]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/socket.c
Merge branches 'acpica' and 'acpi-scan'
[mirror_ubuntu-artful-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156 };
157
158 /*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165 /*
166 * Statistics counters of the socket lists
167 */
168
169 static DEFINE_PER_CPU(int, sockets_in_use);
170
171 /*
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
175 */
176
177 /**
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
182 *
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
186 */
187
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
197 }
198
199 /**
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
205 *
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
214 */
215
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
218 {
219 int err;
220 int len;
221
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
235 }
236 /*
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
239 */
240 return __put_user(klen, ulen);
241 }
242
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
249
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
257 }
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 wq->flags = 0;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
262
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
268
269 return &ei->vfs_inode;
270 }
271
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
276
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
281 }
282
283 static void init_once(void *foo)
284 {
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
286
287 inode_init_once(&ei->vfs_inode);
288 }
289
290 static int init_inodecache(void)
291 {
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
294 0,
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 init_once);
299 if (sock_inode_cachep == NULL)
300 return -ENOMEM;
301 return 0;
302 }
303
304 static const struct super_operations sockfs_ops = {
305 .alloc_inode = sock_alloc_inode,
306 .destroy_inode = sock_destroy_inode,
307 .statfs = simple_statfs,
308 };
309
310 /*
311 * sockfs_dname() is called from d_path().
312 */
313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
314 {
315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 d_inode(dentry)->i_ino);
317 }
318
319 static const struct dentry_operations sockfs_dentry_operations = {
320 .d_dname = sockfs_dname,
321 };
322
323 static int sockfs_xattr_get(const struct xattr_handler *handler,
324 struct dentry *dentry, struct inode *inode,
325 const char *suffix, void *value, size_t size)
326 {
327 if (value) {
328 if (dentry->d_name.len + 1 > size)
329 return -ERANGE;
330 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
331 }
332 return dentry->d_name.len + 1;
333 }
334
335 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
336 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
337 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
338
339 static const struct xattr_handler sockfs_xattr_handler = {
340 .name = XATTR_NAME_SOCKPROTONAME,
341 .get = sockfs_xattr_get,
342 };
343
344 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
345 struct dentry *dentry, struct inode *inode,
346 const char *suffix, const void *value,
347 size_t size, int flags)
348 {
349 /* Handled by LSM. */
350 return -EAGAIN;
351 }
352
353 static const struct xattr_handler sockfs_security_xattr_handler = {
354 .prefix = XATTR_SECURITY_PREFIX,
355 .set = sockfs_security_xattr_set,
356 };
357
358 static const struct xattr_handler *sockfs_xattr_handlers[] = {
359 &sockfs_xattr_handler,
360 &sockfs_security_xattr_handler,
361 NULL
362 };
363
364 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
365 int flags, const char *dev_name, void *data)
366 {
367 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
368 sockfs_xattr_handlers,
369 &sockfs_dentry_operations, SOCKFS_MAGIC);
370 }
371
372 static struct vfsmount *sock_mnt __read_mostly;
373
374 static struct file_system_type sock_fs_type = {
375 .name = "sockfs",
376 .mount = sockfs_mount,
377 .kill_sb = kill_anon_super,
378 };
379
380 /*
381 * Obtains the first available file descriptor and sets it up for use.
382 *
383 * These functions create file structures and maps them to fd space
384 * of the current process. On success it returns file descriptor
385 * and file struct implicitly stored in sock->file.
386 * Note that another thread may close file descriptor before we return
387 * from this function. We use the fact that now we do not refer
388 * to socket after mapping. If one day we will need it, this
389 * function will increment ref. count on file by 1.
390 *
391 * In any case returned fd MAY BE not valid!
392 * This race condition is unavoidable
393 * with shared fd spaces, we cannot solve it inside kernel,
394 * but we take care of internal coherence yet.
395 */
396
397 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
398 {
399 struct qstr name = { .name = "" };
400 struct path path;
401 struct file *file;
402
403 if (dname) {
404 name.name = dname;
405 name.len = strlen(name.name);
406 } else if (sock->sk) {
407 name.name = sock->sk->sk_prot_creator->name;
408 name.len = strlen(name.name);
409 }
410 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
411 if (unlikely(!path.dentry))
412 return ERR_PTR(-ENOMEM);
413 path.mnt = mntget(sock_mnt);
414
415 d_instantiate(path.dentry, SOCK_INODE(sock));
416
417 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
418 &socket_file_ops);
419 if (IS_ERR(file)) {
420 /* drop dentry, keep inode */
421 ihold(d_inode(path.dentry));
422 path_put(&path);
423 return file;
424 }
425
426 sock->file = file;
427 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
428 file->private_data = sock;
429 return file;
430 }
431 EXPORT_SYMBOL(sock_alloc_file);
432
433 static int sock_map_fd(struct socket *sock, int flags)
434 {
435 struct file *newfile;
436 int fd = get_unused_fd_flags(flags);
437 if (unlikely(fd < 0))
438 return fd;
439
440 newfile = sock_alloc_file(sock, flags, NULL);
441 if (likely(!IS_ERR(newfile))) {
442 fd_install(fd, newfile);
443 return fd;
444 }
445
446 put_unused_fd(fd);
447 return PTR_ERR(newfile);
448 }
449
450 struct socket *sock_from_file(struct file *file, int *err)
451 {
452 if (file->f_op == &socket_file_ops)
453 return file->private_data; /* set in sock_map_fd */
454
455 *err = -ENOTSOCK;
456 return NULL;
457 }
458 EXPORT_SYMBOL(sock_from_file);
459
460 /**
461 * sockfd_lookup - Go from a file number to its socket slot
462 * @fd: file handle
463 * @err: pointer to an error code return
464 *
465 * The file handle passed in is locked and the socket it is bound
466 * too is returned. If an error occurs the err pointer is overwritten
467 * with a negative errno code and NULL is returned. The function checks
468 * for both invalid handles and passing a handle which is not a socket.
469 *
470 * On a success the socket object pointer is returned.
471 */
472
473 struct socket *sockfd_lookup(int fd, int *err)
474 {
475 struct file *file;
476 struct socket *sock;
477
478 file = fget(fd);
479 if (!file) {
480 *err = -EBADF;
481 return NULL;
482 }
483
484 sock = sock_from_file(file, err);
485 if (!sock)
486 fput(file);
487 return sock;
488 }
489 EXPORT_SYMBOL(sockfd_lookup);
490
491 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
492 {
493 struct fd f = fdget(fd);
494 struct socket *sock;
495
496 *err = -EBADF;
497 if (f.file) {
498 sock = sock_from_file(f.file, err);
499 if (likely(sock)) {
500 *fput_needed = f.flags;
501 return sock;
502 }
503 fdput(f);
504 }
505 return NULL;
506 }
507
508 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
509 size_t size)
510 {
511 ssize_t len;
512 ssize_t used = 0;
513
514 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
515 if (len < 0)
516 return len;
517 used += len;
518 if (buffer) {
519 if (size < used)
520 return -ERANGE;
521 buffer += len;
522 }
523
524 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
525 used += len;
526 if (buffer) {
527 if (size < used)
528 return -ERANGE;
529 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
530 buffer += len;
531 }
532
533 return used;
534 }
535
536 int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
537 {
538 int err = simple_setattr(dentry, iattr);
539
540 if (!err) {
541 struct socket *sock = SOCKET_I(d_inode(dentry));
542
543 sock->sk->sk_uid = iattr->ia_uid;
544 }
545
546 return err;
547 }
548
549 static const struct inode_operations sockfs_inode_ops = {
550 .listxattr = sockfs_listxattr,
551 .setattr = sockfs_setattr,
552 };
553
554 /**
555 * sock_alloc - allocate a socket
556 *
557 * Allocate a new inode and socket object. The two are bound together
558 * and initialised. The socket is then returned. If we are out of inodes
559 * NULL is returned.
560 */
561
562 struct socket *sock_alloc(void)
563 {
564 struct inode *inode;
565 struct socket *sock;
566
567 inode = new_inode_pseudo(sock_mnt->mnt_sb);
568 if (!inode)
569 return NULL;
570
571 sock = SOCKET_I(inode);
572
573 kmemcheck_annotate_bitfield(sock, type);
574 inode->i_ino = get_next_ino();
575 inode->i_mode = S_IFSOCK | S_IRWXUGO;
576 inode->i_uid = current_fsuid();
577 inode->i_gid = current_fsgid();
578 inode->i_op = &sockfs_inode_ops;
579
580 this_cpu_add(sockets_in_use, 1);
581 return sock;
582 }
583 EXPORT_SYMBOL(sock_alloc);
584
585 /**
586 * sock_release - close a socket
587 * @sock: socket to close
588 *
589 * The socket is released from the protocol stack if it has a release
590 * callback, and the inode is then released if the socket is bound to
591 * an inode not a file.
592 */
593
594 void sock_release(struct socket *sock)
595 {
596 if (sock->ops) {
597 struct module *owner = sock->ops->owner;
598
599 sock->ops->release(sock);
600 sock->ops = NULL;
601 module_put(owner);
602 }
603
604 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
605 pr_err("%s: fasync list not empty!\n", __func__);
606
607 this_cpu_sub(sockets_in_use, 1);
608 if (!sock->file) {
609 iput(SOCK_INODE(sock));
610 return;
611 }
612 sock->file = NULL;
613 }
614 EXPORT_SYMBOL(sock_release);
615
616 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
617 {
618 u8 flags = *tx_flags;
619
620 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
621 flags |= SKBTX_HW_TSTAMP;
622
623 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
624 flags |= SKBTX_SW_TSTAMP;
625
626 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
627 flags |= SKBTX_SCHED_TSTAMP;
628
629 *tx_flags = flags;
630 }
631 EXPORT_SYMBOL(__sock_tx_timestamp);
632
633 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
634 {
635 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
636 BUG_ON(ret == -EIOCBQUEUED);
637 return ret;
638 }
639
640 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
641 {
642 int err = security_socket_sendmsg(sock, msg,
643 msg_data_left(msg));
644
645 return err ?: sock_sendmsg_nosec(sock, msg);
646 }
647 EXPORT_SYMBOL(sock_sendmsg);
648
649 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
650 struct kvec *vec, size_t num, size_t size)
651 {
652 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
653 return sock_sendmsg(sock, msg);
654 }
655 EXPORT_SYMBOL(kernel_sendmsg);
656
657 /*
658 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
659 */
660 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
661 struct sk_buff *skb)
662 {
663 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
664 struct scm_timestamping tss;
665 int empty = 1;
666 struct skb_shared_hwtstamps *shhwtstamps =
667 skb_hwtstamps(skb);
668
669 /* Race occurred between timestamp enabling and packet
670 receiving. Fill in the current time for now. */
671 if (need_software_tstamp && skb->tstamp.tv64 == 0)
672 __net_timestamp(skb);
673
674 if (need_software_tstamp) {
675 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
676 struct timeval tv;
677 skb_get_timestamp(skb, &tv);
678 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
679 sizeof(tv), &tv);
680 } else {
681 struct timespec ts;
682 skb_get_timestampns(skb, &ts);
683 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
684 sizeof(ts), &ts);
685 }
686 }
687
688 memset(&tss, 0, sizeof(tss));
689 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
690 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
691 empty = 0;
692 if (shhwtstamps &&
693 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
694 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
695 empty = 0;
696 if (!empty) {
697 put_cmsg(msg, SOL_SOCKET,
698 SCM_TIMESTAMPING, sizeof(tss), &tss);
699
700 if (skb->len && (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS))
701 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
702 skb->len, skb->data);
703 }
704 }
705 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
706
707 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
708 struct sk_buff *skb)
709 {
710 int ack;
711
712 if (!sock_flag(sk, SOCK_WIFI_STATUS))
713 return;
714 if (!skb->wifi_acked_valid)
715 return;
716
717 ack = skb->wifi_acked;
718
719 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
720 }
721 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
722
723 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
724 struct sk_buff *skb)
725 {
726 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
727 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
728 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
729 }
730
731 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
732 struct sk_buff *skb)
733 {
734 sock_recv_timestamp(msg, sk, skb);
735 sock_recv_drops(msg, sk, skb);
736 }
737 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
738
739 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
740 int flags)
741 {
742 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
743 }
744
745 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
746 {
747 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
748
749 return err ?: sock_recvmsg_nosec(sock, msg, flags);
750 }
751 EXPORT_SYMBOL(sock_recvmsg);
752
753 /**
754 * kernel_recvmsg - Receive a message from a socket (kernel space)
755 * @sock: The socket to receive the message from
756 * @msg: Received message
757 * @vec: Input s/g array for message data
758 * @num: Size of input s/g array
759 * @size: Number of bytes to read
760 * @flags: Message flags (MSG_DONTWAIT, etc...)
761 *
762 * On return the msg structure contains the scatter/gather array passed in the
763 * vec argument. The array is modified so that it consists of the unfilled
764 * portion of the original array.
765 *
766 * The returned value is the total number of bytes received, or an error.
767 */
768 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
769 struct kvec *vec, size_t num, size_t size, int flags)
770 {
771 mm_segment_t oldfs = get_fs();
772 int result;
773
774 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
775 set_fs(KERNEL_DS);
776 result = sock_recvmsg(sock, msg, flags);
777 set_fs(oldfs);
778 return result;
779 }
780 EXPORT_SYMBOL(kernel_recvmsg);
781
782 static ssize_t sock_sendpage(struct file *file, struct page *page,
783 int offset, size_t size, loff_t *ppos, int more)
784 {
785 struct socket *sock;
786 int flags;
787
788 sock = file->private_data;
789
790 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
791 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
792 flags |= more;
793
794 return kernel_sendpage(sock, page, offset, size, flags);
795 }
796
797 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
798 struct pipe_inode_info *pipe, size_t len,
799 unsigned int flags)
800 {
801 struct socket *sock = file->private_data;
802
803 if (unlikely(!sock->ops->splice_read))
804 return -EINVAL;
805
806 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
807 }
808
809 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
810 {
811 struct file *file = iocb->ki_filp;
812 struct socket *sock = file->private_data;
813 struct msghdr msg = {.msg_iter = *to,
814 .msg_iocb = iocb};
815 ssize_t res;
816
817 if (file->f_flags & O_NONBLOCK)
818 msg.msg_flags = MSG_DONTWAIT;
819
820 if (iocb->ki_pos != 0)
821 return -ESPIPE;
822
823 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
824 return 0;
825
826 res = sock_recvmsg(sock, &msg, msg.msg_flags);
827 *to = msg.msg_iter;
828 return res;
829 }
830
831 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
832 {
833 struct file *file = iocb->ki_filp;
834 struct socket *sock = file->private_data;
835 struct msghdr msg = {.msg_iter = *from,
836 .msg_iocb = iocb};
837 ssize_t res;
838
839 if (iocb->ki_pos != 0)
840 return -ESPIPE;
841
842 if (file->f_flags & O_NONBLOCK)
843 msg.msg_flags = MSG_DONTWAIT;
844
845 if (sock->type == SOCK_SEQPACKET)
846 msg.msg_flags |= MSG_EOR;
847
848 res = sock_sendmsg(sock, &msg);
849 *from = msg.msg_iter;
850 return res;
851 }
852
853 /*
854 * Atomic setting of ioctl hooks to avoid race
855 * with module unload.
856 */
857
858 static DEFINE_MUTEX(br_ioctl_mutex);
859 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
860
861 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
862 {
863 mutex_lock(&br_ioctl_mutex);
864 br_ioctl_hook = hook;
865 mutex_unlock(&br_ioctl_mutex);
866 }
867 EXPORT_SYMBOL(brioctl_set);
868
869 static DEFINE_MUTEX(vlan_ioctl_mutex);
870 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
871
872 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
873 {
874 mutex_lock(&vlan_ioctl_mutex);
875 vlan_ioctl_hook = hook;
876 mutex_unlock(&vlan_ioctl_mutex);
877 }
878 EXPORT_SYMBOL(vlan_ioctl_set);
879
880 static DEFINE_MUTEX(dlci_ioctl_mutex);
881 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
882
883 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
884 {
885 mutex_lock(&dlci_ioctl_mutex);
886 dlci_ioctl_hook = hook;
887 mutex_unlock(&dlci_ioctl_mutex);
888 }
889 EXPORT_SYMBOL(dlci_ioctl_set);
890
891 static long sock_do_ioctl(struct net *net, struct socket *sock,
892 unsigned int cmd, unsigned long arg)
893 {
894 int err;
895 void __user *argp = (void __user *)arg;
896
897 err = sock->ops->ioctl(sock, cmd, arg);
898
899 /*
900 * If this ioctl is unknown try to hand it down
901 * to the NIC driver.
902 */
903 if (err == -ENOIOCTLCMD)
904 err = dev_ioctl(net, cmd, argp);
905
906 return err;
907 }
908
909 /*
910 * With an ioctl, arg may well be a user mode pointer, but we don't know
911 * what to do with it - that's up to the protocol still.
912 */
913
914 static struct ns_common *get_net_ns(struct ns_common *ns)
915 {
916 return &get_net(container_of(ns, struct net, ns))->ns;
917 }
918
919 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
920 {
921 struct socket *sock;
922 struct sock *sk;
923 void __user *argp = (void __user *)arg;
924 int pid, err;
925 struct net *net;
926
927 sock = file->private_data;
928 sk = sock->sk;
929 net = sock_net(sk);
930 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
931 err = dev_ioctl(net, cmd, argp);
932 } else
933 #ifdef CONFIG_WEXT_CORE
934 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
935 err = dev_ioctl(net, cmd, argp);
936 } else
937 #endif
938 switch (cmd) {
939 case FIOSETOWN:
940 case SIOCSPGRP:
941 err = -EFAULT;
942 if (get_user(pid, (int __user *)argp))
943 break;
944 f_setown(sock->file, pid, 1);
945 err = 0;
946 break;
947 case FIOGETOWN:
948 case SIOCGPGRP:
949 err = put_user(f_getown(sock->file),
950 (int __user *)argp);
951 break;
952 case SIOCGIFBR:
953 case SIOCSIFBR:
954 case SIOCBRADDBR:
955 case SIOCBRDELBR:
956 err = -ENOPKG;
957 if (!br_ioctl_hook)
958 request_module("bridge");
959
960 mutex_lock(&br_ioctl_mutex);
961 if (br_ioctl_hook)
962 err = br_ioctl_hook(net, cmd, argp);
963 mutex_unlock(&br_ioctl_mutex);
964 break;
965 case SIOCGIFVLAN:
966 case SIOCSIFVLAN:
967 err = -ENOPKG;
968 if (!vlan_ioctl_hook)
969 request_module("8021q");
970
971 mutex_lock(&vlan_ioctl_mutex);
972 if (vlan_ioctl_hook)
973 err = vlan_ioctl_hook(net, argp);
974 mutex_unlock(&vlan_ioctl_mutex);
975 break;
976 case SIOCADDDLCI:
977 case SIOCDELDLCI:
978 err = -ENOPKG;
979 if (!dlci_ioctl_hook)
980 request_module("dlci");
981
982 mutex_lock(&dlci_ioctl_mutex);
983 if (dlci_ioctl_hook)
984 err = dlci_ioctl_hook(cmd, argp);
985 mutex_unlock(&dlci_ioctl_mutex);
986 break;
987 case SIOCGSKNS:
988 err = -EPERM;
989 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
990 break;
991
992 err = open_related_ns(&net->ns, get_net_ns);
993 break;
994 default:
995 err = sock_do_ioctl(net, sock, cmd, arg);
996 break;
997 }
998 return err;
999 }
1000
1001 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1002 {
1003 int err;
1004 struct socket *sock = NULL;
1005
1006 err = security_socket_create(family, type, protocol, 1);
1007 if (err)
1008 goto out;
1009
1010 sock = sock_alloc();
1011 if (!sock) {
1012 err = -ENOMEM;
1013 goto out;
1014 }
1015
1016 sock->type = type;
1017 err = security_socket_post_create(sock, family, type, protocol, 1);
1018 if (err)
1019 goto out_release;
1020
1021 out:
1022 *res = sock;
1023 return err;
1024 out_release:
1025 sock_release(sock);
1026 sock = NULL;
1027 goto out;
1028 }
1029 EXPORT_SYMBOL(sock_create_lite);
1030
1031 /* No kernel lock held - perfect */
1032 static unsigned int sock_poll(struct file *file, poll_table *wait)
1033 {
1034 unsigned int busy_flag = 0;
1035 struct socket *sock;
1036
1037 /*
1038 * We can't return errors to poll, so it's either yes or no.
1039 */
1040 sock = file->private_data;
1041
1042 if (sk_can_busy_loop(sock->sk)) {
1043 /* this socket can poll_ll so tell the system call */
1044 busy_flag = POLL_BUSY_LOOP;
1045
1046 /* once, only if requested by syscall */
1047 if (wait && (wait->_key & POLL_BUSY_LOOP))
1048 sk_busy_loop(sock->sk, 1);
1049 }
1050
1051 return busy_flag | sock->ops->poll(file, sock, wait);
1052 }
1053
1054 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1055 {
1056 struct socket *sock = file->private_data;
1057
1058 return sock->ops->mmap(file, sock, vma);
1059 }
1060
1061 static int sock_close(struct inode *inode, struct file *filp)
1062 {
1063 sock_release(SOCKET_I(inode));
1064 return 0;
1065 }
1066
1067 /*
1068 * Update the socket async list
1069 *
1070 * Fasync_list locking strategy.
1071 *
1072 * 1. fasync_list is modified only under process context socket lock
1073 * i.e. under semaphore.
1074 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1075 * or under socket lock
1076 */
1077
1078 static int sock_fasync(int fd, struct file *filp, int on)
1079 {
1080 struct socket *sock = filp->private_data;
1081 struct sock *sk = sock->sk;
1082 struct socket_wq *wq;
1083
1084 if (sk == NULL)
1085 return -EINVAL;
1086
1087 lock_sock(sk);
1088 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1089 fasync_helper(fd, filp, on, &wq->fasync_list);
1090
1091 if (!wq->fasync_list)
1092 sock_reset_flag(sk, SOCK_FASYNC);
1093 else
1094 sock_set_flag(sk, SOCK_FASYNC);
1095
1096 release_sock(sk);
1097 return 0;
1098 }
1099
1100 /* This function may be called only under rcu_lock */
1101
1102 int sock_wake_async(struct socket_wq *wq, int how, int band)
1103 {
1104 if (!wq || !wq->fasync_list)
1105 return -1;
1106
1107 switch (how) {
1108 case SOCK_WAKE_WAITD:
1109 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1110 break;
1111 goto call_kill;
1112 case SOCK_WAKE_SPACE:
1113 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1114 break;
1115 /* fall through */
1116 case SOCK_WAKE_IO:
1117 call_kill:
1118 kill_fasync(&wq->fasync_list, SIGIO, band);
1119 break;
1120 case SOCK_WAKE_URG:
1121 kill_fasync(&wq->fasync_list, SIGURG, band);
1122 }
1123
1124 return 0;
1125 }
1126 EXPORT_SYMBOL(sock_wake_async);
1127
1128 int __sock_create(struct net *net, int family, int type, int protocol,
1129 struct socket **res, int kern)
1130 {
1131 int err;
1132 struct socket *sock;
1133 const struct net_proto_family *pf;
1134
1135 /*
1136 * Check protocol is in range
1137 */
1138 if (family < 0 || family >= NPROTO)
1139 return -EAFNOSUPPORT;
1140 if (type < 0 || type >= SOCK_MAX)
1141 return -EINVAL;
1142
1143 /* Compatibility.
1144
1145 This uglymoron is moved from INET layer to here to avoid
1146 deadlock in module load.
1147 */
1148 if (family == PF_INET && type == SOCK_PACKET) {
1149 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1150 current->comm);
1151 family = PF_PACKET;
1152 }
1153
1154 err = security_socket_create(family, type, protocol, kern);
1155 if (err)
1156 return err;
1157
1158 /*
1159 * Allocate the socket and allow the family to set things up. if
1160 * the protocol is 0, the family is instructed to select an appropriate
1161 * default.
1162 */
1163 sock = sock_alloc();
1164 if (!sock) {
1165 net_warn_ratelimited("socket: no more sockets\n");
1166 return -ENFILE; /* Not exactly a match, but its the
1167 closest posix thing */
1168 }
1169
1170 sock->type = type;
1171
1172 #ifdef CONFIG_MODULES
1173 /* Attempt to load a protocol module if the find failed.
1174 *
1175 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1176 * requested real, full-featured networking support upon configuration.
1177 * Otherwise module support will break!
1178 */
1179 if (rcu_access_pointer(net_families[family]) == NULL)
1180 request_module("net-pf-%d", family);
1181 #endif
1182
1183 rcu_read_lock();
1184 pf = rcu_dereference(net_families[family]);
1185 err = -EAFNOSUPPORT;
1186 if (!pf)
1187 goto out_release;
1188
1189 /*
1190 * We will call the ->create function, that possibly is in a loadable
1191 * module, so we have to bump that loadable module refcnt first.
1192 */
1193 if (!try_module_get(pf->owner))
1194 goto out_release;
1195
1196 /* Now protected by module ref count */
1197 rcu_read_unlock();
1198
1199 err = pf->create(net, sock, protocol, kern);
1200 if (err < 0)
1201 goto out_module_put;
1202
1203 /*
1204 * Now to bump the refcnt of the [loadable] module that owns this
1205 * socket at sock_release time we decrement its refcnt.
1206 */
1207 if (!try_module_get(sock->ops->owner))
1208 goto out_module_busy;
1209
1210 /*
1211 * Now that we're done with the ->create function, the [loadable]
1212 * module can have its refcnt decremented
1213 */
1214 module_put(pf->owner);
1215 err = security_socket_post_create(sock, family, type, protocol, kern);
1216 if (err)
1217 goto out_sock_release;
1218 *res = sock;
1219
1220 return 0;
1221
1222 out_module_busy:
1223 err = -EAFNOSUPPORT;
1224 out_module_put:
1225 sock->ops = NULL;
1226 module_put(pf->owner);
1227 out_sock_release:
1228 sock_release(sock);
1229 return err;
1230
1231 out_release:
1232 rcu_read_unlock();
1233 goto out_sock_release;
1234 }
1235 EXPORT_SYMBOL(__sock_create);
1236
1237 int sock_create(int family, int type, int protocol, struct socket **res)
1238 {
1239 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1240 }
1241 EXPORT_SYMBOL(sock_create);
1242
1243 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1244 {
1245 return __sock_create(net, family, type, protocol, res, 1);
1246 }
1247 EXPORT_SYMBOL(sock_create_kern);
1248
1249 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1250 {
1251 int retval;
1252 struct socket *sock;
1253 int flags;
1254
1255 /* Check the SOCK_* constants for consistency. */
1256 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1257 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1258 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1259 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1260
1261 flags = type & ~SOCK_TYPE_MASK;
1262 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1263 return -EINVAL;
1264 type &= SOCK_TYPE_MASK;
1265
1266 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1267 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1268
1269 retval = sock_create(family, type, protocol, &sock);
1270 if (retval < 0)
1271 goto out;
1272
1273 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1274 if (retval < 0)
1275 goto out_release;
1276
1277 out:
1278 /* It may be already another descriptor 8) Not kernel problem. */
1279 return retval;
1280
1281 out_release:
1282 sock_release(sock);
1283 return retval;
1284 }
1285
1286 /*
1287 * Create a pair of connected sockets.
1288 */
1289
1290 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1291 int __user *, usockvec)
1292 {
1293 struct socket *sock1, *sock2;
1294 int fd1, fd2, err;
1295 struct file *newfile1, *newfile2;
1296 int flags;
1297
1298 flags = type & ~SOCK_TYPE_MASK;
1299 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1300 return -EINVAL;
1301 type &= SOCK_TYPE_MASK;
1302
1303 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1304 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1305
1306 /*
1307 * Obtain the first socket and check if the underlying protocol
1308 * supports the socketpair call.
1309 */
1310
1311 err = sock_create(family, type, protocol, &sock1);
1312 if (err < 0)
1313 goto out;
1314
1315 err = sock_create(family, type, protocol, &sock2);
1316 if (err < 0)
1317 goto out_release_1;
1318
1319 err = sock1->ops->socketpair(sock1, sock2);
1320 if (err < 0)
1321 goto out_release_both;
1322
1323 fd1 = get_unused_fd_flags(flags);
1324 if (unlikely(fd1 < 0)) {
1325 err = fd1;
1326 goto out_release_both;
1327 }
1328
1329 fd2 = get_unused_fd_flags(flags);
1330 if (unlikely(fd2 < 0)) {
1331 err = fd2;
1332 goto out_put_unused_1;
1333 }
1334
1335 newfile1 = sock_alloc_file(sock1, flags, NULL);
1336 if (IS_ERR(newfile1)) {
1337 err = PTR_ERR(newfile1);
1338 goto out_put_unused_both;
1339 }
1340
1341 newfile2 = sock_alloc_file(sock2, flags, NULL);
1342 if (IS_ERR(newfile2)) {
1343 err = PTR_ERR(newfile2);
1344 goto out_fput_1;
1345 }
1346
1347 err = put_user(fd1, &usockvec[0]);
1348 if (err)
1349 goto out_fput_both;
1350
1351 err = put_user(fd2, &usockvec[1]);
1352 if (err)
1353 goto out_fput_both;
1354
1355 audit_fd_pair(fd1, fd2);
1356
1357 fd_install(fd1, newfile1);
1358 fd_install(fd2, newfile2);
1359 /* fd1 and fd2 may be already another descriptors.
1360 * Not kernel problem.
1361 */
1362
1363 return 0;
1364
1365 out_fput_both:
1366 fput(newfile2);
1367 fput(newfile1);
1368 put_unused_fd(fd2);
1369 put_unused_fd(fd1);
1370 goto out;
1371
1372 out_fput_1:
1373 fput(newfile1);
1374 put_unused_fd(fd2);
1375 put_unused_fd(fd1);
1376 sock_release(sock2);
1377 goto out;
1378
1379 out_put_unused_both:
1380 put_unused_fd(fd2);
1381 out_put_unused_1:
1382 put_unused_fd(fd1);
1383 out_release_both:
1384 sock_release(sock2);
1385 out_release_1:
1386 sock_release(sock1);
1387 out:
1388 return err;
1389 }
1390
1391 /*
1392 * Bind a name to a socket. Nothing much to do here since it's
1393 * the protocol's responsibility to handle the local address.
1394 *
1395 * We move the socket address to kernel space before we call
1396 * the protocol layer (having also checked the address is ok).
1397 */
1398
1399 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1400 {
1401 struct socket *sock;
1402 struct sockaddr_storage address;
1403 int err, fput_needed;
1404
1405 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1406 if (sock) {
1407 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1408 if (err >= 0) {
1409 err = security_socket_bind(sock,
1410 (struct sockaddr *)&address,
1411 addrlen);
1412 if (!err)
1413 err = sock->ops->bind(sock,
1414 (struct sockaddr *)
1415 &address, addrlen);
1416 }
1417 fput_light(sock->file, fput_needed);
1418 }
1419 return err;
1420 }
1421
1422 /*
1423 * Perform a listen. Basically, we allow the protocol to do anything
1424 * necessary for a listen, and if that works, we mark the socket as
1425 * ready for listening.
1426 */
1427
1428 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1429 {
1430 struct socket *sock;
1431 int err, fput_needed;
1432 int somaxconn;
1433
1434 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1435 if (sock) {
1436 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1437 if ((unsigned int)backlog > somaxconn)
1438 backlog = somaxconn;
1439
1440 err = security_socket_listen(sock, backlog);
1441 if (!err)
1442 err = sock->ops->listen(sock, backlog);
1443
1444 fput_light(sock->file, fput_needed);
1445 }
1446 return err;
1447 }
1448
1449 /*
1450 * For accept, we attempt to create a new socket, set up the link
1451 * with the client, wake up the client, then return the new
1452 * connected fd. We collect the address of the connector in kernel
1453 * space and move it to user at the very end. This is unclean because
1454 * we open the socket then return an error.
1455 *
1456 * 1003.1g adds the ability to recvmsg() to query connection pending
1457 * status to recvmsg. We need to add that support in a way thats
1458 * clean when we restucture accept also.
1459 */
1460
1461 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1462 int __user *, upeer_addrlen, int, flags)
1463 {
1464 struct socket *sock, *newsock;
1465 struct file *newfile;
1466 int err, len, newfd, fput_needed;
1467 struct sockaddr_storage address;
1468
1469 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1470 return -EINVAL;
1471
1472 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1473 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1474
1475 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1476 if (!sock)
1477 goto out;
1478
1479 err = -ENFILE;
1480 newsock = sock_alloc();
1481 if (!newsock)
1482 goto out_put;
1483
1484 newsock->type = sock->type;
1485 newsock->ops = sock->ops;
1486
1487 /*
1488 * We don't need try_module_get here, as the listening socket (sock)
1489 * has the protocol module (sock->ops->owner) held.
1490 */
1491 __module_get(newsock->ops->owner);
1492
1493 newfd = get_unused_fd_flags(flags);
1494 if (unlikely(newfd < 0)) {
1495 err = newfd;
1496 sock_release(newsock);
1497 goto out_put;
1498 }
1499 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1500 if (IS_ERR(newfile)) {
1501 err = PTR_ERR(newfile);
1502 put_unused_fd(newfd);
1503 sock_release(newsock);
1504 goto out_put;
1505 }
1506
1507 err = security_socket_accept(sock, newsock);
1508 if (err)
1509 goto out_fd;
1510
1511 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1512 if (err < 0)
1513 goto out_fd;
1514
1515 if (upeer_sockaddr) {
1516 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1517 &len, 2) < 0) {
1518 err = -ECONNABORTED;
1519 goto out_fd;
1520 }
1521 err = move_addr_to_user(&address,
1522 len, upeer_sockaddr, upeer_addrlen);
1523 if (err < 0)
1524 goto out_fd;
1525 }
1526
1527 /* File flags are not inherited via accept() unlike another OSes. */
1528
1529 fd_install(newfd, newfile);
1530 err = newfd;
1531
1532 out_put:
1533 fput_light(sock->file, fput_needed);
1534 out:
1535 return err;
1536 out_fd:
1537 fput(newfile);
1538 put_unused_fd(newfd);
1539 goto out_put;
1540 }
1541
1542 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1543 int __user *, upeer_addrlen)
1544 {
1545 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1546 }
1547
1548 /*
1549 * Attempt to connect to a socket with the server address. The address
1550 * is in user space so we verify it is OK and move it to kernel space.
1551 *
1552 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1553 * break bindings
1554 *
1555 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1556 * other SEQPACKET protocols that take time to connect() as it doesn't
1557 * include the -EINPROGRESS status for such sockets.
1558 */
1559
1560 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1561 int, addrlen)
1562 {
1563 struct socket *sock;
1564 struct sockaddr_storage address;
1565 int err, fput_needed;
1566
1567 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1568 if (!sock)
1569 goto out;
1570 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1571 if (err < 0)
1572 goto out_put;
1573
1574 err =
1575 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1576 if (err)
1577 goto out_put;
1578
1579 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1580 sock->file->f_flags);
1581 out_put:
1582 fput_light(sock->file, fput_needed);
1583 out:
1584 return err;
1585 }
1586
1587 /*
1588 * Get the local address ('name') of a socket object. Move the obtained
1589 * name to user space.
1590 */
1591
1592 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1593 int __user *, usockaddr_len)
1594 {
1595 struct socket *sock;
1596 struct sockaddr_storage address;
1597 int len, err, fput_needed;
1598
1599 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1600 if (!sock)
1601 goto out;
1602
1603 err = security_socket_getsockname(sock);
1604 if (err)
1605 goto out_put;
1606
1607 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1608 if (err)
1609 goto out_put;
1610 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1611
1612 out_put:
1613 fput_light(sock->file, fput_needed);
1614 out:
1615 return err;
1616 }
1617
1618 /*
1619 * Get the remote address ('name') of a socket object. Move the obtained
1620 * name to user space.
1621 */
1622
1623 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1624 int __user *, usockaddr_len)
1625 {
1626 struct socket *sock;
1627 struct sockaddr_storage address;
1628 int len, err, fput_needed;
1629
1630 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1631 if (sock != NULL) {
1632 err = security_socket_getpeername(sock);
1633 if (err) {
1634 fput_light(sock->file, fput_needed);
1635 return err;
1636 }
1637
1638 err =
1639 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1640 1);
1641 if (!err)
1642 err = move_addr_to_user(&address, len, usockaddr,
1643 usockaddr_len);
1644 fput_light(sock->file, fput_needed);
1645 }
1646 return err;
1647 }
1648
1649 /*
1650 * Send a datagram to a given address. We move the address into kernel
1651 * space and check the user space data area is readable before invoking
1652 * the protocol.
1653 */
1654
1655 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1656 unsigned int, flags, struct sockaddr __user *, addr,
1657 int, addr_len)
1658 {
1659 struct socket *sock;
1660 struct sockaddr_storage address;
1661 int err;
1662 struct msghdr msg;
1663 struct iovec iov;
1664 int fput_needed;
1665
1666 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1667 if (unlikely(err))
1668 return err;
1669 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1670 if (!sock)
1671 goto out;
1672
1673 msg.msg_name = NULL;
1674 msg.msg_control = NULL;
1675 msg.msg_controllen = 0;
1676 msg.msg_namelen = 0;
1677 if (addr) {
1678 err = move_addr_to_kernel(addr, addr_len, &address);
1679 if (err < 0)
1680 goto out_put;
1681 msg.msg_name = (struct sockaddr *)&address;
1682 msg.msg_namelen = addr_len;
1683 }
1684 if (sock->file->f_flags & O_NONBLOCK)
1685 flags |= MSG_DONTWAIT;
1686 msg.msg_flags = flags;
1687 err = sock_sendmsg(sock, &msg);
1688
1689 out_put:
1690 fput_light(sock->file, fput_needed);
1691 out:
1692 return err;
1693 }
1694
1695 /*
1696 * Send a datagram down a socket.
1697 */
1698
1699 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1700 unsigned int, flags)
1701 {
1702 return sys_sendto(fd, buff, len, flags, NULL, 0);
1703 }
1704
1705 /*
1706 * Receive a frame from the socket and optionally record the address of the
1707 * sender. We verify the buffers are writable and if needed move the
1708 * sender address from kernel to user space.
1709 */
1710
1711 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1712 unsigned int, flags, struct sockaddr __user *, addr,
1713 int __user *, addr_len)
1714 {
1715 struct socket *sock;
1716 struct iovec iov;
1717 struct msghdr msg;
1718 struct sockaddr_storage address;
1719 int err, err2;
1720 int fput_needed;
1721
1722 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1723 if (unlikely(err))
1724 return err;
1725 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1726 if (!sock)
1727 goto out;
1728
1729 msg.msg_control = NULL;
1730 msg.msg_controllen = 0;
1731 /* Save some cycles and don't copy the address if not needed */
1732 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1733 /* We assume all kernel code knows the size of sockaddr_storage */
1734 msg.msg_namelen = 0;
1735 msg.msg_iocb = NULL;
1736 if (sock->file->f_flags & O_NONBLOCK)
1737 flags |= MSG_DONTWAIT;
1738 err = sock_recvmsg(sock, &msg, flags);
1739
1740 if (err >= 0 && addr != NULL) {
1741 err2 = move_addr_to_user(&address,
1742 msg.msg_namelen, addr, addr_len);
1743 if (err2 < 0)
1744 err = err2;
1745 }
1746
1747 fput_light(sock->file, fput_needed);
1748 out:
1749 return err;
1750 }
1751
1752 /*
1753 * Receive a datagram from a socket.
1754 */
1755
1756 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1757 unsigned int, flags)
1758 {
1759 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1760 }
1761
1762 /*
1763 * Set a socket option. Because we don't know the option lengths we have
1764 * to pass the user mode parameter for the protocols to sort out.
1765 */
1766
1767 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1768 char __user *, optval, int, optlen)
1769 {
1770 int err, fput_needed;
1771 struct socket *sock;
1772
1773 if (optlen < 0)
1774 return -EINVAL;
1775
1776 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1777 if (sock != NULL) {
1778 err = security_socket_setsockopt(sock, level, optname);
1779 if (err)
1780 goto out_put;
1781
1782 if (level == SOL_SOCKET)
1783 err =
1784 sock_setsockopt(sock, level, optname, optval,
1785 optlen);
1786 else
1787 err =
1788 sock->ops->setsockopt(sock, level, optname, optval,
1789 optlen);
1790 out_put:
1791 fput_light(sock->file, fput_needed);
1792 }
1793 return err;
1794 }
1795
1796 /*
1797 * Get a socket option. Because we don't know the option lengths we have
1798 * to pass a user mode parameter for the protocols to sort out.
1799 */
1800
1801 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1802 char __user *, optval, int __user *, optlen)
1803 {
1804 int err, fput_needed;
1805 struct socket *sock;
1806
1807 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1808 if (sock != NULL) {
1809 err = security_socket_getsockopt(sock, level, optname);
1810 if (err)
1811 goto out_put;
1812
1813 if (level == SOL_SOCKET)
1814 err =
1815 sock_getsockopt(sock, level, optname, optval,
1816 optlen);
1817 else
1818 err =
1819 sock->ops->getsockopt(sock, level, optname, optval,
1820 optlen);
1821 out_put:
1822 fput_light(sock->file, fput_needed);
1823 }
1824 return err;
1825 }
1826
1827 /*
1828 * Shutdown a socket.
1829 */
1830
1831 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1832 {
1833 int err, fput_needed;
1834 struct socket *sock;
1835
1836 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1837 if (sock != NULL) {
1838 err = security_socket_shutdown(sock, how);
1839 if (!err)
1840 err = sock->ops->shutdown(sock, how);
1841 fput_light(sock->file, fput_needed);
1842 }
1843 return err;
1844 }
1845
1846 /* A couple of helpful macros for getting the address of the 32/64 bit
1847 * fields which are the same type (int / unsigned) on our platforms.
1848 */
1849 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1850 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1851 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1852
1853 struct used_address {
1854 struct sockaddr_storage name;
1855 unsigned int name_len;
1856 };
1857
1858 static int copy_msghdr_from_user(struct msghdr *kmsg,
1859 struct user_msghdr __user *umsg,
1860 struct sockaddr __user **save_addr,
1861 struct iovec **iov)
1862 {
1863 struct sockaddr __user *uaddr;
1864 struct iovec __user *uiov;
1865 size_t nr_segs;
1866 ssize_t err;
1867
1868 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1869 __get_user(uaddr, &umsg->msg_name) ||
1870 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1871 __get_user(uiov, &umsg->msg_iov) ||
1872 __get_user(nr_segs, &umsg->msg_iovlen) ||
1873 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1874 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1875 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1876 return -EFAULT;
1877
1878 if (!uaddr)
1879 kmsg->msg_namelen = 0;
1880
1881 if (kmsg->msg_namelen < 0)
1882 return -EINVAL;
1883
1884 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1885 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1886
1887 if (save_addr)
1888 *save_addr = uaddr;
1889
1890 if (uaddr && kmsg->msg_namelen) {
1891 if (!save_addr) {
1892 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1893 kmsg->msg_name);
1894 if (err < 0)
1895 return err;
1896 }
1897 } else {
1898 kmsg->msg_name = NULL;
1899 kmsg->msg_namelen = 0;
1900 }
1901
1902 if (nr_segs > UIO_MAXIOV)
1903 return -EMSGSIZE;
1904
1905 kmsg->msg_iocb = NULL;
1906
1907 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1908 UIO_FASTIOV, iov, &kmsg->msg_iter);
1909 }
1910
1911 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1912 struct msghdr *msg_sys, unsigned int flags,
1913 struct used_address *used_address,
1914 unsigned int allowed_msghdr_flags)
1915 {
1916 struct compat_msghdr __user *msg_compat =
1917 (struct compat_msghdr __user *)msg;
1918 struct sockaddr_storage address;
1919 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1920 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1921 __aligned(sizeof(__kernel_size_t));
1922 /* 20 is size of ipv6_pktinfo */
1923 unsigned char *ctl_buf = ctl;
1924 int ctl_len;
1925 ssize_t err;
1926
1927 msg_sys->msg_name = &address;
1928
1929 if (MSG_CMSG_COMPAT & flags)
1930 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1931 else
1932 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1933 if (err < 0)
1934 return err;
1935
1936 err = -ENOBUFS;
1937
1938 if (msg_sys->msg_controllen > INT_MAX)
1939 goto out_freeiov;
1940 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1941 ctl_len = msg_sys->msg_controllen;
1942 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1943 err =
1944 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1945 sizeof(ctl));
1946 if (err)
1947 goto out_freeiov;
1948 ctl_buf = msg_sys->msg_control;
1949 ctl_len = msg_sys->msg_controllen;
1950 } else if (ctl_len) {
1951 if (ctl_len > sizeof(ctl)) {
1952 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1953 if (ctl_buf == NULL)
1954 goto out_freeiov;
1955 }
1956 err = -EFAULT;
1957 /*
1958 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1959 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1960 * checking falls down on this.
1961 */
1962 if (copy_from_user(ctl_buf,
1963 (void __user __force *)msg_sys->msg_control,
1964 ctl_len))
1965 goto out_freectl;
1966 msg_sys->msg_control = ctl_buf;
1967 }
1968 msg_sys->msg_flags = flags;
1969
1970 if (sock->file->f_flags & O_NONBLOCK)
1971 msg_sys->msg_flags |= MSG_DONTWAIT;
1972 /*
1973 * If this is sendmmsg() and current destination address is same as
1974 * previously succeeded address, omit asking LSM's decision.
1975 * used_address->name_len is initialized to UINT_MAX so that the first
1976 * destination address never matches.
1977 */
1978 if (used_address && msg_sys->msg_name &&
1979 used_address->name_len == msg_sys->msg_namelen &&
1980 !memcmp(&used_address->name, msg_sys->msg_name,
1981 used_address->name_len)) {
1982 err = sock_sendmsg_nosec(sock, msg_sys);
1983 goto out_freectl;
1984 }
1985 err = sock_sendmsg(sock, msg_sys);
1986 /*
1987 * If this is sendmmsg() and sending to current destination address was
1988 * successful, remember it.
1989 */
1990 if (used_address && err >= 0) {
1991 used_address->name_len = msg_sys->msg_namelen;
1992 if (msg_sys->msg_name)
1993 memcpy(&used_address->name, msg_sys->msg_name,
1994 used_address->name_len);
1995 }
1996
1997 out_freectl:
1998 if (ctl_buf != ctl)
1999 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2000 out_freeiov:
2001 kfree(iov);
2002 return err;
2003 }
2004
2005 /*
2006 * BSD sendmsg interface
2007 */
2008
2009 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2010 {
2011 int fput_needed, err;
2012 struct msghdr msg_sys;
2013 struct socket *sock;
2014
2015 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2016 if (!sock)
2017 goto out;
2018
2019 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2020
2021 fput_light(sock->file, fput_needed);
2022 out:
2023 return err;
2024 }
2025
2026 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2027 {
2028 if (flags & MSG_CMSG_COMPAT)
2029 return -EINVAL;
2030 return __sys_sendmsg(fd, msg, flags);
2031 }
2032
2033 /*
2034 * Linux sendmmsg interface
2035 */
2036
2037 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2038 unsigned int flags)
2039 {
2040 int fput_needed, err, datagrams;
2041 struct socket *sock;
2042 struct mmsghdr __user *entry;
2043 struct compat_mmsghdr __user *compat_entry;
2044 struct msghdr msg_sys;
2045 struct used_address used_address;
2046 unsigned int oflags = flags;
2047
2048 if (vlen > UIO_MAXIOV)
2049 vlen = UIO_MAXIOV;
2050
2051 datagrams = 0;
2052
2053 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2054 if (!sock)
2055 return err;
2056
2057 used_address.name_len = UINT_MAX;
2058 entry = mmsg;
2059 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2060 err = 0;
2061 flags |= MSG_BATCH;
2062
2063 while (datagrams < vlen) {
2064 if (datagrams == vlen - 1)
2065 flags = oflags;
2066
2067 if (MSG_CMSG_COMPAT & flags) {
2068 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2069 &msg_sys, flags, &used_address, MSG_EOR);
2070 if (err < 0)
2071 break;
2072 err = __put_user(err, &compat_entry->msg_len);
2073 ++compat_entry;
2074 } else {
2075 err = ___sys_sendmsg(sock,
2076 (struct user_msghdr __user *)entry,
2077 &msg_sys, flags, &used_address, MSG_EOR);
2078 if (err < 0)
2079 break;
2080 err = put_user(err, &entry->msg_len);
2081 ++entry;
2082 }
2083
2084 if (err)
2085 break;
2086 ++datagrams;
2087 if (msg_data_left(&msg_sys))
2088 break;
2089 cond_resched();
2090 }
2091
2092 fput_light(sock->file, fput_needed);
2093
2094 /* We only return an error if no datagrams were able to be sent */
2095 if (datagrams != 0)
2096 return datagrams;
2097
2098 return err;
2099 }
2100
2101 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2102 unsigned int, vlen, unsigned int, flags)
2103 {
2104 if (flags & MSG_CMSG_COMPAT)
2105 return -EINVAL;
2106 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2107 }
2108
2109 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2110 struct msghdr *msg_sys, unsigned int flags, int nosec)
2111 {
2112 struct compat_msghdr __user *msg_compat =
2113 (struct compat_msghdr __user *)msg;
2114 struct iovec iovstack[UIO_FASTIOV];
2115 struct iovec *iov = iovstack;
2116 unsigned long cmsg_ptr;
2117 int len;
2118 ssize_t err;
2119
2120 /* kernel mode address */
2121 struct sockaddr_storage addr;
2122
2123 /* user mode address pointers */
2124 struct sockaddr __user *uaddr;
2125 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2126
2127 msg_sys->msg_name = &addr;
2128
2129 if (MSG_CMSG_COMPAT & flags)
2130 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2131 else
2132 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2133 if (err < 0)
2134 return err;
2135
2136 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2137 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2138
2139 /* We assume all kernel code knows the size of sockaddr_storage */
2140 msg_sys->msg_namelen = 0;
2141
2142 if (sock->file->f_flags & O_NONBLOCK)
2143 flags |= MSG_DONTWAIT;
2144 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2145 if (err < 0)
2146 goto out_freeiov;
2147 len = err;
2148
2149 if (uaddr != NULL) {
2150 err = move_addr_to_user(&addr,
2151 msg_sys->msg_namelen, uaddr,
2152 uaddr_len);
2153 if (err < 0)
2154 goto out_freeiov;
2155 }
2156 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2157 COMPAT_FLAGS(msg));
2158 if (err)
2159 goto out_freeiov;
2160 if (MSG_CMSG_COMPAT & flags)
2161 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2162 &msg_compat->msg_controllen);
2163 else
2164 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2165 &msg->msg_controllen);
2166 if (err)
2167 goto out_freeiov;
2168 err = len;
2169
2170 out_freeiov:
2171 kfree(iov);
2172 return err;
2173 }
2174
2175 /*
2176 * BSD recvmsg interface
2177 */
2178
2179 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2180 {
2181 int fput_needed, err;
2182 struct msghdr msg_sys;
2183 struct socket *sock;
2184
2185 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2186 if (!sock)
2187 goto out;
2188
2189 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2190
2191 fput_light(sock->file, fput_needed);
2192 out:
2193 return err;
2194 }
2195
2196 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2197 unsigned int, flags)
2198 {
2199 if (flags & MSG_CMSG_COMPAT)
2200 return -EINVAL;
2201 return __sys_recvmsg(fd, msg, flags);
2202 }
2203
2204 /*
2205 * Linux recvmmsg interface
2206 */
2207
2208 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2209 unsigned int flags, struct timespec *timeout)
2210 {
2211 int fput_needed, err, datagrams;
2212 struct socket *sock;
2213 struct mmsghdr __user *entry;
2214 struct compat_mmsghdr __user *compat_entry;
2215 struct msghdr msg_sys;
2216 struct timespec64 end_time;
2217 struct timespec64 timeout64;
2218
2219 if (timeout &&
2220 poll_select_set_timeout(&end_time, timeout->tv_sec,
2221 timeout->tv_nsec))
2222 return -EINVAL;
2223
2224 datagrams = 0;
2225
2226 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2227 if (!sock)
2228 return err;
2229
2230 err = sock_error(sock->sk);
2231 if (err)
2232 goto out_put;
2233
2234 entry = mmsg;
2235 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2236
2237 while (datagrams < vlen) {
2238 /*
2239 * No need to ask LSM for more than the first datagram.
2240 */
2241 if (MSG_CMSG_COMPAT & flags) {
2242 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2243 &msg_sys, flags & ~MSG_WAITFORONE,
2244 datagrams);
2245 if (err < 0)
2246 break;
2247 err = __put_user(err, &compat_entry->msg_len);
2248 ++compat_entry;
2249 } else {
2250 err = ___sys_recvmsg(sock,
2251 (struct user_msghdr __user *)entry,
2252 &msg_sys, flags & ~MSG_WAITFORONE,
2253 datagrams);
2254 if (err < 0)
2255 break;
2256 err = put_user(err, &entry->msg_len);
2257 ++entry;
2258 }
2259
2260 if (err)
2261 break;
2262 ++datagrams;
2263
2264 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2265 if (flags & MSG_WAITFORONE)
2266 flags |= MSG_DONTWAIT;
2267
2268 if (timeout) {
2269 ktime_get_ts64(&timeout64);
2270 *timeout = timespec64_to_timespec(
2271 timespec64_sub(end_time, timeout64));
2272 if (timeout->tv_sec < 0) {
2273 timeout->tv_sec = timeout->tv_nsec = 0;
2274 break;
2275 }
2276
2277 /* Timeout, return less than vlen datagrams */
2278 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2279 break;
2280 }
2281
2282 /* Out of band data, return right away */
2283 if (msg_sys.msg_flags & MSG_OOB)
2284 break;
2285 cond_resched();
2286 }
2287
2288 if (err == 0)
2289 goto out_put;
2290
2291 if (datagrams == 0) {
2292 datagrams = err;
2293 goto out_put;
2294 }
2295
2296 /*
2297 * We may return less entries than requested (vlen) if the
2298 * sock is non block and there aren't enough datagrams...
2299 */
2300 if (err != -EAGAIN) {
2301 /*
2302 * ... or if recvmsg returns an error after we
2303 * received some datagrams, where we record the
2304 * error to return on the next call or if the
2305 * app asks about it using getsockopt(SO_ERROR).
2306 */
2307 sock->sk->sk_err = -err;
2308 }
2309 out_put:
2310 fput_light(sock->file, fput_needed);
2311
2312 return datagrams;
2313 }
2314
2315 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2316 unsigned int, vlen, unsigned int, flags,
2317 struct timespec __user *, timeout)
2318 {
2319 int datagrams;
2320 struct timespec timeout_sys;
2321
2322 if (flags & MSG_CMSG_COMPAT)
2323 return -EINVAL;
2324
2325 if (!timeout)
2326 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2327
2328 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2329 return -EFAULT;
2330
2331 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2332
2333 if (datagrams > 0 &&
2334 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2335 datagrams = -EFAULT;
2336
2337 return datagrams;
2338 }
2339
2340 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2341 /* Argument list sizes for sys_socketcall */
2342 #define AL(x) ((x) * sizeof(unsigned long))
2343 static const unsigned char nargs[21] = {
2344 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2345 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2346 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2347 AL(4), AL(5), AL(4)
2348 };
2349
2350 #undef AL
2351
2352 /*
2353 * System call vectors.
2354 *
2355 * Argument checking cleaned up. Saved 20% in size.
2356 * This function doesn't need to set the kernel lock because
2357 * it is set by the callees.
2358 */
2359
2360 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2361 {
2362 unsigned long a[AUDITSC_ARGS];
2363 unsigned long a0, a1;
2364 int err;
2365 unsigned int len;
2366
2367 if (call < 1 || call > SYS_SENDMMSG)
2368 return -EINVAL;
2369
2370 len = nargs[call];
2371 if (len > sizeof(a))
2372 return -EINVAL;
2373
2374 /* copy_from_user should be SMP safe. */
2375 if (copy_from_user(a, args, len))
2376 return -EFAULT;
2377
2378 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2379 if (err)
2380 return err;
2381
2382 a0 = a[0];
2383 a1 = a[1];
2384
2385 switch (call) {
2386 case SYS_SOCKET:
2387 err = sys_socket(a0, a1, a[2]);
2388 break;
2389 case SYS_BIND:
2390 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2391 break;
2392 case SYS_CONNECT:
2393 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2394 break;
2395 case SYS_LISTEN:
2396 err = sys_listen(a0, a1);
2397 break;
2398 case SYS_ACCEPT:
2399 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2400 (int __user *)a[2], 0);
2401 break;
2402 case SYS_GETSOCKNAME:
2403 err =
2404 sys_getsockname(a0, (struct sockaddr __user *)a1,
2405 (int __user *)a[2]);
2406 break;
2407 case SYS_GETPEERNAME:
2408 err =
2409 sys_getpeername(a0, (struct sockaddr __user *)a1,
2410 (int __user *)a[2]);
2411 break;
2412 case SYS_SOCKETPAIR:
2413 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2414 break;
2415 case SYS_SEND:
2416 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2417 break;
2418 case SYS_SENDTO:
2419 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2420 (struct sockaddr __user *)a[4], a[5]);
2421 break;
2422 case SYS_RECV:
2423 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2424 break;
2425 case SYS_RECVFROM:
2426 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2427 (struct sockaddr __user *)a[4],
2428 (int __user *)a[5]);
2429 break;
2430 case SYS_SHUTDOWN:
2431 err = sys_shutdown(a0, a1);
2432 break;
2433 case SYS_SETSOCKOPT:
2434 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2435 break;
2436 case SYS_GETSOCKOPT:
2437 err =
2438 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2439 (int __user *)a[4]);
2440 break;
2441 case SYS_SENDMSG:
2442 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2443 break;
2444 case SYS_SENDMMSG:
2445 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2446 break;
2447 case SYS_RECVMSG:
2448 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2449 break;
2450 case SYS_RECVMMSG:
2451 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2452 (struct timespec __user *)a[4]);
2453 break;
2454 case SYS_ACCEPT4:
2455 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2456 (int __user *)a[2], a[3]);
2457 break;
2458 default:
2459 err = -EINVAL;
2460 break;
2461 }
2462 return err;
2463 }
2464
2465 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2466
2467 /**
2468 * sock_register - add a socket protocol handler
2469 * @ops: description of protocol
2470 *
2471 * This function is called by a protocol handler that wants to
2472 * advertise its address family, and have it linked into the
2473 * socket interface. The value ops->family corresponds to the
2474 * socket system call protocol family.
2475 */
2476 int sock_register(const struct net_proto_family *ops)
2477 {
2478 int err;
2479
2480 if (ops->family >= NPROTO) {
2481 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2482 return -ENOBUFS;
2483 }
2484
2485 spin_lock(&net_family_lock);
2486 if (rcu_dereference_protected(net_families[ops->family],
2487 lockdep_is_held(&net_family_lock)))
2488 err = -EEXIST;
2489 else {
2490 rcu_assign_pointer(net_families[ops->family], ops);
2491 err = 0;
2492 }
2493 spin_unlock(&net_family_lock);
2494
2495 pr_info("NET: Registered protocol family %d\n", ops->family);
2496 return err;
2497 }
2498 EXPORT_SYMBOL(sock_register);
2499
2500 /**
2501 * sock_unregister - remove a protocol handler
2502 * @family: protocol family to remove
2503 *
2504 * This function is called by a protocol handler that wants to
2505 * remove its address family, and have it unlinked from the
2506 * new socket creation.
2507 *
2508 * If protocol handler is a module, then it can use module reference
2509 * counts to protect against new references. If protocol handler is not
2510 * a module then it needs to provide its own protection in
2511 * the ops->create routine.
2512 */
2513 void sock_unregister(int family)
2514 {
2515 BUG_ON(family < 0 || family >= NPROTO);
2516
2517 spin_lock(&net_family_lock);
2518 RCU_INIT_POINTER(net_families[family], NULL);
2519 spin_unlock(&net_family_lock);
2520
2521 synchronize_rcu();
2522
2523 pr_info("NET: Unregistered protocol family %d\n", family);
2524 }
2525 EXPORT_SYMBOL(sock_unregister);
2526
2527 static int __init sock_init(void)
2528 {
2529 int err;
2530 /*
2531 * Initialize the network sysctl infrastructure.
2532 */
2533 err = net_sysctl_init();
2534 if (err)
2535 goto out;
2536
2537 /*
2538 * Initialize skbuff SLAB cache
2539 */
2540 skb_init();
2541
2542 /*
2543 * Initialize the protocols module.
2544 */
2545
2546 init_inodecache();
2547
2548 err = register_filesystem(&sock_fs_type);
2549 if (err)
2550 goto out_fs;
2551 sock_mnt = kern_mount(&sock_fs_type);
2552 if (IS_ERR(sock_mnt)) {
2553 err = PTR_ERR(sock_mnt);
2554 goto out_mount;
2555 }
2556
2557 /* The real protocol initialization is performed in later initcalls.
2558 */
2559
2560 #ifdef CONFIG_NETFILTER
2561 err = netfilter_init();
2562 if (err)
2563 goto out;
2564 #endif
2565
2566 ptp_classifier_init();
2567
2568 out:
2569 return err;
2570
2571 out_mount:
2572 unregister_filesystem(&sock_fs_type);
2573 out_fs:
2574 goto out;
2575 }
2576
2577 core_initcall(sock_init); /* early initcall */
2578
2579 #ifdef CONFIG_PROC_FS
2580 void socket_seq_show(struct seq_file *seq)
2581 {
2582 int cpu;
2583 int counter = 0;
2584
2585 for_each_possible_cpu(cpu)
2586 counter += per_cpu(sockets_in_use, cpu);
2587
2588 /* It can be negative, by the way. 8) */
2589 if (counter < 0)
2590 counter = 0;
2591
2592 seq_printf(seq, "sockets: used %d\n", counter);
2593 }
2594 #endif /* CONFIG_PROC_FS */
2595
2596 #ifdef CONFIG_COMPAT
2597 static int do_siocgstamp(struct net *net, struct socket *sock,
2598 unsigned int cmd, void __user *up)
2599 {
2600 mm_segment_t old_fs = get_fs();
2601 struct timeval ktv;
2602 int err;
2603
2604 set_fs(KERNEL_DS);
2605 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2606 set_fs(old_fs);
2607 if (!err)
2608 err = compat_put_timeval(&ktv, up);
2609
2610 return err;
2611 }
2612
2613 static int do_siocgstampns(struct net *net, struct socket *sock,
2614 unsigned int cmd, void __user *up)
2615 {
2616 mm_segment_t old_fs = get_fs();
2617 struct timespec kts;
2618 int err;
2619
2620 set_fs(KERNEL_DS);
2621 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2622 set_fs(old_fs);
2623 if (!err)
2624 err = compat_put_timespec(&kts, up);
2625
2626 return err;
2627 }
2628
2629 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2630 {
2631 struct ifreq __user *uifr;
2632 int err;
2633
2634 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2635 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2636 return -EFAULT;
2637
2638 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2639 if (err)
2640 return err;
2641
2642 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2643 return -EFAULT;
2644
2645 return 0;
2646 }
2647
2648 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2649 {
2650 struct compat_ifconf ifc32;
2651 struct ifconf ifc;
2652 struct ifconf __user *uifc;
2653 struct compat_ifreq __user *ifr32;
2654 struct ifreq __user *ifr;
2655 unsigned int i, j;
2656 int err;
2657
2658 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2659 return -EFAULT;
2660
2661 memset(&ifc, 0, sizeof(ifc));
2662 if (ifc32.ifcbuf == 0) {
2663 ifc32.ifc_len = 0;
2664 ifc.ifc_len = 0;
2665 ifc.ifc_req = NULL;
2666 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2667 } else {
2668 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2669 sizeof(struct ifreq);
2670 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2671 ifc.ifc_len = len;
2672 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2673 ifr32 = compat_ptr(ifc32.ifcbuf);
2674 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2675 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2676 return -EFAULT;
2677 ifr++;
2678 ifr32++;
2679 }
2680 }
2681 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2682 return -EFAULT;
2683
2684 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2685 if (err)
2686 return err;
2687
2688 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2689 return -EFAULT;
2690
2691 ifr = ifc.ifc_req;
2692 ifr32 = compat_ptr(ifc32.ifcbuf);
2693 for (i = 0, j = 0;
2694 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2695 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2696 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2697 return -EFAULT;
2698 ifr32++;
2699 ifr++;
2700 }
2701
2702 if (ifc32.ifcbuf == 0) {
2703 /* Translate from 64-bit structure multiple to
2704 * a 32-bit one.
2705 */
2706 i = ifc.ifc_len;
2707 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2708 ifc32.ifc_len = i;
2709 } else {
2710 ifc32.ifc_len = i;
2711 }
2712 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2713 return -EFAULT;
2714
2715 return 0;
2716 }
2717
2718 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2719 {
2720 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2721 bool convert_in = false, convert_out = false;
2722 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2723 struct ethtool_rxnfc __user *rxnfc;
2724 struct ifreq __user *ifr;
2725 u32 rule_cnt = 0, actual_rule_cnt;
2726 u32 ethcmd;
2727 u32 data;
2728 int ret;
2729
2730 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2731 return -EFAULT;
2732
2733 compat_rxnfc = compat_ptr(data);
2734
2735 if (get_user(ethcmd, &compat_rxnfc->cmd))
2736 return -EFAULT;
2737
2738 /* Most ethtool structures are defined without padding.
2739 * Unfortunately struct ethtool_rxnfc is an exception.
2740 */
2741 switch (ethcmd) {
2742 default:
2743 break;
2744 case ETHTOOL_GRXCLSRLALL:
2745 /* Buffer size is variable */
2746 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2747 return -EFAULT;
2748 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2749 return -ENOMEM;
2750 buf_size += rule_cnt * sizeof(u32);
2751 /* fall through */
2752 case ETHTOOL_GRXRINGS:
2753 case ETHTOOL_GRXCLSRLCNT:
2754 case ETHTOOL_GRXCLSRULE:
2755 case ETHTOOL_SRXCLSRLINS:
2756 convert_out = true;
2757 /* fall through */
2758 case ETHTOOL_SRXCLSRLDEL:
2759 buf_size += sizeof(struct ethtool_rxnfc);
2760 convert_in = true;
2761 break;
2762 }
2763
2764 ifr = compat_alloc_user_space(buf_size);
2765 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2766
2767 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2768 return -EFAULT;
2769
2770 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2771 &ifr->ifr_ifru.ifru_data))
2772 return -EFAULT;
2773
2774 if (convert_in) {
2775 /* We expect there to be holes between fs.m_ext and
2776 * fs.ring_cookie and at the end of fs, but nowhere else.
2777 */
2778 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2779 sizeof(compat_rxnfc->fs.m_ext) !=
2780 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2781 sizeof(rxnfc->fs.m_ext));
2782 BUILD_BUG_ON(
2783 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2784 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2785 offsetof(struct ethtool_rxnfc, fs.location) -
2786 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2787
2788 if (copy_in_user(rxnfc, compat_rxnfc,
2789 (void __user *)(&rxnfc->fs.m_ext + 1) -
2790 (void __user *)rxnfc) ||
2791 copy_in_user(&rxnfc->fs.ring_cookie,
2792 &compat_rxnfc->fs.ring_cookie,
2793 (void __user *)(&rxnfc->fs.location + 1) -
2794 (void __user *)&rxnfc->fs.ring_cookie) ||
2795 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2796 sizeof(rxnfc->rule_cnt)))
2797 return -EFAULT;
2798 }
2799
2800 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2801 if (ret)
2802 return ret;
2803
2804 if (convert_out) {
2805 if (copy_in_user(compat_rxnfc, rxnfc,
2806 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2807 (const void __user *)rxnfc) ||
2808 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2809 &rxnfc->fs.ring_cookie,
2810 (const void __user *)(&rxnfc->fs.location + 1) -
2811 (const void __user *)&rxnfc->fs.ring_cookie) ||
2812 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2813 sizeof(rxnfc->rule_cnt)))
2814 return -EFAULT;
2815
2816 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2817 /* As an optimisation, we only copy the actual
2818 * number of rules that the underlying
2819 * function returned. Since Mallory might
2820 * change the rule count in user memory, we
2821 * check that it is less than the rule count
2822 * originally given (as the user buffer size),
2823 * which has been range-checked.
2824 */
2825 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2826 return -EFAULT;
2827 if (actual_rule_cnt < rule_cnt)
2828 rule_cnt = actual_rule_cnt;
2829 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2830 &rxnfc->rule_locs[0],
2831 rule_cnt * sizeof(u32)))
2832 return -EFAULT;
2833 }
2834 }
2835
2836 return 0;
2837 }
2838
2839 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2840 {
2841 void __user *uptr;
2842 compat_uptr_t uptr32;
2843 struct ifreq __user *uifr;
2844
2845 uifr = compat_alloc_user_space(sizeof(*uifr));
2846 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2847 return -EFAULT;
2848
2849 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2850 return -EFAULT;
2851
2852 uptr = compat_ptr(uptr32);
2853
2854 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2855 return -EFAULT;
2856
2857 return dev_ioctl(net, SIOCWANDEV, uifr);
2858 }
2859
2860 static int bond_ioctl(struct net *net, unsigned int cmd,
2861 struct compat_ifreq __user *ifr32)
2862 {
2863 struct ifreq kifr;
2864 mm_segment_t old_fs;
2865 int err;
2866
2867 switch (cmd) {
2868 case SIOCBONDENSLAVE:
2869 case SIOCBONDRELEASE:
2870 case SIOCBONDSETHWADDR:
2871 case SIOCBONDCHANGEACTIVE:
2872 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2873 return -EFAULT;
2874
2875 old_fs = get_fs();
2876 set_fs(KERNEL_DS);
2877 err = dev_ioctl(net, cmd,
2878 (struct ifreq __user __force *) &kifr);
2879 set_fs(old_fs);
2880
2881 return err;
2882 default:
2883 return -ENOIOCTLCMD;
2884 }
2885 }
2886
2887 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2888 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2889 struct compat_ifreq __user *u_ifreq32)
2890 {
2891 struct ifreq __user *u_ifreq64;
2892 char tmp_buf[IFNAMSIZ];
2893 void __user *data64;
2894 u32 data32;
2895
2896 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2897 IFNAMSIZ))
2898 return -EFAULT;
2899 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2900 return -EFAULT;
2901 data64 = compat_ptr(data32);
2902
2903 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2904
2905 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2906 IFNAMSIZ))
2907 return -EFAULT;
2908 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2909 return -EFAULT;
2910
2911 return dev_ioctl(net, cmd, u_ifreq64);
2912 }
2913
2914 static int dev_ifsioc(struct net *net, struct socket *sock,
2915 unsigned int cmd, struct compat_ifreq __user *uifr32)
2916 {
2917 struct ifreq __user *uifr;
2918 int err;
2919
2920 uifr = compat_alloc_user_space(sizeof(*uifr));
2921 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2922 return -EFAULT;
2923
2924 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2925
2926 if (!err) {
2927 switch (cmd) {
2928 case SIOCGIFFLAGS:
2929 case SIOCGIFMETRIC:
2930 case SIOCGIFMTU:
2931 case SIOCGIFMEM:
2932 case SIOCGIFHWADDR:
2933 case SIOCGIFINDEX:
2934 case SIOCGIFADDR:
2935 case SIOCGIFBRDADDR:
2936 case SIOCGIFDSTADDR:
2937 case SIOCGIFNETMASK:
2938 case SIOCGIFPFLAGS:
2939 case SIOCGIFTXQLEN:
2940 case SIOCGMIIPHY:
2941 case SIOCGMIIREG:
2942 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2943 err = -EFAULT;
2944 break;
2945 }
2946 }
2947 return err;
2948 }
2949
2950 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2951 struct compat_ifreq __user *uifr32)
2952 {
2953 struct ifreq ifr;
2954 struct compat_ifmap __user *uifmap32;
2955 mm_segment_t old_fs;
2956 int err;
2957
2958 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2959 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2960 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2961 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2962 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2963 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2964 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2965 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2966 if (err)
2967 return -EFAULT;
2968
2969 old_fs = get_fs();
2970 set_fs(KERNEL_DS);
2971 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2972 set_fs(old_fs);
2973
2974 if (cmd == SIOCGIFMAP && !err) {
2975 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2976 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2977 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2978 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2979 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2980 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2981 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2982 if (err)
2983 err = -EFAULT;
2984 }
2985 return err;
2986 }
2987
2988 struct rtentry32 {
2989 u32 rt_pad1;
2990 struct sockaddr rt_dst; /* target address */
2991 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2992 struct sockaddr rt_genmask; /* target network mask (IP) */
2993 unsigned short rt_flags;
2994 short rt_pad2;
2995 u32 rt_pad3;
2996 unsigned char rt_tos;
2997 unsigned char rt_class;
2998 short rt_pad4;
2999 short rt_metric; /* +1 for binary compatibility! */
3000 /* char * */ u32 rt_dev; /* forcing the device at add */
3001 u32 rt_mtu; /* per route MTU/Window */
3002 u32 rt_window; /* Window clamping */
3003 unsigned short rt_irtt; /* Initial RTT */
3004 };
3005
3006 struct in6_rtmsg32 {
3007 struct in6_addr rtmsg_dst;
3008 struct in6_addr rtmsg_src;
3009 struct in6_addr rtmsg_gateway;
3010 u32 rtmsg_type;
3011 u16 rtmsg_dst_len;
3012 u16 rtmsg_src_len;
3013 u32 rtmsg_metric;
3014 u32 rtmsg_info;
3015 u32 rtmsg_flags;
3016 s32 rtmsg_ifindex;
3017 };
3018
3019 static int routing_ioctl(struct net *net, struct socket *sock,
3020 unsigned int cmd, void __user *argp)
3021 {
3022 int ret;
3023 void *r = NULL;
3024 struct in6_rtmsg r6;
3025 struct rtentry r4;
3026 char devname[16];
3027 u32 rtdev;
3028 mm_segment_t old_fs = get_fs();
3029
3030 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3031 struct in6_rtmsg32 __user *ur6 = argp;
3032 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3033 3 * sizeof(struct in6_addr));
3034 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3035 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3036 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3037 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3038 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3039 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3040 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3041
3042 r = (void *) &r6;
3043 } else { /* ipv4 */
3044 struct rtentry32 __user *ur4 = argp;
3045 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3046 3 * sizeof(struct sockaddr));
3047 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3048 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3049 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3050 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3051 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3052 ret |= get_user(rtdev, &(ur4->rt_dev));
3053 if (rtdev) {
3054 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3055 r4.rt_dev = (char __user __force *)devname;
3056 devname[15] = 0;
3057 } else
3058 r4.rt_dev = NULL;
3059
3060 r = (void *) &r4;
3061 }
3062
3063 if (ret) {
3064 ret = -EFAULT;
3065 goto out;
3066 }
3067
3068 set_fs(KERNEL_DS);
3069 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3070 set_fs(old_fs);
3071
3072 out:
3073 return ret;
3074 }
3075
3076 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3077 * for some operations; this forces use of the newer bridge-utils that
3078 * use compatible ioctls
3079 */
3080 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3081 {
3082 compat_ulong_t tmp;
3083
3084 if (get_user(tmp, argp))
3085 return -EFAULT;
3086 if (tmp == BRCTL_GET_VERSION)
3087 return BRCTL_VERSION + 1;
3088 return -EINVAL;
3089 }
3090
3091 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3092 unsigned int cmd, unsigned long arg)
3093 {
3094 void __user *argp = compat_ptr(arg);
3095 struct sock *sk = sock->sk;
3096 struct net *net = sock_net(sk);
3097
3098 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3099 return compat_ifr_data_ioctl(net, cmd, argp);
3100
3101 switch (cmd) {
3102 case SIOCSIFBR:
3103 case SIOCGIFBR:
3104 return old_bridge_ioctl(argp);
3105 case SIOCGIFNAME:
3106 return dev_ifname32(net, argp);
3107 case SIOCGIFCONF:
3108 return dev_ifconf(net, argp);
3109 case SIOCETHTOOL:
3110 return ethtool_ioctl(net, argp);
3111 case SIOCWANDEV:
3112 return compat_siocwandev(net, argp);
3113 case SIOCGIFMAP:
3114 case SIOCSIFMAP:
3115 return compat_sioc_ifmap(net, cmd, argp);
3116 case SIOCBONDENSLAVE:
3117 case SIOCBONDRELEASE:
3118 case SIOCBONDSETHWADDR:
3119 case SIOCBONDCHANGEACTIVE:
3120 return bond_ioctl(net, cmd, argp);
3121 case SIOCADDRT:
3122 case SIOCDELRT:
3123 return routing_ioctl(net, sock, cmd, argp);
3124 case SIOCGSTAMP:
3125 return do_siocgstamp(net, sock, cmd, argp);
3126 case SIOCGSTAMPNS:
3127 return do_siocgstampns(net, sock, cmd, argp);
3128 case SIOCBONDSLAVEINFOQUERY:
3129 case SIOCBONDINFOQUERY:
3130 case SIOCSHWTSTAMP:
3131 case SIOCGHWTSTAMP:
3132 return compat_ifr_data_ioctl(net, cmd, argp);
3133
3134 case FIOSETOWN:
3135 case SIOCSPGRP:
3136 case FIOGETOWN:
3137 case SIOCGPGRP:
3138 case SIOCBRADDBR:
3139 case SIOCBRDELBR:
3140 case SIOCGIFVLAN:
3141 case SIOCSIFVLAN:
3142 case SIOCADDDLCI:
3143 case SIOCDELDLCI:
3144 case SIOCGSKNS:
3145 return sock_ioctl(file, cmd, arg);
3146
3147 case SIOCGIFFLAGS:
3148 case SIOCSIFFLAGS:
3149 case SIOCGIFMETRIC:
3150 case SIOCSIFMETRIC:
3151 case SIOCGIFMTU:
3152 case SIOCSIFMTU:
3153 case SIOCGIFMEM:
3154 case SIOCSIFMEM:
3155 case SIOCGIFHWADDR:
3156 case SIOCSIFHWADDR:
3157 case SIOCADDMULTI:
3158 case SIOCDELMULTI:
3159 case SIOCGIFINDEX:
3160 case SIOCGIFADDR:
3161 case SIOCSIFADDR:
3162 case SIOCSIFHWBROADCAST:
3163 case SIOCDIFADDR:
3164 case SIOCGIFBRDADDR:
3165 case SIOCSIFBRDADDR:
3166 case SIOCGIFDSTADDR:
3167 case SIOCSIFDSTADDR:
3168 case SIOCGIFNETMASK:
3169 case SIOCSIFNETMASK:
3170 case SIOCSIFPFLAGS:
3171 case SIOCGIFPFLAGS:
3172 case SIOCGIFTXQLEN:
3173 case SIOCSIFTXQLEN:
3174 case SIOCBRADDIF:
3175 case SIOCBRDELIF:
3176 case SIOCSIFNAME:
3177 case SIOCGMIIPHY:
3178 case SIOCGMIIREG:
3179 case SIOCSMIIREG:
3180 return dev_ifsioc(net, sock, cmd, argp);
3181
3182 case SIOCSARP:
3183 case SIOCGARP:
3184 case SIOCDARP:
3185 case SIOCATMARK:
3186 return sock_do_ioctl(net, sock, cmd, arg);
3187 }
3188
3189 return -ENOIOCTLCMD;
3190 }
3191
3192 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3193 unsigned long arg)
3194 {
3195 struct socket *sock = file->private_data;
3196 int ret = -ENOIOCTLCMD;
3197 struct sock *sk;
3198 struct net *net;
3199
3200 sk = sock->sk;
3201 net = sock_net(sk);
3202
3203 if (sock->ops->compat_ioctl)
3204 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3205
3206 if (ret == -ENOIOCTLCMD &&
3207 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3208 ret = compat_wext_handle_ioctl(net, cmd, arg);
3209
3210 if (ret == -ENOIOCTLCMD)
3211 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3212
3213 return ret;
3214 }
3215 #endif
3216
3217 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3218 {
3219 return sock->ops->bind(sock, addr, addrlen);
3220 }
3221 EXPORT_SYMBOL(kernel_bind);
3222
3223 int kernel_listen(struct socket *sock, int backlog)
3224 {
3225 return sock->ops->listen(sock, backlog);
3226 }
3227 EXPORT_SYMBOL(kernel_listen);
3228
3229 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3230 {
3231 struct sock *sk = sock->sk;
3232 int err;
3233
3234 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3235 newsock);
3236 if (err < 0)
3237 goto done;
3238
3239 err = sock->ops->accept(sock, *newsock, flags);
3240 if (err < 0) {
3241 sock_release(*newsock);
3242 *newsock = NULL;
3243 goto done;
3244 }
3245
3246 (*newsock)->ops = sock->ops;
3247 __module_get((*newsock)->ops->owner);
3248
3249 done:
3250 return err;
3251 }
3252 EXPORT_SYMBOL(kernel_accept);
3253
3254 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3255 int flags)
3256 {
3257 return sock->ops->connect(sock, addr, addrlen, flags);
3258 }
3259 EXPORT_SYMBOL(kernel_connect);
3260
3261 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3262 int *addrlen)
3263 {
3264 return sock->ops->getname(sock, addr, addrlen, 0);
3265 }
3266 EXPORT_SYMBOL(kernel_getsockname);
3267
3268 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3269 int *addrlen)
3270 {
3271 return sock->ops->getname(sock, addr, addrlen, 1);
3272 }
3273 EXPORT_SYMBOL(kernel_getpeername);
3274
3275 int kernel_getsockopt(struct socket *sock, int level, int optname,
3276 char *optval, int *optlen)
3277 {
3278 mm_segment_t oldfs = get_fs();
3279 char __user *uoptval;
3280 int __user *uoptlen;
3281 int err;
3282
3283 uoptval = (char __user __force *) optval;
3284 uoptlen = (int __user __force *) optlen;
3285
3286 set_fs(KERNEL_DS);
3287 if (level == SOL_SOCKET)
3288 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3289 else
3290 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3291 uoptlen);
3292 set_fs(oldfs);
3293 return err;
3294 }
3295 EXPORT_SYMBOL(kernel_getsockopt);
3296
3297 int kernel_setsockopt(struct socket *sock, int level, int optname,
3298 char *optval, unsigned int optlen)
3299 {
3300 mm_segment_t oldfs = get_fs();
3301 char __user *uoptval;
3302 int err;
3303
3304 uoptval = (char __user __force *) optval;
3305
3306 set_fs(KERNEL_DS);
3307 if (level == SOL_SOCKET)
3308 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3309 else
3310 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3311 optlen);
3312 set_fs(oldfs);
3313 return err;
3314 }
3315 EXPORT_SYMBOL(kernel_setsockopt);
3316
3317 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3318 size_t size, int flags)
3319 {
3320 if (sock->ops->sendpage)
3321 return sock->ops->sendpage(sock, page, offset, size, flags);
3322
3323 return sock_no_sendpage(sock, page, offset, size, flags);
3324 }
3325 EXPORT_SYMBOL(kernel_sendpage);
3326
3327 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3328 {
3329 mm_segment_t oldfs = get_fs();
3330 int err;
3331
3332 set_fs(KERNEL_DS);
3333 err = sock->ops->ioctl(sock, cmd, arg);
3334 set_fs(oldfs);
3335
3336 return err;
3337 }
3338 EXPORT_SYMBOL(kernel_sock_ioctl);
3339
3340 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3341 {
3342 return sock->ops->shutdown(sock, how);
3343 }
3344 EXPORT_SYMBOL(kernel_sock_shutdown);