615 * space and check the user space data area is readable before invoking
1616 * the protocol.
1617 */
1618
1619 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1620 unsigned int, flags, struct sockaddr __user *, addr,
1621 int, addr_len)
1622 {
1623 struct socket *sock;
1624 struct sockaddr_storage address;
1625 int err;
1626 struct msghdr msg;
1627 struct iovec iov;
1628 int fput_needed;
1629
1630 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1631 if (unlikely(err))
1632 return err;
1633 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1634 if (!sock)
1635 goto out;
1636
1637 msg.msg_name = NULL;
1638 msg.msg_control = NULL;
1639 msg.msg_controllen = 0;
1640 msg.msg_namelen = 0;
1641 if (addr) {
1642 err = move_addr_to_kernel(addr, addr_len, &address);
1643 if (err < 0)
1644 goto out_put;
1645 msg.msg_name = (struct sockaddr *)&address;
1646 msg.msg_namelen = addr_len;
1647 }
1648 if (sock->file->f_flags & O_NONBLOCK)
1649 flags |= MSG_DONTWAIT;
1650 msg.msg_flags = flags;
1651 err = sock_sendmsg(sock, &msg);
1652
1653 out_put:
1654 fput_light(sock->file, fput_needed);
1655 out:
1656 return err;
1657 }
1658
1659 /*
1660 * Send a datagram down a socket.
1661 */
1662
1663 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1664 unsigned int, flags)
1665 {
1666 return sys_sendto(fd, buff, len, flags, NULL, 0);
1667 }
1668
1669 /*
1670 * Receive a frame from the socket and optionally record the address of the
1671 * sender. We verify the buffers are writable and if needed move the
1672 * sender address from kernel to user space.
1673 */
1674
1675 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1676 unsigned int, flags, struct sockaddr __user *, addr,
1677 int __user *, addr_len)
1678 {
1679 struct socket *sock;
1680 struct iovec iov;
1681 struct msghdr msg;
1682 struct sockaddr_storage address;
1683 int err, err2;
1684 int fput_needed;
1685
1686 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1687 if (unlikely(err))
1688 return err;
1689 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1690 if (!sock)
1691 goto out;
1692
1693 msg.msg_control = NULL;
1694 msg.msg_controllen = 0;
1695 /* Save some cycles and don't copy the address if not needed */
1696 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1697 /* We assume all kernel code knows the size of sockaddr_storage */
1698 msg.msg_namelen = 0;
1699 msg.msg_iocb = NULL;
1700 if (sock->file->f_flags & O_NONBLOCK)
1701 flags |= MSG_DONTWAIT;
1702 err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags);
1703
1704 if (err >= 0 && addr != NULL) {
1705 err2 = move_addr_to_user(&address,
1706 msg.msg_namelen, addr, addr_len);
1707 if (err2 < 0)
1708 err = err2;
1709 }
1710
1711 fput_light(sock->file, fput_needed);
1712 out:
1713 return err;
1714 }
1715
1716 /*
1717 * Receive a datagram from a socket.
1718 */
1719
1720 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1721 unsigned int, flags)
1722 {
1723 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1724 }
1725
1726 /*
1727 * Set a socket option. Because we don't know the option lengths we have
1728 * to pass the user mode parameter for the protocols to sort out.
1729 */
1730
1731 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1732 char __user *, optval, int, optlen)
1733 {
1734 int err, fput_needed;
1735 struct socket *sock;
1736
1737 if (optlen < 0)
1738 return -EINVAL;
1739
1740 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1741 if (sock != NULL) {
1742 err = security_socket_setsockopt(sock, level, optname);
1743 if (err)
1744 goto out_put;
1745
1746 if (level == SOL_SOCKET)
1747 err =
1748 sock_setsockopt(sock, level, optname, optval,
1749 optlen);
1750 else
1751 err =
1752 sock->ops->setsockopt(sock, level, optname, optval,
1753 optlen);
1754 out_put:
1755 fput_light(sock->file, fput_needed);
1756 }
1757 return err;
1758 }
1759
1760 /*
1761 * Get a socket option. Because we don't know the option lengths we have
1762 * to pass a user mode parameter for the protocols to sort out.
1763 */
1764
1765 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1766 char __user *, optval, int __user *, optlen)
1767 {
1768 int err, fput_needed;
1769 struct socket *sock;
1770
1771 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1772 if (sock != NULL) {
1773 err = security_socket_getsockopt(sock, level, optname);
1774 if (err)
1775 goto out_put;
1776
1777 if (level == SOL_SOCKET)
1778 err =
1779 sock_getsockopt(sock, level, optname, optval,
1780 optlen);
1781 else
1782 err =
1783 sock->ops->getsockopt(sock, level, optname, optval,
1784 optlen);
1785 out_put:
1786 fput_light(sock->file, fput_needed);
1787 }
1788 return err;
1789 }
1790
1791 /*
1792 * Shutdown a socket.
1793 */
1794
1795 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1796 {
1797 int err, fput_needed;
1798 struct socket *sock;
1799
1800 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1801 if (sock != NULL) {
1802 err = security_socket_shutdown(sock, how);
1803 if (!err)
1804 err = sock->ops->shutdown(sock, how);
1805 fput_light(sock->file, fput_needed);
1806 }
1807 return err;
1808 }
1809
1810 /* A couple of helpful macros for getting the address of the 32/64 bit
1811 * fields which are the same type (int / unsigned) on our platforms.
1812 */
1813 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1814 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1815 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1816
1817 struct used_address {
1818 struct sockaddr_storage name;
1819 unsigned int name_len;
1820 };
1821
1822 static int copy_msghdr_from_user(struct msghdr *kmsg,
1823 struct user_msghdr __user *umsg,
1824 struct sockaddr __user **save_addr,
1825 struct iovec **iov)
1826 {
1827 struct sockaddr __user *uaddr;
1828 struct iovec __user *uiov;
1829 size_t nr_segs;
1830 ssize_t err;
1831
1832 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1833 __get_user(uaddr, &umsg->msg_name) ||
1834 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1835 __get_user(uiov, &umsg->msg_iov) ||
1836 __get_user(nr_segs, &umsg->msg_iovlen) ||
1837 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1838 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1839 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1840 return -EFAULT;
1841
1842 if (!uaddr)
1843 kmsg->msg_namelen = 0;
1844
1845 if (kmsg->msg_namelen < 0)
1846 return -EINVAL;
1847
1848 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1849 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1850
1851 if (save_addr)
1852 *save_addr = uaddr;
1853
1854 if (uaddr && kmsg->msg_namelen) {
1855 if (!save_addr) {
1856 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1857 kmsg->msg_name);
1858 if (err < 0)
1859 return err;
1860 }
1861 } else {
1862 kmsg->msg_name = NULL;
1863 kmsg->msg_namelen = 0;
1864 }
1865
1866 if (nr_segs > UIO_MAXIOV)
1867 return -EMSGSIZE;
1868
1869 kmsg->msg_iocb = NULL;
1870
1871 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1872 UIO_FASTIOV, iov, &kmsg->msg_iter);
1873 }
1874
1875 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1876 struct msghdr *msg_sys, unsigned int flags,
1877 struct used_address *used_address)
1878 {
1879 struct compat_msghdr __user *msg_compat =
1880 (struct compat_msghdr __user *)msg;
1881 struct sockaddr_storage address;
1882 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1883 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1884 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1885 /* 20 is size of ipv6_pktinfo */
1886 unsigned char *ctl_buf = ctl;
1887 int ctl_len;
1888 ssize_t err;
1889
1890 msg_sys->msg_name = &address;
1891
1892 if (MSG_CMSG_COMPAT & flags)
1893 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1894 else
1895 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1896 if (err < 0)
1897 return err;
1898
1899 err = -ENOBUFS;
1900
1901 if (msg_sys->msg_controllen > INT_MAX)
1902 goto out_freeiov;
1903 ctl_len = msg_sys->msg_controllen;
1904 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1905 err =
1906 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1907 sizeof(ctl));
1908 if (err)
1909 goto out_freeiov;
1910 ctl_buf = msg_sys->msg_control;
1911 ctl_len = msg_sys->msg_controllen;
1912 } else if (ctl_len) {
1913 if (ctl_len > sizeof(ctl)) {
1914 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1915 if (ctl_buf == NULL)
1916 goto out_freeiov;
1917 }
1918 err = -EFAULT;
1919 /*
1920 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1921 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1922 * checking falls down on this.
1923 */
1924 if (copy_from_user(ctl_buf,
1925 (void __user __force *)msg_sys->msg_control,
1926 ctl_len))
1927 goto out_freectl;
1928 msg_sys->msg_control = ctl_buf;
1929 }
1930 msg_sys->msg_flags = flags;
1931
1932 if (sock->file->f_flags & O_NONBLOCK)
1933 msg_sys->msg_flags |= MSG_DONTWAIT;
1934 /*
1935 * If this is sendmmsg() and current destination address is same as
1936 * previously succeeded address, omit asking LSM's decision.
1937 * used_address->name_len is initialized to UINT_MAX so that the first
1938 * destination address never matches.
1939 */
1940 if (used_address && msg_sys->msg_name &&
1941 used_address->name_len == msg_sys->msg_namelen &&
1942 !memcmp(&used_address->name, msg_sys->msg_name,
1943 used_address->name_len)) {
1944 err = sock_sendmsg_nosec(sock, msg_sys);
1945 goto out_freectl;
1946 }
1947 err = sock_sendmsg(sock, msg_sys);
1948 /*
1949 * If this is sendmmsg() and sending to current destination address was
1950 * successful, remember it.
1951 */
1952 if (used_address && err >= 0) {
1953 used_address->name_len = msg_sys->msg_namelen;
1954 if (msg_sys->msg_name)
1955 memcpy(&used_address->name, msg_sys->msg_name,
1956 used_address->name_len);
1957 }
1958
1959 out_freectl:
1960 if (ctl_buf != ctl)
1961 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1962 out_freeiov:
1963 kfree(iov);
1964 return err;
1965 }
1966
1967 /*
1968 * BSD sendmsg interface
1969 */
1970
1971 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1972 {
1973 int fput_needed, err;
1974 struct msghdr msg_sys;
1975 struct socket *sock;
1976
1977 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1978 if (!sock)
1979 goto out;
1980
1981 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
1982
1983 fput_light(sock->file, fput_needed);
1984 out:
1985 return err;
1986 }
1987
1988 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1989 {
1990 if (flags & MSG_CMSG_COMPAT)
1991 return -EINVAL;
1992 return __sys_sendmsg(fd, msg, flags);
1993 }
1994
1995 /*
1996 * Linux sendmmsg interface
1997 */
1998
1999 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2000 unsigned int flags)
2001 {
2002 int fput_needed, err, datagrams;
2003 struct socket *sock;
2004 struct mmsghdr __user *entry;
2005 struct compat_mmsghdr __user *compat_entry;
2006 struct msghdr msg_sys;
2007 struct used_address used_address;
2008
2009 if (vlen > UIO_MAXIOV)
2010 vlen = UIO_MAXIOV;
2011
2012 datagrams = 0;
2013
2014 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2015 if (!sock)
2016 return err;
2017
2018 used_address.name_len = UINT_MAX;
2019 entry = mmsg;
2020 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2021 err = 0;
2022
2023 while (datagrams < vlen) {
2024 if (MSG_CMSG_COMPAT & flags) {
2025 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2026 &msg_sys, flags, &used_address);
2027 if (err < 0)
2028 break;
2029 err = __put_user(err, &compat_entry->msg_len);
2030 ++compat_entry;
2031 } else {
2032 err = ___sys_sendmsg(sock,
2033 (struct user_msghdr __user *)entry,
2034 &msg_sys, flags, &used_address);
2035 if (err < 0)
2036 break;
2037 err = put_user(err, &entry->msg_len);
2038 ++entry;
2039 }
2040
2041 if (err)
2042 break;
2043 ++datagrams;
2044 cond_resched();
2045 }
2046
2047 fput_light(sock->file, fput_needed);
2048
2049 /* We only return an error if no datagrams were able to be sent */
2050 if (datagrams != 0)
2051 return datagrams;
2052
2053 return err;
2054 }
2055
2056 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2057 unsigned int, vlen, unsigned int, flags)
2058 {
2059 if (flags & MSG_CMSG_COMPAT)
2060 return -EINVAL;
2061 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2062 }
2063
2064 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2065 struct msghdr *msg_sys, unsigned int flags, int nosec)
2066 {
2067 struct compat_msghdr __user *msg_compat =
2068 (struct compat_msghdr __user *)msg;
2069 struct iovec iovstack[UIO_FASTIOV];
2070 struct iovec *iov = iovstack;
2071 unsigned long cmsg_ptr;
2072 int total_len, len;
2073 ssize_t err;
2074
2075 /* kernel mode address */
2076 struct sockaddr_storage addr;
2077
2078 /* user mode address pointers */
2079 struct sockaddr __user *uaddr;
2080 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2081
2082 msg_sys->msg_name = &addr;
2083
2084 if (MSG_CMSG_COMPAT & flags)
2085 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2086 else
2087 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2088 if (err < 0)
2089 return err;
2090 total_len = iov_iter_count(&msg_sys->msg_iter);
2091
2092 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2093 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2094
2095 /* We assume all kernel code knows the size of sockaddr_storage */
2096 msg_sys->msg_namelen = 0;
2097
2098 if (sock->file->f_flags & O_NONBLOCK)
2099 flags |= MSG_DONTWAIT;
2100 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2101 total_len, flags);
2102 if (err < 0)
2103 goto out_freeiov;
2104 len = err;
2105
2106 if (uaddr != NULL) {
2107 err = move_addr_to_user(&addr,
2108 msg_sys->msg_namelen, uaddr,
2109 uaddr_len);
2110 if (err < 0)
2111 goto out_freeiov;
2112 }
2113 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2114 COMPAT_FLAGS(msg));
2115 if (err)
2116 goto out_freeiov;
2117 if (MSG_CMSG_COMPAT & flags)
2118 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2119 &msg_compat->msg_controllen);
2120 else
2121 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2122 &msg->msg_controllen);
2123 if (err)
2124 goto out_freeiov;
2125 err = len;
2126
2127 out_freeiov:
2128 kfree(iov);
2129 return err;
2130 }
2131
2132 /*
2133 * BSD recvmsg interface
2134 */
2135
2136 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2137 {
2138 int fput_needed, err;
2139 struct msghdr msg_sys;
2140 struct socket *sock;
2141
2142 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2143 if (!sock)
2144 goto out;
2145
2146 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2147
2148 fput_light(sock->file, fput_needed);
2149 out:
2150 return err;
2151 }
2152
2153 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2154 unsigned int, flags)
2155 {
2156 if (flags & MSG_CMSG_COMPAT)
2157 return -EINVAL;
2158 return __sys_recvmsg(fd, msg, flags);
2159 }
2160
2161 /*
2162 * Linux recvmmsg interface
2163 */
2164
2165 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2166 unsigned int flags, struct timespec *timeout)
2167 {
2168 int fput_needed, err, datagrams;
2169 struct socket *sock;
2170 struct mmsghdr __user *entry;
2171 struct compat_mmsghdr __user *compat_entry;
2172 struct msghdr msg_sys;
2173 struct timespec end_time;
2174
2175 if (timeout &&
2176 poll_select_set_timeout(&end_time, timeout->tv_sec,
2177 timeout->tv_nsec))
2178 return -EINVAL;
2179
2180 datagrams = 0;
2181
2182 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2183 if (!sock)
2184 return err;
2185
2186 err = sock_error(sock->sk);
2187 if (err)
2188 goto out_put;
2189
2190 entry = mmsg;
2191 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2192
2193 while (datagrams < vlen) {
2194 /*
2195 * No need to ask LSM for more than the first datagram.
2196 */
2197 if (MSG_CMSG_COMPAT & flags) {
2198 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2199 &msg_sys, flags & ~MSG_WAITFORONE,
2200 datagrams);
2201 if (err < 0)
2202 break;
2203 err = __put_user(err, &compat_entry->msg_len);
2204 ++compat_entry;
2205 } else {
2206 err = ___sys_recvmsg(sock,
2207 (struct user_msghdr __user *)entry,
2208 &msg_sys, flags & ~MSG_WAITFORONE,
2209 datagrams);
2210 if (err < 0)
2211 break;
2212 err = put_user(err, &entry->msg_len);
2213 ++entry;
2214 }
2215
2216 if (err)
2217 break;
2218 ++datagrams;
2219
2220 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2221 if (flags & MSG_WAITFORONE)
2222 flags |= MSG_DONTWAIT;
2223
2224 if (timeout) {
2225 ktime_get_ts(timeout);
2226 *timeout = timespec_sub(end_time, *timeout);
2227 if (timeout->tv_sec < 0) {
2228 timeout->tv_sec = timeout->tv_nsec = 0;
2229 break;
2230 }
2231
2232 /* Timeout, return less than vlen datagrams */
2233 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2234 break;
2235 }
2236
2237 /* Out of band data, return right away */
2238 if (msg_sys.msg_flags & MSG_OOB)
2239 break;
2240 cond_resched();
2241 }
2242
2243 out_put:
2244 fput_light(sock->file, fput_needed);
2245
2246 if (err == 0)
2247 return datagrams;
2248
2249 if (datagrams != 0) {
2250 /*
2251 * We may return less entries than requested (vlen) if the
2252 * sock is non block and there aren't enough datagrams...
2253 */
2254 if (err != -EAGAIN) {
2255 /*
2256 * ... or if recvmsg returns an error after we
2257 * received some datagrams, where we record the
2258 * error to return on the next call or if the
2259 * app asks about it using getsockopt(SO_ERROR).
2260 */
2261 sock->sk->sk_err = -err;
2262 }
2263
2264 return datagrams;
2265 }
2266
2267 return err;
2268 }
2269
2270 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2271 unsigned int, vlen, unsigned int, flags,
2272 struct timespec __user *, timeout)
2273 {
2274 int datagrams;
2275 struct timespec timeout_sys;
2276
2277 if (flags & MSG_CMSG_COMPAT)
2278 return -EINVAL;
2279
2280 if (!timeout)
2281 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2282
2283 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2284 return -EFAULT;
2285
2286 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2287
2288 if (datagrams > 0 &&
2289 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2290 datagrams = -EFAULT;
2291
2292 return datagrams;
2293 }
2294
2295 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2296 /* Argument list sizes for sys_socketcall */
2297 #define AL(x) ((x) * sizeof(unsigned long))
2298 static const unsigned char nargs[21] = {
2299 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2300 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2301 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2302 AL(4), AL(5), AL(4)
2303 };
2304
2305 #undef AL
2306
2307 /*
2308 * System call vectors.
2309 *
2310 * Argument checking cleaned up. Saved 20% in size.
2311 * This function doesn't need to set the kernel lock because
2312 * it is set by the callees.
2313 */
2314
2315 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2316 {
2317 unsigned long a[AUDITSC_ARGS];
2318 unsigned long a0, a1;
2319 int err;
2320 unsigned int len;
2321
2322 if (call < 1 || call > SYS_SENDMMSG)
2323 return -EINVAL;
2324
2325 len = nargs[call];
2326 if (len > sizeof(a))
2327 return -EINVAL;
2328
2329 /* copy_from_user should be SMP safe. */
2330 if (copy_from_user(a, args, len))
2331 return -EFAULT;
2332
2333 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2334 if (err)
2335 return err;
2336
2337 a0 = a[0];
2338 a1 = a[1];
2339
2340 switch (call) {
2341 case SYS_SOCKET:
2342 err = sys_socket(a0, a1, a[2]);
2343 break;
2344 case SYS_BIND:
2345 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2346 break;
2347 case SYS_CONNECT:
2348 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2349 break;
2350 case SYS_LISTEN:
2351 err = sys_listen(a0, a1);
2352 break;
2353 case SYS_ACCEPT:
2354 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2355 (int __user *)a[2], 0);
2356 break;
2357 case SYS_GETSOCKNAME:
2358 err =
2359 sys_getsockname(a0, (struct sockaddr __user *)a1,
2360 (int __user *)a[2]);
2361 break;
2362 case SYS_GETPEERNAME:
2363 err =
2364 sys_getpeername(a0, (struct sockaddr __user *)a1,
2365 (int __user *)a[2]);
2366 break;
2367 case SYS_SOCKETPAIR:
2368 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2369 break;
2370 case SYS_SEND:
2371 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2372 break;
2373 case SYS_SENDTO:
2374 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2375 (struct sockaddr __user *)a[4], a[5]);
2376 break;
2377 case SYS_RECV:
2378 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2379 break;
2380 case SYS_RECVFROM:
2381 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2382 (struct sockaddr __user *)a[4],
2383 (int __user *)a[5]);
2384 break;
2385 case SYS_SHUTDOWN:
2386 err = sys_shutdown(a0, a1);
2387 break;
2388 case SYS_SETSOCKOPT:
2389 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2390 break;
2391 case SYS_GETSOCKOPT:
2392 err =
2393 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2394 (int __user *)a[4]);
2395 break;
2396 case SYS_SENDMSG:
2397 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2398 break;
2399 case SYS_SENDMMSG:
2400 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2401 break;
2402 case SYS_RECVMSG:
2403 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2404 break;
2405 case SYS_RECVMMSG:
2406 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2407 (struct timespec __user *)a[4]);
2408 break;
2409 case SYS_ACCEPT4:
2410 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2411 (int __user *)a[2], a[3]);
2412 break;
2413 default:
2414 err = -EINVAL;
2415 break;
2416 }
2417 return err;
2418 }
2419
2420 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2421
2422 /**
2423 * sock_register - add a socket protocol handler
2424 * @ops: description of protocol
2425 *
2426 * This function is called by a protocol handler that wants to
2427 * advertise its address family, and have it linked into the
2428 * socket interface. The value ops->family corresponds to the
2429 * socket system call protocol family.
2430 */
2431 int sock_register(const struct net_proto_family *ops)
2432 {
2433 int err;
2434
2435 if (ops->family >= NPROTO) {
2436 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2437 return -ENOBUFS;
2438 }
2439
2440 spin_lock(&net_family_lock);
2441 if (rcu_dereference_protected(net_families[ops->family],
2442 lockdep_is_held(&net_family_lock)))
2443 err = -EEXIST;
2444 else {
2445 rcu_assign_pointer(net_families[ops->family], ops);
2446 err = 0;
2447 }
2448 spin_unlock(&net_family_lock);
2449
2450 pr_info("NET: Registered protocol family %d\n", ops->family);
2451 return err;
2452 }
2453 EXPORT_SYMBOL(sock_register);
2454
2455 /**
2456 * sock_unregister - remove a protocol handler
2457 * @family: protocol family to remove
2458 *
2459 * This function is called by a protocol handler that wants to
2460 * remove its address family, and have it unlinked from the
2461 * new socket creation.
2462 *
2463 * If protocol handler is a module, then it can use module reference
2464 * counts to protect against new references. If protocol handler is not
2465 * a module then it needs to provide its own protection in
2466 * the ops->create routine.
2467 */
2468 void sock_unregister(int family)
2469 {
2470 BUG_ON(family < 0 || family >= NPROTO);
2471
2472 spin_lock(&net_family_lock);
2473 RCU_INIT_POINTER(net_families[family], NULL);
2474 spin_unlock(&net_family_lock);
2475
2476 synchronize_rcu();
2477
2478 pr_info("NET: Unregistered protocol family %d\n", family);
2479 }
2480 EXPORT_SYMBOL(sock_unregister);
2481
2482 static int __init sock_init(void)
2483 {
2484 int err;
2485 /*
2486 * Initialize the network sysctl infrastructure.
2487 */
2488 err = net_sysctl_init();
2489 if (err)
2490 goto out;
2491
2492 /*
2493 * Initialize skbuff SLAB cache
2494 */
2495 skb_init();
2496
2497 /*
2498 * Initialize the protocols module.
2499 */
2500
2501 init_inodecache();
2502
2503 err = register_filesystem(&sock_fs_type);
2504 if (err)
2505 goto out_fs;
2506 sock_mnt = kern_mount(&sock_fs_type);
2507 if (IS_ERR(sock_mnt)) {
2508 err = PTR_ERR(sock_mnt);
2509 goto out_mount;
2510 }
2511
2512 /* The real protocol initialization is performed in later initcalls.
2513 */
2514
2515 #ifdef CONFIG_NETFILTER
2516 err = netfilter_init();
2517 if (err)
2518 goto out;
2519 #endif
2520
2521 ptp_classifier_init();
2522
2523 out:
2524 return err;
2525
2526 out_mount:
2527 unregister_filesystem(&sock_fs_type);
2528 out_fs:
2529 goto out;
2530 }
2531
2532 core_initcall(sock_init); /* early initcall */
2533
2534 #ifdef CONFIG_PROC_FS
2535 void socket_seq_show(struct seq_file *seq)
2536 {
2537 int cpu;
2538 int counter = 0;
2539
2540 for_each_possible_cpu(cpu)
2541 counter += per_cpu(sockets_in_use, cpu);
2542
2543 /* It can be negative, by the way. 8) */
2544 if (counter < 0)
2545 counter = 0;
2546
2547 seq_printf(seq, "sockets: used %d\n", counter);
2548 }
2549 #endif /* CONFIG_PROC_FS */
2550
2551 #ifdef CONFIG_COMPAT
2552 static int do_siocgstamp(struct net *net, struct socket *sock,
2553 unsigned int cmd, void __user *up)
2554 {
2555 mm_segment_t old_fs = get_fs();
2556 struct timeval ktv;
2557 int err;
2558
2559 set_fs(KERNEL_DS);
2560 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2561 set_fs(old_fs);
2562 if (!err)
2563 err = compat_put_timeval(&ktv, up);
2564
2565 return err;
2566 }
2567
2568 static int do_siocgstampns(struct net *net, struct socket *sock,
2569 unsigned int cmd, void __user *up)
2570 {
2571 mm_segment_t old_fs = get_fs();
2572 struct timespec kts;
2573 int err;
2574
2575 set_fs(KERNEL_DS);
2576 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2577 set_fs(old_fs);
2578 if (!err)
2579 err = compat_put_timespec(&kts, up);
2580
2581 return err;
2582 }
2583
2584 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2585 {
2586 struct ifreq __user *uifr;
2587 int err;
2588
2589 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2590 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2591 return -EFAULT;
2592
2593 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2594 if (err)
2595 return err;
2596
2597 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2598 return -EFAULT;
2599
2600 return 0;
2601 }
2602
2603 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2604 {
2605 struct compat_ifconf ifc32;
2606 struct ifconf ifc;
2607 struct ifconf __user *uifc;
2608 struct compat_ifreq __user *ifr32;
2609 struct ifreq __user *ifr;
2610 unsigned int i, j;
2611 int err;
2612
2613 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2614 return -EFAULT;
2615
2616 memset(&ifc, 0, sizeof(ifc));
2617 if (ifc32.ifcbuf == 0) {
2618 ifc32.ifc_len = 0;
2619 ifc.ifc_len = 0;
2620 ifc.ifc_req = NULL;
2621 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2622 } else {
2623 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2624 sizeof(struct ifreq);
2625 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2626 ifc.ifc_len = len;
2627 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2628 ifr32 = compat_ptr(ifc32.ifcbuf);
2629 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2630 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2631 return -EFAULT;
2632 ifr++;
2633 ifr32++;
2634 }
2635 }
2636 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2637 return -EFAULT;
2638
2639 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2640 if (err)
2641 return err;
2642
2643 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2644 return -EFAULT;
2645
2646 ifr = ifc.ifc_req;
2647 ifr32 = compat_ptr(ifc32.ifcbuf);
2648 for (i = 0, j = 0;
2649 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2650 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2651 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2652 return -EFAULT;
2653 ifr32++;
2654 ifr++;
2655 }
2656
2657 if (ifc32.ifcbuf == 0) {
2658 /* Translate from 64-bit structure multiple to
2659 * a 32-bit one.
2660 */
2661 i = ifc.ifc_len;
2662 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2663 ifc32.ifc_len = i;
2664 } else {
2665 ifc32.ifc_len = i;
2666 }
2667 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2668 return -EFAULT;
2669
2670 return 0;
2671 }
2672
2673 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2674 {
2675 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2676 bool convert_in = false, convert_out = false;
2677 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2678 struct ethtool_rxnfc __user *rxnfc;
2679 struct ifreq __user *ifr;
2680 u32 rule_cnt = 0, actual_rule_cnt;
2681 u32 ethcmd;
2682 u32 data;
2683 int ret;
2684
2685 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2686 return -EFAULT;
2687
2688 compat_rxnfc = compat_ptr(data);
2689
2690 if (get_user(ethcmd, &compat_rxnfc->cmd))
2691 return -EFAULT;
2692
2693 /* Most ethtool structures are defined without padding.
2694 * Unfortunately struct ethtool_rxnfc is an exception.
2695 */
2696 switch (ethcmd) {
2697 default:
2698 break;
2699 case ETHTOOL_GRXCLSRLALL:
2700 /* Buffer size is variable */
2701 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2702 return -EFAULT;
2703 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2704 return -ENOMEM;
2705 buf_size += rule_cnt * sizeof(u32);
2706 /* fall through */
2707 case ETHTOOL_GRXRINGS:
2708 case ETHTOOL_GRXCLSRLCNT:
2709 case ETHTOOL_GRXCLSRULE:
2710 case ETHTOOL_SRXCLSRLINS:
2711 convert_out = true;
2712 /* fall through */
2713 case ETHTOOL_SRXCLSRLDEL:
2714 buf_size += sizeof(struct ethtool_rxnfc);
2715 convert_in = true;
2716 break;
2717 }
2718
2719 ifr = compat_alloc_user_space(buf_size);
2720 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2721
2722 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2723 return -EFAULT;
2724
2725 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2726 &ifr->ifr_ifru.ifru_data))
2727 return -EFAULT;
2728
2729 if (convert_in) {
2730 /* We expect there to be holes between fs.m_ext and
2731 * fs.ring_cookie and at the end of fs, but nowhere else.
2732 */
2733 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2734 sizeof(compat_rxnfc->fs.m_ext) !=
2735 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2736 sizeof(rxnfc->fs.m_ext));
2737 BUILD_BUG_ON(
2738 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2739 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2740 offsetof(struct ethtool_rxnfc, fs.location) -
2741 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2742
2743 if (copy_in_user(rxnfc, compat_rxnfc,
2744 (void __user *)(&rxnfc->fs.m_ext + 1) -
2745 (void __user *)rxnfc) ||
2746 copy_in_user(&rxnfc->fs.ring_cookie,
2747 &compat_rxnfc->fs.ring_cookie,
2748 (void __user *)(&rxnfc->fs.location + 1) -
2749 (void __user *)&rxnfc->fs.ring_cookie) ||
2750 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2751 sizeof(rxnfc->rule_cnt)))
2752 return -EFAULT;
2753 }
2754
2755 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2756 if (ret)
2757 return ret;
2758
2759 if (convert_out) {
2760 if (copy_in_user(compat_rxnfc, rxnfc,
2761 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2762 (const void __user *)rxnfc) ||
2763 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2764 &rxnfc->fs.ring_cookie,
2765 (const void __user *)(&rxnfc->fs.location + 1) -
2766 (const void __user *)&rxnfc->fs.ring_cookie) ||
2767 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2768 sizeof(rxnfc->rule_cnt)))
2769 return -EFAULT;
2770
2771 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2772 /* As an optimisation, we only copy the actual
2773 * number of rules that the underlying
2774 * function returned. Since Mallory might
2775 * change the rule count in user memory, we
2776 * check that it is less than the rule count
2777 * originally given (as the user buffer size),
2778 * which has been range-checked.
2779 */
2780 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2781 return -EFAULT;
2782 if (actual_rule_cnt < rule_cnt)
2783 rule_cnt = actual_rule_cnt;
2784 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2785 &rxnfc->rule_locs[0],
2786 rule_cnt * sizeof(u32)))
2787 return -EFAULT;
2788 }
2789 }
2790
2791 return 0;
2792 }
2793
2794 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2795 {
2796 void __user *uptr;
2797 compat_uptr_t uptr32;
2798 struct ifreq __user *uifr;
2799
2800 uifr = compat_alloc_user_space(sizeof(*uifr));
2801 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2802 return -EFAULT;
2803
2804 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2805 return -EFAULT;
2806
2807 uptr = compat_ptr(uptr32);
2808
2809 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2810 return -EFAULT;
2811
2812 return dev_ioctl(net, SIOCWANDEV, uifr);
2813 }
2814
2815 static int bond_ioctl(struct net *net, unsigned int cmd,
2816 struct compat_ifreq __user *ifr32)
2817 {
2818 struct ifreq kifr;
2819 mm_segment_t old_fs;
2820 int err;
2821
2822 switch (cmd) {
2823 case SIOCBONDENSLAVE:
2824 case SIOCBONDRELEASE:
2825 case SIOCBONDSETHWADDR:
2826 case SIOCBONDCHANGEACTIVE:
2827 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2828 return -EFAULT;
2829
2830 old_fs = get_fs();
2831 set_fs(KERNEL_DS);
2832 err = dev_ioctl(net, cmd,
2833 (struct ifreq __user __force *) &kifr);
2834 set_fs(old_fs);
2835
2836 return err;
2837 default:
2838 return -ENOIOCTLCMD;
2839 }
2840 }
2841
2842 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2843 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2844 struct compat_ifreq __user *u_ifreq32)
2845 {
2846 struct ifreq __user *u_ifreq64;
2847 char tmp_buf[IFNAMSIZ];
2848 void __user *data64;
2849 u32 data32;
2850
2851 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2852 IFNAMSIZ))
2853 return -EFAULT;
2854 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2855 return -EFAULT;
2856 data64 = compat_ptr(data32);
2857
2858 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2859
2860 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2861 IFNAMSIZ))
2862 return -EFAULT;
2863 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2864 return -EFAULT;
2865
2866 return dev_ioctl(net, cmd, u_ifreq64);
2867 }
2868
2869 static int dev_ifsioc(struct net *net, struct socket *sock,
2870 unsigned int cmd, struct compat_ifreq __user *uifr32)
2871 {
2872 struct ifreq __user *uifr;
2873 int err;
2874
2875 uifr = compat_alloc_user_space(sizeof(*uifr));
2876 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2877 return -EFAULT;
2878
2879 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2880
2881 if (!err) {
2882 switch (cmd) {
2883 case SIOCGIFFLAGS:
2884 case SIOCGIFMETRIC:
2885 case SIOCGIFMTU:
2886 case SIOCGIFMEM:
2887 case SIOCGIFHWADDR:
2888 case SIOCGIFINDEX:
2889 case SIOCGIFADDR:
2890 case SIOCGIFBRDADDR:
2891 case SIOCGIFDSTADDR:
2892 case SIOCGIFNETMASK:
2893 case SIOCGIFPFLAGS:
2894 case SIOCGIFTXQLEN:
2895 case SIOCGMIIPHY:
2896 case SIOCGMIIREG:
2897 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2898 err = -EFAULT;
2899 break;
2900 }
2901 }
2902 return err;
2903 }
2904
2905 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2906 struct compat_ifreq __user *uifr32)
2907 {
2908 struct ifreq ifr;
2909 struct compat_ifmap __user *uifmap32;
2910 mm_segment_t old_fs;
2911 int err;
2912
2913 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2914 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2915 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2916 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2917 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2918 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2919 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2920 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2921 if (err)
2922 return -EFAULT;
2923
2924 old_fs = get_fs();
2925 set_fs(KERNEL_DS);
2926 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2927 set_fs(old_fs);
2928
2929 if (cmd == SIOCGIFMAP && !err) {
2930 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2931 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2932 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2933 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2934 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2935 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2936 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2937 if (err)
2938 err = -EFAULT;
2939 }
2940 return err;
2941 }
2942
2943 struct rtentry32 {
2944 u32 rt_pad1;
2945 struct sockaddr rt_dst; /* target address */
2946 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2947 struct sockaddr rt_genmask; /* target network mask (IP) */
2948 unsigned short rt_flags;
2949 short rt_pad2;
2950 u32 rt_pad3;
2951 unsigned char rt_tos;
2952 unsigned char rt_class;
2953 short rt_pad4;
2954 short rt_metric; /* +1 for binary compatibility! */
2955 /* char * */ u32 rt_dev; /* forcing the device at add */
2956 u32 rt_mtu; /* per route MTU/Window */
2957 u32 rt_window; /* Window clamping */
2958 unsigned short rt_irtt; /* Initial RTT */
2959 };
2960
2961 struct in6_rtmsg32 {
2962 struct in6_addr rtmsg_dst;
2963 struct in6_addr rtmsg_src;
2964 struct in6_addr rtmsg_gateway;
2965 u32 rtmsg_type;
2966 u16 rtmsg_dst_len;
2967 u16 rtmsg_src_len;
2968 u32 rtmsg_metric;
2969 u32 rtmsg_info;
2970 u32 rtmsg_flags;
2971 s32 rtmsg_ifindex;
2972 };
2973
2974 static int routing_ioctl(struct net *net, struct socket *sock,
2975 unsigned int cmd, void __user *argp)
2976 {
2977 int ret;
2978 void *r = NULL;
2979 struct in6_rtmsg r6;
2980 struct rtentry r4;
2981 char devname[16];
2982 u32 rtdev;
2983 mm_segment_t old_fs = get_fs();
2984
2985 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2986 struct in6_rtmsg32 __user *ur6 = argp;
2987 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2988 3 * sizeof(struct in6_addr));
2989 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2990 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2991 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2992 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2993 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2994 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2995 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2996
2997 r = (void *) &r6;
2998 } else { /* ipv4 */
2999 struct rtentry32 __user *ur4 = argp;
3000 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3001 3 * sizeof(struct sockaddr));
3002 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3003 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3004 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3005 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3006 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3007 ret |= get_user(rtdev, &(ur4->rt_dev));
3008 if (rtdev) {
3009 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3010 r4.rt_dev = (char __user __force *)devname;
3011 devname[15] = 0;
3012 } else
3013 r4.rt_dev = NULL;
3014
3015 r = (void *) &r4;
3016 }
3017
3018 if (ret) {
3019 ret = -EFAULT;
3020 goto out;
3021 }
3022
3023 set_fs(KERNEL_DS);
3024 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3025 set_fs(old_fs);
3026
3027 out:
3028 return ret;
3029 }
3030
3031 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3032 * for some operations; this forces use of the newer bridge-utils that
3033 * use compatible ioctls
3034 */
3035 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3036 {
3037 compat_ulong_t tmp;
3038
3039 if (get_user(tmp, argp))
3040 return -EFAULT;
3041 if (tmp == BRCTL_GET_VERSION)
3042 return BRCTL_VERSION + 1;
3043 return -EINVAL;
3044 }
3045
3046 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3047 unsigned int cmd, unsigned long arg)
3048 {
3049 void __user *argp = compat_ptr(arg);
3050 struct sock *sk = sock->sk;
3051 struct net *net = sock_net(sk);
3052
3053 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3054 return compat_ifr_data_ioctl(net, cmd, argp);
3055
3056 switch (cmd) {
3057 case SIOCSIFBR:
3058 case SIOCGIFBR:
3059 return old_bridge_ioctl(argp);
3060 case SIOCGIFNAME:
3061 return dev_ifname32(net, argp);
3062 case SIOCGIFCONF:
3063 return dev_ifconf(net, argp);
3064 case SIOCETHTOOL:
3065 return ethtool_ioctl(net, argp);
3066 case SIOCWANDEV:
3067 return compat_siocwandev(net, argp);
3068 case SIOCGIFMAP:
3069 case SIOCSIFMAP:
3070 return compat_sioc_ifmap(net, cmd, argp);
3071 case SIOCBONDENSLAVE:
3072 case SIOCBONDRELEASE:
3073 case SIOCBONDSETHWADDR:
3074 case SIOCBONDCHANGEACTIVE:
3075 return bond_ioctl(net, cmd, argp);
3076 case SIOCADDRT:
3077 case SIOCDELRT:
3078 return routing_ioctl(net, sock, cmd, argp);
3079 case SIOCGSTAMP:
3080 return do_siocgstamp(net, sock, cmd, argp);
3081 case SIOCGSTAMPNS:
3082 return do_siocgstampns(net, sock, cmd, argp);
3083 case SIOCBONDSLAVEINFOQUERY:
3084 case SIOCBONDINFOQUERY:
3085 case SIOCSHWTSTAMP:
3086 case SIOCGHWTSTAMP:
3087 return compat_ifr_data_ioctl(net, cmd, argp);
3088
3089 case FIOSETOWN:
3090 case SIOCSPGRP:
3091 case FIOGETOWN:
3092 case SIOCGPGRP:
3093 case SIOCBRADDBR:
3094 case SIOCBRDELBR:
3095 case SIOCGIFVLAN:
3096 case SIOCSIFVLAN:
3097 case SIOCADDDLCI:
3098 case SIOCDELDLCI:
3099 return sock_ioctl(file, cmd, arg);
3100
3101 case SIOCGIFFLAGS:
3102 case SIOCSIFFLAGS:
3103 case SIOCGIFMETRIC:
3104 case SIOCSIFMETRIC:
3105 case SIOCGIFMTU:
3106 case SIOCSIFMTU:
3107 case SIOCGIFMEM:
3108 case SIOCSIFMEM:
3109 case SIOCGIFHWADDR:
3110 case SIOCSIFHWADDR:
3111 case SIOCADDMULTI:
3112 case SIOCDELMULTI:
3113 case SIOCGIFINDEX:
3114 case SIOCGIFADDR:
3115 case SIOCSIFADDR:
3116 case SIOCSIFHWBROADCAST:
3117 case SIOCDIFADDR:
3118 case SIOCGIFBRDADDR:
3119 case SIOCSIFBRDADDR:
3120 case SIOCGIFDSTADDR:
3121 case SIOCSIFDSTADDR:
3122 case SIOCGIFNETMASK:
3123 case SIOCSIFNETMASK:
3124 case SIOCSIFPFLAGS:
3125 case SIOCGIFPFLAGS:
3126 case SIOCGIFTXQLEN:
3127 case SIOCSIFTXQLEN:
3128 case SIOCBRADDIF:
3129 case SIOCBRDELIF:
3130 case SIOCSIFNAME:
3131 case SIOCGMIIPHY:
3132 case SIOCGMIIREG:
3133 case SIOCSMIIREG:
3134 return dev_ifsioc(net, sock, cmd, argp);
3135
3136 case SIOCSARP:
3137 case SIOCGARP:
3138 case SIOCDARP:
3139 case SIOCATMARK:
3140 return sock_do_ioctl(net, sock, cmd, arg);
3141 }
3142
3143 return -ENOIOCTLCMD;
3144 }
3145
3146 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3147 unsigned long arg)
3148 {
3149 struct socket *sock = file->private_data;
3150 int ret = -ENOIOCTLCMD;
3151 struct sock *sk;
3152 struct net *net;
3153
3154 sk = sock->sk;
3155 net = sock_net(sk);
3156
3157 if (sock->ops->compat_ioctl)
3158 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3159
3160 if (ret == -ENOIOCTLCMD &&
3161 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3162 ret = compat_wext_handle_ioctl(net, cmd, arg);
3163
3164 if (ret == -ENOIOCTLCMD)
3165 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3166
3167 return ret;
3168 }
3169 #endif
3170
3171 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3172 {
3173 return sock->ops->bind(sock, addr, addrlen);
3174 }
3175 EXPORT_SYMBOL(kernel_bind);
3176
3177 int kernel_listen(struct socket *sock, int backlog)
3178 {
3179 return sock->ops->listen(sock, backlog);
3180 }
3181 EXPORT_SYMBOL(kernel_listen);
3182
3183 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3184 {
3185 struct sock *sk = sock->sk;
3186 int err;
3187
3188 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3189 newsock);
3190 if (err < 0)
3191 goto done;
3192
3193 err = sock->ops->accept(sock, *newsock, flags);
3194 if (err < 0) {
3195 sock_release(*newsock);
3196 *newsock = NULL;
3197 goto done;
3198 }
3199
3200 (*newsock)->ops = sock->ops;
3201 __module_get((*newsock)->ops->owner);
3202
3203 done:
3204 return err;
3205 }
3206 EXPORT_SYMBOL(kernel_accept);
3207
3208 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3209 int flags)
3210 {
3211 return sock->ops->connect(sock, addr, addrlen, flags);
3212 }
3213 EXPORT_SYMBOL(kernel_connect);
3214
3215 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3216 int *addrlen)
3217 {
3218 return sock->ops->getname(sock, addr, addrlen, 0);
3219 }
3220 EXPORT_SYMBOL(kernel_getsockname);
3221
3222 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3223 int *addrlen)
3224 {
3225 return sock->ops->getname(sock, addr, addrlen, 1);
3226 }
3227 EXPORT_SYMBOL(kernel_getpeername);
3228
3229 int kernel_getsockopt(struct socket *sock, int level, int optname,
3230 char *optval, int *optlen)
3231 {
3232 mm_segment_t oldfs = get_fs();
3233 char __user *uoptval;
3234 int __user *uoptlen;
3235 int err;
3236
3237 uoptval = (char __user __force *) optval;
3238 uoptlen = (int __user __force *) optlen;
3239
3240 set_fs(KERNEL_DS);
3241 if (level == SOL_SOCKET)
3242 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3243 else
3244 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3245 uoptlen);
3246 set_fs(oldfs);
3247 return err;
3248 }
3249 EXPORT_SYMBOL(kernel_getsockopt);
3250
3251 int kernel_setsockopt(struct socket *sock, int level, int optname,
3252 char *optval, unsigned int optlen)
3253 {
3254 mm_segment_t oldfs = get_fs();
3255 char __user *uoptval;
3256 int err;
3257
3258 uoptval = (char __user __force *) optval;
3259
3260 set_fs(KERNEL_DS);
3261 if (level == SOL_SOCKET)
3262 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3263 else
3264 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3265 optlen);
3266 set_fs(oldfs);
3267 return err;
3268 }
3269 EXPORT_SYMBOL(kernel_setsockopt);
3270
3271 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3272 size_t size, int flags)
3273 {
3274 if (sock->ops->sendpage)
3275 return sock->ops->sendpage(sock, page, offset, size, flags);
3276
3277 return sock_no_sendpage(sock, page, offset, size, flags);
3278 }
3279 EXPORT_SYMBOL(kernel_sendpage);
3280
3281 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3282 {
3283 mm_segment_t oldfs = get_fs();
3284 int err;
3285
3286 set_fs(KERNEL_DS);
3287 err = sock->ops->ioctl(sock, cmd, arg);
3288 set_fs(oldfs);
3289
3290 return err;
3291 }
3292 EXPORT_SYMBOL(kernel_sock_ioctl);
3293
3294 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3295 {
3296 return sock->ops->shutdown(sock, how);
3297 }
3298 EXPORT_SYMBOL(kernel_sock_shutdown);