]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/socket.c
net: make getname() functions return length rather than use int* parameter
[mirror_ubuntu-hirsute-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156 };
157
158 /*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165 /*
166 * Support routines.
167 * Move socket addresses back and forth across the kernel/user
168 * divide and look after the messy bits.
169 */
170
171 /**
172 * move_addr_to_kernel - copy a socket address into kernel space
173 * @uaddr: Address in user space
174 * @kaddr: Address in kernel space
175 * @ulen: Length in user space
176 *
177 * The address is copied into kernel space. If the provided address is
178 * too long an error code of -EINVAL is returned. If the copy gives
179 * invalid addresses -EFAULT is returned. On a success 0 is returned.
180 */
181
182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
183 {
184 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
185 return -EINVAL;
186 if (ulen == 0)
187 return 0;
188 if (copy_from_user(kaddr, uaddr, ulen))
189 return -EFAULT;
190 return audit_sockaddr(ulen, kaddr);
191 }
192
193 /**
194 * move_addr_to_user - copy an address to user space
195 * @kaddr: kernel space address
196 * @klen: length of address in kernel
197 * @uaddr: user space address
198 * @ulen: pointer to user length field
199 *
200 * The value pointed to by ulen on entry is the buffer length available.
201 * This is overwritten with the buffer space used. -EINVAL is returned
202 * if an overlong buffer is specified or a negative buffer size. -EFAULT
203 * is returned if either the buffer or the length field are not
204 * accessible.
205 * After copying the data up to the limit the user specifies, the true
206 * length of the data is written over the length limit the user
207 * specified. Zero is returned for a success.
208 */
209
210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
211 void __user *uaddr, int __user *ulen)
212 {
213 int err;
214 int len;
215
216 BUG_ON(klen > sizeof(struct sockaddr_storage));
217 err = get_user(len, ulen);
218 if (err)
219 return err;
220 if (len > klen)
221 len = klen;
222 if (len < 0)
223 return -EINVAL;
224 if (len) {
225 if (audit_sockaddr(klen, kaddr))
226 return -ENOMEM;
227 if (copy_to_user(uaddr, kaddr, len))
228 return -EFAULT;
229 }
230 /*
231 * "fromlen shall refer to the value before truncation.."
232 * 1003.1g
233 */
234 return __put_user(klen, ulen);
235 }
236
237 static struct kmem_cache *sock_inode_cachep __read_mostly;
238
239 static struct inode *sock_alloc_inode(struct super_block *sb)
240 {
241 struct socket_alloc *ei;
242 struct socket_wq *wq;
243
244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 if (!ei)
246 return NULL;
247 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
248 if (!wq) {
249 kmem_cache_free(sock_inode_cachep, ei);
250 return NULL;
251 }
252 init_waitqueue_head(&wq->wait);
253 wq->fasync_list = NULL;
254 wq->flags = 0;
255 RCU_INIT_POINTER(ei->socket.wq, wq);
256
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
262
263 return &ei->vfs_inode;
264 }
265
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 struct socket_alloc *ei;
269 struct socket_wq *wq;
270
271 ei = container_of(inode, struct socket_alloc, vfs_inode);
272 wq = rcu_dereference_protected(ei->socket.wq, 1);
273 kfree_rcu(wq, rcu);
274 kmem_cache_free(sock_inode_cachep, ei);
275 }
276
277 static void init_once(void *foo)
278 {
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
280
281 inode_init_once(&ei->vfs_inode);
282 }
283
284 static void init_inodecache(void)
285 {
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
288 0,
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 init_once);
293 BUG_ON(sock_inode_cachep == NULL);
294 }
295
296 static const struct super_operations sockfs_ops = {
297 .alloc_inode = sock_alloc_inode,
298 .destroy_inode = sock_destroy_inode,
299 .statfs = simple_statfs,
300 };
301
302 /*
303 * sockfs_dname() is called from d_path().
304 */
305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 {
307 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 d_inode(dentry)->i_ino);
309 }
310
311 static const struct dentry_operations sockfs_dentry_operations = {
312 .d_dname = sockfs_dname,
313 };
314
315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 struct dentry *dentry, struct inode *inode,
317 const char *suffix, void *value, size_t size)
318 {
319 if (value) {
320 if (dentry->d_name.len + 1 > size)
321 return -ERANGE;
322 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
323 }
324 return dentry->d_name.len + 1;
325 }
326
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
330
331 static const struct xattr_handler sockfs_xattr_handler = {
332 .name = XATTR_NAME_SOCKPROTONAME,
333 .get = sockfs_xattr_get,
334 };
335
336 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
337 struct dentry *dentry, struct inode *inode,
338 const char *suffix, const void *value,
339 size_t size, int flags)
340 {
341 /* Handled by LSM. */
342 return -EAGAIN;
343 }
344
345 static const struct xattr_handler sockfs_security_xattr_handler = {
346 .prefix = XATTR_SECURITY_PREFIX,
347 .set = sockfs_security_xattr_set,
348 };
349
350 static const struct xattr_handler *sockfs_xattr_handlers[] = {
351 &sockfs_xattr_handler,
352 &sockfs_security_xattr_handler,
353 NULL
354 };
355
356 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
357 int flags, const char *dev_name, void *data)
358 {
359 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
360 sockfs_xattr_handlers,
361 &sockfs_dentry_operations, SOCKFS_MAGIC);
362 }
363
364 static struct vfsmount *sock_mnt __read_mostly;
365
366 static struct file_system_type sock_fs_type = {
367 .name = "sockfs",
368 .mount = sockfs_mount,
369 .kill_sb = kill_anon_super,
370 };
371
372 /*
373 * Obtains the first available file descriptor and sets it up for use.
374 *
375 * These functions create file structures and maps them to fd space
376 * of the current process. On success it returns file descriptor
377 * and file struct implicitly stored in sock->file.
378 * Note that another thread may close file descriptor before we return
379 * from this function. We use the fact that now we do not refer
380 * to socket after mapping. If one day we will need it, this
381 * function will increment ref. count on file by 1.
382 *
383 * In any case returned fd MAY BE not valid!
384 * This race condition is unavoidable
385 * with shared fd spaces, we cannot solve it inside kernel,
386 * but we take care of internal coherence yet.
387 */
388
389 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
390 {
391 struct qstr name = { .name = "" };
392 struct path path;
393 struct file *file;
394
395 if (dname) {
396 name.name = dname;
397 name.len = strlen(name.name);
398 } else if (sock->sk) {
399 name.name = sock->sk->sk_prot_creator->name;
400 name.len = strlen(name.name);
401 }
402 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
403 if (unlikely(!path.dentry)) {
404 sock_release(sock);
405 return ERR_PTR(-ENOMEM);
406 }
407 path.mnt = mntget(sock_mnt);
408
409 d_instantiate(path.dentry, SOCK_INODE(sock));
410
411 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
412 &socket_file_ops);
413 if (IS_ERR(file)) {
414 /* drop dentry, keep inode for a bit */
415 ihold(d_inode(path.dentry));
416 path_put(&path);
417 /* ... and now kill it properly */
418 sock_release(sock);
419 return file;
420 }
421
422 sock->file = file;
423 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
424 file->private_data = sock;
425 return file;
426 }
427 EXPORT_SYMBOL(sock_alloc_file);
428
429 static int sock_map_fd(struct socket *sock, int flags)
430 {
431 struct file *newfile;
432 int fd = get_unused_fd_flags(flags);
433 if (unlikely(fd < 0)) {
434 sock_release(sock);
435 return fd;
436 }
437
438 newfile = sock_alloc_file(sock, flags, NULL);
439 if (likely(!IS_ERR(newfile))) {
440 fd_install(fd, newfile);
441 return fd;
442 }
443
444 put_unused_fd(fd);
445 return PTR_ERR(newfile);
446 }
447
448 struct socket *sock_from_file(struct file *file, int *err)
449 {
450 if (file->f_op == &socket_file_ops)
451 return file->private_data; /* set in sock_map_fd */
452
453 *err = -ENOTSOCK;
454 return NULL;
455 }
456 EXPORT_SYMBOL(sock_from_file);
457
458 /**
459 * sockfd_lookup - Go from a file number to its socket slot
460 * @fd: file handle
461 * @err: pointer to an error code return
462 *
463 * The file handle passed in is locked and the socket it is bound
464 * to is returned. If an error occurs the err pointer is overwritten
465 * with a negative errno code and NULL is returned. The function checks
466 * for both invalid handles and passing a handle which is not a socket.
467 *
468 * On a success the socket object pointer is returned.
469 */
470
471 struct socket *sockfd_lookup(int fd, int *err)
472 {
473 struct file *file;
474 struct socket *sock;
475
476 file = fget(fd);
477 if (!file) {
478 *err = -EBADF;
479 return NULL;
480 }
481
482 sock = sock_from_file(file, err);
483 if (!sock)
484 fput(file);
485 return sock;
486 }
487 EXPORT_SYMBOL(sockfd_lookup);
488
489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
490 {
491 struct fd f = fdget(fd);
492 struct socket *sock;
493
494 *err = -EBADF;
495 if (f.file) {
496 sock = sock_from_file(f.file, err);
497 if (likely(sock)) {
498 *fput_needed = f.flags;
499 return sock;
500 }
501 fdput(f);
502 }
503 return NULL;
504 }
505
506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
507 size_t size)
508 {
509 ssize_t len;
510 ssize_t used = 0;
511
512 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
513 if (len < 0)
514 return len;
515 used += len;
516 if (buffer) {
517 if (size < used)
518 return -ERANGE;
519 buffer += len;
520 }
521
522 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
523 used += len;
524 if (buffer) {
525 if (size < used)
526 return -ERANGE;
527 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
528 buffer += len;
529 }
530
531 return used;
532 }
533
534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
535 {
536 int err = simple_setattr(dentry, iattr);
537
538 if (!err && (iattr->ia_valid & ATTR_UID)) {
539 struct socket *sock = SOCKET_I(d_inode(dentry));
540
541 sock->sk->sk_uid = iattr->ia_uid;
542 }
543
544 return err;
545 }
546
547 static const struct inode_operations sockfs_inode_ops = {
548 .listxattr = sockfs_listxattr,
549 .setattr = sockfs_setattr,
550 };
551
552 /**
553 * sock_alloc - allocate a socket
554 *
555 * Allocate a new inode and socket object. The two are bound together
556 * and initialised. The socket is then returned. If we are out of inodes
557 * NULL is returned.
558 */
559
560 struct socket *sock_alloc(void)
561 {
562 struct inode *inode;
563 struct socket *sock;
564
565 inode = new_inode_pseudo(sock_mnt->mnt_sb);
566 if (!inode)
567 return NULL;
568
569 sock = SOCKET_I(inode);
570
571 inode->i_ino = get_next_ino();
572 inode->i_mode = S_IFSOCK | S_IRWXUGO;
573 inode->i_uid = current_fsuid();
574 inode->i_gid = current_fsgid();
575 inode->i_op = &sockfs_inode_ops;
576
577 return sock;
578 }
579 EXPORT_SYMBOL(sock_alloc);
580
581 /**
582 * sock_release - close a socket
583 * @sock: socket to close
584 *
585 * The socket is released from the protocol stack if it has a release
586 * callback, and the inode is then released if the socket is bound to
587 * an inode not a file.
588 */
589
590 void sock_release(struct socket *sock)
591 {
592 if (sock->ops) {
593 struct module *owner = sock->ops->owner;
594
595 sock->ops->release(sock);
596 sock->ops = NULL;
597 module_put(owner);
598 }
599
600 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
601 pr_err("%s: fasync list not empty!\n", __func__);
602
603 if (!sock->file) {
604 iput(SOCK_INODE(sock));
605 return;
606 }
607 sock->file = NULL;
608 }
609 EXPORT_SYMBOL(sock_release);
610
611 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
612 {
613 u8 flags = *tx_flags;
614
615 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
616 flags |= SKBTX_HW_TSTAMP;
617
618 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
619 flags |= SKBTX_SW_TSTAMP;
620
621 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
622 flags |= SKBTX_SCHED_TSTAMP;
623
624 *tx_flags = flags;
625 }
626 EXPORT_SYMBOL(__sock_tx_timestamp);
627
628 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
629 {
630 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
631 BUG_ON(ret == -EIOCBQUEUED);
632 return ret;
633 }
634
635 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
636 {
637 int err = security_socket_sendmsg(sock, msg,
638 msg_data_left(msg));
639
640 return err ?: sock_sendmsg_nosec(sock, msg);
641 }
642 EXPORT_SYMBOL(sock_sendmsg);
643
644 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
645 struct kvec *vec, size_t num, size_t size)
646 {
647 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
648 return sock_sendmsg(sock, msg);
649 }
650 EXPORT_SYMBOL(kernel_sendmsg);
651
652 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
653 struct kvec *vec, size_t num, size_t size)
654 {
655 struct socket *sock = sk->sk_socket;
656
657 if (!sock->ops->sendmsg_locked)
658 return sock_no_sendmsg_locked(sk, msg, size);
659
660 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
661
662 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
663 }
664 EXPORT_SYMBOL(kernel_sendmsg_locked);
665
666 static bool skb_is_err_queue(const struct sk_buff *skb)
667 {
668 /* pkt_type of skbs enqueued on the error queue are set to
669 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
670 * in recvmsg, since skbs received on a local socket will never
671 * have a pkt_type of PACKET_OUTGOING.
672 */
673 return skb->pkt_type == PACKET_OUTGOING;
674 }
675
676 /* On transmit, software and hardware timestamps are returned independently.
677 * As the two skb clones share the hardware timestamp, which may be updated
678 * before the software timestamp is received, a hardware TX timestamp may be
679 * returned only if there is no software TX timestamp. Ignore false software
680 * timestamps, which may be made in the __sock_recv_timestamp() call when the
681 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
682 * hardware timestamp.
683 */
684 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
685 {
686 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
687 }
688
689 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
690 {
691 struct scm_ts_pktinfo ts_pktinfo;
692 struct net_device *orig_dev;
693
694 if (!skb_mac_header_was_set(skb))
695 return;
696
697 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
698
699 rcu_read_lock();
700 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
701 if (orig_dev)
702 ts_pktinfo.if_index = orig_dev->ifindex;
703 rcu_read_unlock();
704
705 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
706 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
707 sizeof(ts_pktinfo), &ts_pktinfo);
708 }
709
710 /*
711 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
712 */
713 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
714 struct sk_buff *skb)
715 {
716 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
717 struct scm_timestamping tss;
718 int empty = 1, false_tstamp = 0;
719 struct skb_shared_hwtstamps *shhwtstamps =
720 skb_hwtstamps(skb);
721
722 /* Race occurred between timestamp enabling and packet
723 receiving. Fill in the current time for now. */
724 if (need_software_tstamp && skb->tstamp == 0) {
725 __net_timestamp(skb);
726 false_tstamp = 1;
727 }
728
729 if (need_software_tstamp) {
730 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
731 struct timeval tv;
732 skb_get_timestamp(skb, &tv);
733 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
734 sizeof(tv), &tv);
735 } else {
736 struct timespec ts;
737 skb_get_timestampns(skb, &ts);
738 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
739 sizeof(ts), &ts);
740 }
741 }
742
743 memset(&tss, 0, sizeof(tss));
744 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
745 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
746 empty = 0;
747 if (shhwtstamps &&
748 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
749 !skb_is_swtx_tstamp(skb, false_tstamp) &&
750 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
751 empty = 0;
752 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
753 !skb_is_err_queue(skb))
754 put_ts_pktinfo(msg, skb);
755 }
756 if (!empty) {
757 put_cmsg(msg, SOL_SOCKET,
758 SCM_TIMESTAMPING, sizeof(tss), &tss);
759
760 if (skb_is_err_queue(skb) && skb->len &&
761 SKB_EXT_ERR(skb)->opt_stats)
762 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
763 skb->len, skb->data);
764 }
765 }
766 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
767
768 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
769 struct sk_buff *skb)
770 {
771 int ack;
772
773 if (!sock_flag(sk, SOCK_WIFI_STATUS))
774 return;
775 if (!skb->wifi_acked_valid)
776 return;
777
778 ack = skb->wifi_acked;
779
780 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
781 }
782 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
783
784 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
785 struct sk_buff *skb)
786 {
787 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
788 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
789 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
790 }
791
792 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
793 struct sk_buff *skb)
794 {
795 sock_recv_timestamp(msg, sk, skb);
796 sock_recv_drops(msg, sk, skb);
797 }
798 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
799
800 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
801 int flags)
802 {
803 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
804 }
805
806 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
807 {
808 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
809
810 return err ?: sock_recvmsg_nosec(sock, msg, flags);
811 }
812 EXPORT_SYMBOL(sock_recvmsg);
813
814 /**
815 * kernel_recvmsg - Receive a message from a socket (kernel space)
816 * @sock: The socket to receive the message from
817 * @msg: Received message
818 * @vec: Input s/g array for message data
819 * @num: Size of input s/g array
820 * @size: Number of bytes to read
821 * @flags: Message flags (MSG_DONTWAIT, etc...)
822 *
823 * On return the msg structure contains the scatter/gather array passed in the
824 * vec argument. The array is modified so that it consists of the unfilled
825 * portion of the original array.
826 *
827 * The returned value is the total number of bytes received, or an error.
828 */
829 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
830 struct kvec *vec, size_t num, size_t size, int flags)
831 {
832 mm_segment_t oldfs = get_fs();
833 int result;
834
835 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
836 set_fs(KERNEL_DS);
837 result = sock_recvmsg(sock, msg, flags);
838 set_fs(oldfs);
839 return result;
840 }
841 EXPORT_SYMBOL(kernel_recvmsg);
842
843 static ssize_t sock_sendpage(struct file *file, struct page *page,
844 int offset, size_t size, loff_t *ppos, int more)
845 {
846 struct socket *sock;
847 int flags;
848
849 sock = file->private_data;
850
851 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
852 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
853 flags |= more;
854
855 return kernel_sendpage(sock, page, offset, size, flags);
856 }
857
858 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
859 struct pipe_inode_info *pipe, size_t len,
860 unsigned int flags)
861 {
862 struct socket *sock = file->private_data;
863
864 if (unlikely(!sock->ops->splice_read))
865 return -EINVAL;
866
867 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
868 }
869
870 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
871 {
872 struct file *file = iocb->ki_filp;
873 struct socket *sock = file->private_data;
874 struct msghdr msg = {.msg_iter = *to,
875 .msg_iocb = iocb};
876 ssize_t res;
877
878 if (file->f_flags & O_NONBLOCK)
879 msg.msg_flags = MSG_DONTWAIT;
880
881 if (iocb->ki_pos != 0)
882 return -ESPIPE;
883
884 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
885 return 0;
886
887 res = sock_recvmsg(sock, &msg, msg.msg_flags);
888 *to = msg.msg_iter;
889 return res;
890 }
891
892 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
893 {
894 struct file *file = iocb->ki_filp;
895 struct socket *sock = file->private_data;
896 struct msghdr msg = {.msg_iter = *from,
897 .msg_iocb = iocb};
898 ssize_t res;
899
900 if (iocb->ki_pos != 0)
901 return -ESPIPE;
902
903 if (file->f_flags & O_NONBLOCK)
904 msg.msg_flags = MSG_DONTWAIT;
905
906 if (sock->type == SOCK_SEQPACKET)
907 msg.msg_flags |= MSG_EOR;
908
909 res = sock_sendmsg(sock, &msg);
910 *from = msg.msg_iter;
911 return res;
912 }
913
914 /*
915 * Atomic setting of ioctl hooks to avoid race
916 * with module unload.
917 */
918
919 static DEFINE_MUTEX(br_ioctl_mutex);
920 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
921
922 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
923 {
924 mutex_lock(&br_ioctl_mutex);
925 br_ioctl_hook = hook;
926 mutex_unlock(&br_ioctl_mutex);
927 }
928 EXPORT_SYMBOL(brioctl_set);
929
930 static DEFINE_MUTEX(vlan_ioctl_mutex);
931 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
932
933 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
934 {
935 mutex_lock(&vlan_ioctl_mutex);
936 vlan_ioctl_hook = hook;
937 mutex_unlock(&vlan_ioctl_mutex);
938 }
939 EXPORT_SYMBOL(vlan_ioctl_set);
940
941 static DEFINE_MUTEX(dlci_ioctl_mutex);
942 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
943
944 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
945 {
946 mutex_lock(&dlci_ioctl_mutex);
947 dlci_ioctl_hook = hook;
948 mutex_unlock(&dlci_ioctl_mutex);
949 }
950 EXPORT_SYMBOL(dlci_ioctl_set);
951
952 static long sock_do_ioctl(struct net *net, struct socket *sock,
953 unsigned int cmd, unsigned long arg)
954 {
955 int err;
956 void __user *argp = (void __user *)arg;
957
958 err = sock->ops->ioctl(sock, cmd, arg);
959
960 /*
961 * If this ioctl is unknown try to hand it down
962 * to the NIC driver.
963 */
964 if (err != -ENOIOCTLCMD)
965 return err;
966
967 if (cmd == SIOCGIFCONF) {
968 struct ifconf ifc;
969 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
970 return -EFAULT;
971 rtnl_lock();
972 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
973 rtnl_unlock();
974 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
975 err = -EFAULT;
976 } else {
977 struct ifreq ifr;
978 bool need_copyout;
979 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
980 return -EFAULT;
981 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
982 if (!err && need_copyout)
983 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
984 return -EFAULT;
985 }
986 return err;
987 }
988
989 /*
990 * With an ioctl, arg may well be a user mode pointer, but we don't know
991 * what to do with it - that's up to the protocol still.
992 */
993
994 static struct ns_common *get_net_ns(struct ns_common *ns)
995 {
996 return &get_net(container_of(ns, struct net, ns))->ns;
997 }
998
999 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1000 {
1001 struct socket *sock;
1002 struct sock *sk;
1003 void __user *argp = (void __user *)arg;
1004 int pid, err;
1005 struct net *net;
1006
1007 sock = file->private_data;
1008 sk = sock->sk;
1009 net = sock_net(sk);
1010 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1011 struct ifreq ifr;
1012 bool need_copyout;
1013 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1014 return -EFAULT;
1015 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1016 if (!err && need_copyout)
1017 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1018 return -EFAULT;
1019 } else
1020 #ifdef CONFIG_WEXT_CORE
1021 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1022 err = wext_handle_ioctl(net, cmd, argp);
1023 } else
1024 #endif
1025 switch (cmd) {
1026 case FIOSETOWN:
1027 case SIOCSPGRP:
1028 err = -EFAULT;
1029 if (get_user(pid, (int __user *)argp))
1030 break;
1031 err = f_setown(sock->file, pid, 1);
1032 break;
1033 case FIOGETOWN:
1034 case SIOCGPGRP:
1035 err = put_user(f_getown(sock->file),
1036 (int __user *)argp);
1037 break;
1038 case SIOCGIFBR:
1039 case SIOCSIFBR:
1040 case SIOCBRADDBR:
1041 case SIOCBRDELBR:
1042 err = -ENOPKG;
1043 if (!br_ioctl_hook)
1044 request_module("bridge");
1045
1046 mutex_lock(&br_ioctl_mutex);
1047 if (br_ioctl_hook)
1048 err = br_ioctl_hook(net, cmd, argp);
1049 mutex_unlock(&br_ioctl_mutex);
1050 break;
1051 case SIOCGIFVLAN:
1052 case SIOCSIFVLAN:
1053 err = -ENOPKG;
1054 if (!vlan_ioctl_hook)
1055 request_module("8021q");
1056
1057 mutex_lock(&vlan_ioctl_mutex);
1058 if (vlan_ioctl_hook)
1059 err = vlan_ioctl_hook(net, argp);
1060 mutex_unlock(&vlan_ioctl_mutex);
1061 break;
1062 case SIOCADDDLCI:
1063 case SIOCDELDLCI:
1064 err = -ENOPKG;
1065 if (!dlci_ioctl_hook)
1066 request_module("dlci");
1067
1068 mutex_lock(&dlci_ioctl_mutex);
1069 if (dlci_ioctl_hook)
1070 err = dlci_ioctl_hook(cmd, argp);
1071 mutex_unlock(&dlci_ioctl_mutex);
1072 break;
1073 case SIOCGSKNS:
1074 err = -EPERM;
1075 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1076 break;
1077
1078 err = open_related_ns(&net->ns, get_net_ns);
1079 break;
1080 default:
1081 err = sock_do_ioctl(net, sock, cmd, arg);
1082 break;
1083 }
1084 return err;
1085 }
1086
1087 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1088 {
1089 int err;
1090 struct socket *sock = NULL;
1091
1092 err = security_socket_create(family, type, protocol, 1);
1093 if (err)
1094 goto out;
1095
1096 sock = sock_alloc();
1097 if (!sock) {
1098 err = -ENOMEM;
1099 goto out;
1100 }
1101
1102 sock->type = type;
1103 err = security_socket_post_create(sock, family, type, protocol, 1);
1104 if (err)
1105 goto out_release;
1106
1107 out:
1108 *res = sock;
1109 return err;
1110 out_release:
1111 sock_release(sock);
1112 sock = NULL;
1113 goto out;
1114 }
1115 EXPORT_SYMBOL(sock_create_lite);
1116
1117 /* No kernel lock held - perfect */
1118 static __poll_t sock_poll(struct file *file, poll_table *wait)
1119 {
1120 __poll_t busy_flag = 0;
1121 struct socket *sock;
1122
1123 /*
1124 * We can't return errors to poll, so it's either yes or no.
1125 */
1126 sock = file->private_data;
1127
1128 if (sk_can_busy_loop(sock->sk)) {
1129 /* this socket can poll_ll so tell the system call */
1130 busy_flag = POLL_BUSY_LOOP;
1131
1132 /* once, only if requested by syscall */
1133 if (wait && (wait->_key & POLL_BUSY_LOOP))
1134 sk_busy_loop(sock->sk, 1);
1135 }
1136
1137 return busy_flag | sock->ops->poll(file, sock, wait);
1138 }
1139
1140 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1141 {
1142 struct socket *sock = file->private_data;
1143
1144 return sock->ops->mmap(file, sock, vma);
1145 }
1146
1147 static int sock_close(struct inode *inode, struct file *filp)
1148 {
1149 sock_release(SOCKET_I(inode));
1150 return 0;
1151 }
1152
1153 /*
1154 * Update the socket async list
1155 *
1156 * Fasync_list locking strategy.
1157 *
1158 * 1. fasync_list is modified only under process context socket lock
1159 * i.e. under semaphore.
1160 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1161 * or under socket lock
1162 */
1163
1164 static int sock_fasync(int fd, struct file *filp, int on)
1165 {
1166 struct socket *sock = filp->private_data;
1167 struct sock *sk = sock->sk;
1168 struct socket_wq *wq;
1169
1170 if (sk == NULL)
1171 return -EINVAL;
1172
1173 lock_sock(sk);
1174 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1175 fasync_helper(fd, filp, on, &wq->fasync_list);
1176
1177 if (!wq->fasync_list)
1178 sock_reset_flag(sk, SOCK_FASYNC);
1179 else
1180 sock_set_flag(sk, SOCK_FASYNC);
1181
1182 release_sock(sk);
1183 return 0;
1184 }
1185
1186 /* This function may be called only under rcu_lock */
1187
1188 int sock_wake_async(struct socket_wq *wq, int how, int band)
1189 {
1190 if (!wq || !wq->fasync_list)
1191 return -1;
1192
1193 switch (how) {
1194 case SOCK_WAKE_WAITD:
1195 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1196 break;
1197 goto call_kill;
1198 case SOCK_WAKE_SPACE:
1199 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1200 break;
1201 /* fall through */
1202 case SOCK_WAKE_IO:
1203 call_kill:
1204 kill_fasync(&wq->fasync_list, SIGIO, band);
1205 break;
1206 case SOCK_WAKE_URG:
1207 kill_fasync(&wq->fasync_list, SIGURG, band);
1208 }
1209
1210 return 0;
1211 }
1212 EXPORT_SYMBOL(sock_wake_async);
1213
1214 int __sock_create(struct net *net, int family, int type, int protocol,
1215 struct socket **res, int kern)
1216 {
1217 int err;
1218 struct socket *sock;
1219 const struct net_proto_family *pf;
1220
1221 /*
1222 * Check protocol is in range
1223 */
1224 if (family < 0 || family >= NPROTO)
1225 return -EAFNOSUPPORT;
1226 if (type < 0 || type >= SOCK_MAX)
1227 return -EINVAL;
1228
1229 /* Compatibility.
1230
1231 This uglymoron is moved from INET layer to here to avoid
1232 deadlock in module load.
1233 */
1234 if (family == PF_INET && type == SOCK_PACKET) {
1235 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1236 current->comm);
1237 family = PF_PACKET;
1238 }
1239
1240 err = security_socket_create(family, type, protocol, kern);
1241 if (err)
1242 return err;
1243
1244 /*
1245 * Allocate the socket and allow the family to set things up. if
1246 * the protocol is 0, the family is instructed to select an appropriate
1247 * default.
1248 */
1249 sock = sock_alloc();
1250 if (!sock) {
1251 net_warn_ratelimited("socket: no more sockets\n");
1252 return -ENFILE; /* Not exactly a match, but its the
1253 closest posix thing */
1254 }
1255
1256 sock->type = type;
1257
1258 #ifdef CONFIG_MODULES
1259 /* Attempt to load a protocol module if the find failed.
1260 *
1261 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1262 * requested real, full-featured networking support upon configuration.
1263 * Otherwise module support will break!
1264 */
1265 if (rcu_access_pointer(net_families[family]) == NULL)
1266 request_module("net-pf-%d", family);
1267 #endif
1268
1269 rcu_read_lock();
1270 pf = rcu_dereference(net_families[family]);
1271 err = -EAFNOSUPPORT;
1272 if (!pf)
1273 goto out_release;
1274
1275 /*
1276 * We will call the ->create function, that possibly is in a loadable
1277 * module, so we have to bump that loadable module refcnt first.
1278 */
1279 if (!try_module_get(pf->owner))
1280 goto out_release;
1281
1282 /* Now protected by module ref count */
1283 rcu_read_unlock();
1284
1285 err = pf->create(net, sock, protocol, kern);
1286 if (err < 0)
1287 goto out_module_put;
1288
1289 /*
1290 * Now to bump the refcnt of the [loadable] module that owns this
1291 * socket at sock_release time we decrement its refcnt.
1292 */
1293 if (!try_module_get(sock->ops->owner))
1294 goto out_module_busy;
1295
1296 /*
1297 * Now that we're done with the ->create function, the [loadable]
1298 * module can have its refcnt decremented
1299 */
1300 module_put(pf->owner);
1301 err = security_socket_post_create(sock, family, type, protocol, kern);
1302 if (err)
1303 goto out_sock_release;
1304 *res = sock;
1305
1306 return 0;
1307
1308 out_module_busy:
1309 err = -EAFNOSUPPORT;
1310 out_module_put:
1311 sock->ops = NULL;
1312 module_put(pf->owner);
1313 out_sock_release:
1314 sock_release(sock);
1315 return err;
1316
1317 out_release:
1318 rcu_read_unlock();
1319 goto out_sock_release;
1320 }
1321 EXPORT_SYMBOL(__sock_create);
1322
1323 int sock_create(int family, int type, int protocol, struct socket **res)
1324 {
1325 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1326 }
1327 EXPORT_SYMBOL(sock_create);
1328
1329 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1330 {
1331 return __sock_create(net, family, type, protocol, res, 1);
1332 }
1333 EXPORT_SYMBOL(sock_create_kern);
1334
1335 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1336 {
1337 int retval;
1338 struct socket *sock;
1339 int flags;
1340
1341 /* Check the SOCK_* constants for consistency. */
1342 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1343 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1344 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1345 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1346
1347 flags = type & ~SOCK_TYPE_MASK;
1348 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1349 return -EINVAL;
1350 type &= SOCK_TYPE_MASK;
1351
1352 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1353 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1354
1355 retval = sock_create(family, type, protocol, &sock);
1356 if (retval < 0)
1357 return retval;
1358
1359 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1360 }
1361
1362 /*
1363 * Create a pair of connected sockets.
1364 */
1365
1366 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1367 int __user *, usockvec)
1368 {
1369 struct socket *sock1, *sock2;
1370 int fd1, fd2, err;
1371 struct file *newfile1, *newfile2;
1372 int flags;
1373
1374 flags = type & ~SOCK_TYPE_MASK;
1375 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1376 return -EINVAL;
1377 type &= SOCK_TYPE_MASK;
1378
1379 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1380 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1381
1382 /*
1383 * reserve descriptors and make sure we won't fail
1384 * to return them to userland.
1385 */
1386 fd1 = get_unused_fd_flags(flags);
1387 if (unlikely(fd1 < 0))
1388 return fd1;
1389
1390 fd2 = get_unused_fd_flags(flags);
1391 if (unlikely(fd2 < 0)) {
1392 put_unused_fd(fd1);
1393 return fd2;
1394 }
1395
1396 err = put_user(fd1, &usockvec[0]);
1397 if (err)
1398 goto out;
1399
1400 err = put_user(fd2, &usockvec[1]);
1401 if (err)
1402 goto out;
1403
1404 /*
1405 * Obtain the first socket and check if the underlying protocol
1406 * supports the socketpair call.
1407 */
1408
1409 err = sock_create(family, type, protocol, &sock1);
1410 if (unlikely(err < 0))
1411 goto out;
1412
1413 err = sock_create(family, type, protocol, &sock2);
1414 if (unlikely(err < 0)) {
1415 sock_release(sock1);
1416 goto out;
1417 }
1418
1419 err = sock1->ops->socketpair(sock1, sock2);
1420 if (unlikely(err < 0)) {
1421 sock_release(sock2);
1422 sock_release(sock1);
1423 goto out;
1424 }
1425
1426 newfile1 = sock_alloc_file(sock1, flags, NULL);
1427 if (IS_ERR(newfile1)) {
1428 err = PTR_ERR(newfile1);
1429 sock_release(sock2);
1430 goto out;
1431 }
1432
1433 newfile2 = sock_alloc_file(sock2, flags, NULL);
1434 if (IS_ERR(newfile2)) {
1435 err = PTR_ERR(newfile2);
1436 fput(newfile1);
1437 goto out;
1438 }
1439
1440 audit_fd_pair(fd1, fd2);
1441
1442 fd_install(fd1, newfile1);
1443 fd_install(fd2, newfile2);
1444 return 0;
1445
1446 out:
1447 put_unused_fd(fd2);
1448 put_unused_fd(fd1);
1449 return err;
1450 }
1451
1452 /*
1453 * Bind a name to a socket. Nothing much to do here since it's
1454 * the protocol's responsibility to handle the local address.
1455 *
1456 * We move the socket address to kernel space before we call
1457 * the protocol layer (having also checked the address is ok).
1458 */
1459
1460 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1461 {
1462 struct socket *sock;
1463 struct sockaddr_storage address;
1464 int err, fput_needed;
1465
1466 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1467 if (sock) {
1468 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1469 if (err >= 0) {
1470 err = security_socket_bind(sock,
1471 (struct sockaddr *)&address,
1472 addrlen);
1473 if (!err)
1474 err = sock->ops->bind(sock,
1475 (struct sockaddr *)
1476 &address, addrlen);
1477 }
1478 fput_light(sock->file, fput_needed);
1479 }
1480 return err;
1481 }
1482
1483 /*
1484 * Perform a listen. Basically, we allow the protocol to do anything
1485 * necessary for a listen, and if that works, we mark the socket as
1486 * ready for listening.
1487 */
1488
1489 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1490 {
1491 struct socket *sock;
1492 int err, fput_needed;
1493 int somaxconn;
1494
1495 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1496 if (sock) {
1497 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1498 if ((unsigned int)backlog > somaxconn)
1499 backlog = somaxconn;
1500
1501 err = security_socket_listen(sock, backlog);
1502 if (!err)
1503 err = sock->ops->listen(sock, backlog);
1504
1505 fput_light(sock->file, fput_needed);
1506 }
1507 return err;
1508 }
1509
1510 /*
1511 * For accept, we attempt to create a new socket, set up the link
1512 * with the client, wake up the client, then return the new
1513 * connected fd. We collect the address of the connector in kernel
1514 * space and move it to user at the very end. This is unclean because
1515 * we open the socket then return an error.
1516 *
1517 * 1003.1g adds the ability to recvmsg() to query connection pending
1518 * status to recvmsg. We need to add that support in a way thats
1519 * clean when we restucture accept also.
1520 */
1521
1522 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1523 int __user *, upeer_addrlen, int, flags)
1524 {
1525 struct socket *sock, *newsock;
1526 struct file *newfile;
1527 int err, len, newfd, fput_needed;
1528 struct sockaddr_storage address;
1529
1530 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1531 return -EINVAL;
1532
1533 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1534 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1535
1536 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1537 if (!sock)
1538 goto out;
1539
1540 err = -ENFILE;
1541 newsock = sock_alloc();
1542 if (!newsock)
1543 goto out_put;
1544
1545 newsock->type = sock->type;
1546 newsock->ops = sock->ops;
1547
1548 /*
1549 * We don't need try_module_get here, as the listening socket (sock)
1550 * has the protocol module (sock->ops->owner) held.
1551 */
1552 __module_get(newsock->ops->owner);
1553
1554 newfd = get_unused_fd_flags(flags);
1555 if (unlikely(newfd < 0)) {
1556 err = newfd;
1557 sock_release(newsock);
1558 goto out_put;
1559 }
1560 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1561 if (IS_ERR(newfile)) {
1562 err = PTR_ERR(newfile);
1563 put_unused_fd(newfd);
1564 goto out_put;
1565 }
1566
1567 err = security_socket_accept(sock, newsock);
1568 if (err)
1569 goto out_fd;
1570
1571 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1572 if (err < 0)
1573 goto out_fd;
1574
1575 if (upeer_sockaddr) {
1576 len = newsock->ops->getname(newsock,
1577 (struct sockaddr *)&address, 2);
1578 if (len < 0) {
1579 err = -ECONNABORTED;
1580 goto out_fd;
1581 }
1582 err = move_addr_to_user(&address,
1583 len, upeer_sockaddr, upeer_addrlen);
1584 if (err < 0)
1585 goto out_fd;
1586 }
1587
1588 /* File flags are not inherited via accept() unlike another OSes. */
1589
1590 fd_install(newfd, newfile);
1591 err = newfd;
1592
1593 out_put:
1594 fput_light(sock->file, fput_needed);
1595 out:
1596 return err;
1597 out_fd:
1598 fput(newfile);
1599 put_unused_fd(newfd);
1600 goto out_put;
1601 }
1602
1603 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1604 int __user *, upeer_addrlen)
1605 {
1606 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1607 }
1608
1609 /*
1610 * Attempt to connect to a socket with the server address. The address
1611 * is in user space so we verify it is OK and move it to kernel space.
1612 *
1613 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1614 * break bindings
1615 *
1616 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1617 * other SEQPACKET protocols that take time to connect() as it doesn't
1618 * include the -EINPROGRESS status for such sockets.
1619 */
1620
1621 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1622 int, addrlen)
1623 {
1624 struct socket *sock;
1625 struct sockaddr_storage address;
1626 int err, fput_needed;
1627
1628 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1629 if (!sock)
1630 goto out;
1631 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1632 if (err < 0)
1633 goto out_put;
1634
1635 err =
1636 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1637 if (err)
1638 goto out_put;
1639
1640 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1641 sock->file->f_flags);
1642 out_put:
1643 fput_light(sock->file, fput_needed);
1644 out:
1645 return err;
1646 }
1647
1648 /*
1649 * Get the local address ('name') of a socket object. Move the obtained
1650 * name to user space.
1651 */
1652
1653 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1654 int __user *, usockaddr_len)
1655 {
1656 struct socket *sock;
1657 struct sockaddr_storage address;
1658 int err, fput_needed;
1659
1660 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1661 if (!sock)
1662 goto out;
1663
1664 err = security_socket_getsockname(sock);
1665 if (err)
1666 goto out_put;
1667
1668 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1669 if (err < 0)
1670 goto out_put;
1671 /* "err" is actually length in this case */
1672 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1673
1674 out_put:
1675 fput_light(sock->file, fput_needed);
1676 out:
1677 return err;
1678 }
1679
1680 /*
1681 * Get the remote address ('name') of a socket object. Move the obtained
1682 * name to user space.
1683 */
1684
1685 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1686 int __user *, usockaddr_len)
1687 {
1688 struct socket *sock;
1689 struct sockaddr_storage address;
1690 int err, fput_needed;
1691
1692 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1693 if (sock != NULL) {
1694 err = security_socket_getpeername(sock);
1695 if (err) {
1696 fput_light(sock->file, fput_needed);
1697 return err;
1698 }
1699
1700 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1701 if (err >= 0)
1702 /* "err" is actually length in this case */
1703 err = move_addr_to_user(&address, err, usockaddr,
1704 usockaddr_len);
1705 fput_light(sock->file, fput_needed);
1706 }
1707 return err;
1708 }
1709
1710 /*
1711 * Send a datagram to a given address. We move the address into kernel
1712 * space and check the user space data area is readable before invoking
1713 * the protocol.
1714 */
1715
1716 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1717 unsigned int, flags, struct sockaddr __user *, addr,
1718 int, addr_len)
1719 {
1720 struct socket *sock;
1721 struct sockaddr_storage address;
1722 int err;
1723 struct msghdr msg;
1724 struct iovec iov;
1725 int fput_needed;
1726
1727 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1728 if (unlikely(err))
1729 return err;
1730 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1731 if (!sock)
1732 goto out;
1733
1734 msg.msg_name = NULL;
1735 msg.msg_control = NULL;
1736 msg.msg_controllen = 0;
1737 msg.msg_namelen = 0;
1738 if (addr) {
1739 err = move_addr_to_kernel(addr, addr_len, &address);
1740 if (err < 0)
1741 goto out_put;
1742 msg.msg_name = (struct sockaddr *)&address;
1743 msg.msg_namelen = addr_len;
1744 }
1745 if (sock->file->f_flags & O_NONBLOCK)
1746 flags |= MSG_DONTWAIT;
1747 msg.msg_flags = flags;
1748 err = sock_sendmsg(sock, &msg);
1749
1750 out_put:
1751 fput_light(sock->file, fput_needed);
1752 out:
1753 return err;
1754 }
1755
1756 /*
1757 * Send a datagram down a socket.
1758 */
1759
1760 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1761 unsigned int, flags)
1762 {
1763 return sys_sendto(fd, buff, len, flags, NULL, 0);
1764 }
1765
1766 /*
1767 * Receive a frame from the socket and optionally record the address of the
1768 * sender. We verify the buffers are writable and if needed move the
1769 * sender address from kernel to user space.
1770 */
1771
1772 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1773 unsigned int, flags, struct sockaddr __user *, addr,
1774 int __user *, addr_len)
1775 {
1776 struct socket *sock;
1777 struct iovec iov;
1778 struct msghdr msg;
1779 struct sockaddr_storage address;
1780 int err, err2;
1781 int fput_needed;
1782
1783 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1784 if (unlikely(err))
1785 return err;
1786 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1787 if (!sock)
1788 goto out;
1789
1790 msg.msg_control = NULL;
1791 msg.msg_controllen = 0;
1792 /* Save some cycles and don't copy the address if not needed */
1793 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1794 /* We assume all kernel code knows the size of sockaddr_storage */
1795 msg.msg_namelen = 0;
1796 msg.msg_iocb = NULL;
1797 msg.msg_flags = 0;
1798 if (sock->file->f_flags & O_NONBLOCK)
1799 flags |= MSG_DONTWAIT;
1800 err = sock_recvmsg(sock, &msg, flags);
1801
1802 if (err >= 0 && addr != NULL) {
1803 err2 = move_addr_to_user(&address,
1804 msg.msg_namelen, addr, addr_len);
1805 if (err2 < 0)
1806 err = err2;
1807 }
1808
1809 fput_light(sock->file, fput_needed);
1810 out:
1811 return err;
1812 }
1813
1814 /*
1815 * Receive a datagram from a socket.
1816 */
1817
1818 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1819 unsigned int, flags)
1820 {
1821 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1822 }
1823
1824 /*
1825 * Set a socket option. Because we don't know the option lengths we have
1826 * to pass the user mode parameter for the protocols to sort out.
1827 */
1828
1829 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1830 char __user *, optval, int, optlen)
1831 {
1832 int err, fput_needed;
1833 struct socket *sock;
1834
1835 if (optlen < 0)
1836 return -EINVAL;
1837
1838 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1839 if (sock != NULL) {
1840 err = security_socket_setsockopt(sock, level, optname);
1841 if (err)
1842 goto out_put;
1843
1844 if (level == SOL_SOCKET)
1845 err =
1846 sock_setsockopt(sock, level, optname, optval,
1847 optlen);
1848 else
1849 err =
1850 sock->ops->setsockopt(sock, level, optname, optval,
1851 optlen);
1852 out_put:
1853 fput_light(sock->file, fput_needed);
1854 }
1855 return err;
1856 }
1857
1858 /*
1859 * Get a socket option. Because we don't know the option lengths we have
1860 * to pass a user mode parameter for the protocols to sort out.
1861 */
1862
1863 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1864 char __user *, optval, int __user *, optlen)
1865 {
1866 int err, fput_needed;
1867 struct socket *sock;
1868
1869 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1870 if (sock != NULL) {
1871 err = security_socket_getsockopt(sock, level, optname);
1872 if (err)
1873 goto out_put;
1874
1875 if (level == SOL_SOCKET)
1876 err =
1877 sock_getsockopt(sock, level, optname, optval,
1878 optlen);
1879 else
1880 err =
1881 sock->ops->getsockopt(sock, level, optname, optval,
1882 optlen);
1883 out_put:
1884 fput_light(sock->file, fput_needed);
1885 }
1886 return err;
1887 }
1888
1889 /*
1890 * Shutdown a socket.
1891 */
1892
1893 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1894 {
1895 int err, fput_needed;
1896 struct socket *sock;
1897
1898 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1899 if (sock != NULL) {
1900 err = security_socket_shutdown(sock, how);
1901 if (!err)
1902 err = sock->ops->shutdown(sock, how);
1903 fput_light(sock->file, fput_needed);
1904 }
1905 return err;
1906 }
1907
1908 /* A couple of helpful macros for getting the address of the 32/64 bit
1909 * fields which are the same type (int / unsigned) on our platforms.
1910 */
1911 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1912 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1913 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1914
1915 struct used_address {
1916 struct sockaddr_storage name;
1917 unsigned int name_len;
1918 };
1919
1920 static int copy_msghdr_from_user(struct msghdr *kmsg,
1921 struct user_msghdr __user *umsg,
1922 struct sockaddr __user **save_addr,
1923 struct iovec **iov)
1924 {
1925 struct user_msghdr msg;
1926 ssize_t err;
1927
1928 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1929 return -EFAULT;
1930
1931 kmsg->msg_control = (void __force *)msg.msg_control;
1932 kmsg->msg_controllen = msg.msg_controllen;
1933 kmsg->msg_flags = msg.msg_flags;
1934
1935 kmsg->msg_namelen = msg.msg_namelen;
1936 if (!msg.msg_name)
1937 kmsg->msg_namelen = 0;
1938
1939 if (kmsg->msg_namelen < 0)
1940 return -EINVAL;
1941
1942 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1943 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1944
1945 if (save_addr)
1946 *save_addr = msg.msg_name;
1947
1948 if (msg.msg_name && kmsg->msg_namelen) {
1949 if (!save_addr) {
1950 err = move_addr_to_kernel(msg.msg_name,
1951 kmsg->msg_namelen,
1952 kmsg->msg_name);
1953 if (err < 0)
1954 return err;
1955 }
1956 } else {
1957 kmsg->msg_name = NULL;
1958 kmsg->msg_namelen = 0;
1959 }
1960
1961 if (msg.msg_iovlen > UIO_MAXIOV)
1962 return -EMSGSIZE;
1963
1964 kmsg->msg_iocb = NULL;
1965
1966 return import_iovec(save_addr ? READ : WRITE,
1967 msg.msg_iov, msg.msg_iovlen,
1968 UIO_FASTIOV, iov, &kmsg->msg_iter);
1969 }
1970
1971 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1972 struct msghdr *msg_sys, unsigned int flags,
1973 struct used_address *used_address,
1974 unsigned int allowed_msghdr_flags)
1975 {
1976 struct compat_msghdr __user *msg_compat =
1977 (struct compat_msghdr __user *)msg;
1978 struct sockaddr_storage address;
1979 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1980 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1981 __aligned(sizeof(__kernel_size_t));
1982 /* 20 is size of ipv6_pktinfo */
1983 unsigned char *ctl_buf = ctl;
1984 int ctl_len;
1985 ssize_t err;
1986
1987 msg_sys->msg_name = &address;
1988
1989 if (MSG_CMSG_COMPAT & flags)
1990 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1991 else
1992 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1993 if (err < 0)
1994 return err;
1995
1996 err = -ENOBUFS;
1997
1998 if (msg_sys->msg_controllen > INT_MAX)
1999 goto out_freeiov;
2000 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2001 ctl_len = msg_sys->msg_controllen;
2002 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2003 err =
2004 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2005 sizeof(ctl));
2006 if (err)
2007 goto out_freeiov;
2008 ctl_buf = msg_sys->msg_control;
2009 ctl_len = msg_sys->msg_controllen;
2010 } else if (ctl_len) {
2011 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2012 CMSG_ALIGN(sizeof(struct cmsghdr)));
2013 if (ctl_len > sizeof(ctl)) {
2014 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2015 if (ctl_buf == NULL)
2016 goto out_freeiov;
2017 }
2018 err = -EFAULT;
2019 /*
2020 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2021 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2022 * checking falls down on this.
2023 */
2024 if (copy_from_user(ctl_buf,
2025 (void __user __force *)msg_sys->msg_control,
2026 ctl_len))
2027 goto out_freectl;
2028 msg_sys->msg_control = ctl_buf;
2029 }
2030 msg_sys->msg_flags = flags;
2031
2032 if (sock->file->f_flags & O_NONBLOCK)
2033 msg_sys->msg_flags |= MSG_DONTWAIT;
2034 /*
2035 * If this is sendmmsg() and current destination address is same as
2036 * previously succeeded address, omit asking LSM's decision.
2037 * used_address->name_len is initialized to UINT_MAX so that the first
2038 * destination address never matches.
2039 */
2040 if (used_address && msg_sys->msg_name &&
2041 used_address->name_len == msg_sys->msg_namelen &&
2042 !memcmp(&used_address->name, msg_sys->msg_name,
2043 used_address->name_len)) {
2044 err = sock_sendmsg_nosec(sock, msg_sys);
2045 goto out_freectl;
2046 }
2047 err = sock_sendmsg(sock, msg_sys);
2048 /*
2049 * If this is sendmmsg() and sending to current destination address was
2050 * successful, remember it.
2051 */
2052 if (used_address && err >= 0) {
2053 used_address->name_len = msg_sys->msg_namelen;
2054 if (msg_sys->msg_name)
2055 memcpy(&used_address->name, msg_sys->msg_name,
2056 used_address->name_len);
2057 }
2058
2059 out_freectl:
2060 if (ctl_buf != ctl)
2061 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2062 out_freeiov:
2063 kfree(iov);
2064 return err;
2065 }
2066
2067 /*
2068 * BSD sendmsg interface
2069 */
2070
2071 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2072 {
2073 int fput_needed, err;
2074 struct msghdr msg_sys;
2075 struct socket *sock;
2076
2077 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2078 if (!sock)
2079 goto out;
2080
2081 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2082
2083 fput_light(sock->file, fput_needed);
2084 out:
2085 return err;
2086 }
2087
2088 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2089 {
2090 if (flags & MSG_CMSG_COMPAT)
2091 return -EINVAL;
2092 return __sys_sendmsg(fd, msg, flags);
2093 }
2094
2095 /*
2096 * Linux sendmmsg interface
2097 */
2098
2099 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2100 unsigned int flags)
2101 {
2102 int fput_needed, err, datagrams;
2103 struct socket *sock;
2104 struct mmsghdr __user *entry;
2105 struct compat_mmsghdr __user *compat_entry;
2106 struct msghdr msg_sys;
2107 struct used_address used_address;
2108 unsigned int oflags = flags;
2109
2110 if (vlen > UIO_MAXIOV)
2111 vlen = UIO_MAXIOV;
2112
2113 datagrams = 0;
2114
2115 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2116 if (!sock)
2117 return err;
2118
2119 used_address.name_len = UINT_MAX;
2120 entry = mmsg;
2121 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2122 err = 0;
2123 flags |= MSG_BATCH;
2124
2125 while (datagrams < vlen) {
2126 if (datagrams == vlen - 1)
2127 flags = oflags;
2128
2129 if (MSG_CMSG_COMPAT & flags) {
2130 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2131 &msg_sys, flags, &used_address, MSG_EOR);
2132 if (err < 0)
2133 break;
2134 err = __put_user(err, &compat_entry->msg_len);
2135 ++compat_entry;
2136 } else {
2137 err = ___sys_sendmsg(sock,
2138 (struct user_msghdr __user *)entry,
2139 &msg_sys, flags, &used_address, MSG_EOR);
2140 if (err < 0)
2141 break;
2142 err = put_user(err, &entry->msg_len);
2143 ++entry;
2144 }
2145
2146 if (err)
2147 break;
2148 ++datagrams;
2149 if (msg_data_left(&msg_sys))
2150 break;
2151 cond_resched();
2152 }
2153
2154 fput_light(sock->file, fput_needed);
2155
2156 /* We only return an error if no datagrams were able to be sent */
2157 if (datagrams != 0)
2158 return datagrams;
2159
2160 return err;
2161 }
2162
2163 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2164 unsigned int, vlen, unsigned int, flags)
2165 {
2166 if (flags & MSG_CMSG_COMPAT)
2167 return -EINVAL;
2168 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2169 }
2170
2171 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2172 struct msghdr *msg_sys, unsigned int flags, int nosec)
2173 {
2174 struct compat_msghdr __user *msg_compat =
2175 (struct compat_msghdr __user *)msg;
2176 struct iovec iovstack[UIO_FASTIOV];
2177 struct iovec *iov = iovstack;
2178 unsigned long cmsg_ptr;
2179 int len;
2180 ssize_t err;
2181
2182 /* kernel mode address */
2183 struct sockaddr_storage addr;
2184
2185 /* user mode address pointers */
2186 struct sockaddr __user *uaddr;
2187 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2188
2189 msg_sys->msg_name = &addr;
2190
2191 if (MSG_CMSG_COMPAT & flags)
2192 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2193 else
2194 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2195 if (err < 0)
2196 return err;
2197
2198 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2199 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2200
2201 /* We assume all kernel code knows the size of sockaddr_storage */
2202 msg_sys->msg_namelen = 0;
2203
2204 if (sock->file->f_flags & O_NONBLOCK)
2205 flags |= MSG_DONTWAIT;
2206 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2207 if (err < 0)
2208 goto out_freeiov;
2209 len = err;
2210
2211 if (uaddr != NULL) {
2212 err = move_addr_to_user(&addr,
2213 msg_sys->msg_namelen, uaddr,
2214 uaddr_len);
2215 if (err < 0)
2216 goto out_freeiov;
2217 }
2218 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2219 COMPAT_FLAGS(msg));
2220 if (err)
2221 goto out_freeiov;
2222 if (MSG_CMSG_COMPAT & flags)
2223 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2224 &msg_compat->msg_controllen);
2225 else
2226 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2227 &msg->msg_controllen);
2228 if (err)
2229 goto out_freeiov;
2230 err = len;
2231
2232 out_freeiov:
2233 kfree(iov);
2234 return err;
2235 }
2236
2237 /*
2238 * BSD recvmsg interface
2239 */
2240
2241 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2242 {
2243 int fput_needed, err;
2244 struct msghdr msg_sys;
2245 struct socket *sock;
2246
2247 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2248 if (!sock)
2249 goto out;
2250
2251 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2252
2253 fput_light(sock->file, fput_needed);
2254 out:
2255 return err;
2256 }
2257
2258 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2259 unsigned int, flags)
2260 {
2261 if (flags & MSG_CMSG_COMPAT)
2262 return -EINVAL;
2263 return __sys_recvmsg(fd, msg, flags);
2264 }
2265
2266 /*
2267 * Linux recvmmsg interface
2268 */
2269
2270 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2271 unsigned int flags, struct timespec *timeout)
2272 {
2273 int fput_needed, err, datagrams;
2274 struct socket *sock;
2275 struct mmsghdr __user *entry;
2276 struct compat_mmsghdr __user *compat_entry;
2277 struct msghdr msg_sys;
2278 struct timespec64 end_time;
2279 struct timespec64 timeout64;
2280
2281 if (timeout &&
2282 poll_select_set_timeout(&end_time, timeout->tv_sec,
2283 timeout->tv_nsec))
2284 return -EINVAL;
2285
2286 datagrams = 0;
2287
2288 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2289 if (!sock)
2290 return err;
2291
2292 err = sock_error(sock->sk);
2293 if (err) {
2294 datagrams = err;
2295 goto out_put;
2296 }
2297
2298 entry = mmsg;
2299 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2300
2301 while (datagrams < vlen) {
2302 /*
2303 * No need to ask LSM for more than the first datagram.
2304 */
2305 if (MSG_CMSG_COMPAT & flags) {
2306 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2307 &msg_sys, flags & ~MSG_WAITFORONE,
2308 datagrams);
2309 if (err < 0)
2310 break;
2311 err = __put_user(err, &compat_entry->msg_len);
2312 ++compat_entry;
2313 } else {
2314 err = ___sys_recvmsg(sock,
2315 (struct user_msghdr __user *)entry,
2316 &msg_sys, flags & ~MSG_WAITFORONE,
2317 datagrams);
2318 if (err < 0)
2319 break;
2320 err = put_user(err, &entry->msg_len);
2321 ++entry;
2322 }
2323
2324 if (err)
2325 break;
2326 ++datagrams;
2327
2328 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2329 if (flags & MSG_WAITFORONE)
2330 flags |= MSG_DONTWAIT;
2331
2332 if (timeout) {
2333 ktime_get_ts64(&timeout64);
2334 *timeout = timespec64_to_timespec(
2335 timespec64_sub(end_time, timeout64));
2336 if (timeout->tv_sec < 0) {
2337 timeout->tv_sec = timeout->tv_nsec = 0;
2338 break;
2339 }
2340
2341 /* Timeout, return less than vlen datagrams */
2342 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2343 break;
2344 }
2345
2346 /* Out of band data, return right away */
2347 if (msg_sys.msg_flags & MSG_OOB)
2348 break;
2349 cond_resched();
2350 }
2351
2352 if (err == 0)
2353 goto out_put;
2354
2355 if (datagrams == 0) {
2356 datagrams = err;
2357 goto out_put;
2358 }
2359
2360 /*
2361 * We may return less entries than requested (vlen) if the
2362 * sock is non block and there aren't enough datagrams...
2363 */
2364 if (err != -EAGAIN) {
2365 /*
2366 * ... or if recvmsg returns an error after we
2367 * received some datagrams, where we record the
2368 * error to return on the next call or if the
2369 * app asks about it using getsockopt(SO_ERROR).
2370 */
2371 sock->sk->sk_err = -err;
2372 }
2373 out_put:
2374 fput_light(sock->file, fput_needed);
2375
2376 return datagrams;
2377 }
2378
2379 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2380 unsigned int, vlen, unsigned int, flags,
2381 struct timespec __user *, timeout)
2382 {
2383 int datagrams;
2384 struct timespec timeout_sys;
2385
2386 if (flags & MSG_CMSG_COMPAT)
2387 return -EINVAL;
2388
2389 if (!timeout)
2390 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2391
2392 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2393 return -EFAULT;
2394
2395 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2396
2397 if (datagrams > 0 &&
2398 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2399 datagrams = -EFAULT;
2400
2401 return datagrams;
2402 }
2403
2404 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2405 /* Argument list sizes for sys_socketcall */
2406 #define AL(x) ((x) * sizeof(unsigned long))
2407 static const unsigned char nargs[21] = {
2408 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2409 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2410 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2411 AL(4), AL(5), AL(4)
2412 };
2413
2414 #undef AL
2415
2416 /*
2417 * System call vectors.
2418 *
2419 * Argument checking cleaned up. Saved 20% in size.
2420 * This function doesn't need to set the kernel lock because
2421 * it is set by the callees.
2422 */
2423
2424 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2425 {
2426 unsigned long a[AUDITSC_ARGS];
2427 unsigned long a0, a1;
2428 int err;
2429 unsigned int len;
2430
2431 if (call < 1 || call > SYS_SENDMMSG)
2432 return -EINVAL;
2433
2434 len = nargs[call];
2435 if (len > sizeof(a))
2436 return -EINVAL;
2437
2438 /* copy_from_user should be SMP safe. */
2439 if (copy_from_user(a, args, len))
2440 return -EFAULT;
2441
2442 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2443 if (err)
2444 return err;
2445
2446 a0 = a[0];
2447 a1 = a[1];
2448
2449 switch (call) {
2450 case SYS_SOCKET:
2451 err = sys_socket(a0, a1, a[2]);
2452 break;
2453 case SYS_BIND:
2454 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2455 break;
2456 case SYS_CONNECT:
2457 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2458 break;
2459 case SYS_LISTEN:
2460 err = sys_listen(a0, a1);
2461 break;
2462 case SYS_ACCEPT:
2463 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2464 (int __user *)a[2], 0);
2465 break;
2466 case SYS_GETSOCKNAME:
2467 err =
2468 sys_getsockname(a0, (struct sockaddr __user *)a1,
2469 (int __user *)a[2]);
2470 break;
2471 case SYS_GETPEERNAME:
2472 err =
2473 sys_getpeername(a0, (struct sockaddr __user *)a1,
2474 (int __user *)a[2]);
2475 break;
2476 case SYS_SOCKETPAIR:
2477 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2478 break;
2479 case SYS_SEND:
2480 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2481 break;
2482 case SYS_SENDTO:
2483 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2484 (struct sockaddr __user *)a[4], a[5]);
2485 break;
2486 case SYS_RECV:
2487 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2488 break;
2489 case SYS_RECVFROM:
2490 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2491 (struct sockaddr __user *)a[4],
2492 (int __user *)a[5]);
2493 break;
2494 case SYS_SHUTDOWN:
2495 err = sys_shutdown(a0, a1);
2496 break;
2497 case SYS_SETSOCKOPT:
2498 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2499 break;
2500 case SYS_GETSOCKOPT:
2501 err =
2502 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2503 (int __user *)a[4]);
2504 break;
2505 case SYS_SENDMSG:
2506 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2507 break;
2508 case SYS_SENDMMSG:
2509 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2510 break;
2511 case SYS_RECVMSG:
2512 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2513 break;
2514 case SYS_RECVMMSG:
2515 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2516 (struct timespec __user *)a[4]);
2517 break;
2518 case SYS_ACCEPT4:
2519 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2520 (int __user *)a[2], a[3]);
2521 break;
2522 default:
2523 err = -EINVAL;
2524 break;
2525 }
2526 return err;
2527 }
2528
2529 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2530
2531 /**
2532 * sock_register - add a socket protocol handler
2533 * @ops: description of protocol
2534 *
2535 * This function is called by a protocol handler that wants to
2536 * advertise its address family, and have it linked into the
2537 * socket interface. The value ops->family corresponds to the
2538 * socket system call protocol family.
2539 */
2540 int sock_register(const struct net_proto_family *ops)
2541 {
2542 int err;
2543
2544 if (ops->family >= NPROTO) {
2545 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2546 return -ENOBUFS;
2547 }
2548
2549 spin_lock(&net_family_lock);
2550 if (rcu_dereference_protected(net_families[ops->family],
2551 lockdep_is_held(&net_family_lock)))
2552 err = -EEXIST;
2553 else {
2554 rcu_assign_pointer(net_families[ops->family], ops);
2555 err = 0;
2556 }
2557 spin_unlock(&net_family_lock);
2558
2559 pr_info("NET: Registered protocol family %d\n", ops->family);
2560 return err;
2561 }
2562 EXPORT_SYMBOL(sock_register);
2563
2564 /**
2565 * sock_unregister - remove a protocol handler
2566 * @family: protocol family to remove
2567 *
2568 * This function is called by a protocol handler that wants to
2569 * remove its address family, and have it unlinked from the
2570 * new socket creation.
2571 *
2572 * If protocol handler is a module, then it can use module reference
2573 * counts to protect against new references. If protocol handler is not
2574 * a module then it needs to provide its own protection in
2575 * the ops->create routine.
2576 */
2577 void sock_unregister(int family)
2578 {
2579 BUG_ON(family < 0 || family >= NPROTO);
2580
2581 spin_lock(&net_family_lock);
2582 RCU_INIT_POINTER(net_families[family], NULL);
2583 spin_unlock(&net_family_lock);
2584
2585 synchronize_rcu();
2586
2587 pr_info("NET: Unregistered protocol family %d\n", family);
2588 }
2589 EXPORT_SYMBOL(sock_unregister);
2590
2591 static int __init sock_init(void)
2592 {
2593 int err;
2594 /*
2595 * Initialize the network sysctl infrastructure.
2596 */
2597 err = net_sysctl_init();
2598 if (err)
2599 goto out;
2600
2601 /*
2602 * Initialize skbuff SLAB cache
2603 */
2604 skb_init();
2605
2606 /*
2607 * Initialize the protocols module.
2608 */
2609
2610 init_inodecache();
2611
2612 err = register_filesystem(&sock_fs_type);
2613 if (err)
2614 goto out_fs;
2615 sock_mnt = kern_mount(&sock_fs_type);
2616 if (IS_ERR(sock_mnt)) {
2617 err = PTR_ERR(sock_mnt);
2618 goto out_mount;
2619 }
2620
2621 /* The real protocol initialization is performed in later initcalls.
2622 */
2623
2624 #ifdef CONFIG_NETFILTER
2625 err = netfilter_init();
2626 if (err)
2627 goto out;
2628 #endif
2629
2630 ptp_classifier_init();
2631
2632 out:
2633 return err;
2634
2635 out_mount:
2636 unregister_filesystem(&sock_fs_type);
2637 out_fs:
2638 goto out;
2639 }
2640
2641 core_initcall(sock_init); /* early initcall */
2642
2643 #ifdef CONFIG_PROC_FS
2644 void socket_seq_show(struct seq_file *seq)
2645 {
2646 seq_printf(seq, "sockets: used %d\n",
2647 sock_inuse_get(seq->private));
2648 }
2649 #endif /* CONFIG_PROC_FS */
2650
2651 #ifdef CONFIG_COMPAT
2652 static int do_siocgstamp(struct net *net, struct socket *sock,
2653 unsigned int cmd, void __user *up)
2654 {
2655 mm_segment_t old_fs = get_fs();
2656 struct timeval ktv;
2657 int err;
2658
2659 set_fs(KERNEL_DS);
2660 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2661 set_fs(old_fs);
2662 if (!err)
2663 err = compat_put_timeval(&ktv, up);
2664
2665 return err;
2666 }
2667
2668 static int do_siocgstampns(struct net *net, struct socket *sock,
2669 unsigned int cmd, void __user *up)
2670 {
2671 mm_segment_t old_fs = get_fs();
2672 struct timespec kts;
2673 int err;
2674
2675 set_fs(KERNEL_DS);
2676 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2677 set_fs(old_fs);
2678 if (!err)
2679 err = compat_put_timespec(&kts, up);
2680
2681 return err;
2682 }
2683
2684 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2685 {
2686 struct compat_ifconf ifc32;
2687 struct ifconf ifc;
2688 int err;
2689
2690 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2691 return -EFAULT;
2692
2693 ifc.ifc_len = ifc32.ifc_len;
2694 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2695
2696 rtnl_lock();
2697 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2698 rtnl_unlock();
2699 if (err)
2700 return err;
2701
2702 ifc32.ifc_len = ifc.ifc_len;
2703 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2704 return -EFAULT;
2705
2706 return 0;
2707 }
2708
2709 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2710 {
2711 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2712 bool convert_in = false, convert_out = false;
2713 size_t buf_size = 0;
2714 struct ethtool_rxnfc __user *rxnfc = NULL;
2715 struct ifreq ifr;
2716 u32 rule_cnt = 0, actual_rule_cnt;
2717 u32 ethcmd;
2718 u32 data;
2719 int ret;
2720
2721 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2722 return -EFAULT;
2723
2724 compat_rxnfc = compat_ptr(data);
2725
2726 if (get_user(ethcmd, &compat_rxnfc->cmd))
2727 return -EFAULT;
2728
2729 /* Most ethtool structures are defined without padding.
2730 * Unfortunately struct ethtool_rxnfc is an exception.
2731 */
2732 switch (ethcmd) {
2733 default:
2734 break;
2735 case ETHTOOL_GRXCLSRLALL:
2736 /* Buffer size is variable */
2737 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2738 return -EFAULT;
2739 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2740 return -ENOMEM;
2741 buf_size += rule_cnt * sizeof(u32);
2742 /* fall through */
2743 case ETHTOOL_GRXRINGS:
2744 case ETHTOOL_GRXCLSRLCNT:
2745 case ETHTOOL_GRXCLSRULE:
2746 case ETHTOOL_SRXCLSRLINS:
2747 convert_out = true;
2748 /* fall through */
2749 case ETHTOOL_SRXCLSRLDEL:
2750 buf_size += sizeof(struct ethtool_rxnfc);
2751 convert_in = true;
2752 rxnfc = compat_alloc_user_space(buf_size);
2753 break;
2754 }
2755
2756 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2757 return -EFAULT;
2758
2759 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2760
2761 if (convert_in) {
2762 /* We expect there to be holes between fs.m_ext and
2763 * fs.ring_cookie and at the end of fs, but nowhere else.
2764 */
2765 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2766 sizeof(compat_rxnfc->fs.m_ext) !=
2767 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2768 sizeof(rxnfc->fs.m_ext));
2769 BUILD_BUG_ON(
2770 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2771 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2772 offsetof(struct ethtool_rxnfc, fs.location) -
2773 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2774
2775 if (copy_in_user(rxnfc, compat_rxnfc,
2776 (void __user *)(&rxnfc->fs.m_ext + 1) -
2777 (void __user *)rxnfc) ||
2778 copy_in_user(&rxnfc->fs.ring_cookie,
2779 &compat_rxnfc->fs.ring_cookie,
2780 (void __user *)(&rxnfc->fs.location + 1) -
2781 (void __user *)&rxnfc->fs.ring_cookie) ||
2782 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2783 sizeof(rxnfc->rule_cnt)))
2784 return -EFAULT;
2785 }
2786
2787 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2788 if (ret)
2789 return ret;
2790
2791 if (convert_out) {
2792 if (copy_in_user(compat_rxnfc, rxnfc,
2793 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2794 (const void __user *)rxnfc) ||
2795 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2796 &rxnfc->fs.ring_cookie,
2797 (const void __user *)(&rxnfc->fs.location + 1) -
2798 (const void __user *)&rxnfc->fs.ring_cookie) ||
2799 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2800 sizeof(rxnfc->rule_cnt)))
2801 return -EFAULT;
2802
2803 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2804 /* As an optimisation, we only copy the actual
2805 * number of rules that the underlying
2806 * function returned. Since Mallory might
2807 * change the rule count in user memory, we
2808 * check that it is less than the rule count
2809 * originally given (as the user buffer size),
2810 * which has been range-checked.
2811 */
2812 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2813 return -EFAULT;
2814 if (actual_rule_cnt < rule_cnt)
2815 rule_cnt = actual_rule_cnt;
2816 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2817 &rxnfc->rule_locs[0],
2818 rule_cnt * sizeof(u32)))
2819 return -EFAULT;
2820 }
2821 }
2822
2823 return 0;
2824 }
2825
2826 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2827 {
2828 compat_uptr_t uptr32;
2829 struct ifreq ifr;
2830 void __user *saved;
2831 int err;
2832
2833 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2834 return -EFAULT;
2835
2836 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2837 return -EFAULT;
2838
2839 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2840 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2841
2842 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2843 if (!err) {
2844 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2845 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2846 err = -EFAULT;
2847 }
2848 return err;
2849 }
2850
2851 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2852 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2853 struct compat_ifreq __user *u_ifreq32)
2854 {
2855 struct ifreq ifreq;
2856 u32 data32;
2857
2858 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2859 return -EFAULT;
2860 if (get_user(data32, &u_ifreq32->ifr_data))
2861 return -EFAULT;
2862 ifreq.ifr_data = compat_ptr(data32);
2863
2864 return dev_ioctl(net, cmd, &ifreq, NULL);
2865 }
2866
2867 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2868 struct compat_ifreq __user *uifr32)
2869 {
2870 struct ifreq ifr;
2871 struct compat_ifmap __user *uifmap32;
2872 int err;
2873
2874 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2875 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2876 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2877 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2878 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2879 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2880 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2881 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2882 if (err)
2883 return -EFAULT;
2884
2885 err = dev_ioctl(net, cmd, &ifr, NULL);
2886
2887 if (cmd == SIOCGIFMAP && !err) {
2888 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2889 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2890 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2891 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2892 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2893 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2894 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2895 if (err)
2896 err = -EFAULT;
2897 }
2898 return err;
2899 }
2900
2901 struct rtentry32 {
2902 u32 rt_pad1;
2903 struct sockaddr rt_dst; /* target address */
2904 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2905 struct sockaddr rt_genmask; /* target network mask (IP) */
2906 unsigned short rt_flags;
2907 short rt_pad2;
2908 u32 rt_pad3;
2909 unsigned char rt_tos;
2910 unsigned char rt_class;
2911 short rt_pad4;
2912 short rt_metric; /* +1 for binary compatibility! */
2913 /* char * */ u32 rt_dev; /* forcing the device at add */
2914 u32 rt_mtu; /* per route MTU/Window */
2915 u32 rt_window; /* Window clamping */
2916 unsigned short rt_irtt; /* Initial RTT */
2917 };
2918
2919 struct in6_rtmsg32 {
2920 struct in6_addr rtmsg_dst;
2921 struct in6_addr rtmsg_src;
2922 struct in6_addr rtmsg_gateway;
2923 u32 rtmsg_type;
2924 u16 rtmsg_dst_len;
2925 u16 rtmsg_src_len;
2926 u32 rtmsg_metric;
2927 u32 rtmsg_info;
2928 u32 rtmsg_flags;
2929 s32 rtmsg_ifindex;
2930 };
2931
2932 static int routing_ioctl(struct net *net, struct socket *sock,
2933 unsigned int cmd, void __user *argp)
2934 {
2935 int ret;
2936 void *r = NULL;
2937 struct in6_rtmsg r6;
2938 struct rtentry r4;
2939 char devname[16];
2940 u32 rtdev;
2941 mm_segment_t old_fs = get_fs();
2942
2943 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2944 struct in6_rtmsg32 __user *ur6 = argp;
2945 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2946 3 * sizeof(struct in6_addr));
2947 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2948 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2949 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2950 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2951 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2952 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2953 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2954
2955 r = (void *) &r6;
2956 } else { /* ipv4 */
2957 struct rtentry32 __user *ur4 = argp;
2958 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
2959 3 * sizeof(struct sockaddr));
2960 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
2961 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
2962 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
2963 ret |= get_user(r4.rt_window, &(ur4->rt_window));
2964 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
2965 ret |= get_user(rtdev, &(ur4->rt_dev));
2966 if (rtdev) {
2967 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
2968 r4.rt_dev = (char __user __force *)devname;
2969 devname[15] = 0;
2970 } else
2971 r4.rt_dev = NULL;
2972
2973 r = (void *) &r4;
2974 }
2975
2976 if (ret) {
2977 ret = -EFAULT;
2978 goto out;
2979 }
2980
2981 set_fs(KERNEL_DS);
2982 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2983 set_fs(old_fs);
2984
2985 out:
2986 return ret;
2987 }
2988
2989 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2990 * for some operations; this forces use of the newer bridge-utils that
2991 * use compatible ioctls
2992 */
2993 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2994 {
2995 compat_ulong_t tmp;
2996
2997 if (get_user(tmp, argp))
2998 return -EFAULT;
2999 if (tmp == BRCTL_GET_VERSION)
3000 return BRCTL_VERSION + 1;
3001 return -EINVAL;
3002 }
3003
3004 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3005 unsigned int cmd, unsigned long arg)
3006 {
3007 void __user *argp = compat_ptr(arg);
3008 struct sock *sk = sock->sk;
3009 struct net *net = sock_net(sk);
3010
3011 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3012 return compat_ifr_data_ioctl(net, cmd, argp);
3013
3014 switch (cmd) {
3015 case SIOCSIFBR:
3016 case SIOCGIFBR:
3017 return old_bridge_ioctl(argp);
3018 case SIOCGIFCONF:
3019 return compat_dev_ifconf(net, argp);
3020 case SIOCETHTOOL:
3021 return ethtool_ioctl(net, argp);
3022 case SIOCWANDEV:
3023 return compat_siocwandev(net, argp);
3024 case SIOCGIFMAP:
3025 case SIOCSIFMAP:
3026 return compat_sioc_ifmap(net, cmd, argp);
3027 case SIOCADDRT:
3028 case SIOCDELRT:
3029 return routing_ioctl(net, sock, cmd, argp);
3030 case SIOCGSTAMP:
3031 return do_siocgstamp(net, sock, cmd, argp);
3032 case SIOCGSTAMPNS:
3033 return do_siocgstampns(net, sock, cmd, argp);
3034 case SIOCBONDSLAVEINFOQUERY:
3035 case SIOCBONDINFOQUERY:
3036 case SIOCSHWTSTAMP:
3037 case SIOCGHWTSTAMP:
3038 return compat_ifr_data_ioctl(net, cmd, argp);
3039
3040 case FIOSETOWN:
3041 case SIOCSPGRP:
3042 case FIOGETOWN:
3043 case SIOCGPGRP:
3044 case SIOCBRADDBR:
3045 case SIOCBRDELBR:
3046 case SIOCGIFVLAN:
3047 case SIOCSIFVLAN:
3048 case SIOCADDDLCI:
3049 case SIOCDELDLCI:
3050 case SIOCGSKNS:
3051 return sock_ioctl(file, cmd, arg);
3052
3053 case SIOCGIFFLAGS:
3054 case SIOCSIFFLAGS:
3055 case SIOCGIFMETRIC:
3056 case SIOCSIFMETRIC:
3057 case SIOCGIFMTU:
3058 case SIOCSIFMTU:
3059 case SIOCGIFMEM:
3060 case SIOCSIFMEM:
3061 case SIOCGIFHWADDR:
3062 case SIOCSIFHWADDR:
3063 case SIOCADDMULTI:
3064 case SIOCDELMULTI:
3065 case SIOCGIFINDEX:
3066 case SIOCGIFADDR:
3067 case SIOCSIFADDR:
3068 case SIOCSIFHWBROADCAST:
3069 case SIOCDIFADDR:
3070 case SIOCGIFBRDADDR:
3071 case SIOCSIFBRDADDR:
3072 case SIOCGIFDSTADDR:
3073 case SIOCSIFDSTADDR:
3074 case SIOCGIFNETMASK:
3075 case SIOCSIFNETMASK:
3076 case SIOCSIFPFLAGS:
3077 case SIOCGIFPFLAGS:
3078 case SIOCGIFTXQLEN:
3079 case SIOCSIFTXQLEN:
3080 case SIOCBRADDIF:
3081 case SIOCBRDELIF:
3082 case SIOCSIFNAME:
3083 case SIOCGMIIPHY:
3084 case SIOCGMIIREG:
3085 case SIOCSMIIREG:
3086 case SIOCSARP:
3087 case SIOCGARP:
3088 case SIOCDARP:
3089 case SIOCATMARK:
3090 case SIOCBONDENSLAVE:
3091 case SIOCBONDRELEASE:
3092 case SIOCBONDSETHWADDR:
3093 case SIOCBONDCHANGEACTIVE:
3094 case SIOCGIFNAME:
3095 return sock_do_ioctl(net, sock, cmd, arg);
3096 }
3097
3098 return -ENOIOCTLCMD;
3099 }
3100
3101 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3102 unsigned long arg)
3103 {
3104 struct socket *sock = file->private_data;
3105 int ret = -ENOIOCTLCMD;
3106 struct sock *sk;
3107 struct net *net;
3108
3109 sk = sock->sk;
3110 net = sock_net(sk);
3111
3112 if (sock->ops->compat_ioctl)
3113 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3114
3115 if (ret == -ENOIOCTLCMD &&
3116 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3117 ret = compat_wext_handle_ioctl(net, cmd, arg);
3118
3119 if (ret == -ENOIOCTLCMD)
3120 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3121
3122 return ret;
3123 }
3124 #endif
3125
3126 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3127 {
3128 return sock->ops->bind(sock, addr, addrlen);
3129 }
3130 EXPORT_SYMBOL(kernel_bind);
3131
3132 int kernel_listen(struct socket *sock, int backlog)
3133 {
3134 return sock->ops->listen(sock, backlog);
3135 }
3136 EXPORT_SYMBOL(kernel_listen);
3137
3138 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3139 {
3140 struct sock *sk = sock->sk;
3141 int err;
3142
3143 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3144 newsock);
3145 if (err < 0)
3146 goto done;
3147
3148 err = sock->ops->accept(sock, *newsock, flags, true);
3149 if (err < 0) {
3150 sock_release(*newsock);
3151 *newsock = NULL;
3152 goto done;
3153 }
3154
3155 (*newsock)->ops = sock->ops;
3156 __module_get((*newsock)->ops->owner);
3157
3158 done:
3159 return err;
3160 }
3161 EXPORT_SYMBOL(kernel_accept);
3162
3163 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3164 int flags)
3165 {
3166 return sock->ops->connect(sock, addr, addrlen, flags);
3167 }
3168 EXPORT_SYMBOL(kernel_connect);
3169
3170 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3171 {
3172 return sock->ops->getname(sock, addr, 0);
3173 }
3174 EXPORT_SYMBOL(kernel_getsockname);
3175
3176 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3177 {
3178 return sock->ops->getname(sock, addr, 1);
3179 }
3180 EXPORT_SYMBOL(kernel_getpeername);
3181
3182 int kernel_getsockopt(struct socket *sock, int level, int optname,
3183 char *optval, int *optlen)
3184 {
3185 mm_segment_t oldfs = get_fs();
3186 char __user *uoptval;
3187 int __user *uoptlen;
3188 int err;
3189
3190 uoptval = (char __user __force *) optval;
3191 uoptlen = (int __user __force *) optlen;
3192
3193 set_fs(KERNEL_DS);
3194 if (level == SOL_SOCKET)
3195 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3196 else
3197 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3198 uoptlen);
3199 set_fs(oldfs);
3200 return err;
3201 }
3202 EXPORT_SYMBOL(kernel_getsockopt);
3203
3204 int kernel_setsockopt(struct socket *sock, int level, int optname,
3205 char *optval, unsigned int optlen)
3206 {
3207 mm_segment_t oldfs = get_fs();
3208 char __user *uoptval;
3209 int err;
3210
3211 uoptval = (char __user __force *) optval;
3212
3213 set_fs(KERNEL_DS);
3214 if (level == SOL_SOCKET)
3215 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3216 else
3217 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3218 optlen);
3219 set_fs(oldfs);
3220 return err;
3221 }
3222 EXPORT_SYMBOL(kernel_setsockopt);
3223
3224 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3225 size_t size, int flags)
3226 {
3227 if (sock->ops->sendpage)
3228 return sock->ops->sendpage(sock, page, offset, size, flags);
3229
3230 return sock_no_sendpage(sock, page, offset, size, flags);
3231 }
3232 EXPORT_SYMBOL(kernel_sendpage);
3233
3234 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3235 size_t size, int flags)
3236 {
3237 struct socket *sock = sk->sk_socket;
3238
3239 if (sock->ops->sendpage_locked)
3240 return sock->ops->sendpage_locked(sk, page, offset, size,
3241 flags);
3242
3243 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3244 }
3245 EXPORT_SYMBOL(kernel_sendpage_locked);
3246
3247 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3248 {
3249 return sock->ops->shutdown(sock, how);
3250 }
3251 EXPORT_SYMBOL(kernel_sock_shutdown);
3252
3253 /* This routine returns the IP overhead imposed by a socket i.e.
3254 * the length of the underlying IP header, depending on whether
3255 * this is an IPv4 or IPv6 socket and the length from IP options turned
3256 * on at the socket. Assumes that the caller has a lock on the socket.
3257 */
3258 u32 kernel_sock_ip_overhead(struct sock *sk)
3259 {
3260 struct inet_sock *inet;
3261 struct ip_options_rcu *opt;
3262 u32 overhead = 0;
3263 #if IS_ENABLED(CONFIG_IPV6)
3264 struct ipv6_pinfo *np;
3265 struct ipv6_txoptions *optv6 = NULL;
3266 #endif /* IS_ENABLED(CONFIG_IPV6) */
3267
3268 if (!sk)
3269 return overhead;
3270
3271 switch (sk->sk_family) {
3272 case AF_INET:
3273 inet = inet_sk(sk);
3274 overhead += sizeof(struct iphdr);
3275 opt = rcu_dereference_protected(inet->inet_opt,
3276 sock_owned_by_user(sk));
3277 if (opt)
3278 overhead += opt->opt.optlen;
3279 return overhead;
3280 #if IS_ENABLED(CONFIG_IPV6)
3281 case AF_INET6:
3282 np = inet6_sk(sk);
3283 overhead += sizeof(struct ipv6hdr);
3284 if (np)
3285 optv6 = rcu_dereference_protected(np->opt,
3286 sock_owned_by_user(sk));
3287 if (optv6)
3288 overhead += (optv6->opt_flen + optv6->opt_nflen);
3289 return overhead;
3290 #endif /* IS_ENABLED(CONFIG_IPV6) */
3291 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3292 return overhead;
3293 }
3294 }
3295 EXPORT_SYMBOL(kernel_sock_ip_overhead);