]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/socket.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-artful-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156 };
157
158 /*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165 /*
166 * Statistics counters of the socket lists
167 */
168
169 static DEFINE_PER_CPU(int, sockets_in_use);
170
171 /*
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
175 */
176
177 /**
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
182 *
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
186 */
187
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
197 }
198
199 /**
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
205 *
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
214 */
215
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
218 {
219 int err;
220 int len;
221
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
235 }
236 /*
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
239 */
240 return __put_user(klen, ulen);
241 }
242
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
249
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
257 }
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 wq->flags = 0;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
262
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
268
269 return &ei->vfs_inode;
270 }
271
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
276
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
281 }
282
283 static void init_once(void *foo)
284 {
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
286
287 inode_init_once(&ei->vfs_inode);
288 }
289
290 static int init_inodecache(void)
291 {
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
294 0,
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 init_once);
299 if (sock_inode_cachep == NULL)
300 return -ENOMEM;
301 return 0;
302 }
303
304 static const struct super_operations sockfs_ops = {
305 .alloc_inode = sock_alloc_inode,
306 .destroy_inode = sock_destroy_inode,
307 .statfs = simple_statfs,
308 };
309
310 /*
311 * sockfs_dname() is called from d_path().
312 */
313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
314 {
315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 d_inode(dentry)->i_ino);
317 }
318
319 static const struct dentry_operations sockfs_dentry_operations = {
320 .d_dname = sockfs_dname,
321 };
322
323 static int sockfs_xattr_get(const struct xattr_handler *handler,
324 struct dentry *dentry, struct inode *inode,
325 const char *suffix, void *value, size_t size)
326 {
327 if (value) {
328 if (dentry->d_name.len + 1 > size)
329 return -ERANGE;
330 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
331 }
332 return dentry->d_name.len + 1;
333 }
334
335 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
336 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
337 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
338
339 static const struct xattr_handler sockfs_xattr_handler = {
340 .name = XATTR_NAME_SOCKPROTONAME,
341 .get = sockfs_xattr_get,
342 };
343
344 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
345 struct dentry *dentry, struct inode *inode,
346 const char *suffix, const void *value,
347 size_t size, int flags)
348 {
349 /* Handled by LSM. */
350 return -EAGAIN;
351 }
352
353 static const struct xattr_handler sockfs_security_xattr_handler = {
354 .prefix = XATTR_SECURITY_PREFIX,
355 .set = sockfs_security_xattr_set,
356 };
357
358 static const struct xattr_handler *sockfs_xattr_handlers[] = {
359 &sockfs_xattr_handler,
360 &sockfs_security_xattr_handler,
361 NULL
362 };
363
364 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
365 int flags, const char *dev_name, void *data)
366 {
367 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
368 sockfs_xattr_handlers,
369 &sockfs_dentry_operations, SOCKFS_MAGIC);
370 }
371
372 static struct vfsmount *sock_mnt __read_mostly;
373
374 static struct file_system_type sock_fs_type = {
375 .name = "sockfs",
376 .mount = sockfs_mount,
377 .kill_sb = kill_anon_super,
378 };
379
380 /*
381 * Obtains the first available file descriptor and sets it up for use.
382 *
383 * These functions create file structures and maps them to fd space
384 * of the current process. On success it returns file descriptor
385 * and file struct implicitly stored in sock->file.
386 * Note that another thread may close file descriptor before we return
387 * from this function. We use the fact that now we do not refer
388 * to socket after mapping. If one day we will need it, this
389 * function will increment ref. count on file by 1.
390 *
391 * In any case returned fd MAY BE not valid!
392 * This race condition is unavoidable
393 * with shared fd spaces, we cannot solve it inside kernel,
394 * but we take care of internal coherence yet.
395 */
396
397 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
398 {
399 struct qstr name = { .name = "" };
400 struct path path;
401 struct file *file;
402
403 if (dname) {
404 name.name = dname;
405 name.len = strlen(name.name);
406 } else if (sock->sk) {
407 name.name = sock->sk->sk_prot_creator->name;
408 name.len = strlen(name.name);
409 }
410 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
411 if (unlikely(!path.dentry))
412 return ERR_PTR(-ENOMEM);
413 path.mnt = mntget(sock_mnt);
414
415 d_instantiate(path.dentry, SOCK_INODE(sock));
416
417 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
418 &socket_file_ops);
419 if (IS_ERR(file)) {
420 /* drop dentry, keep inode */
421 ihold(d_inode(path.dentry));
422 path_put(&path);
423 return file;
424 }
425
426 sock->file = file;
427 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
428 file->private_data = sock;
429 return file;
430 }
431 EXPORT_SYMBOL(sock_alloc_file);
432
433 static int sock_map_fd(struct socket *sock, int flags)
434 {
435 struct file *newfile;
436 int fd = get_unused_fd_flags(flags);
437 if (unlikely(fd < 0))
438 return fd;
439
440 newfile = sock_alloc_file(sock, flags, NULL);
441 if (likely(!IS_ERR(newfile))) {
442 fd_install(fd, newfile);
443 return fd;
444 }
445
446 put_unused_fd(fd);
447 return PTR_ERR(newfile);
448 }
449
450 struct socket *sock_from_file(struct file *file, int *err)
451 {
452 if (file->f_op == &socket_file_ops)
453 return file->private_data; /* set in sock_map_fd */
454
455 *err = -ENOTSOCK;
456 return NULL;
457 }
458 EXPORT_SYMBOL(sock_from_file);
459
460 /**
461 * sockfd_lookup - Go from a file number to its socket slot
462 * @fd: file handle
463 * @err: pointer to an error code return
464 *
465 * The file handle passed in is locked and the socket it is bound
466 * too is returned. If an error occurs the err pointer is overwritten
467 * with a negative errno code and NULL is returned. The function checks
468 * for both invalid handles and passing a handle which is not a socket.
469 *
470 * On a success the socket object pointer is returned.
471 */
472
473 struct socket *sockfd_lookup(int fd, int *err)
474 {
475 struct file *file;
476 struct socket *sock;
477
478 file = fget(fd);
479 if (!file) {
480 *err = -EBADF;
481 return NULL;
482 }
483
484 sock = sock_from_file(file, err);
485 if (!sock)
486 fput(file);
487 return sock;
488 }
489 EXPORT_SYMBOL(sockfd_lookup);
490
491 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
492 {
493 struct fd f = fdget(fd);
494 struct socket *sock;
495
496 *err = -EBADF;
497 if (f.file) {
498 sock = sock_from_file(f.file, err);
499 if (likely(sock)) {
500 *fput_needed = f.flags;
501 return sock;
502 }
503 fdput(f);
504 }
505 return NULL;
506 }
507
508 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
509 size_t size)
510 {
511 ssize_t len;
512 ssize_t used = 0;
513
514 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
515 if (len < 0)
516 return len;
517 used += len;
518 if (buffer) {
519 if (size < used)
520 return -ERANGE;
521 buffer += len;
522 }
523
524 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
525 used += len;
526 if (buffer) {
527 if (size < used)
528 return -ERANGE;
529 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
530 buffer += len;
531 }
532
533 return used;
534 }
535
536 int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
537 {
538 int err = simple_setattr(dentry, iattr);
539
540 if (!err) {
541 struct socket *sock = SOCKET_I(d_inode(dentry));
542
543 sock->sk->sk_uid = iattr->ia_uid;
544 }
545
546 return err;
547 }
548
549 static const struct inode_operations sockfs_inode_ops = {
550 .listxattr = sockfs_listxattr,
551 .setattr = sockfs_setattr,
552 };
553
554 /**
555 * sock_alloc - allocate a socket
556 *
557 * Allocate a new inode and socket object. The two are bound together
558 * and initialised. The socket is then returned. If we are out of inodes
559 * NULL is returned.
560 */
561
562 struct socket *sock_alloc(void)
563 {
564 struct inode *inode;
565 struct socket *sock;
566
567 inode = new_inode_pseudo(sock_mnt->mnt_sb);
568 if (!inode)
569 return NULL;
570
571 sock = SOCKET_I(inode);
572
573 kmemcheck_annotate_bitfield(sock, type);
574 inode->i_ino = get_next_ino();
575 inode->i_mode = S_IFSOCK | S_IRWXUGO;
576 inode->i_uid = current_fsuid();
577 inode->i_gid = current_fsgid();
578 inode->i_op = &sockfs_inode_ops;
579
580 this_cpu_add(sockets_in_use, 1);
581 return sock;
582 }
583 EXPORT_SYMBOL(sock_alloc);
584
585 /**
586 * sock_release - close a socket
587 * @sock: socket to close
588 *
589 * The socket is released from the protocol stack if it has a release
590 * callback, and the inode is then released if the socket is bound to
591 * an inode not a file.
592 */
593
594 void sock_release(struct socket *sock)
595 {
596 if (sock->ops) {
597 struct module *owner = sock->ops->owner;
598
599 sock->ops->release(sock);
600 sock->ops = NULL;
601 module_put(owner);
602 }
603
604 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
605 pr_err("%s: fasync list not empty!\n", __func__);
606
607 this_cpu_sub(sockets_in_use, 1);
608 if (!sock->file) {
609 iput(SOCK_INODE(sock));
610 return;
611 }
612 sock->file = NULL;
613 }
614 EXPORT_SYMBOL(sock_release);
615
616 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
617 {
618 u8 flags = *tx_flags;
619
620 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
621 flags |= SKBTX_HW_TSTAMP;
622
623 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
624 flags |= SKBTX_SW_TSTAMP;
625
626 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
627 flags |= SKBTX_SCHED_TSTAMP;
628
629 *tx_flags = flags;
630 }
631 EXPORT_SYMBOL(__sock_tx_timestamp);
632
633 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
634 {
635 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
636 BUG_ON(ret == -EIOCBQUEUED);
637 return ret;
638 }
639
640 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
641 {
642 int err = security_socket_sendmsg(sock, msg,
643 msg_data_left(msg));
644
645 return err ?: sock_sendmsg_nosec(sock, msg);
646 }
647 EXPORT_SYMBOL(sock_sendmsg);
648
649 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
650 struct kvec *vec, size_t num, size_t size)
651 {
652 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
653 return sock_sendmsg(sock, msg);
654 }
655 EXPORT_SYMBOL(kernel_sendmsg);
656
657 /*
658 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
659 */
660 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
661 struct sk_buff *skb)
662 {
663 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
664 struct scm_timestamping tss;
665 int empty = 1;
666 struct skb_shared_hwtstamps *shhwtstamps =
667 skb_hwtstamps(skb);
668
669 /* Race occurred between timestamp enabling and packet
670 receiving. Fill in the current time for now. */
671 if (need_software_tstamp && skb->tstamp.tv64 == 0)
672 __net_timestamp(skb);
673
674 if (need_software_tstamp) {
675 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
676 struct timeval tv;
677 skb_get_timestamp(skb, &tv);
678 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
679 sizeof(tv), &tv);
680 } else {
681 struct timespec ts;
682 skb_get_timestampns(skb, &ts);
683 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
684 sizeof(ts), &ts);
685 }
686 }
687
688 memset(&tss, 0, sizeof(tss));
689 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
690 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
691 empty = 0;
692 if (shhwtstamps &&
693 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
694 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
695 empty = 0;
696 if (!empty)
697 put_cmsg(msg, SOL_SOCKET,
698 SCM_TIMESTAMPING, sizeof(tss), &tss);
699 }
700 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
701
702 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
703 struct sk_buff *skb)
704 {
705 int ack;
706
707 if (!sock_flag(sk, SOCK_WIFI_STATUS))
708 return;
709 if (!skb->wifi_acked_valid)
710 return;
711
712 ack = skb->wifi_acked;
713
714 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
715 }
716 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
717
718 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
719 struct sk_buff *skb)
720 {
721 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
722 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
723 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
724 }
725
726 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
727 struct sk_buff *skb)
728 {
729 sock_recv_timestamp(msg, sk, skb);
730 sock_recv_drops(msg, sk, skb);
731 }
732 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
733
734 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
735 int flags)
736 {
737 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
738 }
739
740 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
741 {
742 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
743
744 return err ?: sock_recvmsg_nosec(sock, msg, flags);
745 }
746 EXPORT_SYMBOL(sock_recvmsg);
747
748 /**
749 * kernel_recvmsg - Receive a message from a socket (kernel space)
750 * @sock: The socket to receive the message from
751 * @msg: Received message
752 * @vec: Input s/g array for message data
753 * @num: Size of input s/g array
754 * @size: Number of bytes to read
755 * @flags: Message flags (MSG_DONTWAIT, etc...)
756 *
757 * On return the msg structure contains the scatter/gather array passed in the
758 * vec argument. The array is modified so that it consists of the unfilled
759 * portion of the original array.
760 *
761 * The returned value is the total number of bytes received, or an error.
762 */
763 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
764 struct kvec *vec, size_t num, size_t size, int flags)
765 {
766 mm_segment_t oldfs = get_fs();
767 int result;
768
769 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
770 set_fs(KERNEL_DS);
771 result = sock_recvmsg(sock, msg, flags);
772 set_fs(oldfs);
773 return result;
774 }
775 EXPORT_SYMBOL(kernel_recvmsg);
776
777 static ssize_t sock_sendpage(struct file *file, struct page *page,
778 int offset, size_t size, loff_t *ppos, int more)
779 {
780 struct socket *sock;
781 int flags;
782
783 sock = file->private_data;
784
785 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
786 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
787 flags |= more;
788
789 return kernel_sendpage(sock, page, offset, size, flags);
790 }
791
792 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
793 struct pipe_inode_info *pipe, size_t len,
794 unsigned int flags)
795 {
796 struct socket *sock = file->private_data;
797
798 if (unlikely(!sock->ops->splice_read))
799 return -EINVAL;
800
801 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
802 }
803
804 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
805 {
806 struct file *file = iocb->ki_filp;
807 struct socket *sock = file->private_data;
808 struct msghdr msg = {.msg_iter = *to,
809 .msg_iocb = iocb};
810 ssize_t res;
811
812 if (file->f_flags & O_NONBLOCK)
813 msg.msg_flags = MSG_DONTWAIT;
814
815 if (iocb->ki_pos != 0)
816 return -ESPIPE;
817
818 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
819 return 0;
820
821 res = sock_recvmsg(sock, &msg, msg.msg_flags);
822 *to = msg.msg_iter;
823 return res;
824 }
825
826 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
827 {
828 struct file *file = iocb->ki_filp;
829 struct socket *sock = file->private_data;
830 struct msghdr msg = {.msg_iter = *from,
831 .msg_iocb = iocb};
832 ssize_t res;
833
834 if (iocb->ki_pos != 0)
835 return -ESPIPE;
836
837 if (file->f_flags & O_NONBLOCK)
838 msg.msg_flags = MSG_DONTWAIT;
839
840 if (sock->type == SOCK_SEQPACKET)
841 msg.msg_flags |= MSG_EOR;
842
843 res = sock_sendmsg(sock, &msg);
844 *from = msg.msg_iter;
845 return res;
846 }
847
848 /*
849 * Atomic setting of ioctl hooks to avoid race
850 * with module unload.
851 */
852
853 static DEFINE_MUTEX(br_ioctl_mutex);
854 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
855
856 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
857 {
858 mutex_lock(&br_ioctl_mutex);
859 br_ioctl_hook = hook;
860 mutex_unlock(&br_ioctl_mutex);
861 }
862 EXPORT_SYMBOL(brioctl_set);
863
864 static DEFINE_MUTEX(vlan_ioctl_mutex);
865 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
866
867 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
868 {
869 mutex_lock(&vlan_ioctl_mutex);
870 vlan_ioctl_hook = hook;
871 mutex_unlock(&vlan_ioctl_mutex);
872 }
873 EXPORT_SYMBOL(vlan_ioctl_set);
874
875 static DEFINE_MUTEX(dlci_ioctl_mutex);
876 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
877
878 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
879 {
880 mutex_lock(&dlci_ioctl_mutex);
881 dlci_ioctl_hook = hook;
882 mutex_unlock(&dlci_ioctl_mutex);
883 }
884 EXPORT_SYMBOL(dlci_ioctl_set);
885
886 static long sock_do_ioctl(struct net *net, struct socket *sock,
887 unsigned int cmd, unsigned long arg)
888 {
889 int err;
890 void __user *argp = (void __user *)arg;
891
892 err = sock->ops->ioctl(sock, cmd, arg);
893
894 /*
895 * If this ioctl is unknown try to hand it down
896 * to the NIC driver.
897 */
898 if (err == -ENOIOCTLCMD)
899 err = dev_ioctl(net, cmd, argp);
900
901 return err;
902 }
903
904 /*
905 * With an ioctl, arg may well be a user mode pointer, but we don't know
906 * what to do with it - that's up to the protocol still.
907 */
908
909 static struct ns_common *get_net_ns(struct ns_common *ns)
910 {
911 return &get_net(container_of(ns, struct net, ns))->ns;
912 }
913
914 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
915 {
916 struct socket *sock;
917 struct sock *sk;
918 void __user *argp = (void __user *)arg;
919 int pid, err;
920 struct net *net;
921
922 sock = file->private_data;
923 sk = sock->sk;
924 net = sock_net(sk);
925 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
926 err = dev_ioctl(net, cmd, argp);
927 } else
928 #ifdef CONFIG_WEXT_CORE
929 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
930 err = dev_ioctl(net, cmd, argp);
931 } else
932 #endif
933 switch (cmd) {
934 case FIOSETOWN:
935 case SIOCSPGRP:
936 err = -EFAULT;
937 if (get_user(pid, (int __user *)argp))
938 break;
939 f_setown(sock->file, pid, 1);
940 err = 0;
941 break;
942 case FIOGETOWN:
943 case SIOCGPGRP:
944 err = put_user(f_getown(sock->file),
945 (int __user *)argp);
946 break;
947 case SIOCGIFBR:
948 case SIOCSIFBR:
949 case SIOCBRADDBR:
950 case SIOCBRDELBR:
951 err = -ENOPKG;
952 if (!br_ioctl_hook)
953 request_module("bridge");
954
955 mutex_lock(&br_ioctl_mutex);
956 if (br_ioctl_hook)
957 err = br_ioctl_hook(net, cmd, argp);
958 mutex_unlock(&br_ioctl_mutex);
959 break;
960 case SIOCGIFVLAN:
961 case SIOCSIFVLAN:
962 err = -ENOPKG;
963 if (!vlan_ioctl_hook)
964 request_module("8021q");
965
966 mutex_lock(&vlan_ioctl_mutex);
967 if (vlan_ioctl_hook)
968 err = vlan_ioctl_hook(net, argp);
969 mutex_unlock(&vlan_ioctl_mutex);
970 break;
971 case SIOCADDDLCI:
972 case SIOCDELDLCI:
973 err = -ENOPKG;
974 if (!dlci_ioctl_hook)
975 request_module("dlci");
976
977 mutex_lock(&dlci_ioctl_mutex);
978 if (dlci_ioctl_hook)
979 err = dlci_ioctl_hook(cmd, argp);
980 mutex_unlock(&dlci_ioctl_mutex);
981 break;
982 case SIOCGSKNS:
983 err = -EPERM;
984 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
985 break;
986
987 err = open_related_ns(&net->ns, get_net_ns);
988 break;
989 default:
990 err = sock_do_ioctl(net, sock, cmd, arg);
991 break;
992 }
993 return err;
994 }
995
996 int sock_create_lite(int family, int type, int protocol, struct socket **res)
997 {
998 int err;
999 struct socket *sock = NULL;
1000
1001 err = security_socket_create(family, type, protocol, 1);
1002 if (err)
1003 goto out;
1004
1005 sock = sock_alloc();
1006 if (!sock) {
1007 err = -ENOMEM;
1008 goto out;
1009 }
1010
1011 sock->type = type;
1012 err = security_socket_post_create(sock, family, type, protocol, 1);
1013 if (err)
1014 goto out_release;
1015
1016 out:
1017 *res = sock;
1018 return err;
1019 out_release:
1020 sock_release(sock);
1021 sock = NULL;
1022 goto out;
1023 }
1024 EXPORT_SYMBOL(sock_create_lite);
1025
1026 /* No kernel lock held - perfect */
1027 static unsigned int sock_poll(struct file *file, poll_table *wait)
1028 {
1029 unsigned int busy_flag = 0;
1030 struct socket *sock;
1031
1032 /*
1033 * We can't return errors to poll, so it's either yes or no.
1034 */
1035 sock = file->private_data;
1036
1037 if (sk_can_busy_loop(sock->sk)) {
1038 /* this socket can poll_ll so tell the system call */
1039 busy_flag = POLL_BUSY_LOOP;
1040
1041 /* once, only if requested by syscall */
1042 if (wait && (wait->_key & POLL_BUSY_LOOP))
1043 sk_busy_loop(sock->sk, 1);
1044 }
1045
1046 return busy_flag | sock->ops->poll(file, sock, wait);
1047 }
1048
1049 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1050 {
1051 struct socket *sock = file->private_data;
1052
1053 return sock->ops->mmap(file, sock, vma);
1054 }
1055
1056 static int sock_close(struct inode *inode, struct file *filp)
1057 {
1058 sock_release(SOCKET_I(inode));
1059 return 0;
1060 }
1061
1062 /*
1063 * Update the socket async list
1064 *
1065 * Fasync_list locking strategy.
1066 *
1067 * 1. fasync_list is modified only under process context socket lock
1068 * i.e. under semaphore.
1069 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1070 * or under socket lock
1071 */
1072
1073 static int sock_fasync(int fd, struct file *filp, int on)
1074 {
1075 struct socket *sock = filp->private_data;
1076 struct sock *sk = sock->sk;
1077 struct socket_wq *wq;
1078
1079 if (sk == NULL)
1080 return -EINVAL;
1081
1082 lock_sock(sk);
1083 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1084 fasync_helper(fd, filp, on, &wq->fasync_list);
1085
1086 if (!wq->fasync_list)
1087 sock_reset_flag(sk, SOCK_FASYNC);
1088 else
1089 sock_set_flag(sk, SOCK_FASYNC);
1090
1091 release_sock(sk);
1092 return 0;
1093 }
1094
1095 /* This function may be called only under rcu_lock */
1096
1097 int sock_wake_async(struct socket_wq *wq, int how, int band)
1098 {
1099 if (!wq || !wq->fasync_list)
1100 return -1;
1101
1102 switch (how) {
1103 case SOCK_WAKE_WAITD:
1104 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1105 break;
1106 goto call_kill;
1107 case SOCK_WAKE_SPACE:
1108 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1109 break;
1110 /* fall through */
1111 case SOCK_WAKE_IO:
1112 call_kill:
1113 kill_fasync(&wq->fasync_list, SIGIO, band);
1114 break;
1115 case SOCK_WAKE_URG:
1116 kill_fasync(&wq->fasync_list, SIGURG, band);
1117 }
1118
1119 return 0;
1120 }
1121 EXPORT_SYMBOL(sock_wake_async);
1122
1123 int __sock_create(struct net *net, int family, int type, int protocol,
1124 struct socket **res, int kern)
1125 {
1126 int err;
1127 struct socket *sock;
1128 const struct net_proto_family *pf;
1129
1130 /*
1131 * Check protocol is in range
1132 */
1133 if (family < 0 || family >= NPROTO)
1134 return -EAFNOSUPPORT;
1135 if (type < 0 || type >= SOCK_MAX)
1136 return -EINVAL;
1137
1138 /* Compatibility.
1139
1140 This uglymoron is moved from INET layer to here to avoid
1141 deadlock in module load.
1142 */
1143 if (family == PF_INET && type == SOCK_PACKET) {
1144 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1145 current->comm);
1146 family = PF_PACKET;
1147 }
1148
1149 err = security_socket_create(family, type, protocol, kern);
1150 if (err)
1151 return err;
1152
1153 /*
1154 * Allocate the socket and allow the family to set things up. if
1155 * the protocol is 0, the family is instructed to select an appropriate
1156 * default.
1157 */
1158 sock = sock_alloc();
1159 if (!sock) {
1160 net_warn_ratelimited("socket: no more sockets\n");
1161 return -ENFILE; /* Not exactly a match, but its the
1162 closest posix thing */
1163 }
1164
1165 sock->type = type;
1166
1167 #ifdef CONFIG_MODULES
1168 /* Attempt to load a protocol module if the find failed.
1169 *
1170 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1171 * requested real, full-featured networking support upon configuration.
1172 * Otherwise module support will break!
1173 */
1174 if (rcu_access_pointer(net_families[family]) == NULL)
1175 request_module("net-pf-%d", family);
1176 #endif
1177
1178 rcu_read_lock();
1179 pf = rcu_dereference(net_families[family]);
1180 err = -EAFNOSUPPORT;
1181 if (!pf)
1182 goto out_release;
1183
1184 /*
1185 * We will call the ->create function, that possibly is in a loadable
1186 * module, so we have to bump that loadable module refcnt first.
1187 */
1188 if (!try_module_get(pf->owner))
1189 goto out_release;
1190
1191 /* Now protected by module ref count */
1192 rcu_read_unlock();
1193
1194 err = pf->create(net, sock, protocol, kern);
1195 if (err < 0)
1196 goto out_module_put;
1197
1198 /*
1199 * Now to bump the refcnt of the [loadable] module that owns this
1200 * socket at sock_release time we decrement its refcnt.
1201 */
1202 if (!try_module_get(sock->ops->owner))
1203 goto out_module_busy;
1204
1205 /*
1206 * Now that we're done with the ->create function, the [loadable]
1207 * module can have its refcnt decremented
1208 */
1209 module_put(pf->owner);
1210 err = security_socket_post_create(sock, family, type, protocol, kern);
1211 if (err)
1212 goto out_sock_release;
1213 *res = sock;
1214
1215 return 0;
1216
1217 out_module_busy:
1218 err = -EAFNOSUPPORT;
1219 out_module_put:
1220 sock->ops = NULL;
1221 module_put(pf->owner);
1222 out_sock_release:
1223 sock_release(sock);
1224 return err;
1225
1226 out_release:
1227 rcu_read_unlock();
1228 goto out_sock_release;
1229 }
1230 EXPORT_SYMBOL(__sock_create);
1231
1232 int sock_create(int family, int type, int protocol, struct socket **res)
1233 {
1234 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1235 }
1236 EXPORT_SYMBOL(sock_create);
1237
1238 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1239 {
1240 return __sock_create(net, family, type, protocol, res, 1);
1241 }
1242 EXPORT_SYMBOL(sock_create_kern);
1243
1244 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1245 {
1246 int retval;
1247 struct socket *sock;
1248 int flags;
1249
1250 /* Check the SOCK_* constants for consistency. */
1251 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1252 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1253 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1254 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1255
1256 flags = type & ~SOCK_TYPE_MASK;
1257 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1258 return -EINVAL;
1259 type &= SOCK_TYPE_MASK;
1260
1261 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1262 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1263
1264 retval = sock_create(family, type, protocol, &sock);
1265 if (retval < 0)
1266 goto out;
1267
1268 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1269 if (retval < 0)
1270 goto out_release;
1271
1272 out:
1273 /* It may be already another descriptor 8) Not kernel problem. */
1274 return retval;
1275
1276 out_release:
1277 sock_release(sock);
1278 return retval;
1279 }
1280
1281 /*
1282 * Create a pair of connected sockets.
1283 */
1284
1285 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1286 int __user *, usockvec)
1287 {
1288 struct socket *sock1, *sock2;
1289 int fd1, fd2, err;
1290 struct file *newfile1, *newfile2;
1291 int flags;
1292
1293 flags = type & ~SOCK_TYPE_MASK;
1294 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1295 return -EINVAL;
1296 type &= SOCK_TYPE_MASK;
1297
1298 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1299 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1300
1301 /*
1302 * Obtain the first socket and check if the underlying protocol
1303 * supports the socketpair call.
1304 */
1305
1306 err = sock_create(family, type, protocol, &sock1);
1307 if (err < 0)
1308 goto out;
1309
1310 err = sock_create(family, type, protocol, &sock2);
1311 if (err < 0)
1312 goto out_release_1;
1313
1314 err = sock1->ops->socketpair(sock1, sock2);
1315 if (err < 0)
1316 goto out_release_both;
1317
1318 fd1 = get_unused_fd_flags(flags);
1319 if (unlikely(fd1 < 0)) {
1320 err = fd1;
1321 goto out_release_both;
1322 }
1323
1324 fd2 = get_unused_fd_flags(flags);
1325 if (unlikely(fd2 < 0)) {
1326 err = fd2;
1327 goto out_put_unused_1;
1328 }
1329
1330 newfile1 = sock_alloc_file(sock1, flags, NULL);
1331 if (IS_ERR(newfile1)) {
1332 err = PTR_ERR(newfile1);
1333 goto out_put_unused_both;
1334 }
1335
1336 newfile2 = sock_alloc_file(sock2, flags, NULL);
1337 if (IS_ERR(newfile2)) {
1338 err = PTR_ERR(newfile2);
1339 goto out_fput_1;
1340 }
1341
1342 err = put_user(fd1, &usockvec[0]);
1343 if (err)
1344 goto out_fput_both;
1345
1346 err = put_user(fd2, &usockvec[1]);
1347 if (err)
1348 goto out_fput_both;
1349
1350 audit_fd_pair(fd1, fd2);
1351
1352 fd_install(fd1, newfile1);
1353 fd_install(fd2, newfile2);
1354 /* fd1 and fd2 may be already another descriptors.
1355 * Not kernel problem.
1356 */
1357
1358 return 0;
1359
1360 out_fput_both:
1361 fput(newfile2);
1362 fput(newfile1);
1363 put_unused_fd(fd2);
1364 put_unused_fd(fd1);
1365 goto out;
1366
1367 out_fput_1:
1368 fput(newfile1);
1369 put_unused_fd(fd2);
1370 put_unused_fd(fd1);
1371 sock_release(sock2);
1372 goto out;
1373
1374 out_put_unused_both:
1375 put_unused_fd(fd2);
1376 out_put_unused_1:
1377 put_unused_fd(fd1);
1378 out_release_both:
1379 sock_release(sock2);
1380 out_release_1:
1381 sock_release(sock1);
1382 out:
1383 return err;
1384 }
1385
1386 /*
1387 * Bind a name to a socket. Nothing much to do here since it's
1388 * the protocol's responsibility to handle the local address.
1389 *
1390 * We move the socket address to kernel space before we call
1391 * the protocol layer (having also checked the address is ok).
1392 */
1393
1394 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1395 {
1396 struct socket *sock;
1397 struct sockaddr_storage address;
1398 int err, fput_needed;
1399
1400 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1401 if (sock) {
1402 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1403 if (err >= 0) {
1404 err = security_socket_bind(sock,
1405 (struct sockaddr *)&address,
1406 addrlen);
1407 if (!err)
1408 err = sock->ops->bind(sock,
1409 (struct sockaddr *)
1410 &address, addrlen);
1411 }
1412 fput_light(sock->file, fput_needed);
1413 }
1414 return err;
1415 }
1416
1417 /*
1418 * Perform a listen. Basically, we allow the protocol to do anything
1419 * necessary for a listen, and if that works, we mark the socket as
1420 * ready for listening.
1421 */
1422
1423 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1424 {
1425 struct socket *sock;
1426 int err, fput_needed;
1427 int somaxconn;
1428
1429 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1430 if (sock) {
1431 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1432 if ((unsigned int)backlog > somaxconn)
1433 backlog = somaxconn;
1434
1435 err = security_socket_listen(sock, backlog);
1436 if (!err)
1437 err = sock->ops->listen(sock, backlog);
1438
1439 fput_light(sock->file, fput_needed);
1440 }
1441 return err;
1442 }
1443
1444 /*
1445 * For accept, we attempt to create a new socket, set up the link
1446 * with the client, wake up the client, then return the new
1447 * connected fd. We collect the address of the connector in kernel
1448 * space and move it to user at the very end. This is unclean because
1449 * we open the socket then return an error.
1450 *
1451 * 1003.1g adds the ability to recvmsg() to query connection pending
1452 * status to recvmsg. We need to add that support in a way thats
1453 * clean when we restucture accept also.
1454 */
1455
1456 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1457 int __user *, upeer_addrlen, int, flags)
1458 {
1459 struct socket *sock, *newsock;
1460 struct file *newfile;
1461 int err, len, newfd, fput_needed;
1462 struct sockaddr_storage address;
1463
1464 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1465 return -EINVAL;
1466
1467 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1468 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1469
1470 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1471 if (!sock)
1472 goto out;
1473
1474 err = -ENFILE;
1475 newsock = sock_alloc();
1476 if (!newsock)
1477 goto out_put;
1478
1479 newsock->type = sock->type;
1480 newsock->ops = sock->ops;
1481
1482 /*
1483 * We don't need try_module_get here, as the listening socket (sock)
1484 * has the protocol module (sock->ops->owner) held.
1485 */
1486 __module_get(newsock->ops->owner);
1487
1488 newfd = get_unused_fd_flags(flags);
1489 if (unlikely(newfd < 0)) {
1490 err = newfd;
1491 sock_release(newsock);
1492 goto out_put;
1493 }
1494 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1495 if (IS_ERR(newfile)) {
1496 err = PTR_ERR(newfile);
1497 put_unused_fd(newfd);
1498 sock_release(newsock);
1499 goto out_put;
1500 }
1501
1502 err = security_socket_accept(sock, newsock);
1503 if (err)
1504 goto out_fd;
1505
1506 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1507 if (err < 0)
1508 goto out_fd;
1509
1510 if (upeer_sockaddr) {
1511 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1512 &len, 2) < 0) {
1513 err = -ECONNABORTED;
1514 goto out_fd;
1515 }
1516 err = move_addr_to_user(&address,
1517 len, upeer_sockaddr, upeer_addrlen);
1518 if (err < 0)
1519 goto out_fd;
1520 }
1521
1522 /* File flags are not inherited via accept() unlike another OSes. */
1523
1524 fd_install(newfd, newfile);
1525 err = newfd;
1526
1527 out_put:
1528 fput_light(sock->file, fput_needed);
1529 out:
1530 return err;
1531 out_fd:
1532 fput(newfile);
1533 put_unused_fd(newfd);
1534 goto out_put;
1535 }
1536
1537 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1538 int __user *, upeer_addrlen)
1539 {
1540 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1541 }
1542
1543 /*
1544 * Attempt to connect to a socket with the server address. The address
1545 * is in user space so we verify it is OK and move it to kernel space.
1546 *
1547 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1548 * break bindings
1549 *
1550 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1551 * other SEQPACKET protocols that take time to connect() as it doesn't
1552 * include the -EINPROGRESS status for such sockets.
1553 */
1554
1555 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1556 int, addrlen)
1557 {
1558 struct socket *sock;
1559 struct sockaddr_storage address;
1560 int err, fput_needed;
1561
1562 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1563 if (!sock)
1564 goto out;
1565 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1566 if (err < 0)
1567 goto out_put;
1568
1569 err =
1570 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1571 if (err)
1572 goto out_put;
1573
1574 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1575 sock->file->f_flags);
1576 out_put:
1577 fput_light(sock->file, fput_needed);
1578 out:
1579 return err;
1580 }
1581
1582 /*
1583 * Get the local address ('name') of a socket object. Move the obtained
1584 * name to user space.
1585 */
1586
1587 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1588 int __user *, usockaddr_len)
1589 {
1590 struct socket *sock;
1591 struct sockaddr_storage address;
1592 int len, err, fput_needed;
1593
1594 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1595 if (!sock)
1596 goto out;
1597
1598 err = security_socket_getsockname(sock);
1599 if (err)
1600 goto out_put;
1601
1602 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1603 if (err)
1604 goto out_put;
1605 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1606
1607 out_put:
1608 fput_light(sock->file, fput_needed);
1609 out:
1610 return err;
1611 }
1612
1613 /*
1614 * Get the remote address ('name') of a socket object. Move the obtained
1615 * name to user space.
1616 */
1617
1618 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1619 int __user *, usockaddr_len)
1620 {
1621 struct socket *sock;
1622 struct sockaddr_storage address;
1623 int len, err, fput_needed;
1624
1625 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1626 if (sock != NULL) {
1627 err = security_socket_getpeername(sock);
1628 if (err) {
1629 fput_light(sock->file, fput_needed);
1630 return err;
1631 }
1632
1633 err =
1634 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1635 1);
1636 if (!err)
1637 err = move_addr_to_user(&address, len, usockaddr,
1638 usockaddr_len);
1639 fput_light(sock->file, fput_needed);
1640 }
1641 return err;
1642 }
1643
1644 /*
1645 * Send a datagram to a given address. We move the address into kernel
1646 * space and check the user space data area is readable before invoking
1647 * the protocol.
1648 */
1649
1650 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1651 unsigned int, flags, struct sockaddr __user *, addr,
1652 int, addr_len)
1653 {
1654 struct socket *sock;
1655 struct sockaddr_storage address;
1656 int err;
1657 struct msghdr msg;
1658 struct iovec iov;
1659 int fput_needed;
1660
1661 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1662 if (unlikely(err))
1663 return err;
1664 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1665 if (!sock)
1666 goto out;
1667
1668 msg.msg_name = NULL;
1669 msg.msg_control = NULL;
1670 msg.msg_controllen = 0;
1671 msg.msg_namelen = 0;
1672 if (addr) {
1673 err = move_addr_to_kernel(addr, addr_len, &address);
1674 if (err < 0)
1675 goto out_put;
1676 msg.msg_name = (struct sockaddr *)&address;
1677 msg.msg_namelen = addr_len;
1678 }
1679 if (sock->file->f_flags & O_NONBLOCK)
1680 flags |= MSG_DONTWAIT;
1681 msg.msg_flags = flags;
1682 err = sock_sendmsg(sock, &msg);
1683
1684 out_put:
1685 fput_light(sock->file, fput_needed);
1686 out:
1687 return err;
1688 }
1689
1690 /*
1691 * Send a datagram down a socket.
1692 */
1693
1694 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1695 unsigned int, flags)
1696 {
1697 return sys_sendto(fd, buff, len, flags, NULL, 0);
1698 }
1699
1700 /*
1701 * Receive a frame from the socket and optionally record the address of the
1702 * sender. We verify the buffers are writable and if needed move the
1703 * sender address from kernel to user space.
1704 */
1705
1706 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1707 unsigned int, flags, struct sockaddr __user *, addr,
1708 int __user *, addr_len)
1709 {
1710 struct socket *sock;
1711 struct iovec iov;
1712 struct msghdr msg;
1713 struct sockaddr_storage address;
1714 int err, err2;
1715 int fput_needed;
1716
1717 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1718 if (unlikely(err))
1719 return err;
1720 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1721 if (!sock)
1722 goto out;
1723
1724 msg.msg_control = NULL;
1725 msg.msg_controllen = 0;
1726 /* Save some cycles and don't copy the address if not needed */
1727 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1728 /* We assume all kernel code knows the size of sockaddr_storage */
1729 msg.msg_namelen = 0;
1730 msg.msg_iocb = NULL;
1731 if (sock->file->f_flags & O_NONBLOCK)
1732 flags |= MSG_DONTWAIT;
1733 err = sock_recvmsg(sock, &msg, flags);
1734
1735 if (err >= 0 && addr != NULL) {
1736 err2 = move_addr_to_user(&address,
1737 msg.msg_namelen, addr, addr_len);
1738 if (err2 < 0)
1739 err = err2;
1740 }
1741
1742 fput_light(sock->file, fput_needed);
1743 out:
1744 return err;
1745 }
1746
1747 /*
1748 * Receive a datagram from a socket.
1749 */
1750
1751 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1752 unsigned int, flags)
1753 {
1754 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1755 }
1756
1757 /*
1758 * Set a socket option. Because we don't know the option lengths we have
1759 * to pass the user mode parameter for the protocols to sort out.
1760 */
1761
1762 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1763 char __user *, optval, int, optlen)
1764 {
1765 int err, fput_needed;
1766 struct socket *sock;
1767
1768 if (optlen < 0)
1769 return -EINVAL;
1770
1771 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1772 if (sock != NULL) {
1773 err = security_socket_setsockopt(sock, level, optname);
1774 if (err)
1775 goto out_put;
1776
1777 if (level == SOL_SOCKET)
1778 err =
1779 sock_setsockopt(sock, level, optname, optval,
1780 optlen);
1781 else
1782 err =
1783 sock->ops->setsockopt(sock, level, optname, optval,
1784 optlen);
1785 out_put:
1786 fput_light(sock->file, fput_needed);
1787 }
1788 return err;
1789 }
1790
1791 /*
1792 * Get a socket option. Because we don't know the option lengths we have
1793 * to pass a user mode parameter for the protocols to sort out.
1794 */
1795
1796 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1797 char __user *, optval, int __user *, optlen)
1798 {
1799 int err, fput_needed;
1800 struct socket *sock;
1801
1802 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1803 if (sock != NULL) {
1804 err = security_socket_getsockopt(sock, level, optname);
1805 if (err)
1806 goto out_put;
1807
1808 if (level == SOL_SOCKET)
1809 err =
1810 sock_getsockopt(sock, level, optname, optval,
1811 optlen);
1812 else
1813 err =
1814 sock->ops->getsockopt(sock, level, optname, optval,
1815 optlen);
1816 out_put:
1817 fput_light(sock->file, fput_needed);
1818 }
1819 return err;
1820 }
1821
1822 /*
1823 * Shutdown a socket.
1824 */
1825
1826 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1827 {
1828 int err, fput_needed;
1829 struct socket *sock;
1830
1831 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1832 if (sock != NULL) {
1833 err = security_socket_shutdown(sock, how);
1834 if (!err)
1835 err = sock->ops->shutdown(sock, how);
1836 fput_light(sock->file, fput_needed);
1837 }
1838 return err;
1839 }
1840
1841 /* A couple of helpful macros for getting the address of the 32/64 bit
1842 * fields which are the same type (int / unsigned) on our platforms.
1843 */
1844 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1845 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1846 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1847
1848 struct used_address {
1849 struct sockaddr_storage name;
1850 unsigned int name_len;
1851 };
1852
1853 static int copy_msghdr_from_user(struct msghdr *kmsg,
1854 struct user_msghdr __user *umsg,
1855 struct sockaddr __user **save_addr,
1856 struct iovec **iov)
1857 {
1858 struct sockaddr __user *uaddr;
1859 struct iovec __user *uiov;
1860 size_t nr_segs;
1861 ssize_t err;
1862
1863 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1864 __get_user(uaddr, &umsg->msg_name) ||
1865 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1866 __get_user(uiov, &umsg->msg_iov) ||
1867 __get_user(nr_segs, &umsg->msg_iovlen) ||
1868 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1869 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1870 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1871 return -EFAULT;
1872
1873 if (!uaddr)
1874 kmsg->msg_namelen = 0;
1875
1876 if (kmsg->msg_namelen < 0)
1877 return -EINVAL;
1878
1879 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1880 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1881
1882 if (save_addr)
1883 *save_addr = uaddr;
1884
1885 if (uaddr && kmsg->msg_namelen) {
1886 if (!save_addr) {
1887 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1888 kmsg->msg_name);
1889 if (err < 0)
1890 return err;
1891 }
1892 } else {
1893 kmsg->msg_name = NULL;
1894 kmsg->msg_namelen = 0;
1895 }
1896
1897 if (nr_segs > UIO_MAXIOV)
1898 return -EMSGSIZE;
1899
1900 kmsg->msg_iocb = NULL;
1901
1902 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1903 UIO_FASTIOV, iov, &kmsg->msg_iter);
1904 }
1905
1906 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1907 struct msghdr *msg_sys, unsigned int flags,
1908 struct used_address *used_address,
1909 unsigned int allowed_msghdr_flags)
1910 {
1911 struct compat_msghdr __user *msg_compat =
1912 (struct compat_msghdr __user *)msg;
1913 struct sockaddr_storage address;
1914 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1915 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1916 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1917 /* 20 is size of ipv6_pktinfo */
1918 unsigned char *ctl_buf = ctl;
1919 int ctl_len;
1920 ssize_t err;
1921
1922 msg_sys->msg_name = &address;
1923
1924 if (MSG_CMSG_COMPAT & flags)
1925 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1926 else
1927 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1928 if (err < 0)
1929 return err;
1930
1931 err = -ENOBUFS;
1932
1933 if (msg_sys->msg_controllen > INT_MAX)
1934 goto out_freeiov;
1935 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1936 ctl_len = msg_sys->msg_controllen;
1937 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1938 err =
1939 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1940 sizeof(ctl));
1941 if (err)
1942 goto out_freeiov;
1943 ctl_buf = msg_sys->msg_control;
1944 ctl_len = msg_sys->msg_controllen;
1945 } else if (ctl_len) {
1946 if (ctl_len > sizeof(ctl)) {
1947 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1948 if (ctl_buf == NULL)
1949 goto out_freeiov;
1950 }
1951 err = -EFAULT;
1952 /*
1953 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1954 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1955 * checking falls down on this.
1956 */
1957 if (copy_from_user(ctl_buf,
1958 (void __user __force *)msg_sys->msg_control,
1959 ctl_len))
1960 goto out_freectl;
1961 msg_sys->msg_control = ctl_buf;
1962 }
1963 msg_sys->msg_flags = flags;
1964
1965 if (sock->file->f_flags & O_NONBLOCK)
1966 msg_sys->msg_flags |= MSG_DONTWAIT;
1967 /*
1968 * If this is sendmmsg() and current destination address is same as
1969 * previously succeeded address, omit asking LSM's decision.
1970 * used_address->name_len is initialized to UINT_MAX so that the first
1971 * destination address never matches.
1972 */
1973 if (used_address && msg_sys->msg_name &&
1974 used_address->name_len == msg_sys->msg_namelen &&
1975 !memcmp(&used_address->name, msg_sys->msg_name,
1976 used_address->name_len)) {
1977 err = sock_sendmsg_nosec(sock, msg_sys);
1978 goto out_freectl;
1979 }
1980 err = sock_sendmsg(sock, msg_sys);
1981 /*
1982 * If this is sendmmsg() and sending to current destination address was
1983 * successful, remember it.
1984 */
1985 if (used_address && err >= 0) {
1986 used_address->name_len = msg_sys->msg_namelen;
1987 if (msg_sys->msg_name)
1988 memcpy(&used_address->name, msg_sys->msg_name,
1989 used_address->name_len);
1990 }
1991
1992 out_freectl:
1993 if (ctl_buf != ctl)
1994 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1995 out_freeiov:
1996 kfree(iov);
1997 return err;
1998 }
1999
2000 /*
2001 * BSD sendmsg interface
2002 */
2003
2004 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2005 {
2006 int fput_needed, err;
2007 struct msghdr msg_sys;
2008 struct socket *sock;
2009
2010 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2011 if (!sock)
2012 goto out;
2013
2014 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2015
2016 fput_light(sock->file, fput_needed);
2017 out:
2018 return err;
2019 }
2020
2021 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2022 {
2023 if (flags & MSG_CMSG_COMPAT)
2024 return -EINVAL;
2025 return __sys_sendmsg(fd, msg, flags);
2026 }
2027
2028 /*
2029 * Linux sendmmsg interface
2030 */
2031
2032 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2033 unsigned int flags)
2034 {
2035 int fput_needed, err, datagrams;
2036 struct socket *sock;
2037 struct mmsghdr __user *entry;
2038 struct compat_mmsghdr __user *compat_entry;
2039 struct msghdr msg_sys;
2040 struct used_address used_address;
2041 unsigned int oflags = flags;
2042
2043 if (vlen > UIO_MAXIOV)
2044 vlen = UIO_MAXIOV;
2045
2046 datagrams = 0;
2047
2048 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2049 if (!sock)
2050 return err;
2051
2052 used_address.name_len = UINT_MAX;
2053 entry = mmsg;
2054 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2055 err = 0;
2056 flags |= MSG_BATCH;
2057
2058 while (datagrams < vlen) {
2059 if (datagrams == vlen - 1)
2060 flags = oflags;
2061
2062 if (MSG_CMSG_COMPAT & flags) {
2063 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2064 &msg_sys, flags, &used_address, MSG_EOR);
2065 if (err < 0)
2066 break;
2067 err = __put_user(err, &compat_entry->msg_len);
2068 ++compat_entry;
2069 } else {
2070 err = ___sys_sendmsg(sock,
2071 (struct user_msghdr __user *)entry,
2072 &msg_sys, flags, &used_address, MSG_EOR);
2073 if (err < 0)
2074 break;
2075 err = put_user(err, &entry->msg_len);
2076 ++entry;
2077 }
2078
2079 if (err)
2080 break;
2081 ++datagrams;
2082 if (msg_data_left(&msg_sys))
2083 break;
2084 cond_resched();
2085 }
2086
2087 fput_light(sock->file, fput_needed);
2088
2089 /* We only return an error if no datagrams were able to be sent */
2090 if (datagrams != 0)
2091 return datagrams;
2092
2093 return err;
2094 }
2095
2096 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2097 unsigned int, vlen, unsigned int, flags)
2098 {
2099 if (flags & MSG_CMSG_COMPAT)
2100 return -EINVAL;
2101 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2102 }
2103
2104 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2105 struct msghdr *msg_sys, unsigned int flags, int nosec)
2106 {
2107 struct compat_msghdr __user *msg_compat =
2108 (struct compat_msghdr __user *)msg;
2109 struct iovec iovstack[UIO_FASTIOV];
2110 struct iovec *iov = iovstack;
2111 unsigned long cmsg_ptr;
2112 int len;
2113 ssize_t err;
2114
2115 /* kernel mode address */
2116 struct sockaddr_storage addr;
2117
2118 /* user mode address pointers */
2119 struct sockaddr __user *uaddr;
2120 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2121
2122 msg_sys->msg_name = &addr;
2123
2124 if (MSG_CMSG_COMPAT & flags)
2125 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2126 else
2127 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2128 if (err < 0)
2129 return err;
2130
2131 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2132 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2133
2134 /* We assume all kernel code knows the size of sockaddr_storage */
2135 msg_sys->msg_namelen = 0;
2136
2137 if (sock->file->f_flags & O_NONBLOCK)
2138 flags |= MSG_DONTWAIT;
2139 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2140 if (err < 0)
2141 goto out_freeiov;
2142 len = err;
2143
2144 if (uaddr != NULL) {
2145 err = move_addr_to_user(&addr,
2146 msg_sys->msg_namelen, uaddr,
2147 uaddr_len);
2148 if (err < 0)
2149 goto out_freeiov;
2150 }
2151 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2152 COMPAT_FLAGS(msg));
2153 if (err)
2154 goto out_freeiov;
2155 if (MSG_CMSG_COMPAT & flags)
2156 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2157 &msg_compat->msg_controllen);
2158 else
2159 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2160 &msg->msg_controllen);
2161 if (err)
2162 goto out_freeiov;
2163 err = len;
2164
2165 out_freeiov:
2166 kfree(iov);
2167 return err;
2168 }
2169
2170 /*
2171 * BSD recvmsg interface
2172 */
2173
2174 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2175 {
2176 int fput_needed, err;
2177 struct msghdr msg_sys;
2178 struct socket *sock;
2179
2180 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2181 if (!sock)
2182 goto out;
2183
2184 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2185
2186 fput_light(sock->file, fput_needed);
2187 out:
2188 return err;
2189 }
2190
2191 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2192 unsigned int, flags)
2193 {
2194 if (flags & MSG_CMSG_COMPAT)
2195 return -EINVAL;
2196 return __sys_recvmsg(fd, msg, flags);
2197 }
2198
2199 /*
2200 * Linux recvmmsg interface
2201 */
2202
2203 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2204 unsigned int flags, struct timespec *timeout)
2205 {
2206 int fput_needed, err, datagrams;
2207 struct socket *sock;
2208 struct mmsghdr __user *entry;
2209 struct compat_mmsghdr __user *compat_entry;
2210 struct msghdr msg_sys;
2211 struct timespec64 end_time;
2212 struct timespec64 timeout64;
2213
2214 if (timeout &&
2215 poll_select_set_timeout(&end_time, timeout->tv_sec,
2216 timeout->tv_nsec))
2217 return -EINVAL;
2218
2219 datagrams = 0;
2220
2221 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2222 if (!sock)
2223 return err;
2224
2225 err = sock_error(sock->sk);
2226 if (err)
2227 goto out_put;
2228
2229 entry = mmsg;
2230 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2231
2232 while (datagrams < vlen) {
2233 /*
2234 * No need to ask LSM for more than the first datagram.
2235 */
2236 if (MSG_CMSG_COMPAT & flags) {
2237 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2238 &msg_sys, flags & ~MSG_WAITFORONE,
2239 datagrams);
2240 if (err < 0)
2241 break;
2242 err = __put_user(err, &compat_entry->msg_len);
2243 ++compat_entry;
2244 } else {
2245 err = ___sys_recvmsg(sock,
2246 (struct user_msghdr __user *)entry,
2247 &msg_sys, flags & ~MSG_WAITFORONE,
2248 datagrams);
2249 if (err < 0)
2250 break;
2251 err = put_user(err, &entry->msg_len);
2252 ++entry;
2253 }
2254
2255 if (err)
2256 break;
2257 ++datagrams;
2258
2259 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2260 if (flags & MSG_WAITFORONE)
2261 flags |= MSG_DONTWAIT;
2262
2263 if (timeout) {
2264 ktime_get_ts64(&timeout64);
2265 *timeout = timespec64_to_timespec(
2266 timespec64_sub(end_time, timeout64));
2267 if (timeout->tv_sec < 0) {
2268 timeout->tv_sec = timeout->tv_nsec = 0;
2269 break;
2270 }
2271
2272 /* Timeout, return less than vlen datagrams */
2273 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2274 break;
2275 }
2276
2277 /* Out of band data, return right away */
2278 if (msg_sys.msg_flags & MSG_OOB)
2279 break;
2280 cond_resched();
2281 }
2282
2283 if (err == 0)
2284 goto out_put;
2285
2286 if (datagrams == 0) {
2287 datagrams = err;
2288 goto out_put;
2289 }
2290
2291 /*
2292 * We may return less entries than requested (vlen) if the
2293 * sock is non block and there aren't enough datagrams...
2294 */
2295 if (err != -EAGAIN) {
2296 /*
2297 * ... or if recvmsg returns an error after we
2298 * received some datagrams, where we record the
2299 * error to return on the next call or if the
2300 * app asks about it using getsockopt(SO_ERROR).
2301 */
2302 sock->sk->sk_err = -err;
2303 }
2304 out_put:
2305 fput_light(sock->file, fput_needed);
2306
2307 return datagrams;
2308 }
2309
2310 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2311 unsigned int, vlen, unsigned int, flags,
2312 struct timespec __user *, timeout)
2313 {
2314 int datagrams;
2315 struct timespec timeout_sys;
2316
2317 if (flags & MSG_CMSG_COMPAT)
2318 return -EINVAL;
2319
2320 if (!timeout)
2321 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2322
2323 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2324 return -EFAULT;
2325
2326 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2327
2328 if (datagrams > 0 &&
2329 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2330 datagrams = -EFAULT;
2331
2332 return datagrams;
2333 }
2334
2335 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2336 /* Argument list sizes for sys_socketcall */
2337 #define AL(x) ((x) * sizeof(unsigned long))
2338 static const unsigned char nargs[21] = {
2339 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2340 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2341 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2342 AL(4), AL(5), AL(4)
2343 };
2344
2345 #undef AL
2346
2347 /*
2348 * System call vectors.
2349 *
2350 * Argument checking cleaned up. Saved 20% in size.
2351 * This function doesn't need to set the kernel lock because
2352 * it is set by the callees.
2353 */
2354
2355 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2356 {
2357 unsigned long a[AUDITSC_ARGS];
2358 unsigned long a0, a1;
2359 int err;
2360 unsigned int len;
2361
2362 if (call < 1 || call > SYS_SENDMMSG)
2363 return -EINVAL;
2364
2365 len = nargs[call];
2366 if (len > sizeof(a))
2367 return -EINVAL;
2368
2369 /* copy_from_user should be SMP safe. */
2370 if (copy_from_user(a, args, len))
2371 return -EFAULT;
2372
2373 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2374 if (err)
2375 return err;
2376
2377 a0 = a[0];
2378 a1 = a[1];
2379
2380 switch (call) {
2381 case SYS_SOCKET:
2382 err = sys_socket(a0, a1, a[2]);
2383 break;
2384 case SYS_BIND:
2385 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2386 break;
2387 case SYS_CONNECT:
2388 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2389 break;
2390 case SYS_LISTEN:
2391 err = sys_listen(a0, a1);
2392 break;
2393 case SYS_ACCEPT:
2394 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2395 (int __user *)a[2], 0);
2396 break;
2397 case SYS_GETSOCKNAME:
2398 err =
2399 sys_getsockname(a0, (struct sockaddr __user *)a1,
2400 (int __user *)a[2]);
2401 break;
2402 case SYS_GETPEERNAME:
2403 err =
2404 sys_getpeername(a0, (struct sockaddr __user *)a1,
2405 (int __user *)a[2]);
2406 break;
2407 case SYS_SOCKETPAIR:
2408 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2409 break;
2410 case SYS_SEND:
2411 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2412 break;
2413 case SYS_SENDTO:
2414 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2415 (struct sockaddr __user *)a[4], a[5]);
2416 break;
2417 case SYS_RECV:
2418 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2419 break;
2420 case SYS_RECVFROM:
2421 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2422 (struct sockaddr __user *)a[4],
2423 (int __user *)a[5]);
2424 break;
2425 case SYS_SHUTDOWN:
2426 err = sys_shutdown(a0, a1);
2427 break;
2428 case SYS_SETSOCKOPT:
2429 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2430 break;
2431 case SYS_GETSOCKOPT:
2432 err =
2433 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2434 (int __user *)a[4]);
2435 break;
2436 case SYS_SENDMSG:
2437 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2438 break;
2439 case SYS_SENDMMSG:
2440 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2441 break;
2442 case SYS_RECVMSG:
2443 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2444 break;
2445 case SYS_RECVMMSG:
2446 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2447 (struct timespec __user *)a[4]);
2448 break;
2449 case SYS_ACCEPT4:
2450 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2451 (int __user *)a[2], a[3]);
2452 break;
2453 default:
2454 err = -EINVAL;
2455 break;
2456 }
2457 return err;
2458 }
2459
2460 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2461
2462 /**
2463 * sock_register - add a socket protocol handler
2464 * @ops: description of protocol
2465 *
2466 * This function is called by a protocol handler that wants to
2467 * advertise its address family, and have it linked into the
2468 * socket interface. The value ops->family corresponds to the
2469 * socket system call protocol family.
2470 */
2471 int sock_register(const struct net_proto_family *ops)
2472 {
2473 int err;
2474
2475 if (ops->family >= NPROTO) {
2476 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2477 return -ENOBUFS;
2478 }
2479
2480 spin_lock(&net_family_lock);
2481 if (rcu_dereference_protected(net_families[ops->family],
2482 lockdep_is_held(&net_family_lock)))
2483 err = -EEXIST;
2484 else {
2485 rcu_assign_pointer(net_families[ops->family], ops);
2486 err = 0;
2487 }
2488 spin_unlock(&net_family_lock);
2489
2490 pr_info("NET: Registered protocol family %d\n", ops->family);
2491 return err;
2492 }
2493 EXPORT_SYMBOL(sock_register);
2494
2495 /**
2496 * sock_unregister - remove a protocol handler
2497 * @family: protocol family to remove
2498 *
2499 * This function is called by a protocol handler that wants to
2500 * remove its address family, and have it unlinked from the
2501 * new socket creation.
2502 *
2503 * If protocol handler is a module, then it can use module reference
2504 * counts to protect against new references. If protocol handler is not
2505 * a module then it needs to provide its own protection in
2506 * the ops->create routine.
2507 */
2508 void sock_unregister(int family)
2509 {
2510 BUG_ON(family < 0 || family >= NPROTO);
2511
2512 spin_lock(&net_family_lock);
2513 RCU_INIT_POINTER(net_families[family], NULL);
2514 spin_unlock(&net_family_lock);
2515
2516 synchronize_rcu();
2517
2518 pr_info("NET: Unregistered protocol family %d\n", family);
2519 }
2520 EXPORT_SYMBOL(sock_unregister);
2521
2522 static int __init sock_init(void)
2523 {
2524 int err;
2525 /*
2526 * Initialize the network sysctl infrastructure.
2527 */
2528 err = net_sysctl_init();
2529 if (err)
2530 goto out;
2531
2532 /*
2533 * Initialize skbuff SLAB cache
2534 */
2535 skb_init();
2536
2537 /*
2538 * Initialize the protocols module.
2539 */
2540
2541 init_inodecache();
2542
2543 err = register_filesystem(&sock_fs_type);
2544 if (err)
2545 goto out_fs;
2546 sock_mnt = kern_mount(&sock_fs_type);
2547 if (IS_ERR(sock_mnt)) {
2548 err = PTR_ERR(sock_mnt);
2549 goto out_mount;
2550 }
2551
2552 /* The real protocol initialization is performed in later initcalls.
2553 */
2554
2555 #ifdef CONFIG_NETFILTER
2556 err = netfilter_init();
2557 if (err)
2558 goto out;
2559 #endif
2560
2561 ptp_classifier_init();
2562
2563 out:
2564 return err;
2565
2566 out_mount:
2567 unregister_filesystem(&sock_fs_type);
2568 out_fs:
2569 goto out;
2570 }
2571
2572 core_initcall(sock_init); /* early initcall */
2573
2574 #ifdef CONFIG_PROC_FS
2575 void socket_seq_show(struct seq_file *seq)
2576 {
2577 int cpu;
2578 int counter = 0;
2579
2580 for_each_possible_cpu(cpu)
2581 counter += per_cpu(sockets_in_use, cpu);
2582
2583 /* It can be negative, by the way. 8) */
2584 if (counter < 0)
2585 counter = 0;
2586
2587 seq_printf(seq, "sockets: used %d\n", counter);
2588 }
2589 #endif /* CONFIG_PROC_FS */
2590
2591 #ifdef CONFIG_COMPAT
2592 static int do_siocgstamp(struct net *net, struct socket *sock,
2593 unsigned int cmd, void __user *up)
2594 {
2595 mm_segment_t old_fs = get_fs();
2596 struct timeval ktv;
2597 int err;
2598
2599 set_fs(KERNEL_DS);
2600 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2601 set_fs(old_fs);
2602 if (!err)
2603 err = compat_put_timeval(&ktv, up);
2604
2605 return err;
2606 }
2607
2608 static int do_siocgstampns(struct net *net, struct socket *sock,
2609 unsigned int cmd, void __user *up)
2610 {
2611 mm_segment_t old_fs = get_fs();
2612 struct timespec kts;
2613 int err;
2614
2615 set_fs(KERNEL_DS);
2616 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2617 set_fs(old_fs);
2618 if (!err)
2619 err = compat_put_timespec(&kts, up);
2620
2621 return err;
2622 }
2623
2624 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2625 {
2626 struct ifreq __user *uifr;
2627 int err;
2628
2629 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2630 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2631 return -EFAULT;
2632
2633 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2634 if (err)
2635 return err;
2636
2637 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2638 return -EFAULT;
2639
2640 return 0;
2641 }
2642
2643 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2644 {
2645 struct compat_ifconf ifc32;
2646 struct ifconf ifc;
2647 struct ifconf __user *uifc;
2648 struct compat_ifreq __user *ifr32;
2649 struct ifreq __user *ifr;
2650 unsigned int i, j;
2651 int err;
2652
2653 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2654 return -EFAULT;
2655
2656 memset(&ifc, 0, sizeof(ifc));
2657 if (ifc32.ifcbuf == 0) {
2658 ifc32.ifc_len = 0;
2659 ifc.ifc_len = 0;
2660 ifc.ifc_req = NULL;
2661 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2662 } else {
2663 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2664 sizeof(struct ifreq);
2665 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2666 ifc.ifc_len = len;
2667 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2668 ifr32 = compat_ptr(ifc32.ifcbuf);
2669 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2670 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2671 return -EFAULT;
2672 ifr++;
2673 ifr32++;
2674 }
2675 }
2676 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2677 return -EFAULT;
2678
2679 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2680 if (err)
2681 return err;
2682
2683 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2684 return -EFAULT;
2685
2686 ifr = ifc.ifc_req;
2687 ifr32 = compat_ptr(ifc32.ifcbuf);
2688 for (i = 0, j = 0;
2689 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2690 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2691 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2692 return -EFAULT;
2693 ifr32++;
2694 ifr++;
2695 }
2696
2697 if (ifc32.ifcbuf == 0) {
2698 /* Translate from 64-bit structure multiple to
2699 * a 32-bit one.
2700 */
2701 i = ifc.ifc_len;
2702 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2703 ifc32.ifc_len = i;
2704 } else {
2705 ifc32.ifc_len = i;
2706 }
2707 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2708 return -EFAULT;
2709
2710 return 0;
2711 }
2712
2713 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2714 {
2715 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2716 bool convert_in = false, convert_out = false;
2717 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2718 struct ethtool_rxnfc __user *rxnfc;
2719 struct ifreq __user *ifr;
2720 u32 rule_cnt = 0, actual_rule_cnt;
2721 u32 ethcmd;
2722 u32 data;
2723 int ret;
2724
2725 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2726 return -EFAULT;
2727
2728 compat_rxnfc = compat_ptr(data);
2729
2730 if (get_user(ethcmd, &compat_rxnfc->cmd))
2731 return -EFAULT;
2732
2733 /* Most ethtool structures are defined without padding.
2734 * Unfortunately struct ethtool_rxnfc is an exception.
2735 */
2736 switch (ethcmd) {
2737 default:
2738 break;
2739 case ETHTOOL_GRXCLSRLALL:
2740 /* Buffer size is variable */
2741 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2742 return -EFAULT;
2743 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2744 return -ENOMEM;
2745 buf_size += rule_cnt * sizeof(u32);
2746 /* fall through */
2747 case ETHTOOL_GRXRINGS:
2748 case ETHTOOL_GRXCLSRLCNT:
2749 case ETHTOOL_GRXCLSRULE:
2750 case ETHTOOL_SRXCLSRLINS:
2751 convert_out = true;
2752 /* fall through */
2753 case ETHTOOL_SRXCLSRLDEL:
2754 buf_size += sizeof(struct ethtool_rxnfc);
2755 convert_in = true;
2756 break;
2757 }
2758
2759 ifr = compat_alloc_user_space(buf_size);
2760 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2761
2762 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2763 return -EFAULT;
2764
2765 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2766 &ifr->ifr_ifru.ifru_data))
2767 return -EFAULT;
2768
2769 if (convert_in) {
2770 /* We expect there to be holes between fs.m_ext and
2771 * fs.ring_cookie and at the end of fs, but nowhere else.
2772 */
2773 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2774 sizeof(compat_rxnfc->fs.m_ext) !=
2775 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2776 sizeof(rxnfc->fs.m_ext));
2777 BUILD_BUG_ON(
2778 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2779 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2780 offsetof(struct ethtool_rxnfc, fs.location) -
2781 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2782
2783 if (copy_in_user(rxnfc, compat_rxnfc,
2784 (void __user *)(&rxnfc->fs.m_ext + 1) -
2785 (void __user *)rxnfc) ||
2786 copy_in_user(&rxnfc->fs.ring_cookie,
2787 &compat_rxnfc->fs.ring_cookie,
2788 (void __user *)(&rxnfc->fs.location + 1) -
2789 (void __user *)&rxnfc->fs.ring_cookie) ||
2790 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2791 sizeof(rxnfc->rule_cnt)))
2792 return -EFAULT;
2793 }
2794
2795 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2796 if (ret)
2797 return ret;
2798
2799 if (convert_out) {
2800 if (copy_in_user(compat_rxnfc, rxnfc,
2801 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2802 (const void __user *)rxnfc) ||
2803 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2804 &rxnfc->fs.ring_cookie,
2805 (const void __user *)(&rxnfc->fs.location + 1) -
2806 (const void __user *)&rxnfc->fs.ring_cookie) ||
2807 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2808 sizeof(rxnfc->rule_cnt)))
2809 return -EFAULT;
2810
2811 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2812 /* As an optimisation, we only copy the actual
2813 * number of rules that the underlying
2814 * function returned. Since Mallory might
2815 * change the rule count in user memory, we
2816 * check that it is less than the rule count
2817 * originally given (as the user buffer size),
2818 * which has been range-checked.
2819 */
2820 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2821 return -EFAULT;
2822 if (actual_rule_cnt < rule_cnt)
2823 rule_cnt = actual_rule_cnt;
2824 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2825 &rxnfc->rule_locs[0],
2826 rule_cnt * sizeof(u32)))
2827 return -EFAULT;
2828 }
2829 }
2830
2831 return 0;
2832 }
2833
2834 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2835 {
2836 void __user *uptr;
2837 compat_uptr_t uptr32;
2838 struct ifreq __user *uifr;
2839
2840 uifr = compat_alloc_user_space(sizeof(*uifr));
2841 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2842 return -EFAULT;
2843
2844 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2845 return -EFAULT;
2846
2847 uptr = compat_ptr(uptr32);
2848
2849 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2850 return -EFAULT;
2851
2852 return dev_ioctl(net, SIOCWANDEV, uifr);
2853 }
2854
2855 static int bond_ioctl(struct net *net, unsigned int cmd,
2856 struct compat_ifreq __user *ifr32)
2857 {
2858 struct ifreq kifr;
2859 mm_segment_t old_fs;
2860 int err;
2861
2862 switch (cmd) {
2863 case SIOCBONDENSLAVE:
2864 case SIOCBONDRELEASE:
2865 case SIOCBONDSETHWADDR:
2866 case SIOCBONDCHANGEACTIVE:
2867 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2868 return -EFAULT;
2869
2870 old_fs = get_fs();
2871 set_fs(KERNEL_DS);
2872 err = dev_ioctl(net, cmd,
2873 (struct ifreq __user __force *) &kifr);
2874 set_fs(old_fs);
2875
2876 return err;
2877 default:
2878 return -ENOIOCTLCMD;
2879 }
2880 }
2881
2882 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2883 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2884 struct compat_ifreq __user *u_ifreq32)
2885 {
2886 struct ifreq __user *u_ifreq64;
2887 char tmp_buf[IFNAMSIZ];
2888 void __user *data64;
2889 u32 data32;
2890
2891 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2892 IFNAMSIZ))
2893 return -EFAULT;
2894 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2895 return -EFAULT;
2896 data64 = compat_ptr(data32);
2897
2898 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2899
2900 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2901 IFNAMSIZ))
2902 return -EFAULT;
2903 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2904 return -EFAULT;
2905
2906 return dev_ioctl(net, cmd, u_ifreq64);
2907 }
2908
2909 static int dev_ifsioc(struct net *net, struct socket *sock,
2910 unsigned int cmd, struct compat_ifreq __user *uifr32)
2911 {
2912 struct ifreq __user *uifr;
2913 int err;
2914
2915 uifr = compat_alloc_user_space(sizeof(*uifr));
2916 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2917 return -EFAULT;
2918
2919 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2920
2921 if (!err) {
2922 switch (cmd) {
2923 case SIOCGIFFLAGS:
2924 case SIOCGIFMETRIC:
2925 case SIOCGIFMTU:
2926 case SIOCGIFMEM:
2927 case SIOCGIFHWADDR:
2928 case SIOCGIFINDEX:
2929 case SIOCGIFADDR:
2930 case SIOCGIFBRDADDR:
2931 case SIOCGIFDSTADDR:
2932 case SIOCGIFNETMASK:
2933 case SIOCGIFPFLAGS:
2934 case SIOCGIFTXQLEN:
2935 case SIOCGMIIPHY:
2936 case SIOCGMIIREG:
2937 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2938 err = -EFAULT;
2939 break;
2940 }
2941 }
2942 return err;
2943 }
2944
2945 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2946 struct compat_ifreq __user *uifr32)
2947 {
2948 struct ifreq ifr;
2949 struct compat_ifmap __user *uifmap32;
2950 mm_segment_t old_fs;
2951 int err;
2952
2953 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2954 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2955 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2956 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2957 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2958 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2959 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2960 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2961 if (err)
2962 return -EFAULT;
2963
2964 old_fs = get_fs();
2965 set_fs(KERNEL_DS);
2966 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2967 set_fs(old_fs);
2968
2969 if (cmd == SIOCGIFMAP && !err) {
2970 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2971 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2972 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2973 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2974 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2975 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2976 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2977 if (err)
2978 err = -EFAULT;
2979 }
2980 return err;
2981 }
2982
2983 struct rtentry32 {
2984 u32 rt_pad1;
2985 struct sockaddr rt_dst; /* target address */
2986 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2987 struct sockaddr rt_genmask; /* target network mask (IP) */
2988 unsigned short rt_flags;
2989 short rt_pad2;
2990 u32 rt_pad3;
2991 unsigned char rt_tos;
2992 unsigned char rt_class;
2993 short rt_pad4;
2994 short rt_metric; /* +1 for binary compatibility! */
2995 /* char * */ u32 rt_dev; /* forcing the device at add */
2996 u32 rt_mtu; /* per route MTU/Window */
2997 u32 rt_window; /* Window clamping */
2998 unsigned short rt_irtt; /* Initial RTT */
2999 };
3000
3001 struct in6_rtmsg32 {
3002 struct in6_addr rtmsg_dst;
3003 struct in6_addr rtmsg_src;
3004 struct in6_addr rtmsg_gateway;
3005 u32 rtmsg_type;
3006 u16 rtmsg_dst_len;
3007 u16 rtmsg_src_len;
3008 u32 rtmsg_metric;
3009 u32 rtmsg_info;
3010 u32 rtmsg_flags;
3011 s32 rtmsg_ifindex;
3012 };
3013
3014 static int routing_ioctl(struct net *net, struct socket *sock,
3015 unsigned int cmd, void __user *argp)
3016 {
3017 int ret;
3018 void *r = NULL;
3019 struct in6_rtmsg r6;
3020 struct rtentry r4;
3021 char devname[16];
3022 u32 rtdev;
3023 mm_segment_t old_fs = get_fs();
3024
3025 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3026 struct in6_rtmsg32 __user *ur6 = argp;
3027 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3028 3 * sizeof(struct in6_addr));
3029 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3030 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3031 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3032 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3033 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3034 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3035 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3036
3037 r = (void *) &r6;
3038 } else { /* ipv4 */
3039 struct rtentry32 __user *ur4 = argp;
3040 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3041 3 * sizeof(struct sockaddr));
3042 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3043 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3044 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3045 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3046 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3047 ret |= get_user(rtdev, &(ur4->rt_dev));
3048 if (rtdev) {
3049 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3050 r4.rt_dev = (char __user __force *)devname;
3051 devname[15] = 0;
3052 } else
3053 r4.rt_dev = NULL;
3054
3055 r = (void *) &r4;
3056 }
3057
3058 if (ret) {
3059 ret = -EFAULT;
3060 goto out;
3061 }
3062
3063 set_fs(KERNEL_DS);
3064 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3065 set_fs(old_fs);
3066
3067 out:
3068 return ret;
3069 }
3070
3071 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3072 * for some operations; this forces use of the newer bridge-utils that
3073 * use compatible ioctls
3074 */
3075 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3076 {
3077 compat_ulong_t tmp;
3078
3079 if (get_user(tmp, argp))
3080 return -EFAULT;
3081 if (tmp == BRCTL_GET_VERSION)
3082 return BRCTL_VERSION + 1;
3083 return -EINVAL;
3084 }
3085
3086 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3087 unsigned int cmd, unsigned long arg)
3088 {
3089 void __user *argp = compat_ptr(arg);
3090 struct sock *sk = sock->sk;
3091 struct net *net = sock_net(sk);
3092
3093 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3094 return compat_ifr_data_ioctl(net, cmd, argp);
3095
3096 switch (cmd) {
3097 case SIOCSIFBR:
3098 case SIOCGIFBR:
3099 return old_bridge_ioctl(argp);
3100 case SIOCGIFNAME:
3101 return dev_ifname32(net, argp);
3102 case SIOCGIFCONF:
3103 return dev_ifconf(net, argp);
3104 case SIOCETHTOOL:
3105 return ethtool_ioctl(net, argp);
3106 case SIOCWANDEV:
3107 return compat_siocwandev(net, argp);
3108 case SIOCGIFMAP:
3109 case SIOCSIFMAP:
3110 return compat_sioc_ifmap(net, cmd, argp);
3111 case SIOCBONDENSLAVE:
3112 case SIOCBONDRELEASE:
3113 case SIOCBONDSETHWADDR:
3114 case SIOCBONDCHANGEACTIVE:
3115 return bond_ioctl(net, cmd, argp);
3116 case SIOCADDRT:
3117 case SIOCDELRT:
3118 return routing_ioctl(net, sock, cmd, argp);
3119 case SIOCGSTAMP:
3120 return do_siocgstamp(net, sock, cmd, argp);
3121 case SIOCGSTAMPNS:
3122 return do_siocgstampns(net, sock, cmd, argp);
3123 case SIOCBONDSLAVEINFOQUERY:
3124 case SIOCBONDINFOQUERY:
3125 case SIOCSHWTSTAMP:
3126 case SIOCGHWTSTAMP:
3127 return compat_ifr_data_ioctl(net, cmd, argp);
3128
3129 case FIOSETOWN:
3130 case SIOCSPGRP:
3131 case FIOGETOWN:
3132 case SIOCGPGRP:
3133 case SIOCBRADDBR:
3134 case SIOCBRDELBR:
3135 case SIOCGIFVLAN:
3136 case SIOCSIFVLAN:
3137 case SIOCADDDLCI:
3138 case SIOCDELDLCI:
3139 case SIOCGSKNS:
3140 return sock_ioctl(file, cmd, arg);
3141
3142 case SIOCGIFFLAGS:
3143 case SIOCSIFFLAGS:
3144 case SIOCGIFMETRIC:
3145 case SIOCSIFMETRIC:
3146 case SIOCGIFMTU:
3147 case SIOCSIFMTU:
3148 case SIOCGIFMEM:
3149 case SIOCSIFMEM:
3150 case SIOCGIFHWADDR:
3151 case SIOCSIFHWADDR:
3152 case SIOCADDMULTI:
3153 case SIOCDELMULTI:
3154 case SIOCGIFINDEX:
3155 case SIOCGIFADDR:
3156 case SIOCSIFADDR:
3157 case SIOCSIFHWBROADCAST:
3158 case SIOCDIFADDR:
3159 case SIOCGIFBRDADDR:
3160 case SIOCSIFBRDADDR:
3161 case SIOCGIFDSTADDR:
3162 case SIOCSIFDSTADDR:
3163 case SIOCGIFNETMASK:
3164 case SIOCSIFNETMASK:
3165 case SIOCSIFPFLAGS:
3166 case SIOCGIFPFLAGS:
3167 case SIOCGIFTXQLEN:
3168 case SIOCSIFTXQLEN:
3169 case SIOCBRADDIF:
3170 case SIOCBRDELIF:
3171 case SIOCSIFNAME:
3172 case SIOCGMIIPHY:
3173 case SIOCGMIIREG:
3174 case SIOCSMIIREG:
3175 return dev_ifsioc(net, sock, cmd, argp);
3176
3177 case SIOCSARP:
3178 case SIOCGARP:
3179 case SIOCDARP:
3180 case SIOCATMARK:
3181 return sock_do_ioctl(net, sock, cmd, arg);
3182 }
3183
3184 return -ENOIOCTLCMD;
3185 }
3186
3187 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3188 unsigned long arg)
3189 {
3190 struct socket *sock = file->private_data;
3191 int ret = -ENOIOCTLCMD;
3192 struct sock *sk;
3193 struct net *net;
3194
3195 sk = sock->sk;
3196 net = sock_net(sk);
3197
3198 if (sock->ops->compat_ioctl)
3199 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3200
3201 if (ret == -ENOIOCTLCMD &&
3202 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3203 ret = compat_wext_handle_ioctl(net, cmd, arg);
3204
3205 if (ret == -ENOIOCTLCMD)
3206 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3207
3208 return ret;
3209 }
3210 #endif
3211
3212 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3213 {
3214 return sock->ops->bind(sock, addr, addrlen);
3215 }
3216 EXPORT_SYMBOL(kernel_bind);
3217
3218 int kernel_listen(struct socket *sock, int backlog)
3219 {
3220 return sock->ops->listen(sock, backlog);
3221 }
3222 EXPORT_SYMBOL(kernel_listen);
3223
3224 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3225 {
3226 struct sock *sk = sock->sk;
3227 int err;
3228
3229 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3230 newsock);
3231 if (err < 0)
3232 goto done;
3233
3234 err = sock->ops->accept(sock, *newsock, flags);
3235 if (err < 0) {
3236 sock_release(*newsock);
3237 *newsock = NULL;
3238 goto done;
3239 }
3240
3241 (*newsock)->ops = sock->ops;
3242 __module_get((*newsock)->ops->owner);
3243
3244 done:
3245 return err;
3246 }
3247 EXPORT_SYMBOL(kernel_accept);
3248
3249 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3250 int flags)
3251 {
3252 return sock->ops->connect(sock, addr, addrlen, flags);
3253 }
3254 EXPORT_SYMBOL(kernel_connect);
3255
3256 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3257 int *addrlen)
3258 {
3259 return sock->ops->getname(sock, addr, addrlen, 0);
3260 }
3261 EXPORT_SYMBOL(kernel_getsockname);
3262
3263 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3264 int *addrlen)
3265 {
3266 return sock->ops->getname(sock, addr, addrlen, 1);
3267 }
3268 EXPORT_SYMBOL(kernel_getpeername);
3269
3270 int kernel_getsockopt(struct socket *sock, int level, int optname,
3271 char *optval, int *optlen)
3272 {
3273 mm_segment_t oldfs = get_fs();
3274 char __user *uoptval;
3275 int __user *uoptlen;
3276 int err;
3277
3278 uoptval = (char __user __force *) optval;
3279 uoptlen = (int __user __force *) optlen;
3280
3281 set_fs(KERNEL_DS);
3282 if (level == SOL_SOCKET)
3283 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3284 else
3285 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3286 uoptlen);
3287 set_fs(oldfs);
3288 return err;
3289 }
3290 EXPORT_SYMBOL(kernel_getsockopt);
3291
3292 int kernel_setsockopt(struct socket *sock, int level, int optname,
3293 char *optval, unsigned int optlen)
3294 {
3295 mm_segment_t oldfs = get_fs();
3296 char __user *uoptval;
3297 int err;
3298
3299 uoptval = (char __user __force *) optval;
3300
3301 set_fs(KERNEL_DS);
3302 if (level == SOL_SOCKET)
3303 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3304 else
3305 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3306 optlen);
3307 set_fs(oldfs);
3308 return err;
3309 }
3310 EXPORT_SYMBOL(kernel_setsockopt);
3311
3312 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3313 size_t size, int flags)
3314 {
3315 if (sock->ops->sendpage)
3316 return sock->ops->sendpage(sock, page, offset, size, flags);
3317
3318 return sock_no_sendpage(sock, page, offset, size, flags);
3319 }
3320 EXPORT_SYMBOL(kernel_sendpage);
3321
3322 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3323 {
3324 mm_segment_t oldfs = get_fs();
3325 int err;
3326
3327 set_fs(KERNEL_DS);
3328 err = sock->ops->ioctl(sock, cmd, arg);
3329 set_fs(oldfs);
3330
3331 return err;
3332 }
3333 EXPORT_SYMBOL(kernel_sock_ioctl);
3334
3335 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3336 {
3337 return sock->ops->shutdown(sock, how);
3338 }
3339 EXPORT_SYMBOL(kernel_sock_shutdown);