]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/socket.c
cpufreq: CPPC: Don't set transition_latency
[mirror_ubuntu-bionic-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156 };
157
158 /*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165 /*
166 * Statistics counters of the socket lists
167 */
168
169 static DEFINE_PER_CPU(int, sockets_in_use);
170
171 /*
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
175 */
176
177 /**
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
182 *
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
186 */
187
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
197 }
198
199 /**
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
205 *
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
214 */
215
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
218 {
219 int err;
220 int len;
221
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
235 }
236 /*
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
239 */
240 return __put_user(klen, ulen);
241 }
242
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
249
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
257 }
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 wq->flags = 0;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
262
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
268
269 return &ei->vfs_inode;
270 }
271
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
276
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
281 }
282
283 static void init_once(void *foo)
284 {
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
286
287 inode_init_once(&ei->vfs_inode);
288 }
289
290 static void init_inodecache(void)
291 {
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
294 0,
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 init_once);
299 BUG_ON(sock_inode_cachep == NULL);
300 }
301
302 static const struct super_operations sockfs_ops = {
303 .alloc_inode = sock_alloc_inode,
304 .destroy_inode = sock_destroy_inode,
305 .statfs = simple_statfs,
306 };
307
308 /*
309 * sockfs_dname() is called from d_path().
310 */
311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
312 {
313 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
314 d_inode(dentry)->i_ino);
315 }
316
317 static const struct dentry_operations sockfs_dentry_operations = {
318 .d_dname = sockfs_dname,
319 };
320
321 static int sockfs_xattr_get(const struct xattr_handler *handler,
322 struct dentry *dentry, struct inode *inode,
323 const char *suffix, void *value, size_t size)
324 {
325 if (value) {
326 if (dentry->d_name.len + 1 > size)
327 return -ERANGE;
328 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
329 }
330 return dentry->d_name.len + 1;
331 }
332
333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
336
337 static const struct xattr_handler sockfs_xattr_handler = {
338 .name = XATTR_NAME_SOCKPROTONAME,
339 .get = sockfs_xattr_get,
340 };
341
342 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
343 struct dentry *dentry, struct inode *inode,
344 const char *suffix, const void *value,
345 size_t size, int flags)
346 {
347 /* Handled by LSM. */
348 return -EAGAIN;
349 }
350
351 static const struct xattr_handler sockfs_security_xattr_handler = {
352 .prefix = XATTR_SECURITY_PREFIX,
353 .set = sockfs_security_xattr_set,
354 };
355
356 static const struct xattr_handler *sockfs_xattr_handlers[] = {
357 &sockfs_xattr_handler,
358 &sockfs_security_xattr_handler,
359 NULL
360 };
361
362 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
363 int flags, const char *dev_name, void *data)
364 {
365 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
366 sockfs_xattr_handlers,
367 &sockfs_dentry_operations, SOCKFS_MAGIC);
368 }
369
370 static struct vfsmount *sock_mnt __read_mostly;
371
372 static struct file_system_type sock_fs_type = {
373 .name = "sockfs",
374 .mount = sockfs_mount,
375 .kill_sb = kill_anon_super,
376 };
377
378 /*
379 * Obtains the first available file descriptor and sets it up for use.
380 *
381 * These functions create file structures and maps them to fd space
382 * of the current process. On success it returns file descriptor
383 * and file struct implicitly stored in sock->file.
384 * Note that another thread may close file descriptor before we return
385 * from this function. We use the fact that now we do not refer
386 * to socket after mapping. If one day we will need it, this
387 * function will increment ref. count on file by 1.
388 *
389 * In any case returned fd MAY BE not valid!
390 * This race condition is unavoidable
391 * with shared fd spaces, we cannot solve it inside kernel,
392 * but we take care of internal coherence yet.
393 */
394
395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
396 {
397 struct qstr name = { .name = "" };
398 struct path path;
399 struct file *file;
400
401 if (dname) {
402 name.name = dname;
403 name.len = strlen(name.name);
404 } else if (sock->sk) {
405 name.name = sock->sk->sk_prot_creator->name;
406 name.len = strlen(name.name);
407 }
408 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
409 if (unlikely(!path.dentry)) {
410 sock_release(sock);
411 return ERR_PTR(-ENOMEM);
412 }
413 path.mnt = mntget(sock_mnt);
414
415 d_instantiate(path.dentry, SOCK_INODE(sock));
416
417 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
418 &socket_file_ops);
419 if (IS_ERR(file)) {
420 /* drop dentry, keep inode for a bit */
421 ihold(d_inode(path.dentry));
422 path_put(&path);
423 /* ... and now kill it properly */
424 sock_release(sock);
425 return file;
426 }
427
428 sock->file = file;
429 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
430 file->private_data = sock;
431 return file;
432 }
433 EXPORT_SYMBOL(sock_alloc_file);
434
435 static int sock_map_fd(struct socket *sock, int flags)
436 {
437 struct file *newfile;
438 int fd = get_unused_fd_flags(flags);
439 if (unlikely(fd < 0)) {
440 sock_release(sock);
441 return fd;
442 }
443
444 newfile = sock_alloc_file(sock, flags, NULL);
445 if (likely(!IS_ERR(newfile))) {
446 fd_install(fd, newfile);
447 return fd;
448 }
449
450 put_unused_fd(fd);
451 return PTR_ERR(newfile);
452 }
453
454 struct socket *sock_from_file(struct file *file, int *err)
455 {
456 if (file->f_op == &socket_file_ops)
457 return file->private_data; /* set in sock_map_fd */
458
459 *err = -ENOTSOCK;
460 return NULL;
461 }
462 EXPORT_SYMBOL(sock_from_file);
463
464 /**
465 * sockfd_lookup - Go from a file number to its socket slot
466 * @fd: file handle
467 * @err: pointer to an error code return
468 *
469 * The file handle passed in is locked and the socket it is bound
470 * to is returned. If an error occurs the err pointer is overwritten
471 * with a negative errno code and NULL is returned. The function checks
472 * for both invalid handles and passing a handle which is not a socket.
473 *
474 * On a success the socket object pointer is returned.
475 */
476
477 struct socket *sockfd_lookup(int fd, int *err)
478 {
479 struct file *file;
480 struct socket *sock;
481
482 file = fget(fd);
483 if (!file) {
484 *err = -EBADF;
485 return NULL;
486 }
487
488 sock = sock_from_file(file, err);
489 if (!sock)
490 fput(file);
491 return sock;
492 }
493 EXPORT_SYMBOL(sockfd_lookup);
494
495 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
496 {
497 struct fd f = fdget(fd);
498 struct socket *sock;
499
500 *err = -EBADF;
501 if (f.file) {
502 sock = sock_from_file(f.file, err);
503 if (likely(sock)) {
504 *fput_needed = f.flags;
505 return sock;
506 }
507 fdput(f);
508 }
509 return NULL;
510 }
511
512 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
513 size_t size)
514 {
515 ssize_t len;
516 ssize_t used = 0;
517
518 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
519 if (len < 0)
520 return len;
521 used += len;
522 if (buffer) {
523 if (size < used)
524 return -ERANGE;
525 buffer += len;
526 }
527
528 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
529 used += len;
530 if (buffer) {
531 if (size < used)
532 return -ERANGE;
533 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
534 buffer += len;
535 }
536
537 return used;
538 }
539
540 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
541 {
542 int err = simple_setattr(dentry, iattr);
543
544 if (!err && (iattr->ia_valid & ATTR_UID)) {
545 struct socket *sock = SOCKET_I(d_inode(dentry));
546
547 if (sock->sk)
548 sock->sk->sk_uid = iattr->ia_uid;
549 else
550 err = -ENOENT;
551 }
552
553 return err;
554 }
555
556 static const struct inode_operations sockfs_inode_ops = {
557 .listxattr = sockfs_listxattr,
558 .setattr = sockfs_setattr,
559 };
560
561 /**
562 * sock_alloc - allocate a socket
563 *
564 * Allocate a new inode and socket object. The two are bound together
565 * and initialised. The socket is then returned. If we are out of inodes
566 * NULL is returned.
567 */
568
569 struct socket *sock_alloc(void)
570 {
571 struct inode *inode;
572 struct socket *sock;
573
574 inode = new_inode_pseudo(sock_mnt->mnt_sb);
575 if (!inode)
576 return NULL;
577
578 sock = SOCKET_I(inode);
579
580 inode->i_ino = get_next_ino();
581 inode->i_mode = S_IFSOCK | S_IRWXUGO;
582 inode->i_uid = current_fsuid();
583 inode->i_gid = current_fsgid();
584 inode->i_op = &sockfs_inode_ops;
585
586 this_cpu_add(sockets_in_use, 1);
587 return sock;
588 }
589 EXPORT_SYMBOL(sock_alloc);
590
591 /**
592 * sock_release - close a socket
593 * @sock: socket to close
594 *
595 * The socket is released from the protocol stack if it has a release
596 * callback, and the inode is then released if the socket is bound to
597 * an inode not a file.
598 */
599
600 static void __sock_release(struct socket *sock, struct inode *inode)
601 {
602 if (sock->ops) {
603 struct module *owner = sock->ops->owner;
604
605 if (inode)
606 inode_lock(inode);
607 sock->ops->release(sock);
608 if (inode)
609 inode_unlock(inode);
610 sock->ops = NULL;
611 module_put(owner);
612 }
613
614 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
615 pr_err("%s: fasync list not empty!\n", __func__);
616
617 this_cpu_sub(sockets_in_use, 1);
618 if (!sock->file) {
619 iput(SOCK_INODE(sock));
620 return;
621 }
622 sock->file = NULL;
623 }
624
625 void sock_release(struct socket *sock)
626 {
627 __sock_release(sock, NULL);
628 }
629 EXPORT_SYMBOL(sock_release);
630
631 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
632 {
633 u8 flags = *tx_flags;
634
635 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
636 flags |= SKBTX_HW_TSTAMP;
637
638 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
639 flags |= SKBTX_SW_TSTAMP;
640
641 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
642 flags |= SKBTX_SCHED_TSTAMP;
643
644 *tx_flags = flags;
645 }
646 EXPORT_SYMBOL(__sock_tx_timestamp);
647
648 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
649 {
650 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
651 BUG_ON(ret == -EIOCBQUEUED);
652 return ret;
653 }
654
655 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
656 {
657 int err = security_socket_sendmsg(sock, msg,
658 msg_data_left(msg));
659
660 return err ?: sock_sendmsg_nosec(sock, msg);
661 }
662 EXPORT_SYMBOL(sock_sendmsg);
663
664 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
665 struct kvec *vec, size_t num, size_t size)
666 {
667 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
668 return sock_sendmsg(sock, msg);
669 }
670 EXPORT_SYMBOL(kernel_sendmsg);
671
672 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
673 struct kvec *vec, size_t num, size_t size)
674 {
675 struct socket *sock = sk->sk_socket;
676
677 if (!sock->ops->sendmsg_locked)
678 return sock_no_sendmsg_locked(sk, msg, size);
679
680 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
681
682 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
683 }
684 EXPORT_SYMBOL(kernel_sendmsg_locked);
685
686 static bool skb_is_err_queue(const struct sk_buff *skb)
687 {
688 /* pkt_type of skbs enqueued on the error queue are set to
689 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
690 * in recvmsg, since skbs received on a local socket will never
691 * have a pkt_type of PACKET_OUTGOING.
692 */
693 return skb->pkt_type == PACKET_OUTGOING;
694 }
695
696 /* On transmit, software and hardware timestamps are returned independently.
697 * As the two skb clones share the hardware timestamp, which may be updated
698 * before the software timestamp is received, a hardware TX timestamp may be
699 * returned only if there is no software TX timestamp. Ignore false software
700 * timestamps, which may be made in the __sock_recv_timestamp() call when the
701 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
702 * hardware timestamp.
703 */
704 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
705 {
706 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
707 }
708
709 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
710 {
711 struct scm_ts_pktinfo ts_pktinfo;
712 struct net_device *orig_dev;
713
714 if (!skb_mac_header_was_set(skb))
715 return;
716
717 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
718
719 rcu_read_lock();
720 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
721 if (orig_dev)
722 ts_pktinfo.if_index = orig_dev->ifindex;
723 rcu_read_unlock();
724
725 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
726 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
727 sizeof(ts_pktinfo), &ts_pktinfo);
728 }
729
730 /*
731 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
732 */
733 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
734 struct sk_buff *skb)
735 {
736 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
737 struct scm_timestamping tss;
738 int empty = 1, false_tstamp = 0;
739 struct skb_shared_hwtstamps *shhwtstamps =
740 skb_hwtstamps(skb);
741
742 /* Race occurred between timestamp enabling and packet
743 receiving. Fill in the current time for now. */
744 if (need_software_tstamp && skb->tstamp == 0) {
745 __net_timestamp(skb);
746 false_tstamp = 1;
747 }
748
749 if (need_software_tstamp) {
750 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
751 struct timeval tv;
752 skb_get_timestamp(skb, &tv);
753 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
754 sizeof(tv), &tv);
755 } else {
756 struct timespec ts;
757 skb_get_timestampns(skb, &ts);
758 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
759 sizeof(ts), &ts);
760 }
761 }
762
763 memset(&tss, 0, sizeof(tss));
764 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
765 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
766 empty = 0;
767 if (shhwtstamps &&
768 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
769 !skb_is_swtx_tstamp(skb, false_tstamp) &&
770 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
771 empty = 0;
772 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
773 !skb_is_err_queue(skb))
774 put_ts_pktinfo(msg, skb);
775 }
776 if (!empty) {
777 put_cmsg(msg, SOL_SOCKET,
778 SCM_TIMESTAMPING, sizeof(tss), &tss);
779
780 if (skb_is_err_queue(skb) && skb->len &&
781 SKB_EXT_ERR(skb)->opt_stats)
782 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
783 skb->len, skb->data);
784 }
785 }
786 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
787
788 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
789 struct sk_buff *skb)
790 {
791 int ack;
792
793 if (!sock_flag(sk, SOCK_WIFI_STATUS))
794 return;
795 if (!skb->wifi_acked_valid)
796 return;
797
798 ack = skb->wifi_acked;
799
800 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
801 }
802 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
803
804 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
805 struct sk_buff *skb)
806 {
807 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
808 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
809 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
810 }
811
812 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
813 struct sk_buff *skb)
814 {
815 sock_recv_timestamp(msg, sk, skb);
816 sock_recv_drops(msg, sk, skb);
817 }
818 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
819
820 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
821 int flags)
822 {
823 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
824 }
825
826 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
827 {
828 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
829
830 return err ?: sock_recvmsg_nosec(sock, msg, flags);
831 }
832 EXPORT_SYMBOL(sock_recvmsg);
833
834 /**
835 * kernel_recvmsg - Receive a message from a socket (kernel space)
836 * @sock: The socket to receive the message from
837 * @msg: Received message
838 * @vec: Input s/g array for message data
839 * @num: Size of input s/g array
840 * @size: Number of bytes to read
841 * @flags: Message flags (MSG_DONTWAIT, etc...)
842 *
843 * On return the msg structure contains the scatter/gather array passed in the
844 * vec argument. The array is modified so that it consists of the unfilled
845 * portion of the original array.
846 *
847 * The returned value is the total number of bytes received, or an error.
848 */
849 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
850 struct kvec *vec, size_t num, size_t size, int flags)
851 {
852 mm_segment_t oldfs = get_fs();
853 int result;
854
855 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
856 set_fs(KERNEL_DS);
857 result = sock_recvmsg(sock, msg, flags);
858 set_fs(oldfs);
859 return result;
860 }
861 EXPORT_SYMBOL(kernel_recvmsg);
862
863 static ssize_t sock_sendpage(struct file *file, struct page *page,
864 int offset, size_t size, loff_t *ppos, int more)
865 {
866 struct socket *sock;
867 int flags;
868
869 sock = file->private_data;
870
871 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
872 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
873 flags |= more;
874
875 return kernel_sendpage(sock, page, offset, size, flags);
876 }
877
878 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
879 struct pipe_inode_info *pipe, size_t len,
880 unsigned int flags)
881 {
882 struct socket *sock = file->private_data;
883
884 if (unlikely(!sock->ops->splice_read))
885 return -EINVAL;
886
887 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
888 }
889
890 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
891 {
892 struct file *file = iocb->ki_filp;
893 struct socket *sock = file->private_data;
894 struct msghdr msg = {.msg_iter = *to,
895 .msg_iocb = iocb};
896 ssize_t res;
897
898 if (file->f_flags & O_NONBLOCK)
899 msg.msg_flags = MSG_DONTWAIT;
900
901 if (iocb->ki_pos != 0)
902 return -ESPIPE;
903
904 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
905 return 0;
906
907 res = sock_recvmsg(sock, &msg, msg.msg_flags);
908 *to = msg.msg_iter;
909 return res;
910 }
911
912 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
913 {
914 struct file *file = iocb->ki_filp;
915 struct socket *sock = file->private_data;
916 struct msghdr msg = {.msg_iter = *from,
917 .msg_iocb = iocb};
918 ssize_t res;
919
920 if (iocb->ki_pos != 0)
921 return -ESPIPE;
922
923 if (file->f_flags & O_NONBLOCK)
924 msg.msg_flags = MSG_DONTWAIT;
925
926 if (sock->type == SOCK_SEQPACKET)
927 msg.msg_flags |= MSG_EOR;
928
929 res = sock_sendmsg(sock, &msg);
930 *from = msg.msg_iter;
931 return res;
932 }
933
934 /*
935 * Atomic setting of ioctl hooks to avoid race
936 * with module unload.
937 */
938
939 static DEFINE_MUTEX(br_ioctl_mutex);
940 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
941
942 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
943 {
944 mutex_lock(&br_ioctl_mutex);
945 br_ioctl_hook = hook;
946 mutex_unlock(&br_ioctl_mutex);
947 }
948 EXPORT_SYMBOL(brioctl_set);
949
950 static DEFINE_MUTEX(vlan_ioctl_mutex);
951 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
952
953 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
954 {
955 mutex_lock(&vlan_ioctl_mutex);
956 vlan_ioctl_hook = hook;
957 mutex_unlock(&vlan_ioctl_mutex);
958 }
959 EXPORT_SYMBOL(vlan_ioctl_set);
960
961 static DEFINE_MUTEX(dlci_ioctl_mutex);
962 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
963
964 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
965 {
966 mutex_lock(&dlci_ioctl_mutex);
967 dlci_ioctl_hook = hook;
968 mutex_unlock(&dlci_ioctl_mutex);
969 }
970 EXPORT_SYMBOL(dlci_ioctl_set);
971
972 static long sock_do_ioctl(struct net *net, struct socket *sock,
973 unsigned int cmd, unsigned long arg)
974 {
975 int err;
976 void __user *argp = (void __user *)arg;
977
978 err = sock->ops->ioctl(sock, cmd, arg);
979
980 /*
981 * If this ioctl is unknown try to hand it down
982 * to the NIC driver.
983 */
984 if (err == -ENOIOCTLCMD)
985 err = dev_ioctl(net, cmd, argp);
986
987 return err;
988 }
989
990 /*
991 * With an ioctl, arg may well be a user mode pointer, but we don't know
992 * what to do with it - that's up to the protocol still.
993 */
994
995 static struct ns_common *get_net_ns(struct ns_common *ns)
996 {
997 return &get_net(container_of(ns, struct net, ns))->ns;
998 }
999
1000 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1001 {
1002 struct socket *sock;
1003 struct sock *sk;
1004 void __user *argp = (void __user *)arg;
1005 int pid, err;
1006 struct net *net;
1007
1008 sock = file->private_data;
1009 sk = sock->sk;
1010 net = sock_net(sk);
1011 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1012 err = dev_ioctl(net, cmd, argp);
1013 } else
1014 #ifdef CONFIG_WEXT_CORE
1015 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1016 err = dev_ioctl(net, cmd, argp);
1017 } else
1018 #endif
1019 switch (cmd) {
1020 case FIOSETOWN:
1021 case SIOCSPGRP:
1022 err = -EFAULT;
1023 if (get_user(pid, (int __user *)argp))
1024 break;
1025 err = f_setown(sock->file, pid, 1);
1026 break;
1027 case FIOGETOWN:
1028 case SIOCGPGRP:
1029 err = put_user(f_getown(sock->file),
1030 (int __user *)argp);
1031 break;
1032 case SIOCGIFBR:
1033 case SIOCSIFBR:
1034 case SIOCBRADDBR:
1035 case SIOCBRDELBR:
1036 err = -ENOPKG;
1037 if (!br_ioctl_hook)
1038 request_module("bridge");
1039
1040 mutex_lock(&br_ioctl_mutex);
1041 if (br_ioctl_hook)
1042 err = br_ioctl_hook(net, cmd, argp);
1043 mutex_unlock(&br_ioctl_mutex);
1044 break;
1045 case SIOCGIFVLAN:
1046 case SIOCSIFVLAN:
1047 err = -ENOPKG;
1048 if (!vlan_ioctl_hook)
1049 request_module("8021q");
1050
1051 mutex_lock(&vlan_ioctl_mutex);
1052 if (vlan_ioctl_hook)
1053 err = vlan_ioctl_hook(net, argp);
1054 mutex_unlock(&vlan_ioctl_mutex);
1055 break;
1056 case SIOCADDDLCI:
1057 case SIOCDELDLCI:
1058 err = -ENOPKG;
1059 if (!dlci_ioctl_hook)
1060 request_module("dlci");
1061
1062 mutex_lock(&dlci_ioctl_mutex);
1063 if (dlci_ioctl_hook)
1064 err = dlci_ioctl_hook(cmd, argp);
1065 mutex_unlock(&dlci_ioctl_mutex);
1066 break;
1067 case SIOCGSKNS:
1068 err = -EPERM;
1069 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1070 break;
1071
1072 err = open_related_ns(&net->ns, get_net_ns);
1073 break;
1074 default:
1075 err = sock_do_ioctl(net, sock, cmd, arg);
1076 break;
1077 }
1078 return err;
1079 }
1080
1081 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1082 {
1083 int err;
1084 struct socket *sock = NULL;
1085
1086 err = security_socket_create(family, type, protocol, 1);
1087 if (err)
1088 goto out;
1089
1090 sock = sock_alloc();
1091 if (!sock) {
1092 err = -ENOMEM;
1093 goto out;
1094 }
1095
1096 sock->type = type;
1097 err = security_socket_post_create(sock, family, type, protocol, 1);
1098 if (err)
1099 goto out_release;
1100
1101 out:
1102 *res = sock;
1103 return err;
1104 out_release:
1105 sock_release(sock);
1106 sock = NULL;
1107 goto out;
1108 }
1109 EXPORT_SYMBOL(sock_create_lite);
1110
1111 /* No kernel lock held - perfect */
1112 static unsigned int sock_poll(struct file *file, poll_table *wait)
1113 {
1114 unsigned int busy_flag = 0;
1115 struct socket *sock;
1116
1117 /*
1118 * We can't return errors to poll, so it's either yes or no.
1119 */
1120 sock = file->private_data;
1121
1122 if (sk_can_busy_loop(sock->sk)) {
1123 /* this socket can poll_ll so tell the system call */
1124 busy_flag = POLL_BUSY_LOOP;
1125
1126 /* once, only if requested by syscall */
1127 if (wait && (wait->_key & POLL_BUSY_LOOP))
1128 sk_busy_loop(sock->sk, 1);
1129 }
1130
1131 return busy_flag | sock->ops->poll(file, sock, wait);
1132 }
1133
1134 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1135 {
1136 struct socket *sock = file->private_data;
1137
1138 return sock->ops->mmap(file, sock, vma);
1139 }
1140
1141 static int sock_close(struct inode *inode, struct file *filp)
1142 {
1143 __sock_release(SOCKET_I(inode), inode);
1144 return 0;
1145 }
1146
1147 /*
1148 * Update the socket async list
1149 *
1150 * Fasync_list locking strategy.
1151 *
1152 * 1. fasync_list is modified only under process context socket lock
1153 * i.e. under semaphore.
1154 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1155 * or under socket lock
1156 */
1157
1158 static int sock_fasync(int fd, struct file *filp, int on)
1159 {
1160 struct socket *sock = filp->private_data;
1161 struct sock *sk = sock->sk;
1162 struct socket_wq *wq;
1163
1164 if (sk == NULL)
1165 return -EINVAL;
1166
1167 lock_sock(sk);
1168 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1169 fasync_helper(fd, filp, on, &wq->fasync_list);
1170
1171 if (!wq->fasync_list)
1172 sock_reset_flag(sk, SOCK_FASYNC);
1173 else
1174 sock_set_flag(sk, SOCK_FASYNC);
1175
1176 release_sock(sk);
1177 return 0;
1178 }
1179
1180 /* This function may be called only under rcu_lock */
1181
1182 int sock_wake_async(struct socket_wq *wq, int how, int band)
1183 {
1184 if (!wq || !wq->fasync_list)
1185 return -1;
1186
1187 switch (how) {
1188 case SOCK_WAKE_WAITD:
1189 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1190 break;
1191 goto call_kill;
1192 case SOCK_WAKE_SPACE:
1193 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1194 break;
1195 /* fall through */
1196 case SOCK_WAKE_IO:
1197 call_kill:
1198 kill_fasync(&wq->fasync_list, SIGIO, band);
1199 break;
1200 case SOCK_WAKE_URG:
1201 kill_fasync(&wq->fasync_list, SIGURG, band);
1202 }
1203
1204 return 0;
1205 }
1206 EXPORT_SYMBOL(sock_wake_async);
1207
1208 int __sock_create(struct net *net, int family, int type, int protocol,
1209 struct socket **res, int kern)
1210 {
1211 int err;
1212 struct socket *sock;
1213 const struct net_proto_family *pf;
1214
1215 /*
1216 * Check protocol is in range
1217 */
1218 if (family < 0 || family >= NPROTO)
1219 return -EAFNOSUPPORT;
1220 if (type < 0 || type >= SOCK_MAX)
1221 return -EINVAL;
1222
1223 /* Compatibility.
1224
1225 This uglymoron is moved from INET layer to here to avoid
1226 deadlock in module load.
1227 */
1228 if (family == PF_INET && type == SOCK_PACKET) {
1229 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1230 current->comm);
1231 family = PF_PACKET;
1232 }
1233
1234 err = security_socket_create(family, type, protocol, kern);
1235 if (err)
1236 return err;
1237
1238 /*
1239 * Allocate the socket and allow the family to set things up. if
1240 * the protocol is 0, the family is instructed to select an appropriate
1241 * default.
1242 */
1243 sock = sock_alloc();
1244 if (!sock) {
1245 net_warn_ratelimited("socket: no more sockets\n");
1246 return -ENFILE; /* Not exactly a match, but its the
1247 closest posix thing */
1248 }
1249
1250 sock->type = type;
1251
1252 #ifdef CONFIG_MODULES
1253 /* Attempt to load a protocol module if the find failed.
1254 *
1255 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1256 * requested real, full-featured networking support upon configuration.
1257 * Otherwise module support will break!
1258 */
1259 if (rcu_access_pointer(net_families[family]) == NULL)
1260 request_module("net-pf-%d", family);
1261 #endif
1262
1263 rcu_read_lock();
1264 pf = rcu_dereference(net_families[family]);
1265 err = -EAFNOSUPPORT;
1266 if (!pf)
1267 goto out_release;
1268
1269 /*
1270 * We will call the ->create function, that possibly is in a loadable
1271 * module, so we have to bump that loadable module refcnt first.
1272 */
1273 if (!try_module_get(pf->owner))
1274 goto out_release;
1275
1276 /* Now protected by module ref count */
1277 rcu_read_unlock();
1278
1279 err = pf->create(net, sock, protocol, kern);
1280 if (err < 0)
1281 goto out_module_put;
1282
1283 /*
1284 * Now to bump the refcnt of the [loadable] module that owns this
1285 * socket at sock_release time we decrement its refcnt.
1286 */
1287 if (!try_module_get(sock->ops->owner))
1288 goto out_module_busy;
1289
1290 /*
1291 * Now that we're done with the ->create function, the [loadable]
1292 * module can have its refcnt decremented
1293 */
1294 module_put(pf->owner);
1295 err = security_socket_post_create(sock, family, type, protocol, kern);
1296 if (err)
1297 goto out_sock_release;
1298 *res = sock;
1299
1300 return 0;
1301
1302 out_module_busy:
1303 err = -EAFNOSUPPORT;
1304 out_module_put:
1305 sock->ops = NULL;
1306 module_put(pf->owner);
1307 out_sock_release:
1308 sock_release(sock);
1309 return err;
1310
1311 out_release:
1312 rcu_read_unlock();
1313 goto out_sock_release;
1314 }
1315 EXPORT_SYMBOL(__sock_create);
1316
1317 int sock_create(int family, int type, int protocol, struct socket **res)
1318 {
1319 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1320 }
1321 EXPORT_SYMBOL(sock_create);
1322
1323 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1324 {
1325 return __sock_create(net, family, type, protocol, res, 1);
1326 }
1327 EXPORT_SYMBOL(sock_create_kern);
1328
1329 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1330 {
1331 int retval;
1332 struct socket *sock;
1333 int flags;
1334
1335 /* Check the SOCK_* constants for consistency. */
1336 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1337 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1338 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1339 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1340
1341 flags = type & ~SOCK_TYPE_MASK;
1342 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1343 return -EINVAL;
1344 type &= SOCK_TYPE_MASK;
1345
1346 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1347 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1348
1349 retval = sock_create(family, type, protocol, &sock);
1350 if (retval < 0)
1351 return retval;
1352
1353 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1354 }
1355
1356 /*
1357 * Create a pair of connected sockets.
1358 */
1359
1360 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1361 int __user *, usockvec)
1362 {
1363 struct socket *sock1, *sock2;
1364 int fd1, fd2, err;
1365 struct file *newfile1, *newfile2;
1366 int flags;
1367
1368 flags = type & ~SOCK_TYPE_MASK;
1369 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1370 return -EINVAL;
1371 type &= SOCK_TYPE_MASK;
1372
1373 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1374 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1375
1376 /*
1377 * reserve descriptors and make sure we won't fail
1378 * to return them to userland.
1379 */
1380 fd1 = get_unused_fd_flags(flags);
1381 if (unlikely(fd1 < 0))
1382 return fd1;
1383
1384 fd2 = get_unused_fd_flags(flags);
1385 if (unlikely(fd2 < 0)) {
1386 put_unused_fd(fd1);
1387 return fd2;
1388 }
1389
1390 err = put_user(fd1, &usockvec[0]);
1391 if (err)
1392 goto out;
1393
1394 err = put_user(fd2, &usockvec[1]);
1395 if (err)
1396 goto out;
1397
1398 /*
1399 * Obtain the first socket and check if the underlying protocol
1400 * supports the socketpair call.
1401 */
1402
1403 err = sock_create(family, type, protocol, &sock1);
1404 if (unlikely(err < 0))
1405 goto out;
1406
1407 err = sock_create(family, type, protocol, &sock2);
1408 if (unlikely(err < 0)) {
1409 sock_release(sock1);
1410 goto out;
1411 }
1412
1413 err = sock1->ops->socketpair(sock1, sock2);
1414 if (unlikely(err < 0)) {
1415 sock_release(sock2);
1416 sock_release(sock1);
1417 goto out;
1418 }
1419
1420 newfile1 = sock_alloc_file(sock1, flags, NULL);
1421 if (IS_ERR(newfile1)) {
1422 err = PTR_ERR(newfile1);
1423 sock_release(sock2);
1424 goto out;
1425 }
1426
1427 newfile2 = sock_alloc_file(sock2, flags, NULL);
1428 if (IS_ERR(newfile2)) {
1429 err = PTR_ERR(newfile2);
1430 fput(newfile1);
1431 goto out;
1432 }
1433
1434 audit_fd_pair(fd1, fd2);
1435
1436 fd_install(fd1, newfile1);
1437 fd_install(fd2, newfile2);
1438 return 0;
1439
1440 out:
1441 put_unused_fd(fd2);
1442 put_unused_fd(fd1);
1443 return err;
1444 }
1445
1446 /*
1447 * Bind a name to a socket. Nothing much to do here since it's
1448 * the protocol's responsibility to handle the local address.
1449 *
1450 * We move the socket address to kernel space before we call
1451 * the protocol layer (having also checked the address is ok).
1452 */
1453
1454 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1455 {
1456 struct socket *sock;
1457 struct sockaddr_storage address;
1458 int err, fput_needed;
1459
1460 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1461 if (sock) {
1462 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1463 if (err >= 0) {
1464 err = security_socket_bind(sock,
1465 (struct sockaddr *)&address,
1466 addrlen);
1467 if (!err)
1468 err = sock->ops->bind(sock,
1469 (struct sockaddr *)
1470 &address, addrlen);
1471 }
1472 fput_light(sock->file, fput_needed);
1473 }
1474 return err;
1475 }
1476
1477 /*
1478 * Perform a listen. Basically, we allow the protocol to do anything
1479 * necessary for a listen, and if that works, we mark the socket as
1480 * ready for listening.
1481 */
1482
1483 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1484 {
1485 struct socket *sock;
1486 int err, fput_needed;
1487 int somaxconn;
1488
1489 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1490 if (sock) {
1491 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1492 if ((unsigned int)backlog > somaxconn)
1493 backlog = somaxconn;
1494
1495 err = security_socket_listen(sock, backlog);
1496 if (!err)
1497 err = sock->ops->listen(sock, backlog);
1498
1499 fput_light(sock->file, fput_needed);
1500 }
1501 return err;
1502 }
1503
1504 /*
1505 * For accept, we attempt to create a new socket, set up the link
1506 * with the client, wake up the client, then return the new
1507 * connected fd. We collect the address of the connector in kernel
1508 * space and move it to user at the very end. This is unclean because
1509 * we open the socket then return an error.
1510 *
1511 * 1003.1g adds the ability to recvmsg() to query connection pending
1512 * status to recvmsg. We need to add that support in a way thats
1513 * clean when we restucture accept also.
1514 */
1515
1516 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1517 int __user *, upeer_addrlen, int, flags)
1518 {
1519 struct socket *sock, *newsock;
1520 struct file *newfile;
1521 int err, len, newfd, fput_needed;
1522 struct sockaddr_storage address;
1523
1524 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1525 return -EINVAL;
1526
1527 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1528 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1529
1530 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1531 if (!sock)
1532 goto out;
1533
1534 err = -ENFILE;
1535 newsock = sock_alloc();
1536 if (!newsock)
1537 goto out_put;
1538
1539 newsock->type = sock->type;
1540 newsock->ops = sock->ops;
1541
1542 /*
1543 * We don't need try_module_get here, as the listening socket (sock)
1544 * has the protocol module (sock->ops->owner) held.
1545 */
1546 __module_get(newsock->ops->owner);
1547
1548 newfd = get_unused_fd_flags(flags);
1549 if (unlikely(newfd < 0)) {
1550 err = newfd;
1551 sock_release(newsock);
1552 goto out_put;
1553 }
1554 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1555 if (IS_ERR(newfile)) {
1556 err = PTR_ERR(newfile);
1557 put_unused_fd(newfd);
1558 goto out_put;
1559 }
1560
1561 err = security_socket_accept(sock, newsock);
1562 if (err)
1563 goto out_fd;
1564
1565 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1566 if (err < 0)
1567 goto out_fd;
1568
1569 if (upeer_sockaddr) {
1570 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1571 &len, 2) < 0) {
1572 err = -ECONNABORTED;
1573 goto out_fd;
1574 }
1575 err = move_addr_to_user(&address,
1576 len, upeer_sockaddr, upeer_addrlen);
1577 if (err < 0)
1578 goto out_fd;
1579 }
1580
1581 /* File flags are not inherited via accept() unlike another OSes. */
1582
1583 fd_install(newfd, newfile);
1584 err = newfd;
1585
1586 out_put:
1587 fput_light(sock->file, fput_needed);
1588 out:
1589 return err;
1590 out_fd:
1591 fput(newfile);
1592 put_unused_fd(newfd);
1593 goto out_put;
1594 }
1595
1596 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1597 int __user *, upeer_addrlen)
1598 {
1599 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1600 }
1601
1602 /*
1603 * Attempt to connect to a socket with the server address. The address
1604 * is in user space so we verify it is OK and move it to kernel space.
1605 *
1606 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1607 * break bindings
1608 *
1609 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1610 * other SEQPACKET protocols that take time to connect() as it doesn't
1611 * include the -EINPROGRESS status for such sockets.
1612 */
1613
1614 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1615 int, addrlen)
1616 {
1617 struct socket *sock;
1618 struct sockaddr_storage address;
1619 int err, fput_needed;
1620
1621 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1622 if (!sock)
1623 goto out;
1624 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1625 if (err < 0)
1626 goto out_put;
1627
1628 err =
1629 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1630 if (err)
1631 goto out_put;
1632
1633 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1634 sock->file->f_flags);
1635 out_put:
1636 fput_light(sock->file, fput_needed);
1637 out:
1638 return err;
1639 }
1640
1641 /*
1642 * Get the local address ('name') of a socket object. Move the obtained
1643 * name to user space.
1644 */
1645
1646 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1647 int __user *, usockaddr_len)
1648 {
1649 struct socket *sock;
1650 struct sockaddr_storage address;
1651 int len, err, fput_needed;
1652
1653 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1654 if (!sock)
1655 goto out;
1656
1657 err = security_socket_getsockname(sock);
1658 if (err)
1659 goto out_put;
1660
1661 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1662 if (err)
1663 goto out_put;
1664 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1665
1666 out_put:
1667 fput_light(sock->file, fput_needed);
1668 out:
1669 return err;
1670 }
1671
1672 /*
1673 * Get the remote address ('name') of a socket object. Move the obtained
1674 * name to user space.
1675 */
1676
1677 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1678 int __user *, usockaddr_len)
1679 {
1680 struct socket *sock;
1681 struct sockaddr_storage address;
1682 int len, err, fput_needed;
1683
1684 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1685 if (sock != NULL) {
1686 err = security_socket_getpeername(sock);
1687 if (err) {
1688 fput_light(sock->file, fput_needed);
1689 return err;
1690 }
1691
1692 err =
1693 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1694 1);
1695 if (!err)
1696 err = move_addr_to_user(&address, len, usockaddr,
1697 usockaddr_len);
1698 fput_light(sock->file, fput_needed);
1699 }
1700 return err;
1701 }
1702
1703 /*
1704 * Send a datagram to a given address. We move the address into kernel
1705 * space and check the user space data area is readable before invoking
1706 * the protocol.
1707 */
1708
1709 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1710 unsigned int, flags, struct sockaddr __user *, addr,
1711 int, addr_len)
1712 {
1713 struct socket *sock;
1714 struct sockaddr_storage address;
1715 int err;
1716 struct msghdr msg;
1717 struct iovec iov;
1718 int fput_needed;
1719
1720 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1721 if (unlikely(err))
1722 return err;
1723 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1724 if (!sock)
1725 goto out;
1726
1727 msg.msg_name = NULL;
1728 msg.msg_control = NULL;
1729 msg.msg_controllen = 0;
1730 msg.msg_namelen = 0;
1731 if (addr) {
1732 err = move_addr_to_kernel(addr, addr_len, &address);
1733 if (err < 0)
1734 goto out_put;
1735 msg.msg_name = (struct sockaddr *)&address;
1736 msg.msg_namelen = addr_len;
1737 }
1738 if (sock->file->f_flags & O_NONBLOCK)
1739 flags |= MSG_DONTWAIT;
1740 msg.msg_flags = flags;
1741 err = sock_sendmsg(sock, &msg);
1742
1743 out_put:
1744 fput_light(sock->file, fput_needed);
1745 out:
1746 return err;
1747 }
1748
1749 /*
1750 * Send a datagram down a socket.
1751 */
1752
1753 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1754 unsigned int, flags)
1755 {
1756 return sys_sendto(fd, buff, len, flags, NULL, 0);
1757 }
1758
1759 /*
1760 * Receive a frame from the socket and optionally record the address of the
1761 * sender. We verify the buffers are writable and if needed move the
1762 * sender address from kernel to user space.
1763 */
1764
1765 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1766 unsigned int, flags, struct sockaddr __user *, addr,
1767 int __user *, addr_len)
1768 {
1769 struct socket *sock;
1770 struct iovec iov;
1771 struct msghdr msg;
1772 struct sockaddr_storage address;
1773 int err, err2;
1774 int fput_needed;
1775
1776 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1777 if (unlikely(err))
1778 return err;
1779 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1780 if (!sock)
1781 goto out;
1782
1783 msg.msg_control = NULL;
1784 msg.msg_controllen = 0;
1785 /* Save some cycles and don't copy the address if not needed */
1786 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1787 /* We assume all kernel code knows the size of sockaddr_storage */
1788 msg.msg_namelen = 0;
1789 msg.msg_iocb = NULL;
1790 msg.msg_flags = 0;
1791 if (sock->file->f_flags & O_NONBLOCK)
1792 flags |= MSG_DONTWAIT;
1793 err = sock_recvmsg(sock, &msg, flags);
1794
1795 if (err >= 0 && addr != NULL) {
1796 err2 = move_addr_to_user(&address,
1797 msg.msg_namelen, addr, addr_len);
1798 if (err2 < 0)
1799 err = err2;
1800 }
1801
1802 fput_light(sock->file, fput_needed);
1803 out:
1804 return err;
1805 }
1806
1807 /*
1808 * Receive a datagram from a socket.
1809 */
1810
1811 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1812 unsigned int, flags)
1813 {
1814 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1815 }
1816
1817 /*
1818 * Set a socket option. Because we don't know the option lengths we have
1819 * to pass the user mode parameter for the protocols to sort out.
1820 */
1821
1822 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1823 char __user *, optval, int, optlen)
1824 {
1825 int err, fput_needed;
1826 struct socket *sock;
1827
1828 if (optlen < 0)
1829 return -EINVAL;
1830
1831 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1832 if (sock != NULL) {
1833 err = security_socket_setsockopt(sock, level, optname);
1834 if (err)
1835 goto out_put;
1836
1837 if (level == SOL_SOCKET)
1838 err =
1839 sock_setsockopt(sock, level, optname, optval,
1840 optlen);
1841 else
1842 err =
1843 sock->ops->setsockopt(sock, level, optname, optval,
1844 optlen);
1845 out_put:
1846 fput_light(sock->file, fput_needed);
1847 }
1848 return err;
1849 }
1850
1851 /*
1852 * Get a socket option. Because we don't know the option lengths we have
1853 * to pass a user mode parameter for the protocols to sort out.
1854 */
1855
1856 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1857 char __user *, optval, int __user *, optlen)
1858 {
1859 int err, fput_needed;
1860 struct socket *sock;
1861
1862 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1863 if (sock != NULL) {
1864 err = security_socket_getsockopt(sock, level, optname);
1865 if (err)
1866 goto out_put;
1867
1868 if (level == SOL_SOCKET)
1869 err =
1870 sock_getsockopt(sock, level, optname, optval,
1871 optlen);
1872 else
1873 err =
1874 sock->ops->getsockopt(sock, level, optname, optval,
1875 optlen);
1876 out_put:
1877 fput_light(sock->file, fput_needed);
1878 }
1879 return err;
1880 }
1881
1882 /*
1883 * Shutdown a socket.
1884 */
1885
1886 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1887 {
1888 int err, fput_needed;
1889 struct socket *sock;
1890
1891 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1892 if (sock != NULL) {
1893 err = security_socket_shutdown(sock, how);
1894 if (!err)
1895 err = sock->ops->shutdown(sock, how);
1896 fput_light(sock->file, fput_needed);
1897 }
1898 return err;
1899 }
1900
1901 /* A couple of helpful macros for getting the address of the 32/64 bit
1902 * fields which are the same type (int / unsigned) on our platforms.
1903 */
1904 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1905 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1906 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1907
1908 struct used_address {
1909 struct sockaddr_storage name;
1910 unsigned int name_len;
1911 };
1912
1913 static int copy_msghdr_from_user(struct msghdr *kmsg,
1914 struct user_msghdr __user *umsg,
1915 struct sockaddr __user **save_addr,
1916 struct iovec **iov)
1917 {
1918 struct user_msghdr msg;
1919 ssize_t err;
1920
1921 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1922 return -EFAULT;
1923
1924 kmsg->msg_control = (void __force *)msg.msg_control;
1925 kmsg->msg_controllen = msg.msg_controllen;
1926 kmsg->msg_flags = msg.msg_flags;
1927
1928 kmsg->msg_namelen = msg.msg_namelen;
1929 if (!msg.msg_name)
1930 kmsg->msg_namelen = 0;
1931
1932 if (kmsg->msg_namelen < 0)
1933 return -EINVAL;
1934
1935 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1936 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1937
1938 if (save_addr)
1939 *save_addr = msg.msg_name;
1940
1941 if (msg.msg_name && kmsg->msg_namelen) {
1942 if (!save_addr) {
1943 err = move_addr_to_kernel(msg.msg_name,
1944 kmsg->msg_namelen,
1945 kmsg->msg_name);
1946 if (err < 0)
1947 return err;
1948 }
1949 } else {
1950 kmsg->msg_name = NULL;
1951 kmsg->msg_namelen = 0;
1952 }
1953
1954 if (msg.msg_iovlen > UIO_MAXIOV)
1955 return -EMSGSIZE;
1956
1957 kmsg->msg_iocb = NULL;
1958
1959 return import_iovec(save_addr ? READ : WRITE,
1960 msg.msg_iov, msg.msg_iovlen,
1961 UIO_FASTIOV, iov, &kmsg->msg_iter);
1962 }
1963
1964 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1965 struct msghdr *msg_sys, unsigned int flags,
1966 struct used_address *used_address,
1967 unsigned int allowed_msghdr_flags)
1968 {
1969 struct compat_msghdr __user *msg_compat =
1970 (struct compat_msghdr __user *)msg;
1971 struct sockaddr_storage address;
1972 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1973 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1974 __aligned(sizeof(__kernel_size_t));
1975 /* 20 is size of ipv6_pktinfo */
1976 unsigned char *ctl_buf = ctl;
1977 int ctl_len;
1978 ssize_t err;
1979
1980 msg_sys->msg_name = &address;
1981
1982 if (MSG_CMSG_COMPAT & flags)
1983 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1984 else
1985 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1986 if (err < 0)
1987 return err;
1988
1989 err = -ENOBUFS;
1990
1991 if (msg_sys->msg_controllen > INT_MAX)
1992 goto out_freeiov;
1993 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1994 ctl_len = msg_sys->msg_controllen;
1995 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1996 err =
1997 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1998 sizeof(ctl));
1999 if (err)
2000 goto out_freeiov;
2001 ctl_buf = msg_sys->msg_control;
2002 ctl_len = msg_sys->msg_controllen;
2003 } else if (ctl_len) {
2004 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2005 CMSG_ALIGN(sizeof(struct cmsghdr)));
2006 if (ctl_len > sizeof(ctl)) {
2007 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2008 if (ctl_buf == NULL)
2009 goto out_freeiov;
2010 }
2011 err = -EFAULT;
2012 /*
2013 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2014 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2015 * checking falls down on this.
2016 */
2017 if (copy_from_user(ctl_buf,
2018 (void __user __force *)msg_sys->msg_control,
2019 ctl_len))
2020 goto out_freectl;
2021 msg_sys->msg_control = ctl_buf;
2022 }
2023 msg_sys->msg_flags = flags;
2024
2025 if (sock->file->f_flags & O_NONBLOCK)
2026 msg_sys->msg_flags |= MSG_DONTWAIT;
2027 /*
2028 * If this is sendmmsg() and current destination address is same as
2029 * previously succeeded address, omit asking LSM's decision.
2030 * used_address->name_len is initialized to UINT_MAX so that the first
2031 * destination address never matches.
2032 */
2033 if (used_address && msg_sys->msg_name &&
2034 used_address->name_len == msg_sys->msg_namelen &&
2035 !memcmp(&used_address->name, msg_sys->msg_name,
2036 used_address->name_len)) {
2037 err = sock_sendmsg_nosec(sock, msg_sys);
2038 goto out_freectl;
2039 }
2040 err = sock_sendmsg(sock, msg_sys);
2041 /*
2042 * If this is sendmmsg() and sending to current destination address was
2043 * successful, remember it.
2044 */
2045 if (used_address && err >= 0) {
2046 used_address->name_len = msg_sys->msg_namelen;
2047 if (msg_sys->msg_name)
2048 memcpy(&used_address->name, msg_sys->msg_name,
2049 used_address->name_len);
2050 }
2051
2052 out_freectl:
2053 if (ctl_buf != ctl)
2054 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2055 out_freeiov:
2056 kfree(iov);
2057 return err;
2058 }
2059
2060 /*
2061 * BSD sendmsg interface
2062 */
2063
2064 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2065 {
2066 int fput_needed, err;
2067 struct msghdr msg_sys;
2068 struct socket *sock;
2069
2070 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2071 if (!sock)
2072 goto out;
2073
2074 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2075
2076 fput_light(sock->file, fput_needed);
2077 out:
2078 return err;
2079 }
2080
2081 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2082 {
2083 if (flags & MSG_CMSG_COMPAT)
2084 return -EINVAL;
2085 return __sys_sendmsg(fd, msg, flags);
2086 }
2087
2088 /*
2089 * Linux sendmmsg interface
2090 */
2091
2092 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2093 unsigned int flags)
2094 {
2095 int fput_needed, err, datagrams;
2096 struct socket *sock;
2097 struct mmsghdr __user *entry;
2098 struct compat_mmsghdr __user *compat_entry;
2099 struct msghdr msg_sys;
2100 struct used_address used_address;
2101 unsigned int oflags = flags;
2102
2103 if (vlen > UIO_MAXIOV)
2104 vlen = UIO_MAXIOV;
2105
2106 datagrams = 0;
2107
2108 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2109 if (!sock)
2110 return err;
2111
2112 used_address.name_len = UINT_MAX;
2113 entry = mmsg;
2114 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2115 err = 0;
2116 flags |= MSG_BATCH;
2117
2118 while (datagrams < vlen) {
2119 if (datagrams == vlen - 1)
2120 flags = oflags;
2121
2122 if (MSG_CMSG_COMPAT & flags) {
2123 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2124 &msg_sys, flags, &used_address, MSG_EOR);
2125 if (err < 0)
2126 break;
2127 err = __put_user(err, &compat_entry->msg_len);
2128 ++compat_entry;
2129 } else {
2130 err = ___sys_sendmsg(sock,
2131 (struct user_msghdr __user *)entry,
2132 &msg_sys, flags, &used_address, MSG_EOR);
2133 if (err < 0)
2134 break;
2135 err = put_user(err, &entry->msg_len);
2136 ++entry;
2137 }
2138
2139 if (err)
2140 break;
2141 ++datagrams;
2142 if (msg_data_left(&msg_sys))
2143 break;
2144 cond_resched();
2145 }
2146
2147 fput_light(sock->file, fput_needed);
2148
2149 /* We only return an error if no datagrams were able to be sent */
2150 if (datagrams != 0)
2151 return datagrams;
2152
2153 return err;
2154 }
2155
2156 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2157 unsigned int, vlen, unsigned int, flags)
2158 {
2159 if (flags & MSG_CMSG_COMPAT)
2160 return -EINVAL;
2161 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2162 }
2163
2164 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2165 struct msghdr *msg_sys, unsigned int flags, int nosec)
2166 {
2167 struct compat_msghdr __user *msg_compat =
2168 (struct compat_msghdr __user *)msg;
2169 struct iovec iovstack[UIO_FASTIOV];
2170 struct iovec *iov = iovstack;
2171 unsigned long cmsg_ptr;
2172 int len;
2173 ssize_t err;
2174
2175 /* kernel mode address */
2176 struct sockaddr_storage addr;
2177
2178 /* user mode address pointers */
2179 struct sockaddr __user *uaddr;
2180 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2181
2182 msg_sys->msg_name = &addr;
2183
2184 if (MSG_CMSG_COMPAT & flags)
2185 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2186 else
2187 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2188 if (err < 0)
2189 return err;
2190
2191 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2192 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2193
2194 /* We assume all kernel code knows the size of sockaddr_storage */
2195 msg_sys->msg_namelen = 0;
2196
2197 if (sock->file->f_flags & O_NONBLOCK)
2198 flags |= MSG_DONTWAIT;
2199 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2200 if (err < 0)
2201 goto out_freeiov;
2202 len = err;
2203
2204 if (uaddr != NULL) {
2205 err = move_addr_to_user(&addr,
2206 msg_sys->msg_namelen, uaddr,
2207 uaddr_len);
2208 if (err < 0)
2209 goto out_freeiov;
2210 }
2211 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2212 COMPAT_FLAGS(msg));
2213 if (err)
2214 goto out_freeiov;
2215 if (MSG_CMSG_COMPAT & flags)
2216 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2217 &msg_compat->msg_controllen);
2218 else
2219 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2220 &msg->msg_controllen);
2221 if (err)
2222 goto out_freeiov;
2223 err = len;
2224
2225 out_freeiov:
2226 kfree(iov);
2227 return err;
2228 }
2229
2230 /*
2231 * BSD recvmsg interface
2232 */
2233
2234 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2235 {
2236 int fput_needed, err;
2237 struct msghdr msg_sys;
2238 struct socket *sock;
2239
2240 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2241 if (!sock)
2242 goto out;
2243
2244 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2245
2246 fput_light(sock->file, fput_needed);
2247 out:
2248 return err;
2249 }
2250
2251 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2252 unsigned int, flags)
2253 {
2254 if (flags & MSG_CMSG_COMPAT)
2255 return -EINVAL;
2256 return __sys_recvmsg(fd, msg, flags);
2257 }
2258
2259 /*
2260 * Linux recvmmsg interface
2261 */
2262
2263 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2264 unsigned int flags, struct timespec *timeout)
2265 {
2266 int fput_needed, err, datagrams;
2267 struct socket *sock;
2268 struct mmsghdr __user *entry;
2269 struct compat_mmsghdr __user *compat_entry;
2270 struct msghdr msg_sys;
2271 struct timespec64 end_time;
2272 struct timespec64 timeout64;
2273
2274 if (timeout &&
2275 poll_select_set_timeout(&end_time, timeout->tv_sec,
2276 timeout->tv_nsec))
2277 return -EINVAL;
2278
2279 datagrams = 0;
2280
2281 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2282 if (!sock)
2283 return err;
2284
2285 err = sock_error(sock->sk);
2286 if (err) {
2287 datagrams = err;
2288 goto out_put;
2289 }
2290
2291 entry = mmsg;
2292 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2293
2294 while (datagrams < vlen) {
2295 /*
2296 * No need to ask LSM for more than the first datagram.
2297 */
2298 if (MSG_CMSG_COMPAT & flags) {
2299 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2300 &msg_sys, flags & ~MSG_WAITFORONE,
2301 datagrams);
2302 if (err < 0)
2303 break;
2304 err = __put_user(err, &compat_entry->msg_len);
2305 ++compat_entry;
2306 } else {
2307 err = ___sys_recvmsg(sock,
2308 (struct user_msghdr __user *)entry,
2309 &msg_sys, flags & ~MSG_WAITFORONE,
2310 datagrams);
2311 if (err < 0)
2312 break;
2313 err = put_user(err, &entry->msg_len);
2314 ++entry;
2315 }
2316
2317 if (err)
2318 break;
2319 ++datagrams;
2320
2321 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2322 if (flags & MSG_WAITFORONE)
2323 flags |= MSG_DONTWAIT;
2324
2325 if (timeout) {
2326 ktime_get_ts64(&timeout64);
2327 *timeout = timespec64_to_timespec(
2328 timespec64_sub(end_time, timeout64));
2329 if (timeout->tv_sec < 0) {
2330 timeout->tv_sec = timeout->tv_nsec = 0;
2331 break;
2332 }
2333
2334 /* Timeout, return less than vlen datagrams */
2335 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2336 break;
2337 }
2338
2339 /* Out of band data, return right away */
2340 if (msg_sys.msg_flags & MSG_OOB)
2341 break;
2342 cond_resched();
2343 }
2344
2345 if (err == 0)
2346 goto out_put;
2347
2348 if (datagrams == 0) {
2349 datagrams = err;
2350 goto out_put;
2351 }
2352
2353 /*
2354 * We may return less entries than requested (vlen) if the
2355 * sock is non block and there aren't enough datagrams...
2356 */
2357 if (err != -EAGAIN) {
2358 /*
2359 * ... or if recvmsg returns an error after we
2360 * received some datagrams, where we record the
2361 * error to return on the next call or if the
2362 * app asks about it using getsockopt(SO_ERROR).
2363 */
2364 sock->sk->sk_err = -err;
2365 }
2366 out_put:
2367 fput_light(sock->file, fput_needed);
2368
2369 return datagrams;
2370 }
2371
2372 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2373 unsigned int, vlen, unsigned int, flags,
2374 struct timespec __user *, timeout)
2375 {
2376 int datagrams;
2377 struct timespec timeout_sys;
2378
2379 if (flags & MSG_CMSG_COMPAT)
2380 return -EINVAL;
2381
2382 if (!timeout)
2383 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2384
2385 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2386 return -EFAULT;
2387
2388 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2389
2390 if (datagrams > 0 &&
2391 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2392 datagrams = -EFAULT;
2393
2394 return datagrams;
2395 }
2396
2397 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2398 /* Argument list sizes for sys_socketcall */
2399 #define AL(x) ((x) * sizeof(unsigned long))
2400 static const unsigned char nargs[21] = {
2401 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2402 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2403 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2404 AL(4), AL(5), AL(4)
2405 };
2406
2407 #undef AL
2408
2409 /*
2410 * System call vectors.
2411 *
2412 * Argument checking cleaned up. Saved 20% in size.
2413 * This function doesn't need to set the kernel lock because
2414 * it is set by the callees.
2415 */
2416
2417 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2418 {
2419 unsigned long a[AUDITSC_ARGS];
2420 unsigned long a0, a1;
2421 int err;
2422 unsigned int len;
2423
2424 if (call < 1 || call > SYS_SENDMMSG)
2425 return -EINVAL;
2426
2427 len = nargs[call];
2428 if (len > sizeof(a))
2429 return -EINVAL;
2430
2431 /* copy_from_user should be SMP safe. */
2432 if (copy_from_user(a, args, len))
2433 return -EFAULT;
2434
2435 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2436 if (err)
2437 return err;
2438
2439 a0 = a[0];
2440 a1 = a[1];
2441
2442 switch (call) {
2443 case SYS_SOCKET:
2444 err = sys_socket(a0, a1, a[2]);
2445 break;
2446 case SYS_BIND:
2447 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2448 break;
2449 case SYS_CONNECT:
2450 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2451 break;
2452 case SYS_LISTEN:
2453 err = sys_listen(a0, a1);
2454 break;
2455 case SYS_ACCEPT:
2456 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2457 (int __user *)a[2], 0);
2458 break;
2459 case SYS_GETSOCKNAME:
2460 err =
2461 sys_getsockname(a0, (struct sockaddr __user *)a1,
2462 (int __user *)a[2]);
2463 break;
2464 case SYS_GETPEERNAME:
2465 err =
2466 sys_getpeername(a0, (struct sockaddr __user *)a1,
2467 (int __user *)a[2]);
2468 break;
2469 case SYS_SOCKETPAIR:
2470 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2471 break;
2472 case SYS_SEND:
2473 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2474 break;
2475 case SYS_SENDTO:
2476 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2477 (struct sockaddr __user *)a[4], a[5]);
2478 break;
2479 case SYS_RECV:
2480 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2481 break;
2482 case SYS_RECVFROM:
2483 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2484 (struct sockaddr __user *)a[4],
2485 (int __user *)a[5]);
2486 break;
2487 case SYS_SHUTDOWN:
2488 err = sys_shutdown(a0, a1);
2489 break;
2490 case SYS_SETSOCKOPT:
2491 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2492 break;
2493 case SYS_GETSOCKOPT:
2494 err =
2495 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2496 (int __user *)a[4]);
2497 break;
2498 case SYS_SENDMSG:
2499 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2500 break;
2501 case SYS_SENDMMSG:
2502 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2503 break;
2504 case SYS_RECVMSG:
2505 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2506 break;
2507 case SYS_RECVMMSG:
2508 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2509 (struct timespec __user *)a[4]);
2510 break;
2511 case SYS_ACCEPT4:
2512 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2513 (int __user *)a[2], a[3]);
2514 break;
2515 default:
2516 err = -EINVAL;
2517 break;
2518 }
2519 return err;
2520 }
2521
2522 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2523
2524 /**
2525 * sock_register - add a socket protocol handler
2526 * @ops: description of protocol
2527 *
2528 * This function is called by a protocol handler that wants to
2529 * advertise its address family, and have it linked into the
2530 * socket interface. The value ops->family corresponds to the
2531 * socket system call protocol family.
2532 */
2533 int sock_register(const struct net_proto_family *ops)
2534 {
2535 int err;
2536
2537 if (ops->family >= NPROTO) {
2538 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2539 return -ENOBUFS;
2540 }
2541
2542 spin_lock(&net_family_lock);
2543 if (rcu_dereference_protected(net_families[ops->family],
2544 lockdep_is_held(&net_family_lock)))
2545 err = -EEXIST;
2546 else {
2547 rcu_assign_pointer(net_families[ops->family], ops);
2548 err = 0;
2549 }
2550 spin_unlock(&net_family_lock);
2551
2552 pr_info("NET: Registered protocol family %d\n", ops->family);
2553 return err;
2554 }
2555 EXPORT_SYMBOL(sock_register);
2556
2557 /**
2558 * sock_unregister - remove a protocol handler
2559 * @family: protocol family to remove
2560 *
2561 * This function is called by a protocol handler that wants to
2562 * remove its address family, and have it unlinked from the
2563 * new socket creation.
2564 *
2565 * If protocol handler is a module, then it can use module reference
2566 * counts to protect against new references. If protocol handler is not
2567 * a module then it needs to provide its own protection in
2568 * the ops->create routine.
2569 */
2570 void sock_unregister(int family)
2571 {
2572 BUG_ON(family < 0 || family >= NPROTO);
2573
2574 spin_lock(&net_family_lock);
2575 RCU_INIT_POINTER(net_families[family], NULL);
2576 spin_unlock(&net_family_lock);
2577
2578 synchronize_rcu();
2579
2580 pr_info("NET: Unregistered protocol family %d\n", family);
2581 }
2582 EXPORT_SYMBOL(sock_unregister);
2583
2584 static int __init sock_init(void)
2585 {
2586 int err;
2587 /*
2588 * Initialize the network sysctl infrastructure.
2589 */
2590 err = net_sysctl_init();
2591 if (err)
2592 goto out;
2593
2594 /*
2595 * Initialize skbuff SLAB cache
2596 */
2597 skb_init();
2598
2599 /*
2600 * Initialize the protocols module.
2601 */
2602
2603 init_inodecache();
2604
2605 err = register_filesystem(&sock_fs_type);
2606 if (err)
2607 goto out_fs;
2608 sock_mnt = kern_mount(&sock_fs_type);
2609 if (IS_ERR(sock_mnt)) {
2610 err = PTR_ERR(sock_mnt);
2611 goto out_mount;
2612 }
2613
2614 /* The real protocol initialization is performed in later initcalls.
2615 */
2616
2617 #ifdef CONFIG_NETFILTER
2618 err = netfilter_init();
2619 if (err)
2620 goto out;
2621 #endif
2622
2623 ptp_classifier_init();
2624
2625 out:
2626 return err;
2627
2628 out_mount:
2629 unregister_filesystem(&sock_fs_type);
2630 out_fs:
2631 goto out;
2632 }
2633
2634 core_initcall(sock_init); /* early initcall */
2635
2636 static int __init jit_init(void)
2637 {
2638 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
2639 bpf_jit_enable = 1;
2640 #endif
2641 return 0;
2642 }
2643 pure_initcall(jit_init);
2644
2645 #ifdef CONFIG_PROC_FS
2646 void socket_seq_show(struct seq_file *seq)
2647 {
2648 int cpu;
2649 int counter = 0;
2650
2651 for_each_possible_cpu(cpu)
2652 counter += per_cpu(sockets_in_use, cpu);
2653
2654 /* It can be negative, by the way. 8) */
2655 if (counter < 0)
2656 counter = 0;
2657
2658 seq_printf(seq, "sockets: used %d\n", counter);
2659 }
2660 #endif /* CONFIG_PROC_FS */
2661
2662 #ifdef CONFIG_COMPAT
2663 static int do_siocgstamp(struct net *net, struct socket *sock,
2664 unsigned int cmd, void __user *up)
2665 {
2666 mm_segment_t old_fs = get_fs();
2667 struct timeval ktv;
2668 int err;
2669
2670 set_fs(KERNEL_DS);
2671 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2672 set_fs(old_fs);
2673 if (!err)
2674 err = compat_put_timeval(&ktv, up);
2675
2676 return err;
2677 }
2678
2679 static int do_siocgstampns(struct net *net, struct socket *sock,
2680 unsigned int cmd, void __user *up)
2681 {
2682 mm_segment_t old_fs = get_fs();
2683 struct timespec kts;
2684 int err;
2685
2686 set_fs(KERNEL_DS);
2687 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2688 set_fs(old_fs);
2689 if (!err)
2690 err = compat_put_timespec(&kts, up);
2691
2692 return err;
2693 }
2694
2695 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2696 {
2697 struct ifreq __user *uifr;
2698 int err;
2699
2700 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2701 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2702 return -EFAULT;
2703
2704 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2705 if (err)
2706 return err;
2707
2708 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2709 return -EFAULT;
2710
2711 return 0;
2712 }
2713
2714 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2715 {
2716 struct compat_ifconf ifc32;
2717 struct ifconf ifc;
2718 struct ifconf __user *uifc;
2719 struct compat_ifreq __user *ifr32;
2720 struct ifreq __user *ifr;
2721 unsigned int i, j;
2722 int err;
2723
2724 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2725 return -EFAULT;
2726
2727 memset(&ifc, 0, sizeof(ifc));
2728 if (ifc32.ifcbuf == 0) {
2729 ifc32.ifc_len = 0;
2730 ifc.ifc_len = 0;
2731 ifc.ifc_req = NULL;
2732 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2733 } else {
2734 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2735 sizeof(struct ifreq);
2736 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2737 ifc.ifc_len = len;
2738 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2739 ifr32 = compat_ptr(ifc32.ifcbuf);
2740 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2741 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2742 return -EFAULT;
2743 ifr++;
2744 ifr32++;
2745 }
2746 }
2747 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2748 return -EFAULT;
2749
2750 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2751 if (err)
2752 return err;
2753
2754 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2755 return -EFAULT;
2756
2757 ifr = ifc.ifc_req;
2758 ifr32 = compat_ptr(ifc32.ifcbuf);
2759 for (i = 0, j = 0;
2760 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2761 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2762 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2763 return -EFAULT;
2764 ifr32++;
2765 ifr++;
2766 }
2767
2768 if (ifc32.ifcbuf == 0) {
2769 /* Translate from 64-bit structure multiple to
2770 * a 32-bit one.
2771 */
2772 i = ifc.ifc_len;
2773 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2774 ifc32.ifc_len = i;
2775 } else {
2776 ifc32.ifc_len = i;
2777 }
2778 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2779 return -EFAULT;
2780
2781 return 0;
2782 }
2783
2784 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2785 {
2786 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2787 bool convert_in = false, convert_out = false;
2788 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2789 struct ethtool_rxnfc __user *rxnfc;
2790 struct ifreq __user *ifr;
2791 u32 rule_cnt = 0, actual_rule_cnt;
2792 u32 ethcmd;
2793 u32 data;
2794 int ret;
2795
2796 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2797 return -EFAULT;
2798
2799 compat_rxnfc = compat_ptr(data);
2800
2801 if (get_user(ethcmd, &compat_rxnfc->cmd))
2802 return -EFAULT;
2803
2804 /* Most ethtool structures are defined without padding.
2805 * Unfortunately struct ethtool_rxnfc is an exception.
2806 */
2807 switch (ethcmd) {
2808 default:
2809 break;
2810 case ETHTOOL_GRXCLSRLALL:
2811 /* Buffer size is variable */
2812 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2813 return -EFAULT;
2814 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2815 return -ENOMEM;
2816 buf_size += rule_cnt * sizeof(u32);
2817 /* fall through */
2818 case ETHTOOL_GRXRINGS:
2819 case ETHTOOL_GRXCLSRLCNT:
2820 case ETHTOOL_GRXCLSRULE:
2821 case ETHTOOL_SRXCLSRLINS:
2822 convert_out = true;
2823 /* fall through */
2824 case ETHTOOL_SRXCLSRLDEL:
2825 buf_size += sizeof(struct ethtool_rxnfc);
2826 convert_in = true;
2827 break;
2828 }
2829
2830 ifr = compat_alloc_user_space(buf_size);
2831 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2832
2833 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2834 return -EFAULT;
2835
2836 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2837 &ifr->ifr_ifru.ifru_data))
2838 return -EFAULT;
2839
2840 if (convert_in) {
2841 /* We expect there to be holes between fs.m_ext and
2842 * fs.ring_cookie and at the end of fs, but nowhere else.
2843 */
2844 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2845 sizeof(compat_rxnfc->fs.m_ext) !=
2846 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2847 sizeof(rxnfc->fs.m_ext));
2848 BUILD_BUG_ON(
2849 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2850 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2851 offsetof(struct ethtool_rxnfc, fs.location) -
2852 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2853
2854 if (copy_in_user(rxnfc, compat_rxnfc,
2855 (void __user *)(&rxnfc->fs.m_ext + 1) -
2856 (void __user *)rxnfc) ||
2857 copy_in_user(&rxnfc->fs.ring_cookie,
2858 &compat_rxnfc->fs.ring_cookie,
2859 (void __user *)(&rxnfc->fs.location + 1) -
2860 (void __user *)&rxnfc->fs.ring_cookie) ||
2861 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2862 sizeof(rxnfc->rule_cnt)))
2863 return -EFAULT;
2864 }
2865
2866 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2867 if (ret)
2868 return ret;
2869
2870 if (convert_out) {
2871 if (copy_in_user(compat_rxnfc, rxnfc,
2872 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2873 (const void __user *)rxnfc) ||
2874 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2875 &rxnfc->fs.ring_cookie,
2876 (const void __user *)(&rxnfc->fs.location + 1) -
2877 (const void __user *)&rxnfc->fs.ring_cookie) ||
2878 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2879 sizeof(rxnfc->rule_cnt)))
2880 return -EFAULT;
2881
2882 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2883 /* As an optimisation, we only copy the actual
2884 * number of rules that the underlying
2885 * function returned. Since Mallory might
2886 * change the rule count in user memory, we
2887 * check that it is less than the rule count
2888 * originally given (as the user buffer size),
2889 * which has been range-checked.
2890 */
2891 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2892 return -EFAULT;
2893 if (actual_rule_cnt < rule_cnt)
2894 rule_cnt = actual_rule_cnt;
2895 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2896 &rxnfc->rule_locs[0],
2897 rule_cnt * sizeof(u32)))
2898 return -EFAULT;
2899 }
2900 }
2901
2902 return 0;
2903 }
2904
2905 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2906 {
2907 void __user *uptr;
2908 compat_uptr_t uptr32;
2909 struct ifreq __user *uifr;
2910
2911 uifr = compat_alloc_user_space(sizeof(*uifr));
2912 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2913 return -EFAULT;
2914
2915 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2916 return -EFAULT;
2917
2918 uptr = compat_ptr(uptr32);
2919
2920 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2921 return -EFAULT;
2922
2923 return dev_ioctl(net, SIOCWANDEV, uifr);
2924 }
2925
2926 static int bond_ioctl(struct net *net, unsigned int cmd,
2927 struct compat_ifreq __user *ifr32)
2928 {
2929 struct ifreq kifr;
2930 mm_segment_t old_fs;
2931 int err;
2932
2933 switch (cmd) {
2934 case SIOCBONDENSLAVE:
2935 case SIOCBONDRELEASE:
2936 case SIOCBONDSETHWADDR:
2937 case SIOCBONDCHANGEACTIVE:
2938 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2939 return -EFAULT;
2940
2941 old_fs = get_fs();
2942 set_fs(KERNEL_DS);
2943 err = dev_ioctl(net, cmd,
2944 (struct ifreq __user __force *) &kifr);
2945 set_fs(old_fs);
2946
2947 return err;
2948 default:
2949 return -ENOIOCTLCMD;
2950 }
2951 }
2952
2953 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2954 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2955 struct compat_ifreq __user *u_ifreq32)
2956 {
2957 struct ifreq __user *u_ifreq64;
2958 char tmp_buf[IFNAMSIZ];
2959 void __user *data64;
2960 u32 data32;
2961
2962 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2963 IFNAMSIZ))
2964 return -EFAULT;
2965 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2966 return -EFAULT;
2967 data64 = compat_ptr(data32);
2968
2969 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2970
2971 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2972 IFNAMSIZ))
2973 return -EFAULT;
2974 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2975 return -EFAULT;
2976
2977 return dev_ioctl(net, cmd, u_ifreq64);
2978 }
2979
2980 static int dev_ifsioc(struct net *net, struct socket *sock,
2981 unsigned int cmd, struct compat_ifreq __user *uifr32)
2982 {
2983 struct ifreq __user *uifr;
2984 int err;
2985
2986 uifr = compat_alloc_user_space(sizeof(*uifr));
2987 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2988 return -EFAULT;
2989
2990 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2991
2992 if (!err) {
2993 switch (cmd) {
2994 case SIOCGIFFLAGS:
2995 case SIOCGIFMETRIC:
2996 case SIOCGIFMTU:
2997 case SIOCGIFMEM:
2998 case SIOCGIFHWADDR:
2999 case SIOCGIFINDEX:
3000 case SIOCGIFADDR:
3001 case SIOCGIFBRDADDR:
3002 case SIOCGIFDSTADDR:
3003 case SIOCGIFNETMASK:
3004 case SIOCGIFPFLAGS:
3005 case SIOCGIFTXQLEN:
3006 case SIOCGMIIPHY:
3007 case SIOCGMIIREG:
3008 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3009 err = -EFAULT;
3010 break;
3011 }
3012 }
3013 return err;
3014 }
3015
3016 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3017 struct compat_ifreq __user *uifr32)
3018 {
3019 struct ifreq ifr;
3020 struct compat_ifmap __user *uifmap32;
3021 mm_segment_t old_fs;
3022 int err;
3023
3024 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3025 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3026 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3027 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3028 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3029 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3030 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3031 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3032 if (err)
3033 return -EFAULT;
3034
3035 old_fs = get_fs();
3036 set_fs(KERNEL_DS);
3037 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3038 set_fs(old_fs);
3039
3040 if (cmd == SIOCGIFMAP && !err) {
3041 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3042 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3043 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3044 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3045 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3046 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3047 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3048 if (err)
3049 err = -EFAULT;
3050 }
3051 return err;
3052 }
3053
3054 struct rtentry32 {
3055 u32 rt_pad1;
3056 struct sockaddr rt_dst; /* target address */
3057 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3058 struct sockaddr rt_genmask; /* target network mask (IP) */
3059 unsigned short rt_flags;
3060 short rt_pad2;
3061 u32 rt_pad3;
3062 unsigned char rt_tos;
3063 unsigned char rt_class;
3064 short rt_pad4;
3065 short rt_metric; /* +1 for binary compatibility! */
3066 /* char * */ u32 rt_dev; /* forcing the device at add */
3067 u32 rt_mtu; /* per route MTU/Window */
3068 u32 rt_window; /* Window clamping */
3069 unsigned short rt_irtt; /* Initial RTT */
3070 };
3071
3072 struct in6_rtmsg32 {
3073 struct in6_addr rtmsg_dst;
3074 struct in6_addr rtmsg_src;
3075 struct in6_addr rtmsg_gateway;
3076 u32 rtmsg_type;
3077 u16 rtmsg_dst_len;
3078 u16 rtmsg_src_len;
3079 u32 rtmsg_metric;
3080 u32 rtmsg_info;
3081 u32 rtmsg_flags;
3082 s32 rtmsg_ifindex;
3083 };
3084
3085 static int routing_ioctl(struct net *net, struct socket *sock,
3086 unsigned int cmd, void __user *argp)
3087 {
3088 int ret;
3089 void *r = NULL;
3090 struct in6_rtmsg r6;
3091 struct rtentry r4;
3092 char devname[16];
3093 u32 rtdev;
3094 mm_segment_t old_fs = get_fs();
3095
3096 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3097 struct in6_rtmsg32 __user *ur6 = argp;
3098 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3099 3 * sizeof(struct in6_addr));
3100 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3101 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3102 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3103 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3104 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3105 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3106 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3107
3108 r = (void *) &r6;
3109 } else { /* ipv4 */
3110 struct rtentry32 __user *ur4 = argp;
3111 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3112 3 * sizeof(struct sockaddr));
3113 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3114 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3115 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3116 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3117 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3118 ret |= get_user(rtdev, &(ur4->rt_dev));
3119 if (rtdev) {
3120 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3121 r4.rt_dev = (char __user __force *)devname;
3122 devname[15] = 0;
3123 } else
3124 r4.rt_dev = NULL;
3125
3126 r = (void *) &r4;
3127 }
3128
3129 if (ret) {
3130 ret = -EFAULT;
3131 goto out;
3132 }
3133
3134 set_fs(KERNEL_DS);
3135 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3136 set_fs(old_fs);
3137
3138 out:
3139 return ret;
3140 }
3141
3142 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3143 * for some operations; this forces use of the newer bridge-utils that
3144 * use compatible ioctls
3145 */
3146 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3147 {
3148 compat_ulong_t tmp;
3149
3150 if (get_user(tmp, argp))
3151 return -EFAULT;
3152 if (tmp == BRCTL_GET_VERSION)
3153 return BRCTL_VERSION + 1;
3154 return -EINVAL;
3155 }
3156
3157 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3158 unsigned int cmd, unsigned long arg)
3159 {
3160 void __user *argp = compat_ptr(arg);
3161 struct sock *sk = sock->sk;
3162 struct net *net = sock_net(sk);
3163
3164 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3165 return compat_ifr_data_ioctl(net, cmd, argp);
3166
3167 switch (cmd) {
3168 case SIOCSIFBR:
3169 case SIOCGIFBR:
3170 return old_bridge_ioctl(argp);
3171 case SIOCGIFNAME:
3172 return dev_ifname32(net, argp);
3173 case SIOCGIFCONF:
3174 return dev_ifconf(net, argp);
3175 case SIOCETHTOOL:
3176 return ethtool_ioctl(net, argp);
3177 case SIOCWANDEV:
3178 return compat_siocwandev(net, argp);
3179 case SIOCGIFMAP:
3180 case SIOCSIFMAP:
3181 return compat_sioc_ifmap(net, cmd, argp);
3182 case SIOCBONDENSLAVE:
3183 case SIOCBONDRELEASE:
3184 case SIOCBONDSETHWADDR:
3185 case SIOCBONDCHANGEACTIVE:
3186 return bond_ioctl(net, cmd, argp);
3187 case SIOCADDRT:
3188 case SIOCDELRT:
3189 return routing_ioctl(net, sock, cmd, argp);
3190 case SIOCGSTAMP:
3191 return do_siocgstamp(net, sock, cmd, argp);
3192 case SIOCGSTAMPNS:
3193 return do_siocgstampns(net, sock, cmd, argp);
3194 case SIOCBONDSLAVEINFOQUERY:
3195 case SIOCBONDINFOQUERY:
3196 case SIOCSHWTSTAMP:
3197 case SIOCGHWTSTAMP:
3198 return compat_ifr_data_ioctl(net, cmd, argp);
3199
3200 case FIOSETOWN:
3201 case SIOCSPGRP:
3202 case FIOGETOWN:
3203 case SIOCGPGRP:
3204 case SIOCBRADDBR:
3205 case SIOCBRDELBR:
3206 case SIOCGIFVLAN:
3207 case SIOCSIFVLAN:
3208 case SIOCADDDLCI:
3209 case SIOCDELDLCI:
3210 case SIOCGSKNS:
3211 return sock_ioctl(file, cmd, arg);
3212
3213 case SIOCGIFFLAGS:
3214 case SIOCSIFFLAGS:
3215 case SIOCGIFMETRIC:
3216 case SIOCSIFMETRIC:
3217 case SIOCGIFMTU:
3218 case SIOCSIFMTU:
3219 case SIOCGIFMEM:
3220 case SIOCSIFMEM:
3221 case SIOCGIFHWADDR:
3222 case SIOCSIFHWADDR:
3223 case SIOCADDMULTI:
3224 case SIOCDELMULTI:
3225 case SIOCGIFINDEX:
3226 case SIOCGIFADDR:
3227 case SIOCSIFADDR:
3228 case SIOCSIFHWBROADCAST:
3229 case SIOCDIFADDR:
3230 case SIOCGIFBRDADDR:
3231 case SIOCSIFBRDADDR:
3232 case SIOCGIFDSTADDR:
3233 case SIOCSIFDSTADDR:
3234 case SIOCGIFNETMASK:
3235 case SIOCSIFNETMASK:
3236 case SIOCSIFPFLAGS:
3237 case SIOCGIFPFLAGS:
3238 case SIOCGIFTXQLEN:
3239 case SIOCSIFTXQLEN:
3240 case SIOCBRADDIF:
3241 case SIOCBRDELIF:
3242 case SIOCSIFNAME:
3243 case SIOCGMIIPHY:
3244 case SIOCGMIIREG:
3245 case SIOCSMIIREG:
3246 return dev_ifsioc(net, sock, cmd, argp);
3247
3248 case SIOCSARP:
3249 case SIOCGARP:
3250 case SIOCDARP:
3251 case SIOCATMARK:
3252 return sock_do_ioctl(net, sock, cmd, arg);
3253 }
3254
3255 return -ENOIOCTLCMD;
3256 }
3257
3258 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3259 unsigned long arg)
3260 {
3261 struct socket *sock = file->private_data;
3262 int ret = -ENOIOCTLCMD;
3263 struct sock *sk;
3264 struct net *net;
3265
3266 sk = sock->sk;
3267 net = sock_net(sk);
3268
3269 if (sock->ops->compat_ioctl)
3270 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3271
3272 if (ret == -ENOIOCTLCMD &&
3273 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3274 ret = compat_wext_handle_ioctl(net, cmd, arg);
3275
3276 if (ret == -ENOIOCTLCMD)
3277 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3278
3279 return ret;
3280 }
3281 #endif
3282
3283 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3284 {
3285 return sock->ops->bind(sock, addr, addrlen);
3286 }
3287 EXPORT_SYMBOL(kernel_bind);
3288
3289 int kernel_listen(struct socket *sock, int backlog)
3290 {
3291 return sock->ops->listen(sock, backlog);
3292 }
3293 EXPORT_SYMBOL(kernel_listen);
3294
3295 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3296 {
3297 struct sock *sk = sock->sk;
3298 int err;
3299
3300 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3301 newsock);
3302 if (err < 0)
3303 goto done;
3304
3305 err = sock->ops->accept(sock, *newsock, flags, true);
3306 if (err < 0) {
3307 sock_release(*newsock);
3308 *newsock = NULL;
3309 goto done;
3310 }
3311
3312 (*newsock)->ops = sock->ops;
3313 __module_get((*newsock)->ops->owner);
3314
3315 done:
3316 return err;
3317 }
3318 EXPORT_SYMBOL(kernel_accept);
3319
3320 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3321 int flags)
3322 {
3323 return sock->ops->connect(sock, addr, addrlen, flags);
3324 }
3325 EXPORT_SYMBOL(kernel_connect);
3326
3327 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3328 int *addrlen)
3329 {
3330 return sock->ops->getname(sock, addr, addrlen, 0);
3331 }
3332 EXPORT_SYMBOL(kernel_getsockname);
3333
3334 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3335 int *addrlen)
3336 {
3337 return sock->ops->getname(sock, addr, addrlen, 1);
3338 }
3339 EXPORT_SYMBOL(kernel_getpeername);
3340
3341 int kernel_getsockopt(struct socket *sock, int level, int optname,
3342 char *optval, int *optlen)
3343 {
3344 mm_segment_t oldfs = get_fs();
3345 char __user *uoptval;
3346 int __user *uoptlen;
3347 int err;
3348
3349 uoptval = (char __user __force *) optval;
3350 uoptlen = (int __user __force *) optlen;
3351
3352 set_fs(KERNEL_DS);
3353 if (level == SOL_SOCKET)
3354 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3355 else
3356 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3357 uoptlen);
3358 set_fs(oldfs);
3359 return err;
3360 }
3361 EXPORT_SYMBOL(kernel_getsockopt);
3362
3363 int kernel_setsockopt(struct socket *sock, int level, int optname,
3364 char *optval, unsigned int optlen)
3365 {
3366 mm_segment_t oldfs = get_fs();
3367 char __user *uoptval;
3368 int err;
3369
3370 uoptval = (char __user __force *) optval;
3371
3372 set_fs(KERNEL_DS);
3373 if (level == SOL_SOCKET)
3374 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3375 else
3376 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3377 optlen);
3378 set_fs(oldfs);
3379 return err;
3380 }
3381 EXPORT_SYMBOL(kernel_setsockopt);
3382
3383 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3384 size_t size, int flags)
3385 {
3386 if (sock->ops->sendpage)
3387 return sock->ops->sendpage(sock, page, offset, size, flags);
3388
3389 return sock_no_sendpage(sock, page, offset, size, flags);
3390 }
3391 EXPORT_SYMBOL(kernel_sendpage);
3392
3393 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3394 size_t size, int flags)
3395 {
3396 struct socket *sock = sk->sk_socket;
3397
3398 if (sock->ops->sendpage_locked)
3399 return sock->ops->sendpage_locked(sk, page, offset, size,
3400 flags);
3401
3402 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3403 }
3404 EXPORT_SYMBOL(kernel_sendpage_locked);
3405
3406 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3407 {
3408 mm_segment_t oldfs = get_fs();
3409 int err;
3410
3411 set_fs(KERNEL_DS);
3412 err = sock->ops->ioctl(sock, cmd, arg);
3413 set_fs(oldfs);
3414
3415 return err;
3416 }
3417 EXPORT_SYMBOL(kernel_sock_ioctl);
3418
3419 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3420 {
3421 return sock->ops->shutdown(sock, how);
3422 }
3423 EXPORT_SYMBOL(kernel_sock_shutdown);
3424
3425 /* This routine returns the IP overhead imposed by a socket i.e.
3426 * the length of the underlying IP header, depending on whether
3427 * this is an IPv4 or IPv6 socket and the length from IP options turned
3428 * on at the socket. Assumes that the caller has a lock on the socket.
3429 */
3430 u32 kernel_sock_ip_overhead(struct sock *sk)
3431 {
3432 struct inet_sock *inet;
3433 struct ip_options_rcu *opt;
3434 u32 overhead = 0;
3435 #if IS_ENABLED(CONFIG_IPV6)
3436 struct ipv6_pinfo *np;
3437 struct ipv6_txoptions *optv6 = NULL;
3438 #endif /* IS_ENABLED(CONFIG_IPV6) */
3439
3440 if (!sk)
3441 return overhead;
3442
3443 switch (sk->sk_family) {
3444 case AF_INET:
3445 inet = inet_sk(sk);
3446 overhead += sizeof(struct iphdr);
3447 opt = rcu_dereference_protected(inet->inet_opt,
3448 sock_owned_by_user(sk));
3449 if (opt)
3450 overhead += opt->opt.optlen;
3451 return overhead;
3452 #if IS_ENABLED(CONFIG_IPV6)
3453 case AF_INET6:
3454 np = inet6_sk(sk);
3455 overhead += sizeof(struct ipv6hdr);
3456 if (np)
3457 optv6 = rcu_dereference_protected(np->opt,
3458 sock_owned_by_user(sk));
3459 if (optv6)
3460 overhead += (optv6->opt_flen + optv6->opt_nflen);
3461 return overhead;
3462 #endif /* IS_ENABLED(CONFIG_IPV6) */
3463 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3464 return overhead;
3465 }
3466 }
3467 EXPORT_SYMBOL(kernel_sock_ip_overhead);