]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/socket.c
net/mlx5e: More generic netdev management API
[mirror_ubuntu-bionic-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156 };
157
158 /*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165 /*
166 * Statistics counters of the socket lists
167 */
168
169 static DEFINE_PER_CPU(int, sockets_in_use);
170
171 /*
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
175 */
176
177 /**
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
182 *
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
186 */
187
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
197 }
198
199 /**
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
205 *
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
214 */
215
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
218 {
219 int err;
220 int len;
221
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
235 }
236 /*
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
239 */
240 return __put_user(klen, ulen);
241 }
242
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
249
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
257 }
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 wq->flags = 0;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
262
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
268
269 return &ei->vfs_inode;
270 }
271
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
276
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
281 }
282
283 static void init_once(void *foo)
284 {
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
286
287 inode_init_once(&ei->vfs_inode);
288 }
289
290 static void init_inodecache(void)
291 {
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
294 0,
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 init_once);
299 BUG_ON(sock_inode_cachep == NULL);
300 }
301
302 static const struct super_operations sockfs_ops = {
303 .alloc_inode = sock_alloc_inode,
304 .destroy_inode = sock_destroy_inode,
305 .statfs = simple_statfs,
306 };
307
308 /*
309 * sockfs_dname() is called from d_path().
310 */
311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
312 {
313 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
314 d_inode(dentry)->i_ino);
315 }
316
317 static const struct dentry_operations sockfs_dentry_operations = {
318 .d_dname = sockfs_dname,
319 };
320
321 static int sockfs_xattr_get(const struct xattr_handler *handler,
322 struct dentry *dentry, struct inode *inode,
323 const char *suffix, void *value, size_t size)
324 {
325 if (value) {
326 if (dentry->d_name.len + 1 > size)
327 return -ERANGE;
328 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
329 }
330 return dentry->d_name.len + 1;
331 }
332
333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
336
337 static const struct xattr_handler sockfs_xattr_handler = {
338 .name = XATTR_NAME_SOCKPROTONAME,
339 .get = sockfs_xattr_get,
340 };
341
342 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
343 struct dentry *dentry, struct inode *inode,
344 const char *suffix, const void *value,
345 size_t size, int flags)
346 {
347 /* Handled by LSM. */
348 return -EAGAIN;
349 }
350
351 static const struct xattr_handler sockfs_security_xattr_handler = {
352 .prefix = XATTR_SECURITY_PREFIX,
353 .set = sockfs_security_xattr_set,
354 };
355
356 static const struct xattr_handler *sockfs_xattr_handlers[] = {
357 &sockfs_xattr_handler,
358 &sockfs_security_xattr_handler,
359 NULL
360 };
361
362 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
363 int flags, const char *dev_name, void *data)
364 {
365 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
366 sockfs_xattr_handlers,
367 &sockfs_dentry_operations, SOCKFS_MAGIC);
368 }
369
370 static struct vfsmount *sock_mnt __read_mostly;
371
372 static struct file_system_type sock_fs_type = {
373 .name = "sockfs",
374 .mount = sockfs_mount,
375 .kill_sb = kill_anon_super,
376 };
377
378 /*
379 * Obtains the first available file descriptor and sets it up for use.
380 *
381 * These functions create file structures and maps them to fd space
382 * of the current process. On success it returns file descriptor
383 * and file struct implicitly stored in sock->file.
384 * Note that another thread may close file descriptor before we return
385 * from this function. We use the fact that now we do not refer
386 * to socket after mapping. If one day we will need it, this
387 * function will increment ref. count on file by 1.
388 *
389 * In any case returned fd MAY BE not valid!
390 * This race condition is unavoidable
391 * with shared fd spaces, we cannot solve it inside kernel,
392 * but we take care of internal coherence yet.
393 */
394
395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
396 {
397 struct qstr name = { .name = "" };
398 struct path path;
399 struct file *file;
400
401 if (dname) {
402 name.name = dname;
403 name.len = strlen(name.name);
404 } else if (sock->sk) {
405 name.name = sock->sk->sk_prot_creator->name;
406 name.len = strlen(name.name);
407 }
408 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
409 if (unlikely(!path.dentry))
410 return ERR_PTR(-ENOMEM);
411 path.mnt = mntget(sock_mnt);
412
413 d_instantiate(path.dentry, SOCK_INODE(sock));
414
415 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
416 &socket_file_ops);
417 if (IS_ERR(file)) {
418 /* drop dentry, keep inode */
419 ihold(d_inode(path.dentry));
420 path_put(&path);
421 return file;
422 }
423
424 sock->file = file;
425 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
426 file->private_data = sock;
427 return file;
428 }
429 EXPORT_SYMBOL(sock_alloc_file);
430
431 static int sock_map_fd(struct socket *sock, int flags)
432 {
433 struct file *newfile;
434 int fd = get_unused_fd_flags(flags);
435 if (unlikely(fd < 0))
436 return fd;
437
438 newfile = sock_alloc_file(sock, flags, NULL);
439 if (likely(!IS_ERR(newfile))) {
440 fd_install(fd, newfile);
441 return fd;
442 }
443
444 put_unused_fd(fd);
445 return PTR_ERR(newfile);
446 }
447
448 struct socket *sock_from_file(struct file *file, int *err)
449 {
450 if (file->f_op == &socket_file_ops)
451 return file->private_data; /* set in sock_map_fd */
452
453 *err = -ENOTSOCK;
454 return NULL;
455 }
456 EXPORT_SYMBOL(sock_from_file);
457
458 /**
459 * sockfd_lookup - Go from a file number to its socket slot
460 * @fd: file handle
461 * @err: pointer to an error code return
462 *
463 * The file handle passed in is locked and the socket it is bound
464 * too is returned. If an error occurs the err pointer is overwritten
465 * with a negative errno code and NULL is returned. The function checks
466 * for both invalid handles and passing a handle which is not a socket.
467 *
468 * On a success the socket object pointer is returned.
469 */
470
471 struct socket *sockfd_lookup(int fd, int *err)
472 {
473 struct file *file;
474 struct socket *sock;
475
476 file = fget(fd);
477 if (!file) {
478 *err = -EBADF;
479 return NULL;
480 }
481
482 sock = sock_from_file(file, err);
483 if (!sock)
484 fput(file);
485 return sock;
486 }
487 EXPORT_SYMBOL(sockfd_lookup);
488
489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
490 {
491 struct fd f = fdget(fd);
492 struct socket *sock;
493
494 *err = -EBADF;
495 if (f.file) {
496 sock = sock_from_file(f.file, err);
497 if (likely(sock)) {
498 *fput_needed = f.flags;
499 return sock;
500 }
501 fdput(f);
502 }
503 return NULL;
504 }
505
506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
507 size_t size)
508 {
509 ssize_t len;
510 ssize_t used = 0;
511
512 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
513 if (len < 0)
514 return len;
515 used += len;
516 if (buffer) {
517 if (size < used)
518 return -ERANGE;
519 buffer += len;
520 }
521
522 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
523 used += len;
524 if (buffer) {
525 if (size < used)
526 return -ERANGE;
527 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
528 buffer += len;
529 }
530
531 return used;
532 }
533
534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
535 {
536 int err = simple_setattr(dentry, iattr);
537
538 if (!err && (iattr->ia_valid & ATTR_UID)) {
539 struct socket *sock = SOCKET_I(d_inode(dentry));
540
541 sock->sk->sk_uid = iattr->ia_uid;
542 }
543
544 return err;
545 }
546
547 static const struct inode_operations sockfs_inode_ops = {
548 .listxattr = sockfs_listxattr,
549 .setattr = sockfs_setattr,
550 };
551
552 /**
553 * sock_alloc - allocate a socket
554 *
555 * Allocate a new inode and socket object. The two are bound together
556 * and initialised. The socket is then returned. If we are out of inodes
557 * NULL is returned.
558 */
559
560 struct socket *sock_alloc(void)
561 {
562 struct inode *inode;
563 struct socket *sock;
564
565 inode = new_inode_pseudo(sock_mnt->mnt_sb);
566 if (!inode)
567 return NULL;
568
569 sock = SOCKET_I(inode);
570
571 kmemcheck_annotate_bitfield(sock, type);
572 inode->i_ino = get_next_ino();
573 inode->i_mode = S_IFSOCK | S_IRWXUGO;
574 inode->i_uid = current_fsuid();
575 inode->i_gid = current_fsgid();
576 inode->i_op = &sockfs_inode_ops;
577
578 this_cpu_add(sockets_in_use, 1);
579 return sock;
580 }
581 EXPORT_SYMBOL(sock_alloc);
582
583 /**
584 * sock_release - close a socket
585 * @sock: socket to close
586 *
587 * The socket is released from the protocol stack if it has a release
588 * callback, and the inode is then released if the socket is bound to
589 * an inode not a file.
590 */
591
592 void sock_release(struct socket *sock)
593 {
594 if (sock->ops) {
595 struct module *owner = sock->ops->owner;
596
597 sock->ops->release(sock);
598 sock->ops = NULL;
599 module_put(owner);
600 }
601
602 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
603 pr_err("%s: fasync list not empty!\n", __func__);
604
605 this_cpu_sub(sockets_in_use, 1);
606 if (!sock->file) {
607 iput(SOCK_INODE(sock));
608 return;
609 }
610 sock->file = NULL;
611 }
612 EXPORT_SYMBOL(sock_release);
613
614 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
615 {
616 u8 flags = *tx_flags;
617
618 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
619 flags |= SKBTX_HW_TSTAMP;
620
621 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
622 flags |= SKBTX_SW_TSTAMP;
623
624 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
625 flags |= SKBTX_SCHED_TSTAMP;
626
627 *tx_flags = flags;
628 }
629 EXPORT_SYMBOL(__sock_tx_timestamp);
630
631 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
632 {
633 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
634 BUG_ON(ret == -EIOCBQUEUED);
635 return ret;
636 }
637
638 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
639 {
640 int err = security_socket_sendmsg(sock, msg,
641 msg_data_left(msg));
642
643 return err ?: sock_sendmsg_nosec(sock, msg);
644 }
645 EXPORT_SYMBOL(sock_sendmsg);
646
647 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
648 struct kvec *vec, size_t num, size_t size)
649 {
650 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
651 return sock_sendmsg(sock, msg);
652 }
653 EXPORT_SYMBOL(kernel_sendmsg);
654
655 static bool skb_is_err_queue(const struct sk_buff *skb)
656 {
657 /* pkt_type of skbs enqueued on the error queue are set to
658 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
659 * in recvmsg, since skbs received on a local socket will never
660 * have a pkt_type of PACKET_OUTGOING.
661 */
662 return skb->pkt_type == PACKET_OUTGOING;
663 }
664
665 /*
666 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
667 */
668 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
669 struct sk_buff *skb)
670 {
671 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
672 struct scm_timestamping tss;
673 int empty = 1;
674 struct skb_shared_hwtstamps *shhwtstamps =
675 skb_hwtstamps(skb);
676
677 /* Race occurred between timestamp enabling and packet
678 receiving. Fill in the current time for now. */
679 if (need_software_tstamp && skb->tstamp == 0)
680 __net_timestamp(skb);
681
682 if (need_software_tstamp) {
683 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
684 struct timeval tv;
685 skb_get_timestamp(skb, &tv);
686 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
687 sizeof(tv), &tv);
688 } else {
689 struct timespec ts;
690 skb_get_timestampns(skb, &ts);
691 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
692 sizeof(ts), &ts);
693 }
694 }
695
696 memset(&tss, 0, sizeof(tss));
697 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
698 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
699 empty = 0;
700 if (shhwtstamps &&
701 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
702 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
703 empty = 0;
704 if (!empty) {
705 put_cmsg(msg, SOL_SOCKET,
706 SCM_TIMESTAMPING, sizeof(tss), &tss);
707
708 if (skb_is_err_queue(skb) && skb->len &&
709 SKB_EXT_ERR(skb)->opt_stats)
710 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
711 skb->len, skb->data);
712 }
713 }
714 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
715
716 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
717 struct sk_buff *skb)
718 {
719 int ack;
720
721 if (!sock_flag(sk, SOCK_WIFI_STATUS))
722 return;
723 if (!skb->wifi_acked_valid)
724 return;
725
726 ack = skb->wifi_acked;
727
728 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
729 }
730 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
731
732 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
733 struct sk_buff *skb)
734 {
735 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
736 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
737 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
738 }
739
740 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
741 struct sk_buff *skb)
742 {
743 sock_recv_timestamp(msg, sk, skb);
744 sock_recv_drops(msg, sk, skb);
745 }
746 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
747
748 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
749 int flags)
750 {
751 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
752 }
753
754 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
755 {
756 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
757
758 return err ?: sock_recvmsg_nosec(sock, msg, flags);
759 }
760 EXPORT_SYMBOL(sock_recvmsg);
761
762 /**
763 * kernel_recvmsg - Receive a message from a socket (kernel space)
764 * @sock: The socket to receive the message from
765 * @msg: Received message
766 * @vec: Input s/g array for message data
767 * @num: Size of input s/g array
768 * @size: Number of bytes to read
769 * @flags: Message flags (MSG_DONTWAIT, etc...)
770 *
771 * On return the msg structure contains the scatter/gather array passed in the
772 * vec argument. The array is modified so that it consists of the unfilled
773 * portion of the original array.
774 *
775 * The returned value is the total number of bytes received, or an error.
776 */
777 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
778 struct kvec *vec, size_t num, size_t size, int flags)
779 {
780 mm_segment_t oldfs = get_fs();
781 int result;
782
783 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
784 set_fs(KERNEL_DS);
785 result = sock_recvmsg(sock, msg, flags);
786 set_fs(oldfs);
787 return result;
788 }
789 EXPORT_SYMBOL(kernel_recvmsg);
790
791 static ssize_t sock_sendpage(struct file *file, struct page *page,
792 int offset, size_t size, loff_t *ppos, int more)
793 {
794 struct socket *sock;
795 int flags;
796
797 sock = file->private_data;
798
799 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
800 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
801 flags |= more;
802
803 return kernel_sendpage(sock, page, offset, size, flags);
804 }
805
806 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
807 struct pipe_inode_info *pipe, size_t len,
808 unsigned int flags)
809 {
810 struct socket *sock = file->private_data;
811
812 if (unlikely(!sock->ops->splice_read))
813 return -EINVAL;
814
815 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
816 }
817
818 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
819 {
820 struct file *file = iocb->ki_filp;
821 struct socket *sock = file->private_data;
822 struct msghdr msg = {.msg_iter = *to,
823 .msg_iocb = iocb};
824 ssize_t res;
825
826 if (file->f_flags & O_NONBLOCK)
827 msg.msg_flags = MSG_DONTWAIT;
828
829 if (iocb->ki_pos != 0)
830 return -ESPIPE;
831
832 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
833 return 0;
834
835 res = sock_recvmsg(sock, &msg, msg.msg_flags);
836 *to = msg.msg_iter;
837 return res;
838 }
839
840 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
841 {
842 struct file *file = iocb->ki_filp;
843 struct socket *sock = file->private_data;
844 struct msghdr msg = {.msg_iter = *from,
845 .msg_iocb = iocb};
846 ssize_t res;
847
848 if (iocb->ki_pos != 0)
849 return -ESPIPE;
850
851 if (file->f_flags & O_NONBLOCK)
852 msg.msg_flags = MSG_DONTWAIT;
853
854 if (sock->type == SOCK_SEQPACKET)
855 msg.msg_flags |= MSG_EOR;
856
857 res = sock_sendmsg(sock, &msg);
858 *from = msg.msg_iter;
859 return res;
860 }
861
862 /*
863 * Atomic setting of ioctl hooks to avoid race
864 * with module unload.
865 */
866
867 static DEFINE_MUTEX(br_ioctl_mutex);
868 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
869
870 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
871 {
872 mutex_lock(&br_ioctl_mutex);
873 br_ioctl_hook = hook;
874 mutex_unlock(&br_ioctl_mutex);
875 }
876 EXPORT_SYMBOL(brioctl_set);
877
878 static DEFINE_MUTEX(vlan_ioctl_mutex);
879 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
880
881 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
882 {
883 mutex_lock(&vlan_ioctl_mutex);
884 vlan_ioctl_hook = hook;
885 mutex_unlock(&vlan_ioctl_mutex);
886 }
887 EXPORT_SYMBOL(vlan_ioctl_set);
888
889 static DEFINE_MUTEX(dlci_ioctl_mutex);
890 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
891
892 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
893 {
894 mutex_lock(&dlci_ioctl_mutex);
895 dlci_ioctl_hook = hook;
896 mutex_unlock(&dlci_ioctl_mutex);
897 }
898 EXPORT_SYMBOL(dlci_ioctl_set);
899
900 static long sock_do_ioctl(struct net *net, struct socket *sock,
901 unsigned int cmd, unsigned long arg)
902 {
903 int err;
904 void __user *argp = (void __user *)arg;
905
906 err = sock->ops->ioctl(sock, cmd, arg);
907
908 /*
909 * If this ioctl is unknown try to hand it down
910 * to the NIC driver.
911 */
912 if (err == -ENOIOCTLCMD)
913 err = dev_ioctl(net, cmd, argp);
914
915 return err;
916 }
917
918 /*
919 * With an ioctl, arg may well be a user mode pointer, but we don't know
920 * what to do with it - that's up to the protocol still.
921 */
922
923 static struct ns_common *get_net_ns(struct ns_common *ns)
924 {
925 return &get_net(container_of(ns, struct net, ns))->ns;
926 }
927
928 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
929 {
930 struct socket *sock;
931 struct sock *sk;
932 void __user *argp = (void __user *)arg;
933 int pid, err;
934 struct net *net;
935
936 sock = file->private_data;
937 sk = sock->sk;
938 net = sock_net(sk);
939 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
940 err = dev_ioctl(net, cmd, argp);
941 } else
942 #ifdef CONFIG_WEXT_CORE
943 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
944 err = dev_ioctl(net, cmd, argp);
945 } else
946 #endif
947 switch (cmd) {
948 case FIOSETOWN:
949 case SIOCSPGRP:
950 err = -EFAULT;
951 if (get_user(pid, (int __user *)argp))
952 break;
953 f_setown(sock->file, pid, 1);
954 err = 0;
955 break;
956 case FIOGETOWN:
957 case SIOCGPGRP:
958 err = put_user(f_getown(sock->file),
959 (int __user *)argp);
960 break;
961 case SIOCGIFBR:
962 case SIOCSIFBR:
963 case SIOCBRADDBR:
964 case SIOCBRDELBR:
965 err = -ENOPKG;
966 if (!br_ioctl_hook)
967 request_module("bridge");
968
969 mutex_lock(&br_ioctl_mutex);
970 if (br_ioctl_hook)
971 err = br_ioctl_hook(net, cmd, argp);
972 mutex_unlock(&br_ioctl_mutex);
973 break;
974 case SIOCGIFVLAN:
975 case SIOCSIFVLAN:
976 err = -ENOPKG;
977 if (!vlan_ioctl_hook)
978 request_module("8021q");
979
980 mutex_lock(&vlan_ioctl_mutex);
981 if (vlan_ioctl_hook)
982 err = vlan_ioctl_hook(net, argp);
983 mutex_unlock(&vlan_ioctl_mutex);
984 break;
985 case SIOCADDDLCI:
986 case SIOCDELDLCI:
987 err = -ENOPKG;
988 if (!dlci_ioctl_hook)
989 request_module("dlci");
990
991 mutex_lock(&dlci_ioctl_mutex);
992 if (dlci_ioctl_hook)
993 err = dlci_ioctl_hook(cmd, argp);
994 mutex_unlock(&dlci_ioctl_mutex);
995 break;
996 case SIOCGSKNS:
997 err = -EPERM;
998 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
999 break;
1000
1001 err = open_related_ns(&net->ns, get_net_ns);
1002 break;
1003 default:
1004 err = sock_do_ioctl(net, sock, cmd, arg);
1005 break;
1006 }
1007 return err;
1008 }
1009
1010 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1011 {
1012 int err;
1013 struct socket *sock = NULL;
1014
1015 err = security_socket_create(family, type, protocol, 1);
1016 if (err)
1017 goto out;
1018
1019 sock = sock_alloc();
1020 if (!sock) {
1021 err = -ENOMEM;
1022 goto out;
1023 }
1024
1025 sock->type = type;
1026 err = security_socket_post_create(sock, family, type, protocol, 1);
1027 if (err)
1028 goto out_release;
1029
1030 out:
1031 *res = sock;
1032 return err;
1033 out_release:
1034 sock_release(sock);
1035 sock = NULL;
1036 goto out;
1037 }
1038 EXPORT_SYMBOL(sock_create_lite);
1039
1040 /* No kernel lock held - perfect */
1041 static unsigned int sock_poll(struct file *file, poll_table *wait)
1042 {
1043 unsigned int busy_flag = 0;
1044 struct socket *sock;
1045
1046 /*
1047 * We can't return errors to poll, so it's either yes or no.
1048 */
1049 sock = file->private_data;
1050
1051 if (sk_can_busy_loop(sock->sk)) {
1052 /* this socket can poll_ll so tell the system call */
1053 busy_flag = POLL_BUSY_LOOP;
1054
1055 /* once, only if requested by syscall */
1056 if (wait && (wait->_key & POLL_BUSY_LOOP))
1057 sk_busy_loop(sock->sk, 1);
1058 }
1059
1060 return busy_flag | sock->ops->poll(file, sock, wait);
1061 }
1062
1063 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1064 {
1065 struct socket *sock = file->private_data;
1066
1067 return sock->ops->mmap(file, sock, vma);
1068 }
1069
1070 static int sock_close(struct inode *inode, struct file *filp)
1071 {
1072 sock_release(SOCKET_I(inode));
1073 return 0;
1074 }
1075
1076 /*
1077 * Update the socket async list
1078 *
1079 * Fasync_list locking strategy.
1080 *
1081 * 1. fasync_list is modified only under process context socket lock
1082 * i.e. under semaphore.
1083 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1084 * or under socket lock
1085 */
1086
1087 static int sock_fasync(int fd, struct file *filp, int on)
1088 {
1089 struct socket *sock = filp->private_data;
1090 struct sock *sk = sock->sk;
1091 struct socket_wq *wq;
1092
1093 if (sk == NULL)
1094 return -EINVAL;
1095
1096 lock_sock(sk);
1097 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1098 fasync_helper(fd, filp, on, &wq->fasync_list);
1099
1100 if (!wq->fasync_list)
1101 sock_reset_flag(sk, SOCK_FASYNC);
1102 else
1103 sock_set_flag(sk, SOCK_FASYNC);
1104
1105 release_sock(sk);
1106 return 0;
1107 }
1108
1109 /* This function may be called only under rcu_lock */
1110
1111 int sock_wake_async(struct socket_wq *wq, int how, int band)
1112 {
1113 if (!wq || !wq->fasync_list)
1114 return -1;
1115
1116 switch (how) {
1117 case SOCK_WAKE_WAITD:
1118 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1119 break;
1120 goto call_kill;
1121 case SOCK_WAKE_SPACE:
1122 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1123 break;
1124 /* fall through */
1125 case SOCK_WAKE_IO:
1126 call_kill:
1127 kill_fasync(&wq->fasync_list, SIGIO, band);
1128 break;
1129 case SOCK_WAKE_URG:
1130 kill_fasync(&wq->fasync_list, SIGURG, band);
1131 }
1132
1133 return 0;
1134 }
1135 EXPORT_SYMBOL(sock_wake_async);
1136
1137 int __sock_create(struct net *net, int family, int type, int protocol,
1138 struct socket **res, int kern)
1139 {
1140 int err;
1141 struct socket *sock;
1142 const struct net_proto_family *pf;
1143
1144 /*
1145 * Check protocol is in range
1146 */
1147 if (family < 0 || family >= NPROTO)
1148 return -EAFNOSUPPORT;
1149 if (type < 0 || type >= SOCK_MAX)
1150 return -EINVAL;
1151
1152 /* Compatibility.
1153
1154 This uglymoron is moved from INET layer to here to avoid
1155 deadlock in module load.
1156 */
1157 if (family == PF_INET && type == SOCK_PACKET) {
1158 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1159 current->comm);
1160 family = PF_PACKET;
1161 }
1162
1163 err = security_socket_create(family, type, protocol, kern);
1164 if (err)
1165 return err;
1166
1167 /*
1168 * Allocate the socket and allow the family to set things up. if
1169 * the protocol is 0, the family is instructed to select an appropriate
1170 * default.
1171 */
1172 sock = sock_alloc();
1173 if (!sock) {
1174 net_warn_ratelimited("socket: no more sockets\n");
1175 return -ENFILE; /* Not exactly a match, but its the
1176 closest posix thing */
1177 }
1178
1179 sock->type = type;
1180
1181 #ifdef CONFIG_MODULES
1182 /* Attempt to load a protocol module if the find failed.
1183 *
1184 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1185 * requested real, full-featured networking support upon configuration.
1186 * Otherwise module support will break!
1187 */
1188 if (rcu_access_pointer(net_families[family]) == NULL)
1189 request_module("net-pf-%d", family);
1190 #endif
1191
1192 rcu_read_lock();
1193 pf = rcu_dereference(net_families[family]);
1194 err = -EAFNOSUPPORT;
1195 if (!pf)
1196 goto out_release;
1197
1198 /*
1199 * We will call the ->create function, that possibly is in a loadable
1200 * module, so we have to bump that loadable module refcnt first.
1201 */
1202 if (!try_module_get(pf->owner))
1203 goto out_release;
1204
1205 /* Now protected by module ref count */
1206 rcu_read_unlock();
1207
1208 err = pf->create(net, sock, protocol, kern);
1209 if (err < 0)
1210 goto out_module_put;
1211
1212 /*
1213 * Now to bump the refcnt of the [loadable] module that owns this
1214 * socket at sock_release time we decrement its refcnt.
1215 */
1216 if (!try_module_get(sock->ops->owner))
1217 goto out_module_busy;
1218
1219 /*
1220 * Now that we're done with the ->create function, the [loadable]
1221 * module can have its refcnt decremented
1222 */
1223 module_put(pf->owner);
1224 err = security_socket_post_create(sock, family, type, protocol, kern);
1225 if (err)
1226 goto out_sock_release;
1227 *res = sock;
1228
1229 return 0;
1230
1231 out_module_busy:
1232 err = -EAFNOSUPPORT;
1233 out_module_put:
1234 sock->ops = NULL;
1235 module_put(pf->owner);
1236 out_sock_release:
1237 sock_release(sock);
1238 return err;
1239
1240 out_release:
1241 rcu_read_unlock();
1242 goto out_sock_release;
1243 }
1244 EXPORT_SYMBOL(__sock_create);
1245
1246 int sock_create(int family, int type, int protocol, struct socket **res)
1247 {
1248 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1249 }
1250 EXPORT_SYMBOL(sock_create);
1251
1252 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1253 {
1254 return __sock_create(net, family, type, protocol, res, 1);
1255 }
1256 EXPORT_SYMBOL(sock_create_kern);
1257
1258 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1259 {
1260 int retval;
1261 struct socket *sock;
1262 int flags;
1263
1264 /* Check the SOCK_* constants for consistency. */
1265 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1266 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1267 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1268 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1269
1270 flags = type & ~SOCK_TYPE_MASK;
1271 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1272 return -EINVAL;
1273 type &= SOCK_TYPE_MASK;
1274
1275 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1276 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1277
1278 retval = sock_create(family, type, protocol, &sock);
1279 if (retval < 0)
1280 goto out;
1281
1282 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1283 if (retval < 0)
1284 goto out_release;
1285
1286 out:
1287 /* It may be already another descriptor 8) Not kernel problem. */
1288 return retval;
1289
1290 out_release:
1291 sock_release(sock);
1292 return retval;
1293 }
1294
1295 /*
1296 * Create a pair of connected sockets.
1297 */
1298
1299 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1300 int __user *, usockvec)
1301 {
1302 struct socket *sock1, *sock2;
1303 int fd1, fd2, err;
1304 struct file *newfile1, *newfile2;
1305 int flags;
1306
1307 flags = type & ~SOCK_TYPE_MASK;
1308 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1309 return -EINVAL;
1310 type &= SOCK_TYPE_MASK;
1311
1312 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1313 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1314
1315 /*
1316 * Obtain the first socket and check if the underlying protocol
1317 * supports the socketpair call.
1318 */
1319
1320 err = sock_create(family, type, protocol, &sock1);
1321 if (err < 0)
1322 goto out;
1323
1324 err = sock_create(family, type, protocol, &sock2);
1325 if (err < 0)
1326 goto out_release_1;
1327
1328 err = sock1->ops->socketpair(sock1, sock2);
1329 if (err < 0)
1330 goto out_release_both;
1331
1332 fd1 = get_unused_fd_flags(flags);
1333 if (unlikely(fd1 < 0)) {
1334 err = fd1;
1335 goto out_release_both;
1336 }
1337
1338 fd2 = get_unused_fd_flags(flags);
1339 if (unlikely(fd2 < 0)) {
1340 err = fd2;
1341 goto out_put_unused_1;
1342 }
1343
1344 newfile1 = sock_alloc_file(sock1, flags, NULL);
1345 if (IS_ERR(newfile1)) {
1346 err = PTR_ERR(newfile1);
1347 goto out_put_unused_both;
1348 }
1349
1350 newfile2 = sock_alloc_file(sock2, flags, NULL);
1351 if (IS_ERR(newfile2)) {
1352 err = PTR_ERR(newfile2);
1353 goto out_fput_1;
1354 }
1355
1356 err = put_user(fd1, &usockvec[0]);
1357 if (err)
1358 goto out_fput_both;
1359
1360 err = put_user(fd2, &usockvec[1]);
1361 if (err)
1362 goto out_fput_both;
1363
1364 audit_fd_pair(fd1, fd2);
1365
1366 fd_install(fd1, newfile1);
1367 fd_install(fd2, newfile2);
1368 /* fd1 and fd2 may be already another descriptors.
1369 * Not kernel problem.
1370 */
1371
1372 return 0;
1373
1374 out_fput_both:
1375 fput(newfile2);
1376 fput(newfile1);
1377 put_unused_fd(fd2);
1378 put_unused_fd(fd1);
1379 goto out;
1380
1381 out_fput_1:
1382 fput(newfile1);
1383 put_unused_fd(fd2);
1384 put_unused_fd(fd1);
1385 sock_release(sock2);
1386 goto out;
1387
1388 out_put_unused_both:
1389 put_unused_fd(fd2);
1390 out_put_unused_1:
1391 put_unused_fd(fd1);
1392 out_release_both:
1393 sock_release(sock2);
1394 out_release_1:
1395 sock_release(sock1);
1396 out:
1397 return err;
1398 }
1399
1400 /*
1401 * Bind a name to a socket. Nothing much to do here since it's
1402 * the protocol's responsibility to handle the local address.
1403 *
1404 * We move the socket address to kernel space before we call
1405 * the protocol layer (having also checked the address is ok).
1406 */
1407
1408 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1409 {
1410 struct socket *sock;
1411 struct sockaddr_storage address;
1412 int err, fput_needed;
1413
1414 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1415 if (sock) {
1416 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1417 if (err >= 0) {
1418 err = security_socket_bind(sock,
1419 (struct sockaddr *)&address,
1420 addrlen);
1421 if (!err)
1422 err = sock->ops->bind(sock,
1423 (struct sockaddr *)
1424 &address, addrlen);
1425 }
1426 fput_light(sock->file, fput_needed);
1427 }
1428 return err;
1429 }
1430
1431 /*
1432 * Perform a listen. Basically, we allow the protocol to do anything
1433 * necessary for a listen, and if that works, we mark the socket as
1434 * ready for listening.
1435 */
1436
1437 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1438 {
1439 struct socket *sock;
1440 int err, fput_needed;
1441 int somaxconn;
1442
1443 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1444 if (sock) {
1445 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1446 if ((unsigned int)backlog > somaxconn)
1447 backlog = somaxconn;
1448
1449 err = security_socket_listen(sock, backlog);
1450 if (!err)
1451 err = sock->ops->listen(sock, backlog);
1452
1453 fput_light(sock->file, fput_needed);
1454 }
1455 return err;
1456 }
1457
1458 /*
1459 * For accept, we attempt to create a new socket, set up the link
1460 * with the client, wake up the client, then return the new
1461 * connected fd. We collect the address of the connector in kernel
1462 * space and move it to user at the very end. This is unclean because
1463 * we open the socket then return an error.
1464 *
1465 * 1003.1g adds the ability to recvmsg() to query connection pending
1466 * status to recvmsg. We need to add that support in a way thats
1467 * clean when we restucture accept also.
1468 */
1469
1470 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1471 int __user *, upeer_addrlen, int, flags)
1472 {
1473 struct socket *sock, *newsock;
1474 struct file *newfile;
1475 int err, len, newfd, fput_needed;
1476 struct sockaddr_storage address;
1477
1478 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1479 return -EINVAL;
1480
1481 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1482 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1483
1484 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1485 if (!sock)
1486 goto out;
1487
1488 err = -ENFILE;
1489 newsock = sock_alloc();
1490 if (!newsock)
1491 goto out_put;
1492
1493 newsock->type = sock->type;
1494 newsock->ops = sock->ops;
1495
1496 /*
1497 * We don't need try_module_get here, as the listening socket (sock)
1498 * has the protocol module (sock->ops->owner) held.
1499 */
1500 __module_get(newsock->ops->owner);
1501
1502 newfd = get_unused_fd_flags(flags);
1503 if (unlikely(newfd < 0)) {
1504 err = newfd;
1505 sock_release(newsock);
1506 goto out_put;
1507 }
1508 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1509 if (IS_ERR(newfile)) {
1510 err = PTR_ERR(newfile);
1511 put_unused_fd(newfd);
1512 sock_release(newsock);
1513 goto out_put;
1514 }
1515
1516 err = security_socket_accept(sock, newsock);
1517 if (err)
1518 goto out_fd;
1519
1520 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1521 if (err < 0)
1522 goto out_fd;
1523
1524 if (upeer_sockaddr) {
1525 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1526 &len, 2) < 0) {
1527 err = -ECONNABORTED;
1528 goto out_fd;
1529 }
1530 err = move_addr_to_user(&address,
1531 len, upeer_sockaddr, upeer_addrlen);
1532 if (err < 0)
1533 goto out_fd;
1534 }
1535
1536 /* File flags are not inherited via accept() unlike another OSes. */
1537
1538 fd_install(newfd, newfile);
1539 err = newfd;
1540
1541 out_put:
1542 fput_light(sock->file, fput_needed);
1543 out:
1544 return err;
1545 out_fd:
1546 fput(newfile);
1547 put_unused_fd(newfd);
1548 goto out_put;
1549 }
1550
1551 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1552 int __user *, upeer_addrlen)
1553 {
1554 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1555 }
1556
1557 /*
1558 * Attempt to connect to a socket with the server address. The address
1559 * is in user space so we verify it is OK and move it to kernel space.
1560 *
1561 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1562 * break bindings
1563 *
1564 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1565 * other SEQPACKET protocols that take time to connect() as it doesn't
1566 * include the -EINPROGRESS status for such sockets.
1567 */
1568
1569 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1570 int, addrlen)
1571 {
1572 struct socket *sock;
1573 struct sockaddr_storage address;
1574 int err, fput_needed;
1575
1576 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1577 if (!sock)
1578 goto out;
1579 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1580 if (err < 0)
1581 goto out_put;
1582
1583 err =
1584 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1585 if (err)
1586 goto out_put;
1587
1588 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1589 sock->file->f_flags);
1590 out_put:
1591 fput_light(sock->file, fput_needed);
1592 out:
1593 return err;
1594 }
1595
1596 /*
1597 * Get the local address ('name') of a socket object. Move the obtained
1598 * name to user space.
1599 */
1600
1601 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1602 int __user *, usockaddr_len)
1603 {
1604 struct socket *sock;
1605 struct sockaddr_storage address;
1606 int len, err, fput_needed;
1607
1608 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1609 if (!sock)
1610 goto out;
1611
1612 err = security_socket_getsockname(sock);
1613 if (err)
1614 goto out_put;
1615
1616 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1617 if (err)
1618 goto out_put;
1619 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1620
1621 out_put:
1622 fput_light(sock->file, fput_needed);
1623 out:
1624 return err;
1625 }
1626
1627 /*
1628 * Get the remote address ('name') of a socket object. Move the obtained
1629 * name to user space.
1630 */
1631
1632 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1633 int __user *, usockaddr_len)
1634 {
1635 struct socket *sock;
1636 struct sockaddr_storage address;
1637 int len, err, fput_needed;
1638
1639 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1640 if (sock != NULL) {
1641 err = security_socket_getpeername(sock);
1642 if (err) {
1643 fput_light(sock->file, fput_needed);
1644 return err;
1645 }
1646
1647 err =
1648 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1649 1);
1650 if (!err)
1651 err = move_addr_to_user(&address, len, usockaddr,
1652 usockaddr_len);
1653 fput_light(sock->file, fput_needed);
1654 }
1655 return err;
1656 }
1657
1658 /*
1659 * Send a datagram to a given address. We move the address into kernel
1660 * space and check the user space data area is readable before invoking
1661 * the protocol.
1662 */
1663
1664 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1665 unsigned int, flags, struct sockaddr __user *, addr,
1666 int, addr_len)
1667 {
1668 struct socket *sock;
1669 struct sockaddr_storage address;
1670 int err;
1671 struct msghdr msg;
1672 struct iovec iov;
1673 int fput_needed;
1674
1675 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1676 if (unlikely(err))
1677 return err;
1678 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1679 if (!sock)
1680 goto out;
1681
1682 msg.msg_name = NULL;
1683 msg.msg_control = NULL;
1684 msg.msg_controllen = 0;
1685 msg.msg_namelen = 0;
1686 if (addr) {
1687 err = move_addr_to_kernel(addr, addr_len, &address);
1688 if (err < 0)
1689 goto out_put;
1690 msg.msg_name = (struct sockaddr *)&address;
1691 msg.msg_namelen = addr_len;
1692 }
1693 if (sock->file->f_flags & O_NONBLOCK)
1694 flags |= MSG_DONTWAIT;
1695 msg.msg_flags = flags;
1696 err = sock_sendmsg(sock, &msg);
1697
1698 out_put:
1699 fput_light(sock->file, fput_needed);
1700 out:
1701 return err;
1702 }
1703
1704 /*
1705 * Send a datagram down a socket.
1706 */
1707
1708 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1709 unsigned int, flags)
1710 {
1711 return sys_sendto(fd, buff, len, flags, NULL, 0);
1712 }
1713
1714 /*
1715 * Receive a frame from the socket and optionally record the address of the
1716 * sender. We verify the buffers are writable and if needed move the
1717 * sender address from kernel to user space.
1718 */
1719
1720 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1721 unsigned int, flags, struct sockaddr __user *, addr,
1722 int __user *, addr_len)
1723 {
1724 struct socket *sock;
1725 struct iovec iov;
1726 struct msghdr msg;
1727 struct sockaddr_storage address;
1728 int err, err2;
1729 int fput_needed;
1730
1731 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1732 if (unlikely(err))
1733 return err;
1734 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1735 if (!sock)
1736 goto out;
1737
1738 msg.msg_control = NULL;
1739 msg.msg_controllen = 0;
1740 /* Save some cycles and don't copy the address if not needed */
1741 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1742 /* We assume all kernel code knows the size of sockaddr_storage */
1743 msg.msg_namelen = 0;
1744 msg.msg_iocb = NULL;
1745 msg.msg_flags = 0;
1746 if (sock->file->f_flags & O_NONBLOCK)
1747 flags |= MSG_DONTWAIT;
1748 err = sock_recvmsg(sock, &msg, flags);
1749
1750 if (err >= 0 && addr != NULL) {
1751 err2 = move_addr_to_user(&address,
1752 msg.msg_namelen, addr, addr_len);
1753 if (err2 < 0)
1754 err = err2;
1755 }
1756
1757 fput_light(sock->file, fput_needed);
1758 out:
1759 return err;
1760 }
1761
1762 /*
1763 * Receive a datagram from a socket.
1764 */
1765
1766 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1767 unsigned int, flags)
1768 {
1769 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1770 }
1771
1772 /*
1773 * Set a socket option. Because we don't know the option lengths we have
1774 * to pass the user mode parameter for the protocols to sort out.
1775 */
1776
1777 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1778 char __user *, optval, int, optlen)
1779 {
1780 int err, fput_needed;
1781 struct socket *sock;
1782
1783 if (optlen < 0)
1784 return -EINVAL;
1785
1786 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1787 if (sock != NULL) {
1788 err = security_socket_setsockopt(sock, level, optname);
1789 if (err)
1790 goto out_put;
1791
1792 if (level == SOL_SOCKET)
1793 err =
1794 sock_setsockopt(sock, level, optname, optval,
1795 optlen);
1796 else
1797 err =
1798 sock->ops->setsockopt(sock, level, optname, optval,
1799 optlen);
1800 out_put:
1801 fput_light(sock->file, fput_needed);
1802 }
1803 return err;
1804 }
1805
1806 /*
1807 * Get a socket option. Because we don't know the option lengths we have
1808 * to pass a user mode parameter for the protocols to sort out.
1809 */
1810
1811 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1812 char __user *, optval, int __user *, optlen)
1813 {
1814 int err, fput_needed;
1815 struct socket *sock;
1816
1817 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1818 if (sock != NULL) {
1819 err = security_socket_getsockopt(sock, level, optname);
1820 if (err)
1821 goto out_put;
1822
1823 if (level == SOL_SOCKET)
1824 err =
1825 sock_getsockopt(sock, level, optname, optval,
1826 optlen);
1827 else
1828 err =
1829 sock->ops->getsockopt(sock, level, optname, optval,
1830 optlen);
1831 out_put:
1832 fput_light(sock->file, fput_needed);
1833 }
1834 return err;
1835 }
1836
1837 /*
1838 * Shutdown a socket.
1839 */
1840
1841 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1842 {
1843 int err, fput_needed;
1844 struct socket *sock;
1845
1846 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1847 if (sock != NULL) {
1848 err = security_socket_shutdown(sock, how);
1849 if (!err)
1850 err = sock->ops->shutdown(sock, how);
1851 fput_light(sock->file, fput_needed);
1852 }
1853 return err;
1854 }
1855
1856 /* A couple of helpful macros for getting the address of the 32/64 bit
1857 * fields which are the same type (int / unsigned) on our platforms.
1858 */
1859 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1860 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1861 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1862
1863 struct used_address {
1864 struct sockaddr_storage name;
1865 unsigned int name_len;
1866 };
1867
1868 static int copy_msghdr_from_user(struct msghdr *kmsg,
1869 struct user_msghdr __user *umsg,
1870 struct sockaddr __user **save_addr,
1871 struct iovec **iov)
1872 {
1873 struct sockaddr __user *uaddr;
1874 struct iovec __user *uiov;
1875 size_t nr_segs;
1876 ssize_t err;
1877
1878 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1879 __get_user(uaddr, &umsg->msg_name) ||
1880 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1881 __get_user(uiov, &umsg->msg_iov) ||
1882 __get_user(nr_segs, &umsg->msg_iovlen) ||
1883 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1884 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1885 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1886 return -EFAULT;
1887
1888 if (!uaddr)
1889 kmsg->msg_namelen = 0;
1890
1891 if (kmsg->msg_namelen < 0)
1892 return -EINVAL;
1893
1894 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1895 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1896
1897 if (save_addr)
1898 *save_addr = uaddr;
1899
1900 if (uaddr && kmsg->msg_namelen) {
1901 if (!save_addr) {
1902 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1903 kmsg->msg_name);
1904 if (err < 0)
1905 return err;
1906 }
1907 } else {
1908 kmsg->msg_name = NULL;
1909 kmsg->msg_namelen = 0;
1910 }
1911
1912 if (nr_segs > UIO_MAXIOV)
1913 return -EMSGSIZE;
1914
1915 kmsg->msg_iocb = NULL;
1916
1917 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1918 UIO_FASTIOV, iov, &kmsg->msg_iter);
1919 }
1920
1921 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1922 struct msghdr *msg_sys, unsigned int flags,
1923 struct used_address *used_address,
1924 unsigned int allowed_msghdr_flags)
1925 {
1926 struct compat_msghdr __user *msg_compat =
1927 (struct compat_msghdr __user *)msg;
1928 struct sockaddr_storage address;
1929 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1930 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1931 __aligned(sizeof(__kernel_size_t));
1932 /* 20 is size of ipv6_pktinfo */
1933 unsigned char *ctl_buf = ctl;
1934 int ctl_len;
1935 ssize_t err;
1936
1937 msg_sys->msg_name = &address;
1938
1939 if (MSG_CMSG_COMPAT & flags)
1940 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1941 else
1942 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1943 if (err < 0)
1944 return err;
1945
1946 err = -ENOBUFS;
1947
1948 if (msg_sys->msg_controllen > INT_MAX)
1949 goto out_freeiov;
1950 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1951 ctl_len = msg_sys->msg_controllen;
1952 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1953 err =
1954 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1955 sizeof(ctl));
1956 if (err)
1957 goto out_freeiov;
1958 ctl_buf = msg_sys->msg_control;
1959 ctl_len = msg_sys->msg_controllen;
1960 } else if (ctl_len) {
1961 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
1962 CMSG_ALIGN(sizeof(struct cmsghdr)));
1963 if (ctl_len > sizeof(ctl)) {
1964 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1965 if (ctl_buf == NULL)
1966 goto out_freeiov;
1967 }
1968 err = -EFAULT;
1969 /*
1970 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1971 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1972 * checking falls down on this.
1973 */
1974 if (copy_from_user(ctl_buf,
1975 (void __user __force *)msg_sys->msg_control,
1976 ctl_len))
1977 goto out_freectl;
1978 msg_sys->msg_control = ctl_buf;
1979 }
1980 msg_sys->msg_flags = flags;
1981
1982 if (sock->file->f_flags & O_NONBLOCK)
1983 msg_sys->msg_flags |= MSG_DONTWAIT;
1984 /*
1985 * If this is sendmmsg() and current destination address is same as
1986 * previously succeeded address, omit asking LSM's decision.
1987 * used_address->name_len is initialized to UINT_MAX so that the first
1988 * destination address never matches.
1989 */
1990 if (used_address && msg_sys->msg_name &&
1991 used_address->name_len == msg_sys->msg_namelen &&
1992 !memcmp(&used_address->name, msg_sys->msg_name,
1993 used_address->name_len)) {
1994 err = sock_sendmsg_nosec(sock, msg_sys);
1995 goto out_freectl;
1996 }
1997 err = sock_sendmsg(sock, msg_sys);
1998 /*
1999 * If this is sendmmsg() and sending to current destination address was
2000 * successful, remember it.
2001 */
2002 if (used_address && err >= 0) {
2003 used_address->name_len = msg_sys->msg_namelen;
2004 if (msg_sys->msg_name)
2005 memcpy(&used_address->name, msg_sys->msg_name,
2006 used_address->name_len);
2007 }
2008
2009 out_freectl:
2010 if (ctl_buf != ctl)
2011 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2012 out_freeiov:
2013 kfree(iov);
2014 return err;
2015 }
2016
2017 /*
2018 * BSD sendmsg interface
2019 */
2020
2021 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2022 {
2023 int fput_needed, err;
2024 struct msghdr msg_sys;
2025 struct socket *sock;
2026
2027 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2028 if (!sock)
2029 goto out;
2030
2031 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2032
2033 fput_light(sock->file, fput_needed);
2034 out:
2035 return err;
2036 }
2037
2038 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2039 {
2040 if (flags & MSG_CMSG_COMPAT)
2041 return -EINVAL;
2042 return __sys_sendmsg(fd, msg, flags);
2043 }
2044
2045 /*
2046 * Linux sendmmsg interface
2047 */
2048
2049 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2050 unsigned int flags)
2051 {
2052 int fput_needed, err, datagrams;
2053 struct socket *sock;
2054 struct mmsghdr __user *entry;
2055 struct compat_mmsghdr __user *compat_entry;
2056 struct msghdr msg_sys;
2057 struct used_address used_address;
2058 unsigned int oflags = flags;
2059
2060 if (vlen > UIO_MAXIOV)
2061 vlen = UIO_MAXIOV;
2062
2063 datagrams = 0;
2064
2065 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2066 if (!sock)
2067 return err;
2068
2069 used_address.name_len = UINT_MAX;
2070 entry = mmsg;
2071 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2072 err = 0;
2073 flags |= MSG_BATCH;
2074
2075 while (datagrams < vlen) {
2076 if (datagrams == vlen - 1)
2077 flags = oflags;
2078
2079 if (MSG_CMSG_COMPAT & flags) {
2080 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2081 &msg_sys, flags, &used_address, MSG_EOR);
2082 if (err < 0)
2083 break;
2084 err = __put_user(err, &compat_entry->msg_len);
2085 ++compat_entry;
2086 } else {
2087 err = ___sys_sendmsg(sock,
2088 (struct user_msghdr __user *)entry,
2089 &msg_sys, flags, &used_address, MSG_EOR);
2090 if (err < 0)
2091 break;
2092 err = put_user(err, &entry->msg_len);
2093 ++entry;
2094 }
2095
2096 if (err)
2097 break;
2098 ++datagrams;
2099 if (msg_data_left(&msg_sys))
2100 break;
2101 cond_resched();
2102 }
2103
2104 fput_light(sock->file, fput_needed);
2105
2106 /* We only return an error if no datagrams were able to be sent */
2107 if (datagrams != 0)
2108 return datagrams;
2109
2110 return err;
2111 }
2112
2113 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2114 unsigned int, vlen, unsigned int, flags)
2115 {
2116 if (flags & MSG_CMSG_COMPAT)
2117 return -EINVAL;
2118 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2119 }
2120
2121 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2122 struct msghdr *msg_sys, unsigned int flags, int nosec)
2123 {
2124 struct compat_msghdr __user *msg_compat =
2125 (struct compat_msghdr __user *)msg;
2126 struct iovec iovstack[UIO_FASTIOV];
2127 struct iovec *iov = iovstack;
2128 unsigned long cmsg_ptr;
2129 int len;
2130 ssize_t err;
2131
2132 /* kernel mode address */
2133 struct sockaddr_storage addr;
2134
2135 /* user mode address pointers */
2136 struct sockaddr __user *uaddr;
2137 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2138
2139 msg_sys->msg_name = &addr;
2140
2141 if (MSG_CMSG_COMPAT & flags)
2142 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2143 else
2144 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2145 if (err < 0)
2146 return err;
2147
2148 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2149 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2150
2151 /* We assume all kernel code knows the size of sockaddr_storage */
2152 msg_sys->msg_namelen = 0;
2153
2154 if (sock->file->f_flags & O_NONBLOCK)
2155 flags |= MSG_DONTWAIT;
2156 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2157 if (err < 0)
2158 goto out_freeiov;
2159 len = err;
2160
2161 if (uaddr != NULL) {
2162 err = move_addr_to_user(&addr,
2163 msg_sys->msg_namelen, uaddr,
2164 uaddr_len);
2165 if (err < 0)
2166 goto out_freeiov;
2167 }
2168 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2169 COMPAT_FLAGS(msg));
2170 if (err)
2171 goto out_freeiov;
2172 if (MSG_CMSG_COMPAT & flags)
2173 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2174 &msg_compat->msg_controllen);
2175 else
2176 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2177 &msg->msg_controllen);
2178 if (err)
2179 goto out_freeiov;
2180 err = len;
2181
2182 out_freeiov:
2183 kfree(iov);
2184 return err;
2185 }
2186
2187 /*
2188 * BSD recvmsg interface
2189 */
2190
2191 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2192 {
2193 int fput_needed, err;
2194 struct msghdr msg_sys;
2195 struct socket *sock;
2196
2197 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2198 if (!sock)
2199 goto out;
2200
2201 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2202
2203 fput_light(sock->file, fput_needed);
2204 out:
2205 return err;
2206 }
2207
2208 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2209 unsigned int, flags)
2210 {
2211 if (flags & MSG_CMSG_COMPAT)
2212 return -EINVAL;
2213 return __sys_recvmsg(fd, msg, flags);
2214 }
2215
2216 /*
2217 * Linux recvmmsg interface
2218 */
2219
2220 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2221 unsigned int flags, struct timespec *timeout)
2222 {
2223 int fput_needed, err, datagrams;
2224 struct socket *sock;
2225 struct mmsghdr __user *entry;
2226 struct compat_mmsghdr __user *compat_entry;
2227 struct msghdr msg_sys;
2228 struct timespec64 end_time;
2229 struct timespec64 timeout64;
2230
2231 if (timeout &&
2232 poll_select_set_timeout(&end_time, timeout->tv_sec,
2233 timeout->tv_nsec))
2234 return -EINVAL;
2235
2236 datagrams = 0;
2237
2238 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2239 if (!sock)
2240 return err;
2241
2242 err = sock_error(sock->sk);
2243 if (err) {
2244 datagrams = err;
2245 goto out_put;
2246 }
2247
2248 entry = mmsg;
2249 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2250
2251 while (datagrams < vlen) {
2252 /*
2253 * No need to ask LSM for more than the first datagram.
2254 */
2255 if (MSG_CMSG_COMPAT & flags) {
2256 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2257 &msg_sys, flags & ~MSG_WAITFORONE,
2258 datagrams);
2259 if (err < 0)
2260 break;
2261 err = __put_user(err, &compat_entry->msg_len);
2262 ++compat_entry;
2263 } else {
2264 err = ___sys_recvmsg(sock,
2265 (struct user_msghdr __user *)entry,
2266 &msg_sys, flags & ~MSG_WAITFORONE,
2267 datagrams);
2268 if (err < 0)
2269 break;
2270 err = put_user(err, &entry->msg_len);
2271 ++entry;
2272 }
2273
2274 if (err)
2275 break;
2276 ++datagrams;
2277
2278 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2279 if (flags & MSG_WAITFORONE)
2280 flags |= MSG_DONTWAIT;
2281
2282 if (timeout) {
2283 ktime_get_ts64(&timeout64);
2284 *timeout = timespec64_to_timespec(
2285 timespec64_sub(end_time, timeout64));
2286 if (timeout->tv_sec < 0) {
2287 timeout->tv_sec = timeout->tv_nsec = 0;
2288 break;
2289 }
2290
2291 /* Timeout, return less than vlen datagrams */
2292 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2293 break;
2294 }
2295
2296 /* Out of band data, return right away */
2297 if (msg_sys.msg_flags & MSG_OOB)
2298 break;
2299 cond_resched();
2300 }
2301
2302 if (err == 0)
2303 goto out_put;
2304
2305 if (datagrams == 0) {
2306 datagrams = err;
2307 goto out_put;
2308 }
2309
2310 /*
2311 * We may return less entries than requested (vlen) if the
2312 * sock is non block and there aren't enough datagrams...
2313 */
2314 if (err != -EAGAIN) {
2315 /*
2316 * ... or if recvmsg returns an error after we
2317 * received some datagrams, where we record the
2318 * error to return on the next call or if the
2319 * app asks about it using getsockopt(SO_ERROR).
2320 */
2321 sock->sk->sk_err = -err;
2322 }
2323 out_put:
2324 fput_light(sock->file, fput_needed);
2325
2326 return datagrams;
2327 }
2328
2329 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2330 unsigned int, vlen, unsigned int, flags,
2331 struct timespec __user *, timeout)
2332 {
2333 int datagrams;
2334 struct timespec timeout_sys;
2335
2336 if (flags & MSG_CMSG_COMPAT)
2337 return -EINVAL;
2338
2339 if (!timeout)
2340 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2341
2342 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2343 return -EFAULT;
2344
2345 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2346
2347 if (datagrams > 0 &&
2348 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2349 datagrams = -EFAULT;
2350
2351 return datagrams;
2352 }
2353
2354 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2355 /* Argument list sizes for sys_socketcall */
2356 #define AL(x) ((x) * sizeof(unsigned long))
2357 static const unsigned char nargs[21] = {
2358 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2359 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2360 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2361 AL(4), AL(5), AL(4)
2362 };
2363
2364 #undef AL
2365
2366 /*
2367 * System call vectors.
2368 *
2369 * Argument checking cleaned up. Saved 20% in size.
2370 * This function doesn't need to set the kernel lock because
2371 * it is set by the callees.
2372 */
2373
2374 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2375 {
2376 unsigned long a[AUDITSC_ARGS];
2377 unsigned long a0, a1;
2378 int err;
2379 unsigned int len;
2380
2381 if (call < 1 || call > SYS_SENDMMSG)
2382 return -EINVAL;
2383
2384 len = nargs[call];
2385 if (len > sizeof(a))
2386 return -EINVAL;
2387
2388 /* copy_from_user should be SMP safe. */
2389 if (copy_from_user(a, args, len))
2390 return -EFAULT;
2391
2392 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2393 if (err)
2394 return err;
2395
2396 a0 = a[0];
2397 a1 = a[1];
2398
2399 switch (call) {
2400 case SYS_SOCKET:
2401 err = sys_socket(a0, a1, a[2]);
2402 break;
2403 case SYS_BIND:
2404 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2405 break;
2406 case SYS_CONNECT:
2407 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2408 break;
2409 case SYS_LISTEN:
2410 err = sys_listen(a0, a1);
2411 break;
2412 case SYS_ACCEPT:
2413 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2414 (int __user *)a[2], 0);
2415 break;
2416 case SYS_GETSOCKNAME:
2417 err =
2418 sys_getsockname(a0, (struct sockaddr __user *)a1,
2419 (int __user *)a[2]);
2420 break;
2421 case SYS_GETPEERNAME:
2422 err =
2423 sys_getpeername(a0, (struct sockaddr __user *)a1,
2424 (int __user *)a[2]);
2425 break;
2426 case SYS_SOCKETPAIR:
2427 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2428 break;
2429 case SYS_SEND:
2430 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2431 break;
2432 case SYS_SENDTO:
2433 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2434 (struct sockaddr __user *)a[4], a[5]);
2435 break;
2436 case SYS_RECV:
2437 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2438 break;
2439 case SYS_RECVFROM:
2440 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2441 (struct sockaddr __user *)a[4],
2442 (int __user *)a[5]);
2443 break;
2444 case SYS_SHUTDOWN:
2445 err = sys_shutdown(a0, a1);
2446 break;
2447 case SYS_SETSOCKOPT:
2448 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2449 break;
2450 case SYS_GETSOCKOPT:
2451 err =
2452 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2453 (int __user *)a[4]);
2454 break;
2455 case SYS_SENDMSG:
2456 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2457 break;
2458 case SYS_SENDMMSG:
2459 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2460 break;
2461 case SYS_RECVMSG:
2462 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2463 break;
2464 case SYS_RECVMMSG:
2465 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2466 (struct timespec __user *)a[4]);
2467 break;
2468 case SYS_ACCEPT4:
2469 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2470 (int __user *)a[2], a[3]);
2471 break;
2472 default:
2473 err = -EINVAL;
2474 break;
2475 }
2476 return err;
2477 }
2478
2479 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2480
2481 /**
2482 * sock_register - add a socket protocol handler
2483 * @ops: description of protocol
2484 *
2485 * This function is called by a protocol handler that wants to
2486 * advertise its address family, and have it linked into the
2487 * socket interface. The value ops->family corresponds to the
2488 * socket system call protocol family.
2489 */
2490 int sock_register(const struct net_proto_family *ops)
2491 {
2492 int err;
2493
2494 if (ops->family >= NPROTO) {
2495 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2496 return -ENOBUFS;
2497 }
2498
2499 spin_lock(&net_family_lock);
2500 if (rcu_dereference_protected(net_families[ops->family],
2501 lockdep_is_held(&net_family_lock)))
2502 err = -EEXIST;
2503 else {
2504 rcu_assign_pointer(net_families[ops->family], ops);
2505 err = 0;
2506 }
2507 spin_unlock(&net_family_lock);
2508
2509 pr_info("NET: Registered protocol family %d\n", ops->family);
2510 return err;
2511 }
2512 EXPORT_SYMBOL(sock_register);
2513
2514 /**
2515 * sock_unregister - remove a protocol handler
2516 * @family: protocol family to remove
2517 *
2518 * This function is called by a protocol handler that wants to
2519 * remove its address family, and have it unlinked from the
2520 * new socket creation.
2521 *
2522 * If protocol handler is a module, then it can use module reference
2523 * counts to protect against new references. If protocol handler is not
2524 * a module then it needs to provide its own protection in
2525 * the ops->create routine.
2526 */
2527 void sock_unregister(int family)
2528 {
2529 BUG_ON(family < 0 || family >= NPROTO);
2530
2531 spin_lock(&net_family_lock);
2532 RCU_INIT_POINTER(net_families[family], NULL);
2533 spin_unlock(&net_family_lock);
2534
2535 synchronize_rcu();
2536
2537 pr_info("NET: Unregistered protocol family %d\n", family);
2538 }
2539 EXPORT_SYMBOL(sock_unregister);
2540
2541 static int __init sock_init(void)
2542 {
2543 int err;
2544 /*
2545 * Initialize the network sysctl infrastructure.
2546 */
2547 err = net_sysctl_init();
2548 if (err)
2549 goto out;
2550
2551 /*
2552 * Initialize skbuff SLAB cache
2553 */
2554 skb_init();
2555
2556 /*
2557 * Initialize the protocols module.
2558 */
2559
2560 init_inodecache();
2561
2562 err = register_filesystem(&sock_fs_type);
2563 if (err)
2564 goto out_fs;
2565 sock_mnt = kern_mount(&sock_fs_type);
2566 if (IS_ERR(sock_mnt)) {
2567 err = PTR_ERR(sock_mnt);
2568 goto out_mount;
2569 }
2570
2571 /* The real protocol initialization is performed in later initcalls.
2572 */
2573
2574 #ifdef CONFIG_NETFILTER
2575 err = netfilter_init();
2576 if (err)
2577 goto out;
2578 #endif
2579
2580 ptp_classifier_init();
2581
2582 out:
2583 return err;
2584
2585 out_mount:
2586 unregister_filesystem(&sock_fs_type);
2587 out_fs:
2588 goto out;
2589 }
2590
2591 core_initcall(sock_init); /* early initcall */
2592
2593 #ifdef CONFIG_PROC_FS
2594 void socket_seq_show(struct seq_file *seq)
2595 {
2596 int cpu;
2597 int counter = 0;
2598
2599 for_each_possible_cpu(cpu)
2600 counter += per_cpu(sockets_in_use, cpu);
2601
2602 /* It can be negative, by the way. 8) */
2603 if (counter < 0)
2604 counter = 0;
2605
2606 seq_printf(seq, "sockets: used %d\n", counter);
2607 }
2608 #endif /* CONFIG_PROC_FS */
2609
2610 #ifdef CONFIG_COMPAT
2611 static int do_siocgstamp(struct net *net, struct socket *sock,
2612 unsigned int cmd, void __user *up)
2613 {
2614 mm_segment_t old_fs = get_fs();
2615 struct timeval ktv;
2616 int err;
2617
2618 set_fs(KERNEL_DS);
2619 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2620 set_fs(old_fs);
2621 if (!err)
2622 err = compat_put_timeval(&ktv, up);
2623
2624 return err;
2625 }
2626
2627 static int do_siocgstampns(struct net *net, struct socket *sock,
2628 unsigned int cmd, void __user *up)
2629 {
2630 mm_segment_t old_fs = get_fs();
2631 struct timespec kts;
2632 int err;
2633
2634 set_fs(KERNEL_DS);
2635 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2636 set_fs(old_fs);
2637 if (!err)
2638 err = compat_put_timespec(&kts, up);
2639
2640 return err;
2641 }
2642
2643 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2644 {
2645 struct ifreq __user *uifr;
2646 int err;
2647
2648 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2649 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2650 return -EFAULT;
2651
2652 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2653 if (err)
2654 return err;
2655
2656 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2657 return -EFAULT;
2658
2659 return 0;
2660 }
2661
2662 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2663 {
2664 struct compat_ifconf ifc32;
2665 struct ifconf ifc;
2666 struct ifconf __user *uifc;
2667 struct compat_ifreq __user *ifr32;
2668 struct ifreq __user *ifr;
2669 unsigned int i, j;
2670 int err;
2671
2672 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2673 return -EFAULT;
2674
2675 memset(&ifc, 0, sizeof(ifc));
2676 if (ifc32.ifcbuf == 0) {
2677 ifc32.ifc_len = 0;
2678 ifc.ifc_len = 0;
2679 ifc.ifc_req = NULL;
2680 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2681 } else {
2682 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2683 sizeof(struct ifreq);
2684 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2685 ifc.ifc_len = len;
2686 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2687 ifr32 = compat_ptr(ifc32.ifcbuf);
2688 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2689 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2690 return -EFAULT;
2691 ifr++;
2692 ifr32++;
2693 }
2694 }
2695 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2696 return -EFAULT;
2697
2698 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2699 if (err)
2700 return err;
2701
2702 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2703 return -EFAULT;
2704
2705 ifr = ifc.ifc_req;
2706 ifr32 = compat_ptr(ifc32.ifcbuf);
2707 for (i = 0, j = 0;
2708 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2709 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2710 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2711 return -EFAULT;
2712 ifr32++;
2713 ifr++;
2714 }
2715
2716 if (ifc32.ifcbuf == 0) {
2717 /* Translate from 64-bit structure multiple to
2718 * a 32-bit one.
2719 */
2720 i = ifc.ifc_len;
2721 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2722 ifc32.ifc_len = i;
2723 } else {
2724 ifc32.ifc_len = i;
2725 }
2726 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2727 return -EFAULT;
2728
2729 return 0;
2730 }
2731
2732 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2733 {
2734 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2735 bool convert_in = false, convert_out = false;
2736 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2737 struct ethtool_rxnfc __user *rxnfc;
2738 struct ifreq __user *ifr;
2739 u32 rule_cnt = 0, actual_rule_cnt;
2740 u32 ethcmd;
2741 u32 data;
2742 int ret;
2743
2744 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2745 return -EFAULT;
2746
2747 compat_rxnfc = compat_ptr(data);
2748
2749 if (get_user(ethcmd, &compat_rxnfc->cmd))
2750 return -EFAULT;
2751
2752 /* Most ethtool structures are defined without padding.
2753 * Unfortunately struct ethtool_rxnfc is an exception.
2754 */
2755 switch (ethcmd) {
2756 default:
2757 break;
2758 case ETHTOOL_GRXCLSRLALL:
2759 /* Buffer size is variable */
2760 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2761 return -EFAULT;
2762 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2763 return -ENOMEM;
2764 buf_size += rule_cnt * sizeof(u32);
2765 /* fall through */
2766 case ETHTOOL_GRXRINGS:
2767 case ETHTOOL_GRXCLSRLCNT:
2768 case ETHTOOL_GRXCLSRULE:
2769 case ETHTOOL_SRXCLSRLINS:
2770 convert_out = true;
2771 /* fall through */
2772 case ETHTOOL_SRXCLSRLDEL:
2773 buf_size += sizeof(struct ethtool_rxnfc);
2774 convert_in = true;
2775 break;
2776 }
2777
2778 ifr = compat_alloc_user_space(buf_size);
2779 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2780
2781 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2782 return -EFAULT;
2783
2784 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2785 &ifr->ifr_ifru.ifru_data))
2786 return -EFAULT;
2787
2788 if (convert_in) {
2789 /* We expect there to be holes between fs.m_ext and
2790 * fs.ring_cookie and at the end of fs, but nowhere else.
2791 */
2792 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2793 sizeof(compat_rxnfc->fs.m_ext) !=
2794 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2795 sizeof(rxnfc->fs.m_ext));
2796 BUILD_BUG_ON(
2797 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2798 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2799 offsetof(struct ethtool_rxnfc, fs.location) -
2800 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2801
2802 if (copy_in_user(rxnfc, compat_rxnfc,
2803 (void __user *)(&rxnfc->fs.m_ext + 1) -
2804 (void __user *)rxnfc) ||
2805 copy_in_user(&rxnfc->fs.ring_cookie,
2806 &compat_rxnfc->fs.ring_cookie,
2807 (void __user *)(&rxnfc->fs.location + 1) -
2808 (void __user *)&rxnfc->fs.ring_cookie) ||
2809 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2810 sizeof(rxnfc->rule_cnt)))
2811 return -EFAULT;
2812 }
2813
2814 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2815 if (ret)
2816 return ret;
2817
2818 if (convert_out) {
2819 if (copy_in_user(compat_rxnfc, rxnfc,
2820 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2821 (const void __user *)rxnfc) ||
2822 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2823 &rxnfc->fs.ring_cookie,
2824 (const void __user *)(&rxnfc->fs.location + 1) -
2825 (const void __user *)&rxnfc->fs.ring_cookie) ||
2826 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2827 sizeof(rxnfc->rule_cnt)))
2828 return -EFAULT;
2829
2830 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2831 /* As an optimisation, we only copy the actual
2832 * number of rules that the underlying
2833 * function returned. Since Mallory might
2834 * change the rule count in user memory, we
2835 * check that it is less than the rule count
2836 * originally given (as the user buffer size),
2837 * which has been range-checked.
2838 */
2839 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2840 return -EFAULT;
2841 if (actual_rule_cnt < rule_cnt)
2842 rule_cnt = actual_rule_cnt;
2843 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2844 &rxnfc->rule_locs[0],
2845 rule_cnt * sizeof(u32)))
2846 return -EFAULT;
2847 }
2848 }
2849
2850 return 0;
2851 }
2852
2853 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2854 {
2855 void __user *uptr;
2856 compat_uptr_t uptr32;
2857 struct ifreq __user *uifr;
2858
2859 uifr = compat_alloc_user_space(sizeof(*uifr));
2860 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2861 return -EFAULT;
2862
2863 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2864 return -EFAULT;
2865
2866 uptr = compat_ptr(uptr32);
2867
2868 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2869 return -EFAULT;
2870
2871 return dev_ioctl(net, SIOCWANDEV, uifr);
2872 }
2873
2874 static int bond_ioctl(struct net *net, unsigned int cmd,
2875 struct compat_ifreq __user *ifr32)
2876 {
2877 struct ifreq kifr;
2878 mm_segment_t old_fs;
2879 int err;
2880
2881 switch (cmd) {
2882 case SIOCBONDENSLAVE:
2883 case SIOCBONDRELEASE:
2884 case SIOCBONDSETHWADDR:
2885 case SIOCBONDCHANGEACTIVE:
2886 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2887 return -EFAULT;
2888
2889 old_fs = get_fs();
2890 set_fs(KERNEL_DS);
2891 err = dev_ioctl(net, cmd,
2892 (struct ifreq __user __force *) &kifr);
2893 set_fs(old_fs);
2894
2895 return err;
2896 default:
2897 return -ENOIOCTLCMD;
2898 }
2899 }
2900
2901 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2902 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2903 struct compat_ifreq __user *u_ifreq32)
2904 {
2905 struct ifreq __user *u_ifreq64;
2906 char tmp_buf[IFNAMSIZ];
2907 void __user *data64;
2908 u32 data32;
2909
2910 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2911 IFNAMSIZ))
2912 return -EFAULT;
2913 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2914 return -EFAULT;
2915 data64 = compat_ptr(data32);
2916
2917 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2918
2919 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2920 IFNAMSIZ))
2921 return -EFAULT;
2922 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2923 return -EFAULT;
2924
2925 return dev_ioctl(net, cmd, u_ifreq64);
2926 }
2927
2928 static int dev_ifsioc(struct net *net, struct socket *sock,
2929 unsigned int cmd, struct compat_ifreq __user *uifr32)
2930 {
2931 struct ifreq __user *uifr;
2932 int err;
2933
2934 uifr = compat_alloc_user_space(sizeof(*uifr));
2935 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2936 return -EFAULT;
2937
2938 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2939
2940 if (!err) {
2941 switch (cmd) {
2942 case SIOCGIFFLAGS:
2943 case SIOCGIFMETRIC:
2944 case SIOCGIFMTU:
2945 case SIOCGIFMEM:
2946 case SIOCGIFHWADDR:
2947 case SIOCGIFINDEX:
2948 case SIOCGIFADDR:
2949 case SIOCGIFBRDADDR:
2950 case SIOCGIFDSTADDR:
2951 case SIOCGIFNETMASK:
2952 case SIOCGIFPFLAGS:
2953 case SIOCGIFTXQLEN:
2954 case SIOCGMIIPHY:
2955 case SIOCGMIIREG:
2956 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2957 err = -EFAULT;
2958 break;
2959 }
2960 }
2961 return err;
2962 }
2963
2964 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2965 struct compat_ifreq __user *uifr32)
2966 {
2967 struct ifreq ifr;
2968 struct compat_ifmap __user *uifmap32;
2969 mm_segment_t old_fs;
2970 int err;
2971
2972 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2973 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2974 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2975 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2976 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2977 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2978 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2979 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2980 if (err)
2981 return -EFAULT;
2982
2983 old_fs = get_fs();
2984 set_fs(KERNEL_DS);
2985 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2986 set_fs(old_fs);
2987
2988 if (cmd == SIOCGIFMAP && !err) {
2989 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2990 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2991 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2992 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2993 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2994 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2995 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2996 if (err)
2997 err = -EFAULT;
2998 }
2999 return err;
3000 }
3001
3002 struct rtentry32 {
3003 u32 rt_pad1;
3004 struct sockaddr rt_dst; /* target address */
3005 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3006 struct sockaddr rt_genmask; /* target network mask (IP) */
3007 unsigned short rt_flags;
3008 short rt_pad2;
3009 u32 rt_pad3;
3010 unsigned char rt_tos;
3011 unsigned char rt_class;
3012 short rt_pad4;
3013 short rt_metric; /* +1 for binary compatibility! */
3014 /* char * */ u32 rt_dev; /* forcing the device at add */
3015 u32 rt_mtu; /* per route MTU/Window */
3016 u32 rt_window; /* Window clamping */
3017 unsigned short rt_irtt; /* Initial RTT */
3018 };
3019
3020 struct in6_rtmsg32 {
3021 struct in6_addr rtmsg_dst;
3022 struct in6_addr rtmsg_src;
3023 struct in6_addr rtmsg_gateway;
3024 u32 rtmsg_type;
3025 u16 rtmsg_dst_len;
3026 u16 rtmsg_src_len;
3027 u32 rtmsg_metric;
3028 u32 rtmsg_info;
3029 u32 rtmsg_flags;
3030 s32 rtmsg_ifindex;
3031 };
3032
3033 static int routing_ioctl(struct net *net, struct socket *sock,
3034 unsigned int cmd, void __user *argp)
3035 {
3036 int ret;
3037 void *r = NULL;
3038 struct in6_rtmsg r6;
3039 struct rtentry r4;
3040 char devname[16];
3041 u32 rtdev;
3042 mm_segment_t old_fs = get_fs();
3043
3044 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3045 struct in6_rtmsg32 __user *ur6 = argp;
3046 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3047 3 * sizeof(struct in6_addr));
3048 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3049 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3050 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3051 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3052 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3053 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3054 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3055
3056 r = (void *) &r6;
3057 } else { /* ipv4 */
3058 struct rtentry32 __user *ur4 = argp;
3059 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3060 3 * sizeof(struct sockaddr));
3061 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3062 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3063 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3064 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3065 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3066 ret |= get_user(rtdev, &(ur4->rt_dev));
3067 if (rtdev) {
3068 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3069 r4.rt_dev = (char __user __force *)devname;
3070 devname[15] = 0;
3071 } else
3072 r4.rt_dev = NULL;
3073
3074 r = (void *) &r4;
3075 }
3076
3077 if (ret) {
3078 ret = -EFAULT;
3079 goto out;
3080 }
3081
3082 set_fs(KERNEL_DS);
3083 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3084 set_fs(old_fs);
3085
3086 out:
3087 return ret;
3088 }
3089
3090 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3091 * for some operations; this forces use of the newer bridge-utils that
3092 * use compatible ioctls
3093 */
3094 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3095 {
3096 compat_ulong_t tmp;
3097
3098 if (get_user(tmp, argp))
3099 return -EFAULT;
3100 if (tmp == BRCTL_GET_VERSION)
3101 return BRCTL_VERSION + 1;
3102 return -EINVAL;
3103 }
3104
3105 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3106 unsigned int cmd, unsigned long arg)
3107 {
3108 void __user *argp = compat_ptr(arg);
3109 struct sock *sk = sock->sk;
3110 struct net *net = sock_net(sk);
3111
3112 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3113 return compat_ifr_data_ioctl(net, cmd, argp);
3114
3115 switch (cmd) {
3116 case SIOCSIFBR:
3117 case SIOCGIFBR:
3118 return old_bridge_ioctl(argp);
3119 case SIOCGIFNAME:
3120 return dev_ifname32(net, argp);
3121 case SIOCGIFCONF:
3122 return dev_ifconf(net, argp);
3123 case SIOCETHTOOL:
3124 return ethtool_ioctl(net, argp);
3125 case SIOCWANDEV:
3126 return compat_siocwandev(net, argp);
3127 case SIOCGIFMAP:
3128 case SIOCSIFMAP:
3129 return compat_sioc_ifmap(net, cmd, argp);
3130 case SIOCBONDENSLAVE:
3131 case SIOCBONDRELEASE:
3132 case SIOCBONDSETHWADDR:
3133 case SIOCBONDCHANGEACTIVE:
3134 return bond_ioctl(net, cmd, argp);
3135 case SIOCADDRT:
3136 case SIOCDELRT:
3137 return routing_ioctl(net, sock, cmd, argp);
3138 case SIOCGSTAMP:
3139 return do_siocgstamp(net, sock, cmd, argp);
3140 case SIOCGSTAMPNS:
3141 return do_siocgstampns(net, sock, cmd, argp);
3142 case SIOCBONDSLAVEINFOQUERY:
3143 case SIOCBONDINFOQUERY:
3144 case SIOCSHWTSTAMP:
3145 case SIOCGHWTSTAMP:
3146 return compat_ifr_data_ioctl(net, cmd, argp);
3147
3148 case FIOSETOWN:
3149 case SIOCSPGRP:
3150 case FIOGETOWN:
3151 case SIOCGPGRP:
3152 case SIOCBRADDBR:
3153 case SIOCBRDELBR:
3154 case SIOCGIFVLAN:
3155 case SIOCSIFVLAN:
3156 case SIOCADDDLCI:
3157 case SIOCDELDLCI:
3158 case SIOCGSKNS:
3159 return sock_ioctl(file, cmd, arg);
3160
3161 case SIOCGIFFLAGS:
3162 case SIOCSIFFLAGS:
3163 case SIOCGIFMETRIC:
3164 case SIOCSIFMETRIC:
3165 case SIOCGIFMTU:
3166 case SIOCSIFMTU:
3167 case SIOCGIFMEM:
3168 case SIOCSIFMEM:
3169 case SIOCGIFHWADDR:
3170 case SIOCSIFHWADDR:
3171 case SIOCADDMULTI:
3172 case SIOCDELMULTI:
3173 case SIOCGIFINDEX:
3174 case SIOCGIFADDR:
3175 case SIOCSIFADDR:
3176 case SIOCSIFHWBROADCAST:
3177 case SIOCDIFADDR:
3178 case SIOCGIFBRDADDR:
3179 case SIOCSIFBRDADDR:
3180 case SIOCGIFDSTADDR:
3181 case SIOCSIFDSTADDR:
3182 case SIOCGIFNETMASK:
3183 case SIOCSIFNETMASK:
3184 case SIOCSIFPFLAGS:
3185 case SIOCGIFPFLAGS:
3186 case SIOCGIFTXQLEN:
3187 case SIOCSIFTXQLEN:
3188 case SIOCBRADDIF:
3189 case SIOCBRDELIF:
3190 case SIOCSIFNAME:
3191 case SIOCGMIIPHY:
3192 case SIOCGMIIREG:
3193 case SIOCSMIIREG:
3194 return dev_ifsioc(net, sock, cmd, argp);
3195
3196 case SIOCSARP:
3197 case SIOCGARP:
3198 case SIOCDARP:
3199 case SIOCATMARK:
3200 return sock_do_ioctl(net, sock, cmd, arg);
3201 }
3202
3203 return -ENOIOCTLCMD;
3204 }
3205
3206 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3207 unsigned long arg)
3208 {
3209 struct socket *sock = file->private_data;
3210 int ret = -ENOIOCTLCMD;
3211 struct sock *sk;
3212 struct net *net;
3213
3214 sk = sock->sk;
3215 net = sock_net(sk);
3216
3217 if (sock->ops->compat_ioctl)
3218 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3219
3220 if (ret == -ENOIOCTLCMD &&
3221 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3222 ret = compat_wext_handle_ioctl(net, cmd, arg);
3223
3224 if (ret == -ENOIOCTLCMD)
3225 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3226
3227 return ret;
3228 }
3229 #endif
3230
3231 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3232 {
3233 return sock->ops->bind(sock, addr, addrlen);
3234 }
3235 EXPORT_SYMBOL(kernel_bind);
3236
3237 int kernel_listen(struct socket *sock, int backlog)
3238 {
3239 return sock->ops->listen(sock, backlog);
3240 }
3241 EXPORT_SYMBOL(kernel_listen);
3242
3243 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3244 {
3245 struct sock *sk = sock->sk;
3246 int err;
3247
3248 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3249 newsock);
3250 if (err < 0)
3251 goto done;
3252
3253 err = sock->ops->accept(sock, *newsock, flags, true);
3254 if (err < 0) {
3255 sock_release(*newsock);
3256 *newsock = NULL;
3257 goto done;
3258 }
3259
3260 (*newsock)->ops = sock->ops;
3261 __module_get((*newsock)->ops->owner);
3262
3263 done:
3264 return err;
3265 }
3266 EXPORT_SYMBOL(kernel_accept);
3267
3268 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3269 int flags)
3270 {
3271 return sock->ops->connect(sock, addr, addrlen, flags);
3272 }
3273 EXPORT_SYMBOL(kernel_connect);
3274
3275 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3276 int *addrlen)
3277 {
3278 return sock->ops->getname(sock, addr, addrlen, 0);
3279 }
3280 EXPORT_SYMBOL(kernel_getsockname);
3281
3282 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3283 int *addrlen)
3284 {
3285 return sock->ops->getname(sock, addr, addrlen, 1);
3286 }
3287 EXPORT_SYMBOL(kernel_getpeername);
3288
3289 int kernel_getsockopt(struct socket *sock, int level, int optname,
3290 char *optval, int *optlen)
3291 {
3292 mm_segment_t oldfs = get_fs();
3293 char __user *uoptval;
3294 int __user *uoptlen;
3295 int err;
3296
3297 uoptval = (char __user __force *) optval;
3298 uoptlen = (int __user __force *) optlen;
3299
3300 set_fs(KERNEL_DS);
3301 if (level == SOL_SOCKET)
3302 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3303 else
3304 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3305 uoptlen);
3306 set_fs(oldfs);
3307 return err;
3308 }
3309 EXPORT_SYMBOL(kernel_getsockopt);
3310
3311 int kernel_setsockopt(struct socket *sock, int level, int optname,
3312 char *optval, unsigned int optlen)
3313 {
3314 mm_segment_t oldfs = get_fs();
3315 char __user *uoptval;
3316 int err;
3317
3318 uoptval = (char __user __force *) optval;
3319
3320 set_fs(KERNEL_DS);
3321 if (level == SOL_SOCKET)
3322 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3323 else
3324 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3325 optlen);
3326 set_fs(oldfs);
3327 return err;
3328 }
3329 EXPORT_SYMBOL(kernel_setsockopt);
3330
3331 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3332 size_t size, int flags)
3333 {
3334 if (sock->ops->sendpage)
3335 return sock->ops->sendpage(sock, page, offset, size, flags);
3336
3337 return sock_no_sendpage(sock, page, offset, size, flags);
3338 }
3339 EXPORT_SYMBOL(kernel_sendpage);
3340
3341 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3342 {
3343 mm_segment_t oldfs = get_fs();
3344 int err;
3345
3346 set_fs(KERNEL_DS);
3347 err = sock->ops->ioctl(sock, cmd, arg);
3348 set_fs(oldfs);
3349
3350 return err;
3351 }
3352 EXPORT_SYMBOL(kernel_sock_ioctl);
3353
3354 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3355 {
3356 return sock->ops->shutdown(sock, how);
3357 }
3358 EXPORT_SYMBOL(kernel_sock_shutdown);
3359
3360 /* This routine returns the IP overhead imposed by a socket i.e.
3361 * the length of the underlying IP header, depending on whether
3362 * this is an IPv4 or IPv6 socket and the length from IP options turned
3363 * on at the socket.
3364 */
3365 u32 kernel_sock_ip_overhead(struct sock *sk)
3366 {
3367 struct inet_sock *inet;
3368 struct ip_options_rcu *opt;
3369 u32 overhead = 0;
3370 bool owned_by_user;
3371 #if IS_ENABLED(CONFIG_IPV6)
3372 struct ipv6_pinfo *np;
3373 struct ipv6_txoptions *optv6 = NULL;
3374 #endif /* IS_ENABLED(CONFIG_IPV6) */
3375
3376 if (!sk)
3377 return overhead;
3378
3379 owned_by_user = sock_owned_by_user(sk);
3380 switch (sk->sk_family) {
3381 case AF_INET:
3382 inet = inet_sk(sk);
3383 overhead += sizeof(struct iphdr);
3384 opt = rcu_dereference_protected(inet->inet_opt,
3385 owned_by_user);
3386 if (opt)
3387 overhead += opt->opt.optlen;
3388 return overhead;
3389 #if IS_ENABLED(CONFIG_IPV6)
3390 case AF_INET6:
3391 np = inet6_sk(sk);
3392 overhead += sizeof(struct ipv6hdr);
3393 if (np)
3394 optv6 = rcu_dereference_protected(np->opt,
3395 owned_by_user);
3396 if (optv6)
3397 overhead += (optv6->opt_flen + optv6->opt_nflen);
3398 return overhead;
3399 #endif /* IS_ENABLED(CONFIG_IPV6) */
3400 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3401 return overhead;
3402 }
3403 }
3404 EXPORT_SYMBOL(kernel_sock_ip_overhead);