]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/socket.c
net: rework recvmsg handler msg_name and msg_namelen logic
[mirror_ubuntu-bionic-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 #include <linux/magic.h>
89 #include <linux/slab.h>
90 #include <linux/xattr.h>
91
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 #include <net/busy_poll.h>
108
109 #ifdef CONFIG_NET_RX_BUSY_POLL
110 unsigned int sysctl_net_busy_read __read_mostly;
111 unsigned int sysctl_net_busy_poll __read_mostly;
112 #endif
113
114 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
115 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
116 unsigned long nr_segs, loff_t pos);
117 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
118 unsigned long nr_segs, loff_t pos);
119 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120
121 static int sock_close(struct inode *inode, struct file *file);
122 static unsigned int sock_poll(struct file *file,
123 struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_sendpage(struct file *file, struct page *page,
131 int offset, size_t size, loff_t *ppos, int more);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 struct pipe_inode_info *pipe, size_t len,
134 unsigned int flags);
135
136 /*
137 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138 * in the operation structures but are done directly via the socketcall() multiplexor.
139 */
140
141 static const struct file_operations socket_file_ops = {
142 .owner = THIS_MODULE,
143 .llseek = no_llseek,
144 .aio_read = sock_aio_read,
145 .aio_write = sock_aio_write,
146 .poll = sock_poll,
147 .unlocked_ioctl = sock_ioctl,
148 #ifdef CONFIG_COMPAT
149 .compat_ioctl = compat_sock_ioctl,
150 #endif
151 .mmap = sock_mmap,
152 .open = sock_no_open, /* special open code to disallow open via /proc */
153 .release = sock_close,
154 .fasync = sock_fasync,
155 .sendpage = sock_sendpage,
156 .splice_write = generic_splice_sendpage,
157 .splice_read = sock_splice_read,
158 };
159
160 /*
161 * The protocol list. Each protocol is registered in here.
162 */
163
164 static DEFINE_SPINLOCK(net_family_lock);
165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166
167 /*
168 * Statistics counters of the socket lists
169 */
170
171 static DEFINE_PER_CPU(int, sockets_in_use);
172
173 /*
174 * Support routines.
175 * Move socket addresses back and forth across the kernel/user
176 * divide and look after the messy bits.
177 */
178
179 /**
180 * move_addr_to_kernel - copy a socket address into kernel space
181 * @uaddr: Address in user space
182 * @kaddr: Address in kernel space
183 * @ulen: Length in user space
184 *
185 * The address is copied into kernel space. If the provided address is
186 * too long an error code of -EINVAL is returned. If the copy gives
187 * invalid addresses -EFAULT is returned. On a success 0 is returned.
188 */
189
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
191 {
192 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 return -EINVAL;
194 if (ulen == 0)
195 return 0;
196 if (copy_from_user(kaddr, uaddr, ulen))
197 return -EFAULT;
198 return audit_sockaddr(ulen, kaddr);
199 }
200
201 /**
202 * move_addr_to_user - copy an address to user space
203 * @kaddr: kernel space address
204 * @klen: length of address in kernel
205 * @uaddr: user space address
206 * @ulen: pointer to user length field
207 *
208 * The value pointed to by ulen on entry is the buffer length available.
209 * This is overwritten with the buffer space used. -EINVAL is returned
210 * if an overlong buffer is specified or a negative buffer size. -EFAULT
211 * is returned if either the buffer or the length field are not
212 * accessible.
213 * After copying the data up to the limit the user specifies, the true
214 * length of the data is written over the length limit the user
215 * specified. Zero is returned for a success.
216 */
217
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 void __user *uaddr, int __user *ulen)
220 {
221 int err;
222 int len;
223
224 err = get_user(len, ulen);
225 if (err)
226 return err;
227 if (len > klen)
228 len = klen;
229 if (len < 0 || len > sizeof(struct sockaddr_storage))
230 return -EINVAL;
231 if (len) {
232 if (audit_sockaddr(klen, kaddr))
233 return -ENOMEM;
234 if (copy_to_user(uaddr, kaddr, len))
235 return -EFAULT;
236 }
237 /*
238 * "fromlen shall refer to the value before truncation.."
239 * 1003.1g
240 */
241 return __put_user(klen, ulen);
242 }
243
244 static struct kmem_cache *sock_inode_cachep __read_mostly;
245
246 static struct inode *sock_alloc_inode(struct super_block *sb)
247 {
248 struct socket_alloc *ei;
249 struct socket_wq *wq;
250
251 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
252 if (!ei)
253 return NULL;
254 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
255 if (!wq) {
256 kmem_cache_free(sock_inode_cachep, ei);
257 return NULL;
258 }
259 init_waitqueue_head(&wq->wait);
260 wq->fasync_list = NULL;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
262
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
268
269 return &ei->vfs_inode;
270 }
271
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
276
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
281 }
282
283 static void init_once(void *foo)
284 {
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
286
287 inode_init_once(&ei->vfs_inode);
288 }
289
290 static int init_inodecache(void)
291 {
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
294 0,
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD),
298 init_once);
299 if (sock_inode_cachep == NULL)
300 return -ENOMEM;
301 return 0;
302 }
303
304 static const struct super_operations sockfs_ops = {
305 .alloc_inode = sock_alloc_inode,
306 .destroy_inode = sock_destroy_inode,
307 .statfs = simple_statfs,
308 };
309
310 /*
311 * sockfs_dname() is called from d_path().
312 */
313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
314 {
315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 dentry->d_inode->i_ino);
317 }
318
319 static const struct dentry_operations sockfs_dentry_operations = {
320 .d_dname = sockfs_dname,
321 };
322
323 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
324 int flags, const char *dev_name, void *data)
325 {
326 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
327 &sockfs_dentry_operations, SOCKFS_MAGIC);
328 }
329
330 static struct vfsmount *sock_mnt __read_mostly;
331
332 static struct file_system_type sock_fs_type = {
333 .name = "sockfs",
334 .mount = sockfs_mount,
335 .kill_sb = kill_anon_super,
336 };
337
338 /*
339 * Obtains the first available file descriptor and sets it up for use.
340 *
341 * These functions create file structures and maps them to fd space
342 * of the current process. On success it returns file descriptor
343 * and file struct implicitly stored in sock->file.
344 * Note that another thread may close file descriptor before we return
345 * from this function. We use the fact that now we do not refer
346 * to socket after mapping. If one day we will need it, this
347 * function will increment ref. count on file by 1.
348 *
349 * In any case returned fd MAY BE not valid!
350 * This race condition is unavoidable
351 * with shared fd spaces, we cannot solve it inside kernel,
352 * but we take care of internal coherence yet.
353 */
354
355 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
356 {
357 struct qstr name = { .name = "" };
358 struct path path;
359 struct file *file;
360
361 if (dname) {
362 name.name = dname;
363 name.len = strlen(name.name);
364 } else if (sock->sk) {
365 name.name = sock->sk->sk_prot_creator->name;
366 name.len = strlen(name.name);
367 }
368 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
369 if (unlikely(!path.dentry))
370 return ERR_PTR(-ENOMEM);
371 path.mnt = mntget(sock_mnt);
372
373 d_instantiate(path.dentry, SOCK_INODE(sock));
374 SOCK_INODE(sock)->i_fop = &socket_file_ops;
375
376 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 &socket_file_ops);
378 if (unlikely(IS_ERR(file))) {
379 /* drop dentry, keep inode */
380 ihold(path.dentry->d_inode);
381 path_put(&path);
382 return file;
383 }
384
385 sock->file = file;
386 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
387 file->private_data = sock;
388 return file;
389 }
390 EXPORT_SYMBOL(sock_alloc_file);
391
392 static int sock_map_fd(struct socket *sock, int flags)
393 {
394 struct file *newfile;
395 int fd = get_unused_fd_flags(flags);
396 if (unlikely(fd < 0))
397 return fd;
398
399 newfile = sock_alloc_file(sock, flags, NULL);
400 if (likely(!IS_ERR(newfile))) {
401 fd_install(fd, newfile);
402 return fd;
403 }
404
405 put_unused_fd(fd);
406 return PTR_ERR(newfile);
407 }
408
409 struct socket *sock_from_file(struct file *file, int *err)
410 {
411 if (file->f_op == &socket_file_ops)
412 return file->private_data; /* set in sock_map_fd */
413
414 *err = -ENOTSOCK;
415 return NULL;
416 }
417 EXPORT_SYMBOL(sock_from_file);
418
419 /**
420 * sockfd_lookup - Go from a file number to its socket slot
421 * @fd: file handle
422 * @err: pointer to an error code return
423 *
424 * The file handle passed in is locked and the socket it is bound
425 * too is returned. If an error occurs the err pointer is overwritten
426 * with a negative errno code and NULL is returned. The function checks
427 * for both invalid handles and passing a handle which is not a socket.
428 *
429 * On a success the socket object pointer is returned.
430 */
431
432 struct socket *sockfd_lookup(int fd, int *err)
433 {
434 struct file *file;
435 struct socket *sock;
436
437 file = fget(fd);
438 if (!file) {
439 *err = -EBADF;
440 return NULL;
441 }
442
443 sock = sock_from_file(file, err);
444 if (!sock)
445 fput(file);
446 return sock;
447 }
448 EXPORT_SYMBOL(sockfd_lookup);
449
450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
451 {
452 struct file *file;
453 struct socket *sock;
454
455 *err = -EBADF;
456 file = fget_light(fd, fput_needed);
457 if (file) {
458 sock = sock_from_file(file, err);
459 if (sock)
460 return sock;
461 fput_light(file, *fput_needed);
462 }
463 return NULL;
464 }
465
466 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
467 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
468 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
469 static ssize_t sockfs_getxattr(struct dentry *dentry,
470 const char *name, void *value, size_t size)
471 {
472 const char *proto_name;
473 size_t proto_size;
474 int error;
475
476 error = -ENODATA;
477 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
478 proto_name = dentry->d_name.name;
479 proto_size = strlen(proto_name);
480
481 if (value) {
482 error = -ERANGE;
483 if (proto_size + 1 > size)
484 goto out;
485
486 strncpy(value, proto_name, proto_size + 1);
487 }
488 error = proto_size + 1;
489 }
490
491 out:
492 return error;
493 }
494
495 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
496 size_t size)
497 {
498 ssize_t len;
499 ssize_t used = 0;
500
501 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
502 if (len < 0)
503 return len;
504 used += len;
505 if (buffer) {
506 if (size < used)
507 return -ERANGE;
508 buffer += len;
509 }
510
511 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
512 used += len;
513 if (buffer) {
514 if (size < used)
515 return -ERANGE;
516 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
517 buffer += len;
518 }
519
520 return used;
521 }
522
523 static const struct inode_operations sockfs_inode_ops = {
524 .getxattr = sockfs_getxattr,
525 .listxattr = sockfs_listxattr,
526 };
527
528 /**
529 * sock_alloc - allocate a socket
530 *
531 * Allocate a new inode and socket object. The two are bound together
532 * and initialised. The socket is then returned. If we are out of inodes
533 * NULL is returned.
534 */
535
536 static struct socket *sock_alloc(void)
537 {
538 struct inode *inode;
539 struct socket *sock;
540
541 inode = new_inode_pseudo(sock_mnt->mnt_sb);
542 if (!inode)
543 return NULL;
544
545 sock = SOCKET_I(inode);
546
547 kmemcheck_annotate_bitfield(sock, type);
548 inode->i_ino = get_next_ino();
549 inode->i_mode = S_IFSOCK | S_IRWXUGO;
550 inode->i_uid = current_fsuid();
551 inode->i_gid = current_fsgid();
552 inode->i_op = &sockfs_inode_ops;
553
554 this_cpu_add(sockets_in_use, 1);
555 return sock;
556 }
557
558 /*
559 * In theory you can't get an open on this inode, but /proc provides
560 * a back door. Remember to keep it shut otherwise you'll let the
561 * creepy crawlies in.
562 */
563
564 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
565 {
566 return -ENXIO;
567 }
568
569 const struct file_operations bad_sock_fops = {
570 .owner = THIS_MODULE,
571 .open = sock_no_open,
572 .llseek = noop_llseek,
573 };
574
575 /**
576 * sock_release - close a socket
577 * @sock: socket to close
578 *
579 * The socket is released from the protocol stack if it has a release
580 * callback, and the inode is then released if the socket is bound to
581 * an inode not a file.
582 */
583
584 void sock_release(struct socket *sock)
585 {
586 if (sock->ops) {
587 struct module *owner = sock->ops->owner;
588
589 sock->ops->release(sock);
590 sock->ops = NULL;
591 module_put(owner);
592 }
593
594 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
595 printk(KERN_ERR "sock_release: fasync list not empty!\n");
596
597 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
598 return;
599
600 this_cpu_sub(sockets_in_use, 1);
601 if (!sock->file) {
602 iput(SOCK_INODE(sock));
603 return;
604 }
605 sock->file = NULL;
606 }
607 EXPORT_SYMBOL(sock_release);
608
609 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
610 {
611 *tx_flags = 0;
612 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
613 *tx_flags |= SKBTX_HW_TSTAMP;
614 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
615 *tx_flags |= SKBTX_SW_TSTAMP;
616 if (sock_flag(sk, SOCK_WIFI_STATUS))
617 *tx_flags |= SKBTX_WIFI_STATUS;
618 }
619 EXPORT_SYMBOL(sock_tx_timestamp);
620
621 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
622 struct msghdr *msg, size_t size)
623 {
624 struct sock_iocb *si = kiocb_to_siocb(iocb);
625
626 si->sock = sock;
627 si->scm = NULL;
628 si->msg = msg;
629 si->size = size;
630
631 return sock->ops->sendmsg(iocb, sock, msg, size);
632 }
633
634 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
635 struct msghdr *msg, size_t size)
636 {
637 int err = security_socket_sendmsg(sock, msg, size);
638
639 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
640 }
641
642 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
643 {
644 struct kiocb iocb;
645 struct sock_iocb siocb;
646 int ret;
647
648 init_sync_kiocb(&iocb, NULL);
649 iocb.private = &siocb;
650 ret = __sock_sendmsg(&iocb, sock, msg, size);
651 if (-EIOCBQUEUED == ret)
652 ret = wait_on_sync_kiocb(&iocb);
653 return ret;
654 }
655 EXPORT_SYMBOL(sock_sendmsg);
656
657 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
658 {
659 struct kiocb iocb;
660 struct sock_iocb siocb;
661 int ret;
662
663 init_sync_kiocb(&iocb, NULL);
664 iocb.private = &siocb;
665 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
666 if (-EIOCBQUEUED == ret)
667 ret = wait_on_sync_kiocb(&iocb);
668 return ret;
669 }
670
671 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
672 struct kvec *vec, size_t num, size_t size)
673 {
674 mm_segment_t oldfs = get_fs();
675 int result;
676
677 set_fs(KERNEL_DS);
678 /*
679 * the following is safe, since for compiler definitions of kvec and
680 * iovec are identical, yielding the same in-core layout and alignment
681 */
682 msg->msg_iov = (struct iovec *)vec;
683 msg->msg_iovlen = num;
684 result = sock_sendmsg(sock, msg, size);
685 set_fs(oldfs);
686 return result;
687 }
688 EXPORT_SYMBOL(kernel_sendmsg);
689
690 /*
691 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
692 */
693 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
694 struct sk_buff *skb)
695 {
696 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
697 struct timespec ts[3];
698 int empty = 1;
699 struct skb_shared_hwtstamps *shhwtstamps =
700 skb_hwtstamps(skb);
701
702 /* Race occurred between timestamp enabling and packet
703 receiving. Fill in the current time for now. */
704 if (need_software_tstamp && skb->tstamp.tv64 == 0)
705 __net_timestamp(skb);
706
707 if (need_software_tstamp) {
708 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
709 struct timeval tv;
710 skb_get_timestamp(skb, &tv);
711 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
712 sizeof(tv), &tv);
713 } else {
714 skb_get_timestampns(skb, &ts[0]);
715 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
716 sizeof(ts[0]), &ts[0]);
717 }
718 }
719
720
721 memset(ts, 0, sizeof(ts));
722 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
723 ktime_to_timespec_cond(skb->tstamp, ts + 0))
724 empty = 0;
725 if (shhwtstamps) {
726 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
727 ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
728 empty = 0;
729 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
730 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
731 empty = 0;
732 }
733 if (!empty)
734 put_cmsg(msg, SOL_SOCKET,
735 SCM_TIMESTAMPING, sizeof(ts), &ts);
736 }
737 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
738
739 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
740 struct sk_buff *skb)
741 {
742 int ack;
743
744 if (!sock_flag(sk, SOCK_WIFI_STATUS))
745 return;
746 if (!skb->wifi_acked_valid)
747 return;
748
749 ack = skb->wifi_acked;
750
751 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
752 }
753 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
754
755 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
756 struct sk_buff *skb)
757 {
758 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
759 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
760 sizeof(__u32), &skb->dropcount);
761 }
762
763 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
764 struct sk_buff *skb)
765 {
766 sock_recv_timestamp(msg, sk, skb);
767 sock_recv_drops(msg, sk, skb);
768 }
769 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
770
771 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
772 struct msghdr *msg, size_t size, int flags)
773 {
774 struct sock_iocb *si = kiocb_to_siocb(iocb);
775
776 si->sock = sock;
777 si->scm = NULL;
778 si->msg = msg;
779 si->size = size;
780 si->flags = flags;
781
782 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
783 }
784
785 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
786 struct msghdr *msg, size_t size, int flags)
787 {
788 int err = security_socket_recvmsg(sock, msg, size, flags);
789
790 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
791 }
792
793 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
794 size_t size, int flags)
795 {
796 struct kiocb iocb;
797 struct sock_iocb siocb;
798 int ret;
799
800 init_sync_kiocb(&iocb, NULL);
801 iocb.private = &siocb;
802 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
803 if (-EIOCBQUEUED == ret)
804 ret = wait_on_sync_kiocb(&iocb);
805 return ret;
806 }
807 EXPORT_SYMBOL(sock_recvmsg);
808
809 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
810 size_t size, int flags)
811 {
812 struct kiocb iocb;
813 struct sock_iocb siocb;
814 int ret;
815
816 init_sync_kiocb(&iocb, NULL);
817 iocb.private = &siocb;
818 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
819 if (-EIOCBQUEUED == ret)
820 ret = wait_on_sync_kiocb(&iocb);
821 return ret;
822 }
823
824 /**
825 * kernel_recvmsg - Receive a message from a socket (kernel space)
826 * @sock: The socket to receive the message from
827 * @msg: Received message
828 * @vec: Input s/g array for message data
829 * @num: Size of input s/g array
830 * @size: Number of bytes to read
831 * @flags: Message flags (MSG_DONTWAIT, etc...)
832 *
833 * On return the msg structure contains the scatter/gather array passed in the
834 * vec argument. The array is modified so that it consists of the unfilled
835 * portion of the original array.
836 *
837 * The returned value is the total number of bytes received, or an error.
838 */
839 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
840 struct kvec *vec, size_t num, size_t size, int flags)
841 {
842 mm_segment_t oldfs = get_fs();
843 int result;
844
845 set_fs(KERNEL_DS);
846 /*
847 * the following is safe, since for compiler definitions of kvec and
848 * iovec are identical, yielding the same in-core layout and alignment
849 */
850 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
851 result = sock_recvmsg(sock, msg, size, flags);
852 set_fs(oldfs);
853 return result;
854 }
855 EXPORT_SYMBOL(kernel_recvmsg);
856
857 static ssize_t sock_sendpage(struct file *file, struct page *page,
858 int offset, size_t size, loff_t *ppos, int more)
859 {
860 struct socket *sock;
861 int flags;
862
863 sock = file->private_data;
864
865 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
866 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
867 flags |= more;
868
869 return kernel_sendpage(sock, page, offset, size, flags);
870 }
871
872 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
873 struct pipe_inode_info *pipe, size_t len,
874 unsigned int flags)
875 {
876 struct socket *sock = file->private_data;
877
878 if (unlikely(!sock->ops->splice_read))
879 return -EINVAL;
880
881 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
882 }
883
884 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
885 struct sock_iocb *siocb)
886 {
887 if (!is_sync_kiocb(iocb))
888 BUG();
889
890 siocb->kiocb = iocb;
891 iocb->private = siocb;
892 return siocb;
893 }
894
895 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
896 struct file *file, const struct iovec *iov,
897 unsigned long nr_segs)
898 {
899 struct socket *sock = file->private_data;
900 size_t size = 0;
901 int i;
902
903 for (i = 0; i < nr_segs; i++)
904 size += iov[i].iov_len;
905
906 msg->msg_name = NULL;
907 msg->msg_namelen = 0;
908 msg->msg_control = NULL;
909 msg->msg_controllen = 0;
910 msg->msg_iov = (struct iovec *)iov;
911 msg->msg_iovlen = nr_segs;
912 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
913
914 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
915 }
916
917 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
918 unsigned long nr_segs, loff_t pos)
919 {
920 struct sock_iocb siocb, *x;
921
922 if (pos != 0)
923 return -ESPIPE;
924
925 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */
926 return 0;
927
928
929 x = alloc_sock_iocb(iocb, &siocb);
930 if (!x)
931 return -ENOMEM;
932 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
933 }
934
935 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
936 struct file *file, const struct iovec *iov,
937 unsigned long nr_segs)
938 {
939 struct socket *sock = file->private_data;
940 size_t size = 0;
941 int i;
942
943 for (i = 0; i < nr_segs; i++)
944 size += iov[i].iov_len;
945
946 msg->msg_name = NULL;
947 msg->msg_namelen = 0;
948 msg->msg_control = NULL;
949 msg->msg_controllen = 0;
950 msg->msg_iov = (struct iovec *)iov;
951 msg->msg_iovlen = nr_segs;
952 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
953 if (sock->type == SOCK_SEQPACKET)
954 msg->msg_flags |= MSG_EOR;
955
956 return __sock_sendmsg(iocb, sock, msg, size);
957 }
958
959 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
960 unsigned long nr_segs, loff_t pos)
961 {
962 struct sock_iocb siocb, *x;
963
964 if (pos != 0)
965 return -ESPIPE;
966
967 x = alloc_sock_iocb(iocb, &siocb);
968 if (!x)
969 return -ENOMEM;
970
971 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
972 }
973
974 /*
975 * Atomic setting of ioctl hooks to avoid race
976 * with module unload.
977 */
978
979 static DEFINE_MUTEX(br_ioctl_mutex);
980 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
981
982 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
983 {
984 mutex_lock(&br_ioctl_mutex);
985 br_ioctl_hook = hook;
986 mutex_unlock(&br_ioctl_mutex);
987 }
988 EXPORT_SYMBOL(brioctl_set);
989
990 static DEFINE_MUTEX(vlan_ioctl_mutex);
991 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
992
993 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
994 {
995 mutex_lock(&vlan_ioctl_mutex);
996 vlan_ioctl_hook = hook;
997 mutex_unlock(&vlan_ioctl_mutex);
998 }
999 EXPORT_SYMBOL(vlan_ioctl_set);
1000
1001 static DEFINE_MUTEX(dlci_ioctl_mutex);
1002 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1003
1004 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1005 {
1006 mutex_lock(&dlci_ioctl_mutex);
1007 dlci_ioctl_hook = hook;
1008 mutex_unlock(&dlci_ioctl_mutex);
1009 }
1010 EXPORT_SYMBOL(dlci_ioctl_set);
1011
1012 static long sock_do_ioctl(struct net *net, struct socket *sock,
1013 unsigned int cmd, unsigned long arg)
1014 {
1015 int err;
1016 void __user *argp = (void __user *)arg;
1017
1018 err = sock->ops->ioctl(sock, cmd, arg);
1019
1020 /*
1021 * If this ioctl is unknown try to hand it down
1022 * to the NIC driver.
1023 */
1024 if (err == -ENOIOCTLCMD)
1025 err = dev_ioctl(net, cmd, argp);
1026
1027 return err;
1028 }
1029
1030 /*
1031 * With an ioctl, arg may well be a user mode pointer, but we don't know
1032 * what to do with it - that's up to the protocol still.
1033 */
1034
1035 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1036 {
1037 struct socket *sock;
1038 struct sock *sk;
1039 void __user *argp = (void __user *)arg;
1040 int pid, err;
1041 struct net *net;
1042
1043 sock = file->private_data;
1044 sk = sock->sk;
1045 net = sock_net(sk);
1046 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1047 err = dev_ioctl(net, cmd, argp);
1048 } else
1049 #ifdef CONFIG_WEXT_CORE
1050 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1051 err = dev_ioctl(net, cmd, argp);
1052 } else
1053 #endif
1054 switch (cmd) {
1055 case FIOSETOWN:
1056 case SIOCSPGRP:
1057 err = -EFAULT;
1058 if (get_user(pid, (int __user *)argp))
1059 break;
1060 err = f_setown(sock->file, pid, 1);
1061 break;
1062 case FIOGETOWN:
1063 case SIOCGPGRP:
1064 err = put_user(f_getown(sock->file),
1065 (int __user *)argp);
1066 break;
1067 case SIOCGIFBR:
1068 case SIOCSIFBR:
1069 case SIOCBRADDBR:
1070 case SIOCBRDELBR:
1071 err = -ENOPKG;
1072 if (!br_ioctl_hook)
1073 request_module("bridge");
1074
1075 mutex_lock(&br_ioctl_mutex);
1076 if (br_ioctl_hook)
1077 err = br_ioctl_hook(net, cmd, argp);
1078 mutex_unlock(&br_ioctl_mutex);
1079 break;
1080 case SIOCGIFVLAN:
1081 case SIOCSIFVLAN:
1082 err = -ENOPKG;
1083 if (!vlan_ioctl_hook)
1084 request_module("8021q");
1085
1086 mutex_lock(&vlan_ioctl_mutex);
1087 if (vlan_ioctl_hook)
1088 err = vlan_ioctl_hook(net, argp);
1089 mutex_unlock(&vlan_ioctl_mutex);
1090 break;
1091 case SIOCADDDLCI:
1092 case SIOCDELDLCI:
1093 err = -ENOPKG;
1094 if (!dlci_ioctl_hook)
1095 request_module("dlci");
1096
1097 mutex_lock(&dlci_ioctl_mutex);
1098 if (dlci_ioctl_hook)
1099 err = dlci_ioctl_hook(cmd, argp);
1100 mutex_unlock(&dlci_ioctl_mutex);
1101 break;
1102 default:
1103 err = sock_do_ioctl(net, sock, cmd, arg);
1104 break;
1105 }
1106 return err;
1107 }
1108
1109 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1110 {
1111 int err;
1112 struct socket *sock = NULL;
1113
1114 err = security_socket_create(family, type, protocol, 1);
1115 if (err)
1116 goto out;
1117
1118 sock = sock_alloc();
1119 if (!sock) {
1120 err = -ENOMEM;
1121 goto out;
1122 }
1123
1124 sock->type = type;
1125 err = security_socket_post_create(sock, family, type, protocol, 1);
1126 if (err)
1127 goto out_release;
1128
1129 out:
1130 *res = sock;
1131 return err;
1132 out_release:
1133 sock_release(sock);
1134 sock = NULL;
1135 goto out;
1136 }
1137 EXPORT_SYMBOL(sock_create_lite);
1138
1139 /* No kernel lock held - perfect */
1140 static unsigned int sock_poll(struct file *file, poll_table *wait)
1141 {
1142 unsigned int busy_flag = 0;
1143 struct socket *sock;
1144
1145 /*
1146 * We can't return errors to poll, so it's either yes or no.
1147 */
1148 sock = file->private_data;
1149
1150 if (sk_can_busy_loop(sock->sk)) {
1151 /* this socket can poll_ll so tell the system call */
1152 busy_flag = POLL_BUSY_LOOP;
1153
1154 /* once, only if requested by syscall */
1155 if (wait && (wait->_key & POLL_BUSY_LOOP))
1156 sk_busy_loop(sock->sk, 1);
1157 }
1158
1159 return busy_flag | sock->ops->poll(file, sock, wait);
1160 }
1161
1162 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1163 {
1164 struct socket *sock = file->private_data;
1165
1166 return sock->ops->mmap(file, sock, vma);
1167 }
1168
1169 static int sock_close(struct inode *inode, struct file *filp)
1170 {
1171 sock_release(SOCKET_I(inode));
1172 return 0;
1173 }
1174
1175 /*
1176 * Update the socket async list
1177 *
1178 * Fasync_list locking strategy.
1179 *
1180 * 1. fasync_list is modified only under process context socket lock
1181 * i.e. under semaphore.
1182 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1183 * or under socket lock
1184 */
1185
1186 static int sock_fasync(int fd, struct file *filp, int on)
1187 {
1188 struct socket *sock = filp->private_data;
1189 struct sock *sk = sock->sk;
1190 struct socket_wq *wq;
1191
1192 if (sk == NULL)
1193 return -EINVAL;
1194
1195 lock_sock(sk);
1196 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1197 fasync_helper(fd, filp, on, &wq->fasync_list);
1198
1199 if (!wq->fasync_list)
1200 sock_reset_flag(sk, SOCK_FASYNC);
1201 else
1202 sock_set_flag(sk, SOCK_FASYNC);
1203
1204 release_sock(sk);
1205 return 0;
1206 }
1207
1208 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1209
1210 int sock_wake_async(struct socket *sock, int how, int band)
1211 {
1212 struct socket_wq *wq;
1213
1214 if (!sock)
1215 return -1;
1216 rcu_read_lock();
1217 wq = rcu_dereference(sock->wq);
1218 if (!wq || !wq->fasync_list) {
1219 rcu_read_unlock();
1220 return -1;
1221 }
1222 switch (how) {
1223 case SOCK_WAKE_WAITD:
1224 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1225 break;
1226 goto call_kill;
1227 case SOCK_WAKE_SPACE:
1228 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1229 break;
1230 /* fall through */
1231 case SOCK_WAKE_IO:
1232 call_kill:
1233 kill_fasync(&wq->fasync_list, SIGIO, band);
1234 break;
1235 case SOCK_WAKE_URG:
1236 kill_fasync(&wq->fasync_list, SIGURG, band);
1237 }
1238 rcu_read_unlock();
1239 return 0;
1240 }
1241 EXPORT_SYMBOL(sock_wake_async);
1242
1243 int __sock_create(struct net *net, int family, int type, int protocol,
1244 struct socket **res, int kern)
1245 {
1246 int err;
1247 struct socket *sock;
1248 const struct net_proto_family *pf;
1249
1250 /*
1251 * Check protocol is in range
1252 */
1253 if (family < 0 || family >= NPROTO)
1254 return -EAFNOSUPPORT;
1255 if (type < 0 || type >= SOCK_MAX)
1256 return -EINVAL;
1257
1258 /* Compatibility.
1259
1260 This uglymoron is moved from INET layer to here to avoid
1261 deadlock in module load.
1262 */
1263 if (family == PF_INET && type == SOCK_PACKET) {
1264 static int warned;
1265 if (!warned) {
1266 warned = 1;
1267 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1268 current->comm);
1269 }
1270 family = PF_PACKET;
1271 }
1272
1273 err = security_socket_create(family, type, protocol, kern);
1274 if (err)
1275 return err;
1276
1277 /*
1278 * Allocate the socket and allow the family to set things up. if
1279 * the protocol is 0, the family is instructed to select an appropriate
1280 * default.
1281 */
1282 sock = sock_alloc();
1283 if (!sock) {
1284 net_warn_ratelimited("socket: no more sockets\n");
1285 return -ENFILE; /* Not exactly a match, but its the
1286 closest posix thing */
1287 }
1288
1289 sock->type = type;
1290
1291 #ifdef CONFIG_MODULES
1292 /* Attempt to load a protocol module if the find failed.
1293 *
1294 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1295 * requested real, full-featured networking support upon configuration.
1296 * Otherwise module support will break!
1297 */
1298 if (rcu_access_pointer(net_families[family]) == NULL)
1299 request_module("net-pf-%d", family);
1300 #endif
1301
1302 rcu_read_lock();
1303 pf = rcu_dereference(net_families[family]);
1304 err = -EAFNOSUPPORT;
1305 if (!pf)
1306 goto out_release;
1307
1308 /*
1309 * We will call the ->create function, that possibly is in a loadable
1310 * module, so we have to bump that loadable module refcnt first.
1311 */
1312 if (!try_module_get(pf->owner))
1313 goto out_release;
1314
1315 /* Now protected by module ref count */
1316 rcu_read_unlock();
1317
1318 err = pf->create(net, sock, protocol, kern);
1319 if (err < 0)
1320 goto out_module_put;
1321
1322 /*
1323 * Now to bump the refcnt of the [loadable] module that owns this
1324 * socket at sock_release time we decrement its refcnt.
1325 */
1326 if (!try_module_get(sock->ops->owner))
1327 goto out_module_busy;
1328
1329 /*
1330 * Now that we're done with the ->create function, the [loadable]
1331 * module can have its refcnt decremented
1332 */
1333 module_put(pf->owner);
1334 err = security_socket_post_create(sock, family, type, protocol, kern);
1335 if (err)
1336 goto out_sock_release;
1337 *res = sock;
1338
1339 return 0;
1340
1341 out_module_busy:
1342 err = -EAFNOSUPPORT;
1343 out_module_put:
1344 sock->ops = NULL;
1345 module_put(pf->owner);
1346 out_sock_release:
1347 sock_release(sock);
1348 return err;
1349
1350 out_release:
1351 rcu_read_unlock();
1352 goto out_sock_release;
1353 }
1354 EXPORT_SYMBOL(__sock_create);
1355
1356 int sock_create(int family, int type, int protocol, struct socket **res)
1357 {
1358 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1359 }
1360 EXPORT_SYMBOL(sock_create);
1361
1362 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1363 {
1364 return __sock_create(&init_net, family, type, protocol, res, 1);
1365 }
1366 EXPORT_SYMBOL(sock_create_kern);
1367
1368 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1369 {
1370 int retval;
1371 struct socket *sock;
1372 int flags;
1373
1374 /* Check the SOCK_* constants for consistency. */
1375 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1376 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1377 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1378 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1379
1380 flags = type & ~SOCK_TYPE_MASK;
1381 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1382 return -EINVAL;
1383 type &= SOCK_TYPE_MASK;
1384
1385 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1386 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1387
1388 retval = sock_create(family, type, protocol, &sock);
1389 if (retval < 0)
1390 goto out;
1391
1392 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1393 if (retval < 0)
1394 goto out_release;
1395
1396 out:
1397 /* It may be already another descriptor 8) Not kernel problem. */
1398 return retval;
1399
1400 out_release:
1401 sock_release(sock);
1402 return retval;
1403 }
1404
1405 /*
1406 * Create a pair of connected sockets.
1407 */
1408
1409 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1410 int __user *, usockvec)
1411 {
1412 struct socket *sock1, *sock2;
1413 int fd1, fd2, err;
1414 struct file *newfile1, *newfile2;
1415 int flags;
1416
1417 flags = type & ~SOCK_TYPE_MASK;
1418 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1419 return -EINVAL;
1420 type &= SOCK_TYPE_MASK;
1421
1422 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1423 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1424
1425 /*
1426 * Obtain the first socket and check if the underlying protocol
1427 * supports the socketpair call.
1428 */
1429
1430 err = sock_create(family, type, protocol, &sock1);
1431 if (err < 0)
1432 goto out;
1433
1434 err = sock_create(family, type, protocol, &sock2);
1435 if (err < 0)
1436 goto out_release_1;
1437
1438 err = sock1->ops->socketpair(sock1, sock2);
1439 if (err < 0)
1440 goto out_release_both;
1441
1442 fd1 = get_unused_fd_flags(flags);
1443 if (unlikely(fd1 < 0)) {
1444 err = fd1;
1445 goto out_release_both;
1446 }
1447 fd2 = get_unused_fd_flags(flags);
1448 if (unlikely(fd2 < 0)) {
1449 err = fd2;
1450 put_unused_fd(fd1);
1451 goto out_release_both;
1452 }
1453
1454 newfile1 = sock_alloc_file(sock1, flags, NULL);
1455 if (unlikely(IS_ERR(newfile1))) {
1456 err = PTR_ERR(newfile1);
1457 put_unused_fd(fd1);
1458 put_unused_fd(fd2);
1459 goto out_release_both;
1460 }
1461
1462 newfile2 = sock_alloc_file(sock2, flags, NULL);
1463 if (IS_ERR(newfile2)) {
1464 err = PTR_ERR(newfile2);
1465 fput(newfile1);
1466 put_unused_fd(fd1);
1467 put_unused_fd(fd2);
1468 sock_release(sock2);
1469 goto out;
1470 }
1471
1472 audit_fd_pair(fd1, fd2);
1473 fd_install(fd1, newfile1);
1474 fd_install(fd2, newfile2);
1475 /* fd1 and fd2 may be already another descriptors.
1476 * Not kernel problem.
1477 */
1478
1479 err = put_user(fd1, &usockvec[0]);
1480 if (!err)
1481 err = put_user(fd2, &usockvec[1]);
1482 if (!err)
1483 return 0;
1484
1485 sys_close(fd2);
1486 sys_close(fd1);
1487 return err;
1488
1489 out_release_both:
1490 sock_release(sock2);
1491 out_release_1:
1492 sock_release(sock1);
1493 out:
1494 return err;
1495 }
1496
1497 /*
1498 * Bind a name to a socket. Nothing much to do here since it's
1499 * the protocol's responsibility to handle the local address.
1500 *
1501 * We move the socket address to kernel space before we call
1502 * the protocol layer (having also checked the address is ok).
1503 */
1504
1505 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1506 {
1507 struct socket *sock;
1508 struct sockaddr_storage address;
1509 int err, fput_needed;
1510
1511 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1512 if (sock) {
1513 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1514 if (err >= 0) {
1515 err = security_socket_bind(sock,
1516 (struct sockaddr *)&address,
1517 addrlen);
1518 if (!err)
1519 err = sock->ops->bind(sock,
1520 (struct sockaddr *)
1521 &address, addrlen);
1522 }
1523 fput_light(sock->file, fput_needed);
1524 }
1525 return err;
1526 }
1527
1528 /*
1529 * Perform a listen. Basically, we allow the protocol to do anything
1530 * necessary for a listen, and if that works, we mark the socket as
1531 * ready for listening.
1532 */
1533
1534 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1535 {
1536 struct socket *sock;
1537 int err, fput_needed;
1538 int somaxconn;
1539
1540 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1541 if (sock) {
1542 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1543 if ((unsigned int)backlog > somaxconn)
1544 backlog = somaxconn;
1545
1546 err = security_socket_listen(sock, backlog);
1547 if (!err)
1548 err = sock->ops->listen(sock, backlog);
1549
1550 fput_light(sock->file, fput_needed);
1551 }
1552 return err;
1553 }
1554
1555 /*
1556 * For accept, we attempt to create a new socket, set up the link
1557 * with the client, wake up the client, then return the new
1558 * connected fd. We collect the address of the connector in kernel
1559 * space and move it to user at the very end. This is unclean because
1560 * we open the socket then return an error.
1561 *
1562 * 1003.1g adds the ability to recvmsg() to query connection pending
1563 * status to recvmsg. We need to add that support in a way thats
1564 * clean when we restucture accept also.
1565 */
1566
1567 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1568 int __user *, upeer_addrlen, int, flags)
1569 {
1570 struct socket *sock, *newsock;
1571 struct file *newfile;
1572 int err, len, newfd, fput_needed;
1573 struct sockaddr_storage address;
1574
1575 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1576 return -EINVAL;
1577
1578 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1579 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1580
1581 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1582 if (!sock)
1583 goto out;
1584
1585 err = -ENFILE;
1586 newsock = sock_alloc();
1587 if (!newsock)
1588 goto out_put;
1589
1590 newsock->type = sock->type;
1591 newsock->ops = sock->ops;
1592
1593 /*
1594 * We don't need try_module_get here, as the listening socket (sock)
1595 * has the protocol module (sock->ops->owner) held.
1596 */
1597 __module_get(newsock->ops->owner);
1598
1599 newfd = get_unused_fd_flags(flags);
1600 if (unlikely(newfd < 0)) {
1601 err = newfd;
1602 sock_release(newsock);
1603 goto out_put;
1604 }
1605 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1606 if (unlikely(IS_ERR(newfile))) {
1607 err = PTR_ERR(newfile);
1608 put_unused_fd(newfd);
1609 sock_release(newsock);
1610 goto out_put;
1611 }
1612
1613 err = security_socket_accept(sock, newsock);
1614 if (err)
1615 goto out_fd;
1616
1617 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1618 if (err < 0)
1619 goto out_fd;
1620
1621 if (upeer_sockaddr) {
1622 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1623 &len, 2) < 0) {
1624 err = -ECONNABORTED;
1625 goto out_fd;
1626 }
1627 err = move_addr_to_user(&address,
1628 len, upeer_sockaddr, upeer_addrlen);
1629 if (err < 0)
1630 goto out_fd;
1631 }
1632
1633 /* File flags are not inherited via accept() unlike another OSes. */
1634
1635 fd_install(newfd, newfile);
1636 err = newfd;
1637
1638 out_put:
1639 fput_light(sock->file, fput_needed);
1640 out:
1641 return err;
1642 out_fd:
1643 fput(newfile);
1644 put_unused_fd(newfd);
1645 goto out_put;
1646 }
1647
1648 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1649 int __user *, upeer_addrlen)
1650 {
1651 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1652 }
1653
1654 /*
1655 * Attempt to connect to a socket with the server address. The address
1656 * is in user space so we verify it is OK and move it to kernel space.
1657 *
1658 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1659 * break bindings
1660 *
1661 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1662 * other SEQPACKET protocols that take time to connect() as it doesn't
1663 * include the -EINPROGRESS status for such sockets.
1664 */
1665
1666 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1667 int, addrlen)
1668 {
1669 struct socket *sock;
1670 struct sockaddr_storage address;
1671 int err, fput_needed;
1672
1673 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1674 if (!sock)
1675 goto out;
1676 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1677 if (err < 0)
1678 goto out_put;
1679
1680 err =
1681 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1682 if (err)
1683 goto out_put;
1684
1685 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1686 sock->file->f_flags);
1687 out_put:
1688 fput_light(sock->file, fput_needed);
1689 out:
1690 return err;
1691 }
1692
1693 /*
1694 * Get the local address ('name') of a socket object. Move the obtained
1695 * name to user space.
1696 */
1697
1698 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1699 int __user *, usockaddr_len)
1700 {
1701 struct socket *sock;
1702 struct sockaddr_storage address;
1703 int len, err, fput_needed;
1704
1705 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1706 if (!sock)
1707 goto out;
1708
1709 err = security_socket_getsockname(sock);
1710 if (err)
1711 goto out_put;
1712
1713 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1714 if (err)
1715 goto out_put;
1716 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1717
1718 out_put:
1719 fput_light(sock->file, fput_needed);
1720 out:
1721 return err;
1722 }
1723
1724 /*
1725 * Get the remote address ('name') of a socket object. Move the obtained
1726 * name to user space.
1727 */
1728
1729 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1730 int __user *, usockaddr_len)
1731 {
1732 struct socket *sock;
1733 struct sockaddr_storage address;
1734 int len, err, fput_needed;
1735
1736 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1737 if (sock != NULL) {
1738 err = security_socket_getpeername(sock);
1739 if (err) {
1740 fput_light(sock->file, fput_needed);
1741 return err;
1742 }
1743
1744 err =
1745 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1746 1);
1747 if (!err)
1748 err = move_addr_to_user(&address, len, usockaddr,
1749 usockaddr_len);
1750 fput_light(sock->file, fput_needed);
1751 }
1752 return err;
1753 }
1754
1755 /*
1756 * Send a datagram to a given address. We move the address into kernel
1757 * space and check the user space data area is readable before invoking
1758 * the protocol.
1759 */
1760
1761 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1762 unsigned int, flags, struct sockaddr __user *, addr,
1763 int, addr_len)
1764 {
1765 struct socket *sock;
1766 struct sockaddr_storage address;
1767 int err;
1768 struct msghdr msg;
1769 struct iovec iov;
1770 int fput_needed;
1771
1772 if (len > INT_MAX)
1773 len = INT_MAX;
1774 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1775 if (!sock)
1776 goto out;
1777
1778 iov.iov_base = buff;
1779 iov.iov_len = len;
1780 msg.msg_name = NULL;
1781 msg.msg_iov = &iov;
1782 msg.msg_iovlen = 1;
1783 msg.msg_control = NULL;
1784 msg.msg_controllen = 0;
1785 msg.msg_namelen = 0;
1786 if (addr) {
1787 err = move_addr_to_kernel(addr, addr_len, &address);
1788 if (err < 0)
1789 goto out_put;
1790 msg.msg_name = (struct sockaddr *)&address;
1791 msg.msg_namelen = addr_len;
1792 }
1793 if (sock->file->f_flags & O_NONBLOCK)
1794 flags |= MSG_DONTWAIT;
1795 msg.msg_flags = flags;
1796 err = sock_sendmsg(sock, &msg, len);
1797
1798 out_put:
1799 fput_light(sock->file, fput_needed);
1800 out:
1801 return err;
1802 }
1803
1804 /*
1805 * Send a datagram down a socket.
1806 */
1807
1808 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1809 unsigned int, flags)
1810 {
1811 return sys_sendto(fd, buff, len, flags, NULL, 0);
1812 }
1813
1814 /*
1815 * Receive a frame from the socket and optionally record the address of the
1816 * sender. We verify the buffers are writable and if needed move the
1817 * sender address from kernel to user space.
1818 */
1819
1820 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1821 unsigned int, flags, struct sockaddr __user *, addr,
1822 int __user *, addr_len)
1823 {
1824 struct socket *sock;
1825 struct iovec iov;
1826 struct msghdr msg;
1827 struct sockaddr_storage address;
1828 int err, err2;
1829 int fput_needed;
1830
1831 if (size > INT_MAX)
1832 size = INT_MAX;
1833 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1834 if (!sock)
1835 goto out;
1836
1837 msg.msg_control = NULL;
1838 msg.msg_controllen = 0;
1839 msg.msg_iovlen = 1;
1840 msg.msg_iov = &iov;
1841 iov.iov_len = size;
1842 iov.iov_base = ubuf;
1843 /* Save some cycles and don't copy the address if not needed */
1844 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1845 /* We assume all kernel code knows the size of sockaddr_storage */
1846 msg.msg_namelen = 0;
1847 if (sock->file->f_flags & O_NONBLOCK)
1848 flags |= MSG_DONTWAIT;
1849 err = sock_recvmsg(sock, &msg, size, flags);
1850
1851 if (err >= 0 && addr != NULL) {
1852 err2 = move_addr_to_user(&address,
1853 msg.msg_namelen, addr, addr_len);
1854 if (err2 < 0)
1855 err = err2;
1856 }
1857
1858 fput_light(sock->file, fput_needed);
1859 out:
1860 return err;
1861 }
1862
1863 /*
1864 * Receive a datagram from a socket.
1865 */
1866
1867 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1868 unsigned int flags)
1869 {
1870 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1871 }
1872
1873 /*
1874 * Set a socket option. Because we don't know the option lengths we have
1875 * to pass the user mode parameter for the protocols to sort out.
1876 */
1877
1878 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1879 char __user *, optval, int, optlen)
1880 {
1881 int err, fput_needed;
1882 struct socket *sock;
1883
1884 if (optlen < 0)
1885 return -EINVAL;
1886
1887 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1888 if (sock != NULL) {
1889 err = security_socket_setsockopt(sock, level, optname);
1890 if (err)
1891 goto out_put;
1892
1893 if (level == SOL_SOCKET)
1894 err =
1895 sock_setsockopt(sock, level, optname, optval,
1896 optlen);
1897 else
1898 err =
1899 sock->ops->setsockopt(sock, level, optname, optval,
1900 optlen);
1901 out_put:
1902 fput_light(sock->file, fput_needed);
1903 }
1904 return err;
1905 }
1906
1907 /*
1908 * Get a socket option. Because we don't know the option lengths we have
1909 * to pass a user mode parameter for the protocols to sort out.
1910 */
1911
1912 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1913 char __user *, optval, int __user *, optlen)
1914 {
1915 int err, fput_needed;
1916 struct socket *sock;
1917
1918 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1919 if (sock != NULL) {
1920 err = security_socket_getsockopt(sock, level, optname);
1921 if (err)
1922 goto out_put;
1923
1924 if (level == SOL_SOCKET)
1925 err =
1926 sock_getsockopt(sock, level, optname, optval,
1927 optlen);
1928 else
1929 err =
1930 sock->ops->getsockopt(sock, level, optname, optval,
1931 optlen);
1932 out_put:
1933 fput_light(sock->file, fput_needed);
1934 }
1935 return err;
1936 }
1937
1938 /*
1939 * Shutdown a socket.
1940 */
1941
1942 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1943 {
1944 int err, fput_needed;
1945 struct socket *sock;
1946
1947 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1948 if (sock != NULL) {
1949 err = security_socket_shutdown(sock, how);
1950 if (!err)
1951 err = sock->ops->shutdown(sock, how);
1952 fput_light(sock->file, fput_needed);
1953 }
1954 return err;
1955 }
1956
1957 /* A couple of helpful macros for getting the address of the 32/64 bit
1958 * fields which are the same type (int / unsigned) on our platforms.
1959 */
1960 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1961 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1962 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1963
1964 struct used_address {
1965 struct sockaddr_storage name;
1966 unsigned int name_len;
1967 };
1968
1969 static int copy_msghdr_from_user(struct msghdr *kmsg,
1970 struct msghdr __user *umsg)
1971 {
1972 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1973 return -EFAULT;
1974 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1975 return -EINVAL;
1976 return 0;
1977 }
1978
1979 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1980 struct msghdr *msg_sys, unsigned int flags,
1981 struct used_address *used_address)
1982 {
1983 struct compat_msghdr __user *msg_compat =
1984 (struct compat_msghdr __user *)msg;
1985 struct sockaddr_storage address;
1986 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1987 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1988 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1989 /* 20 is size of ipv6_pktinfo */
1990 unsigned char *ctl_buf = ctl;
1991 int err, ctl_len, total_len;
1992
1993 err = -EFAULT;
1994 if (MSG_CMSG_COMPAT & flags) {
1995 if (get_compat_msghdr(msg_sys, msg_compat))
1996 return -EFAULT;
1997 } else {
1998 err = copy_msghdr_from_user(msg_sys, msg);
1999 if (err)
2000 return err;
2001 }
2002
2003 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2004 err = -EMSGSIZE;
2005 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2006 goto out;
2007 err = -ENOMEM;
2008 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2009 GFP_KERNEL);
2010 if (!iov)
2011 goto out;
2012 }
2013
2014 /* This will also move the address data into kernel space */
2015 if (MSG_CMSG_COMPAT & flags) {
2016 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2017 } else
2018 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2019 if (err < 0)
2020 goto out_freeiov;
2021 total_len = err;
2022
2023 err = -ENOBUFS;
2024
2025 if (msg_sys->msg_controllen > INT_MAX)
2026 goto out_freeiov;
2027 ctl_len = msg_sys->msg_controllen;
2028 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2029 err =
2030 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2031 sizeof(ctl));
2032 if (err)
2033 goto out_freeiov;
2034 ctl_buf = msg_sys->msg_control;
2035 ctl_len = msg_sys->msg_controllen;
2036 } else if (ctl_len) {
2037 if (ctl_len > sizeof(ctl)) {
2038 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2039 if (ctl_buf == NULL)
2040 goto out_freeiov;
2041 }
2042 err = -EFAULT;
2043 /*
2044 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2045 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2046 * checking falls down on this.
2047 */
2048 if (copy_from_user(ctl_buf,
2049 (void __user __force *)msg_sys->msg_control,
2050 ctl_len))
2051 goto out_freectl;
2052 msg_sys->msg_control = ctl_buf;
2053 }
2054 msg_sys->msg_flags = flags;
2055
2056 if (sock->file->f_flags & O_NONBLOCK)
2057 msg_sys->msg_flags |= MSG_DONTWAIT;
2058 /*
2059 * If this is sendmmsg() and current destination address is same as
2060 * previously succeeded address, omit asking LSM's decision.
2061 * used_address->name_len is initialized to UINT_MAX so that the first
2062 * destination address never matches.
2063 */
2064 if (used_address && msg_sys->msg_name &&
2065 used_address->name_len == msg_sys->msg_namelen &&
2066 !memcmp(&used_address->name, msg_sys->msg_name,
2067 used_address->name_len)) {
2068 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2069 goto out_freectl;
2070 }
2071 err = sock_sendmsg(sock, msg_sys, total_len);
2072 /*
2073 * If this is sendmmsg() and sending to current destination address was
2074 * successful, remember it.
2075 */
2076 if (used_address && err >= 0) {
2077 used_address->name_len = msg_sys->msg_namelen;
2078 if (msg_sys->msg_name)
2079 memcpy(&used_address->name, msg_sys->msg_name,
2080 used_address->name_len);
2081 }
2082
2083 out_freectl:
2084 if (ctl_buf != ctl)
2085 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2086 out_freeiov:
2087 if (iov != iovstack)
2088 kfree(iov);
2089 out:
2090 return err;
2091 }
2092
2093 /*
2094 * BSD sendmsg interface
2095 */
2096
2097 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2098 {
2099 int fput_needed, err;
2100 struct msghdr msg_sys;
2101 struct socket *sock;
2102
2103 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2104 if (!sock)
2105 goto out;
2106
2107 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2108
2109 fput_light(sock->file, fput_needed);
2110 out:
2111 return err;
2112 }
2113
2114 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2115 {
2116 if (flags & MSG_CMSG_COMPAT)
2117 return -EINVAL;
2118 return __sys_sendmsg(fd, msg, flags);
2119 }
2120
2121 /*
2122 * Linux sendmmsg interface
2123 */
2124
2125 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2126 unsigned int flags)
2127 {
2128 int fput_needed, err, datagrams;
2129 struct socket *sock;
2130 struct mmsghdr __user *entry;
2131 struct compat_mmsghdr __user *compat_entry;
2132 struct msghdr msg_sys;
2133 struct used_address used_address;
2134
2135 if (vlen > UIO_MAXIOV)
2136 vlen = UIO_MAXIOV;
2137
2138 datagrams = 0;
2139
2140 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2141 if (!sock)
2142 return err;
2143
2144 used_address.name_len = UINT_MAX;
2145 entry = mmsg;
2146 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2147 err = 0;
2148
2149 while (datagrams < vlen) {
2150 if (MSG_CMSG_COMPAT & flags) {
2151 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2152 &msg_sys, flags, &used_address);
2153 if (err < 0)
2154 break;
2155 err = __put_user(err, &compat_entry->msg_len);
2156 ++compat_entry;
2157 } else {
2158 err = ___sys_sendmsg(sock,
2159 (struct msghdr __user *)entry,
2160 &msg_sys, flags, &used_address);
2161 if (err < 0)
2162 break;
2163 err = put_user(err, &entry->msg_len);
2164 ++entry;
2165 }
2166
2167 if (err)
2168 break;
2169 ++datagrams;
2170 }
2171
2172 fput_light(sock->file, fput_needed);
2173
2174 /* We only return an error if no datagrams were able to be sent */
2175 if (datagrams != 0)
2176 return datagrams;
2177
2178 return err;
2179 }
2180
2181 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2182 unsigned int, vlen, unsigned int, flags)
2183 {
2184 if (flags & MSG_CMSG_COMPAT)
2185 return -EINVAL;
2186 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2187 }
2188
2189 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2190 struct msghdr *msg_sys, unsigned int flags, int nosec)
2191 {
2192 struct compat_msghdr __user *msg_compat =
2193 (struct compat_msghdr __user *)msg;
2194 struct iovec iovstack[UIO_FASTIOV];
2195 struct iovec *iov = iovstack;
2196 unsigned long cmsg_ptr;
2197 int err, total_len, len;
2198
2199 /* kernel mode address */
2200 struct sockaddr_storage addr;
2201
2202 /* user mode address pointers */
2203 struct sockaddr __user *uaddr;
2204 int __user *uaddr_len;
2205
2206 if (MSG_CMSG_COMPAT & flags) {
2207 if (get_compat_msghdr(msg_sys, msg_compat))
2208 return -EFAULT;
2209 } else {
2210 err = copy_msghdr_from_user(msg_sys, msg);
2211 if (err)
2212 return err;
2213 }
2214
2215 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2216 err = -EMSGSIZE;
2217 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2218 goto out;
2219 err = -ENOMEM;
2220 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2221 GFP_KERNEL);
2222 if (!iov)
2223 goto out;
2224 }
2225
2226 /* Save the user-mode address (verify_iovec will change the
2227 * kernel msghdr to use the kernel address space)
2228 */
2229 uaddr = (__force void __user *)msg_sys->msg_name;
2230 uaddr_len = COMPAT_NAMELEN(msg);
2231 if (MSG_CMSG_COMPAT & flags)
2232 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2233 else
2234 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2235 if (err < 0)
2236 goto out_freeiov;
2237 total_len = err;
2238
2239 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2240 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2241
2242 /* We assume all kernel code knows the size of sockaddr_storage */
2243 msg_sys->msg_namelen = 0;
2244
2245 if (sock->file->f_flags & O_NONBLOCK)
2246 flags |= MSG_DONTWAIT;
2247 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2248 total_len, flags);
2249 if (err < 0)
2250 goto out_freeiov;
2251 len = err;
2252
2253 if (uaddr != NULL) {
2254 err = move_addr_to_user(&addr,
2255 msg_sys->msg_namelen, uaddr,
2256 uaddr_len);
2257 if (err < 0)
2258 goto out_freeiov;
2259 }
2260 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2261 COMPAT_FLAGS(msg));
2262 if (err)
2263 goto out_freeiov;
2264 if (MSG_CMSG_COMPAT & flags)
2265 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2266 &msg_compat->msg_controllen);
2267 else
2268 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2269 &msg->msg_controllen);
2270 if (err)
2271 goto out_freeiov;
2272 err = len;
2273
2274 out_freeiov:
2275 if (iov != iovstack)
2276 kfree(iov);
2277 out:
2278 return err;
2279 }
2280
2281 /*
2282 * BSD recvmsg interface
2283 */
2284
2285 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2286 {
2287 int fput_needed, err;
2288 struct msghdr msg_sys;
2289 struct socket *sock;
2290
2291 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2292 if (!sock)
2293 goto out;
2294
2295 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2296
2297 fput_light(sock->file, fput_needed);
2298 out:
2299 return err;
2300 }
2301
2302 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2303 unsigned int, flags)
2304 {
2305 if (flags & MSG_CMSG_COMPAT)
2306 return -EINVAL;
2307 return __sys_recvmsg(fd, msg, flags);
2308 }
2309
2310 /*
2311 * Linux recvmmsg interface
2312 */
2313
2314 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2315 unsigned int flags, struct timespec *timeout)
2316 {
2317 int fput_needed, err, datagrams;
2318 struct socket *sock;
2319 struct mmsghdr __user *entry;
2320 struct compat_mmsghdr __user *compat_entry;
2321 struct msghdr msg_sys;
2322 struct timespec end_time;
2323
2324 if (timeout &&
2325 poll_select_set_timeout(&end_time, timeout->tv_sec,
2326 timeout->tv_nsec))
2327 return -EINVAL;
2328
2329 datagrams = 0;
2330
2331 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2332 if (!sock)
2333 return err;
2334
2335 err = sock_error(sock->sk);
2336 if (err)
2337 goto out_put;
2338
2339 entry = mmsg;
2340 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2341
2342 while (datagrams < vlen) {
2343 /*
2344 * No need to ask LSM for more than the first datagram.
2345 */
2346 if (MSG_CMSG_COMPAT & flags) {
2347 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2348 &msg_sys, flags & ~MSG_WAITFORONE,
2349 datagrams);
2350 if (err < 0)
2351 break;
2352 err = __put_user(err, &compat_entry->msg_len);
2353 ++compat_entry;
2354 } else {
2355 err = ___sys_recvmsg(sock,
2356 (struct msghdr __user *)entry,
2357 &msg_sys, flags & ~MSG_WAITFORONE,
2358 datagrams);
2359 if (err < 0)
2360 break;
2361 err = put_user(err, &entry->msg_len);
2362 ++entry;
2363 }
2364
2365 if (err)
2366 break;
2367 ++datagrams;
2368
2369 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2370 if (flags & MSG_WAITFORONE)
2371 flags |= MSG_DONTWAIT;
2372
2373 if (timeout) {
2374 ktime_get_ts(timeout);
2375 *timeout = timespec_sub(end_time, *timeout);
2376 if (timeout->tv_sec < 0) {
2377 timeout->tv_sec = timeout->tv_nsec = 0;
2378 break;
2379 }
2380
2381 /* Timeout, return less than vlen datagrams */
2382 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2383 break;
2384 }
2385
2386 /* Out of band data, return right away */
2387 if (msg_sys.msg_flags & MSG_OOB)
2388 break;
2389 }
2390
2391 out_put:
2392 fput_light(sock->file, fput_needed);
2393
2394 if (err == 0)
2395 return datagrams;
2396
2397 if (datagrams != 0) {
2398 /*
2399 * We may return less entries than requested (vlen) if the
2400 * sock is non block and there aren't enough datagrams...
2401 */
2402 if (err != -EAGAIN) {
2403 /*
2404 * ... or if recvmsg returns an error after we
2405 * received some datagrams, where we record the
2406 * error to return on the next call or if the
2407 * app asks about it using getsockopt(SO_ERROR).
2408 */
2409 sock->sk->sk_err = -err;
2410 }
2411
2412 return datagrams;
2413 }
2414
2415 return err;
2416 }
2417
2418 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2419 unsigned int, vlen, unsigned int, flags,
2420 struct timespec __user *, timeout)
2421 {
2422 int datagrams;
2423 struct timespec timeout_sys;
2424
2425 if (flags & MSG_CMSG_COMPAT)
2426 return -EINVAL;
2427
2428 if (!timeout)
2429 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2430
2431 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2432 return -EFAULT;
2433
2434 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2435
2436 if (datagrams > 0 &&
2437 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2438 datagrams = -EFAULT;
2439
2440 return datagrams;
2441 }
2442
2443 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2444 /* Argument list sizes for sys_socketcall */
2445 #define AL(x) ((x) * sizeof(unsigned long))
2446 static const unsigned char nargs[21] = {
2447 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2448 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2449 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2450 AL(4), AL(5), AL(4)
2451 };
2452
2453 #undef AL
2454
2455 /*
2456 * System call vectors.
2457 *
2458 * Argument checking cleaned up. Saved 20% in size.
2459 * This function doesn't need to set the kernel lock because
2460 * it is set by the callees.
2461 */
2462
2463 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2464 {
2465 unsigned long a[AUDITSC_ARGS];
2466 unsigned long a0, a1;
2467 int err;
2468 unsigned int len;
2469
2470 if (call < 1 || call > SYS_SENDMMSG)
2471 return -EINVAL;
2472
2473 len = nargs[call];
2474 if (len > sizeof(a))
2475 return -EINVAL;
2476
2477 /* copy_from_user should be SMP safe. */
2478 if (copy_from_user(a, args, len))
2479 return -EFAULT;
2480
2481 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2482 if (err)
2483 return err;
2484
2485 a0 = a[0];
2486 a1 = a[1];
2487
2488 switch (call) {
2489 case SYS_SOCKET:
2490 err = sys_socket(a0, a1, a[2]);
2491 break;
2492 case SYS_BIND:
2493 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2494 break;
2495 case SYS_CONNECT:
2496 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2497 break;
2498 case SYS_LISTEN:
2499 err = sys_listen(a0, a1);
2500 break;
2501 case SYS_ACCEPT:
2502 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2503 (int __user *)a[2], 0);
2504 break;
2505 case SYS_GETSOCKNAME:
2506 err =
2507 sys_getsockname(a0, (struct sockaddr __user *)a1,
2508 (int __user *)a[2]);
2509 break;
2510 case SYS_GETPEERNAME:
2511 err =
2512 sys_getpeername(a0, (struct sockaddr __user *)a1,
2513 (int __user *)a[2]);
2514 break;
2515 case SYS_SOCKETPAIR:
2516 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2517 break;
2518 case SYS_SEND:
2519 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2520 break;
2521 case SYS_SENDTO:
2522 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2523 (struct sockaddr __user *)a[4], a[5]);
2524 break;
2525 case SYS_RECV:
2526 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2527 break;
2528 case SYS_RECVFROM:
2529 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2530 (struct sockaddr __user *)a[4],
2531 (int __user *)a[5]);
2532 break;
2533 case SYS_SHUTDOWN:
2534 err = sys_shutdown(a0, a1);
2535 break;
2536 case SYS_SETSOCKOPT:
2537 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2538 break;
2539 case SYS_GETSOCKOPT:
2540 err =
2541 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2542 (int __user *)a[4]);
2543 break;
2544 case SYS_SENDMSG:
2545 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2546 break;
2547 case SYS_SENDMMSG:
2548 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2549 break;
2550 case SYS_RECVMSG:
2551 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2552 break;
2553 case SYS_RECVMMSG:
2554 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2555 (struct timespec __user *)a[4]);
2556 break;
2557 case SYS_ACCEPT4:
2558 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2559 (int __user *)a[2], a[3]);
2560 break;
2561 default:
2562 err = -EINVAL;
2563 break;
2564 }
2565 return err;
2566 }
2567
2568 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2569
2570 /**
2571 * sock_register - add a socket protocol handler
2572 * @ops: description of protocol
2573 *
2574 * This function is called by a protocol handler that wants to
2575 * advertise its address family, and have it linked into the
2576 * socket interface. The value ops->family coresponds to the
2577 * socket system call protocol family.
2578 */
2579 int sock_register(const struct net_proto_family *ops)
2580 {
2581 int err;
2582
2583 if (ops->family >= NPROTO) {
2584 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2585 NPROTO);
2586 return -ENOBUFS;
2587 }
2588
2589 spin_lock(&net_family_lock);
2590 if (rcu_dereference_protected(net_families[ops->family],
2591 lockdep_is_held(&net_family_lock)))
2592 err = -EEXIST;
2593 else {
2594 rcu_assign_pointer(net_families[ops->family], ops);
2595 err = 0;
2596 }
2597 spin_unlock(&net_family_lock);
2598
2599 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2600 return err;
2601 }
2602 EXPORT_SYMBOL(sock_register);
2603
2604 /**
2605 * sock_unregister - remove a protocol handler
2606 * @family: protocol family to remove
2607 *
2608 * This function is called by a protocol handler that wants to
2609 * remove its address family, and have it unlinked from the
2610 * new socket creation.
2611 *
2612 * If protocol handler is a module, then it can use module reference
2613 * counts to protect against new references. If protocol handler is not
2614 * a module then it needs to provide its own protection in
2615 * the ops->create routine.
2616 */
2617 void sock_unregister(int family)
2618 {
2619 BUG_ON(family < 0 || family >= NPROTO);
2620
2621 spin_lock(&net_family_lock);
2622 RCU_INIT_POINTER(net_families[family], NULL);
2623 spin_unlock(&net_family_lock);
2624
2625 synchronize_rcu();
2626
2627 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2628 }
2629 EXPORT_SYMBOL(sock_unregister);
2630
2631 static int __init sock_init(void)
2632 {
2633 int err;
2634 /*
2635 * Initialize the network sysctl infrastructure.
2636 */
2637 err = net_sysctl_init();
2638 if (err)
2639 goto out;
2640
2641 /*
2642 * Initialize skbuff SLAB cache
2643 */
2644 skb_init();
2645
2646 /*
2647 * Initialize the protocols module.
2648 */
2649
2650 init_inodecache();
2651
2652 err = register_filesystem(&sock_fs_type);
2653 if (err)
2654 goto out_fs;
2655 sock_mnt = kern_mount(&sock_fs_type);
2656 if (IS_ERR(sock_mnt)) {
2657 err = PTR_ERR(sock_mnt);
2658 goto out_mount;
2659 }
2660
2661 /* The real protocol initialization is performed in later initcalls.
2662 */
2663
2664 #ifdef CONFIG_NETFILTER
2665 err = netfilter_init();
2666 if (err)
2667 goto out;
2668 #endif
2669
2670 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2671 skb_timestamping_init();
2672 #endif
2673
2674 out:
2675 return err;
2676
2677 out_mount:
2678 unregister_filesystem(&sock_fs_type);
2679 out_fs:
2680 goto out;
2681 }
2682
2683 core_initcall(sock_init); /* early initcall */
2684
2685 #ifdef CONFIG_PROC_FS
2686 void socket_seq_show(struct seq_file *seq)
2687 {
2688 int cpu;
2689 int counter = 0;
2690
2691 for_each_possible_cpu(cpu)
2692 counter += per_cpu(sockets_in_use, cpu);
2693
2694 /* It can be negative, by the way. 8) */
2695 if (counter < 0)
2696 counter = 0;
2697
2698 seq_printf(seq, "sockets: used %d\n", counter);
2699 }
2700 #endif /* CONFIG_PROC_FS */
2701
2702 #ifdef CONFIG_COMPAT
2703 static int do_siocgstamp(struct net *net, struct socket *sock,
2704 unsigned int cmd, void __user *up)
2705 {
2706 mm_segment_t old_fs = get_fs();
2707 struct timeval ktv;
2708 int err;
2709
2710 set_fs(KERNEL_DS);
2711 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2712 set_fs(old_fs);
2713 if (!err)
2714 err = compat_put_timeval(&ktv, up);
2715
2716 return err;
2717 }
2718
2719 static int do_siocgstampns(struct net *net, struct socket *sock,
2720 unsigned int cmd, void __user *up)
2721 {
2722 mm_segment_t old_fs = get_fs();
2723 struct timespec kts;
2724 int err;
2725
2726 set_fs(KERNEL_DS);
2727 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2728 set_fs(old_fs);
2729 if (!err)
2730 err = compat_put_timespec(&kts, up);
2731
2732 return err;
2733 }
2734
2735 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2736 {
2737 struct ifreq __user *uifr;
2738 int err;
2739
2740 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2741 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2742 return -EFAULT;
2743
2744 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2745 if (err)
2746 return err;
2747
2748 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2749 return -EFAULT;
2750
2751 return 0;
2752 }
2753
2754 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2755 {
2756 struct compat_ifconf ifc32;
2757 struct ifconf ifc;
2758 struct ifconf __user *uifc;
2759 struct compat_ifreq __user *ifr32;
2760 struct ifreq __user *ifr;
2761 unsigned int i, j;
2762 int err;
2763
2764 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2765 return -EFAULT;
2766
2767 memset(&ifc, 0, sizeof(ifc));
2768 if (ifc32.ifcbuf == 0) {
2769 ifc32.ifc_len = 0;
2770 ifc.ifc_len = 0;
2771 ifc.ifc_req = NULL;
2772 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2773 } else {
2774 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2775 sizeof(struct ifreq);
2776 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2777 ifc.ifc_len = len;
2778 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2779 ifr32 = compat_ptr(ifc32.ifcbuf);
2780 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2781 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2782 return -EFAULT;
2783 ifr++;
2784 ifr32++;
2785 }
2786 }
2787 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2788 return -EFAULT;
2789
2790 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2791 if (err)
2792 return err;
2793
2794 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2795 return -EFAULT;
2796
2797 ifr = ifc.ifc_req;
2798 ifr32 = compat_ptr(ifc32.ifcbuf);
2799 for (i = 0, j = 0;
2800 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2801 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2802 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2803 return -EFAULT;
2804 ifr32++;
2805 ifr++;
2806 }
2807
2808 if (ifc32.ifcbuf == 0) {
2809 /* Translate from 64-bit structure multiple to
2810 * a 32-bit one.
2811 */
2812 i = ifc.ifc_len;
2813 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2814 ifc32.ifc_len = i;
2815 } else {
2816 ifc32.ifc_len = i;
2817 }
2818 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2819 return -EFAULT;
2820
2821 return 0;
2822 }
2823
2824 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2825 {
2826 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2827 bool convert_in = false, convert_out = false;
2828 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2829 struct ethtool_rxnfc __user *rxnfc;
2830 struct ifreq __user *ifr;
2831 u32 rule_cnt = 0, actual_rule_cnt;
2832 u32 ethcmd;
2833 u32 data;
2834 int ret;
2835
2836 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2837 return -EFAULT;
2838
2839 compat_rxnfc = compat_ptr(data);
2840
2841 if (get_user(ethcmd, &compat_rxnfc->cmd))
2842 return -EFAULT;
2843
2844 /* Most ethtool structures are defined without padding.
2845 * Unfortunately struct ethtool_rxnfc is an exception.
2846 */
2847 switch (ethcmd) {
2848 default:
2849 break;
2850 case ETHTOOL_GRXCLSRLALL:
2851 /* Buffer size is variable */
2852 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2853 return -EFAULT;
2854 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2855 return -ENOMEM;
2856 buf_size += rule_cnt * sizeof(u32);
2857 /* fall through */
2858 case ETHTOOL_GRXRINGS:
2859 case ETHTOOL_GRXCLSRLCNT:
2860 case ETHTOOL_GRXCLSRULE:
2861 case ETHTOOL_SRXCLSRLINS:
2862 convert_out = true;
2863 /* fall through */
2864 case ETHTOOL_SRXCLSRLDEL:
2865 buf_size += sizeof(struct ethtool_rxnfc);
2866 convert_in = true;
2867 break;
2868 }
2869
2870 ifr = compat_alloc_user_space(buf_size);
2871 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2872
2873 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2874 return -EFAULT;
2875
2876 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2877 &ifr->ifr_ifru.ifru_data))
2878 return -EFAULT;
2879
2880 if (convert_in) {
2881 /* We expect there to be holes between fs.m_ext and
2882 * fs.ring_cookie and at the end of fs, but nowhere else.
2883 */
2884 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2885 sizeof(compat_rxnfc->fs.m_ext) !=
2886 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2887 sizeof(rxnfc->fs.m_ext));
2888 BUILD_BUG_ON(
2889 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2890 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2891 offsetof(struct ethtool_rxnfc, fs.location) -
2892 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2893
2894 if (copy_in_user(rxnfc, compat_rxnfc,
2895 (void __user *)(&rxnfc->fs.m_ext + 1) -
2896 (void __user *)rxnfc) ||
2897 copy_in_user(&rxnfc->fs.ring_cookie,
2898 &compat_rxnfc->fs.ring_cookie,
2899 (void __user *)(&rxnfc->fs.location + 1) -
2900 (void __user *)&rxnfc->fs.ring_cookie) ||
2901 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2902 sizeof(rxnfc->rule_cnt)))
2903 return -EFAULT;
2904 }
2905
2906 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2907 if (ret)
2908 return ret;
2909
2910 if (convert_out) {
2911 if (copy_in_user(compat_rxnfc, rxnfc,
2912 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2913 (const void __user *)rxnfc) ||
2914 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2915 &rxnfc->fs.ring_cookie,
2916 (const void __user *)(&rxnfc->fs.location + 1) -
2917 (const void __user *)&rxnfc->fs.ring_cookie) ||
2918 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2919 sizeof(rxnfc->rule_cnt)))
2920 return -EFAULT;
2921
2922 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2923 /* As an optimisation, we only copy the actual
2924 * number of rules that the underlying
2925 * function returned. Since Mallory might
2926 * change the rule count in user memory, we
2927 * check that it is less than the rule count
2928 * originally given (as the user buffer size),
2929 * which has been range-checked.
2930 */
2931 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2932 return -EFAULT;
2933 if (actual_rule_cnt < rule_cnt)
2934 rule_cnt = actual_rule_cnt;
2935 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2936 &rxnfc->rule_locs[0],
2937 rule_cnt * sizeof(u32)))
2938 return -EFAULT;
2939 }
2940 }
2941
2942 return 0;
2943 }
2944
2945 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2946 {
2947 void __user *uptr;
2948 compat_uptr_t uptr32;
2949 struct ifreq __user *uifr;
2950
2951 uifr = compat_alloc_user_space(sizeof(*uifr));
2952 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2953 return -EFAULT;
2954
2955 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2956 return -EFAULT;
2957
2958 uptr = compat_ptr(uptr32);
2959
2960 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2961 return -EFAULT;
2962
2963 return dev_ioctl(net, SIOCWANDEV, uifr);
2964 }
2965
2966 static int bond_ioctl(struct net *net, unsigned int cmd,
2967 struct compat_ifreq __user *ifr32)
2968 {
2969 struct ifreq kifr;
2970 struct ifreq __user *uifr;
2971 mm_segment_t old_fs;
2972 int err;
2973 u32 data;
2974 void __user *datap;
2975
2976 switch (cmd) {
2977 case SIOCBONDENSLAVE:
2978 case SIOCBONDRELEASE:
2979 case SIOCBONDSETHWADDR:
2980 case SIOCBONDCHANGEACTIVE:
2981 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2982 return -EFAULT;
2983
2984 old_fs = get_fs();
2985 set_fs(KERNEL_DS);
2986 err = dev_ioctl(net, cmd,
2987 (struct ifreq __user __force *) &kifr);
2988 set_fs(old_fs);
2989
2990 return err;
2991 case SIOCBONDSLAVEINFOQUERY:
2992 case SIOCBONDINFOQUERY:
2993 uifr = compat_alloc_user_space(sizeof(*uifr));
2994 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2995 return -EFAULT;
2996
2997 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2998 return -EFAULT;
2999
3000 datap = compat_ptr(data);
3001 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
3002 return -EFAULT;
3003
3004 return dev_ioctl(net, cmd, uifr);
3005 default:
3006 return -ENOIOCTLCMD;
3007 }
3008 }
3009
3010 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
3011 struct compat_ifreq __user *u_ifreq32)
3012 {
3013 struct ifreq __user *u_ifreq64;
3014 char tmp_buf[IFNAMSIZ];
3015 void __user *data64;
3016 u32 data32;
3017
3018 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3019 IFNAMSIZ))
3020 return -EFAULT;
3021 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3022 return -EFAULT;
3023 data64 = compat_ptr(data32);
3024
3025 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3026
3027 /* Don't check these user accesses, just let that get trapped
3028 * in the ioctl handler instead.
3029 */
3030 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3031 IFNAMSIZ))
3032 return -EFAULT;
3033 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3034 return -EFAULT;
3035
3036 return dev_ioctl(net, cmd, u_ifreq64);
3037 }
3038
3039 static int dev_ifsioc(struct net *net, struct socket *sock,
3040 unsigned int cmd, struct compat_ifreq __user *uifr32)
3041 {
3042 struct ifreq __user *uifr;
3043 int err;
3044
3045 uifr = compat_alloc_user_space(sizeof(*uifr));
3046 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3047 return -EFAULT;
3048
3049 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3050
3051 if (!err) {
3052 switch (cmd) {
3053 case SIOCGIFFLAGS:
3054 case SIOCGIFMETRIC:
3055 case SIOCGIFMTU:
3056 case SIOCGIFMEM:
3057 case SIOCGIFHWADDR:
3058 case SIOCGIFINDEX:
3059 case SIOCGIFADDR:
3060 case SIOCGIFBRDADDR:
3061 case SIOCGIFDSTADDR:
3062 case SIOCGIFNETMASK:
3063 case SIOCGIFPFLAGS:
3064 case SIOCGIFTXQLEN:
3065 case SIOCGMIIPHY:
3066 case SIOCGMIIREG:
3067 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3068 err = -EFAULT;
3069 break;
3070 }
3071 }
3072 return err;
3073 }
3074
3075 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3076 struct compat_ifreq __user *uifr32)
3077 {
3078 struct ifreq ifr;
3079 struct compat_ifmap __user *uifmap32;
3080 mm_segment_t old_fs;
3081 int err;
3082
3083 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3084 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3085 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3086 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3087 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3088 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3089 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3090 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3091 if (err)
3092 return -EFAULT;
3093
3094 old_fs = get_fs();
3095 set_fs(KERNEL_DS);
3096 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3097 set_fs(old_fs);
3098
3099 if (cmd == SIOCGIFMAP && !err) {
3100 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3101 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3102 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3103 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3104 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3105 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3106 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3107 if (err)
3108 err = -EFAULT;
3109 }
3110 return err;
3111 }
3112
3113 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3114 {
3115 void __user *uptr;
3116 compat_uptr_t uptr32;
3117 struct ifreq __user *uifr;
3118
3119 uifr = compat_alloc_user_space(sizeof(*uifr));
3120 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3121 return -EFAULT;
3122
3123 if (get_user(uptr32, &uifr32->ifr_data))
3124 return -EFAULT;
3125
3126 uptr = compat_ptr(uptr32);
3127
3128 if (put_user(uptr, &uifr->ifr_data))
3129 return -EFAULT;
3130
3131 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3132 }
3133
3134 struct rtentry32 {
3135 u32 rt_pad1;
3136 struct sockaddr rt_dst; /* target address */
3137 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3138 struct sockaddr rt_genmask; /* target network mask (IP) */
3139 unsigned short rt_flags;
3140 short rt_pad2;
3141 u32 rt_pad3;
3142 unsigned char rt_tos;
3143 unsigned char rt_class;
3144 short rt_pad4;
3145 short rt_metric; /* +1 for binary compatibility! */
3146 /* char * */ u32 rt_dev; /* forcing the device at add */
3147 u32 rt_mtu; /* per route MTU/Window */
3148 u32 rt_window; /* Window clamping */
3149 unsigned short rt_irtt; /* Initial RTT */
3150 };
3151
3152 struct in6_rtmsg32 {
3153 struct in6_addr rtmsg_dst;
3154 struct in6_addr rtmsg_src;
3155 struct in6_addr rtmsg_gateway;
3156 u32 rtmsg_type;
3157 u16 rtmsg_dst_len;
3158 u16 rtmsg_src_len;
3159 u32 rtmsg_metric;
3160 u32 rtmsg_info;
3161 u32 rtmsg_flags;
3162 s32 rtmsg_ifindex;
3163 };
3164
3165 static int routing_ioctl(struct net *net, struct socket *sock,
3166 unsigned int cmd, void __user *argp)
3167 {
3168 int ret;
3169 void *r = NULL;
3170 struct in6_rtmsg r6;
3171 struct rtentry r4;
3172 char devname[16];
3173 u32 rtdev;
3174 mm_segment_t old_fs = get_fs();
3175
3176 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3177 struct in6_rtmsg32 __user *ur6 = argp;
3178 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3179 3 * sizeof(struct in6_addr));
3180 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3181 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3182 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3183 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3184 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3185 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3186 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3187
3188 r = (void *) &r6;
3189 } else { /* ipv4 */
3190 struct rtentry32 __user *ur4 = argp;
3191 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3192 3 * sizeof(struct sockaddr));
3193 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3194 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3195 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3196 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3197 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3198 ret |= get_user(rtdev, &(ur4->rt_dev));
3199 if (rtdev) {
3200 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3201 r4.rt_dev = (char __user __force *)devname;
3202 devname[15] = 0;
3203 } else
3204 r4.rt_dev = NULL;
3205
3206 r = (void *) &r4;
3207 }
3208
3209 if (ret) {
3210 ret = -EFAULT;
3211 goto out;
3212 }
3213
3214 set_fs(KERNEL_DS);
3215 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3216 set_fs(old_fs);
3217
3218 out:
3219 return ret;
3220 }
3221
3222 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3223 * for some operations; this forces use of the newer bridge-utils that
3224 * use compatible ioctls
3225 */
3226 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3227 {
3228 compat_ulong_t tmp;
3229
3230 if (get_user(tmp, argp))
3231 return -EFAULT;
3232 if (tmp == BRCTL_GET_VERSION)
3233 return BRCTL_VERSION + 1;
3234 return -EINVAL;
3235 }
3236
3237 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3238 unsigned int cmd, unsigned long arg)
3239 {
3240 void __user *argp = compat_ptr(arg);
3241 struct sock *sk = sock->sk;
3242 struct net *net = sock_net(sk);
3243
3244 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3245 return siocdevprivate_ioctl(net, cmd, argp);
3246
3247 switch (cmd) {
3248 case SIOCSIFBR:
3249 case SIOCGIFBR:
3250 return old_bridge_ioctl(argp);
3251 case SIOCGIFNAME:
3252 return dev_ifname32(net, argp);
3253 case SIOCGIFCONF:
3254 return dev_ifconf(net, argp);
3255 case SIOCETHTOOL:
3256 return ethtool_ioctl(net, argp);
3257 case SIOCWANDEV:
3258 return compat_siocwandev(net, argp);
3259 case SIOCGIFMAP:
3260 case SIOCSIFMAP:
3261 return compat_sioc_ifmap(net, cmd, argp);
3262 case SIOCBONDENSLAVE:
3263 case SIOCBONDRELEASE:
3264 case SIOCBONDSETHWADDR:
3265 case SIOCBONDSLAVEINFOQUERY:
3266 case SIOCBONDINFOQUERY:
3267 case SIOCBONDCHANGEACTIVE:
3268 return bond_ioctl(net, cmd, argp);
3269 case SIOCADDRT:
3270 case SIOCDELRT:
3271 return routing_ioctl(net, sock, cmd, argp);
3272 case SIOCGSTAMP:
3273 return do_siocgstamp(net, sock, cmd, argp);
3274 case SIOCGSTAMPNS:
3275 return do_siocgstampns(net, sock, cmd, argp);
3276 case SIOCSHWTSTAMP:
3277 return compat_siocshwtstamp(net, argp);
3278
3279 case FIOSETOWN:
3280 case SIOCSPGRP:
3281 case FIOGETOWN:
3282 case SIOCGPGRP:
3283 case SIOCBRADDBR:
3284 case SIOCBRDELBR:
3285 case SIOCGIFVLAN:
3286 case SIOCSIFVLAN:
3287 case SIOCADDDLCI:
3288 case SIOCDELDLCI:
3289 return sock_ioctl(file, cmd, arg);
3290
3291 case SIOCGIFFLAGS:
3292 case SIOCSIFFLAGS:
3293 case SIOCGIFMETRIC:
3294 case SIOCSIFMETRIC:
3295 case SIOCGIFMTU:
3296 case SIOCSIFMTU:
3297 case SIOCGIFMEM:
3298 case SIOCSIFMEM:
3299 case SIOCGIFHWADDR:
3300 case SIOCSIFHWADDR:
3301 case SIOCADDMULTI:
3302 case SIOCDELMULTI:
3303 case SIOCGIFINDEX:
3304 case SIOCGIFADDR:
3305 case SIOCSIFADDR:
3306 case SIOCSIFHWBROADCAST:
3307 case SIOCDIFADDR:
3308 case SIOCGIFBRDADDR:
3309 case SIOCSIFBRDADDR:
3310 case SIOCGIFDSTADDR:
3311 case SIOCSIFDSTADDR:
3312 case SIOCGIFNETMASK:
3313 case SIOCSIFNETMASK:
3314 case SIOCSIFPFLAGS:
3315 case SIOCGIFPFLAGS:
3316 case SIOCGIFTXQLEN:
3317 case SIOCSIFTXQLEN:
3318 case SIOCBRADDIF:
3319 case SIOCBRDELIF:
3320 case SIOCSIFNAME:
3321 case SIOCGMIIPHY:
3322 case SIOCGMIIREG:
3323 case SIOCSMIIREG:
3324 return dev_ifsioc(net, sock, cmd, argp);
3325
3326 case SIOCSARP:
3327 case SIOCGARP:
3328 case SIOCDARP:
3329 case SIOCATMARK:
3330 return sock_do_ioctl(net, sock, cmd, arg);
3331 }
3332
3333 return -ENOIOCTLCMD;
3334 }
3335
3336 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3337 unsigned long arg)
3338 {
3339 struct socket *sock = file->private_data;
3340 int ret = -ENOIOCTLCMD;
3341 struct sock *sk;
3342 struct net *net;
3343
3344 sk = sock->sk;
3345 net = sock_net(sk);
3346
3347 if (sock->ops->compat_ioctl)
3348 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3349
3350 if (ret == -ENOIOCTLCMD &&
3351 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3352 ret = compat_wext_handle_ioctl(net, cmd, arg);
3353
3354 if (ret == -ENOIOCTLCMD)
3355 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3356
3357 return ret;
3358 }
3359 #endif
3360
3361 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3362 {
3363 return sock->ops->bind(sock, addr, addrlen);
3364 }
3365 EXPORT_SYMBOL(kernel_bind);
3366
3367 int kernel_listen(struct socket *sock, int backlog)
3368 {
3369 return sock->ops->listen(sock, backlog);
3370 }
3371 EXPORT_SYMBOL(kernel_listen);
3372
3373 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3374 {
3375 struct sock *sk = sock->sk;
3376 int err;
3377
3378 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3379 newsock);
3380 if (err < 0)
3381 goto done;
3382
3383 err = sock->ops->accept(sock, *newsock, flags);
3384 if (err < 0) {
3385 sock_release(*newsock);
3386 *newsock = NULL;
3387 goto done;
3388 }
3389
3390 (*newsock)->ops = sock->ops;
3391 __module_get((*newsock)->ops->owner);
3392
3393 done:
3394 return err;
3395 }
3396 EXPORT_SYMBOL(kernel_accept);
3397
3398 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3399 int flags)
3400 {
3401 return sock->ops->connect(sock, addr, addrlen, flags);
3402 }
3403 EXPORT_SYMBOL(kernel_connect);
3404
3405 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3406 int *addrlen)
3407 {
3408 return sock->ops->getname(sock, addr, addrlen, 0);
3409 }
3410 EXPORT_SYMBOL(kernel_getsockname);
3411
3412 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3413 int *addrlen)
3414 {
3415 return sock->ops->getname(sock, addr, addrlen, 1);
3416 }
3417 EXPORT_SYMBOL(kernel_getpeername);
3418
3419 int kernel_getsockopt(struct socket *sock, int level, int optname,
3420 char *optval, int *optlen)
3421 {
3422 mm_segment_t oldfs = get_fs();
3423 char __user *uoptval;
3424 int __user *uoptlen;
3425 int err;
3426
3427 uoptval = (char __user __force *) optval;
3428 uoptlen = (int __user __force *) optlen;
3429
3430 set_fs(KERNEL_DS);
3431 if (level == SOL_SOCKET)
3432 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3433 else
3434 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3435 uoptlen);
3436 set_fs(oldfs);
3437 return err;
3438 }
3439 EXPORT_SYMBOL(kernel_getsockopt);
3440
3441 int kernel_setsockopt(struct socket *sock, int level, int optname,
3442 char *optval, unsigned int optlen)
3443 {
3444 mm_segment_t oldfs = get_fs();
3445 char __user *uoptval;
3446 int err;
3447
3448 uoptval = (char __user __force *) optval;
3449
3450 set_fs(KERNEL_DS);
3451 if (level == SOL_SOCKET)
3452 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3453 else
3454 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3455 optlen);
3456 set_fs(oldfs);
3457 return err;
3458 }
3459 EXPORT_SYMBOL(kernel_setsockopt);
3460
3461 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3462 size_t size, int flags)
3463 {
3464 if (sock->ops->sendpage)
3465 return sock->ops->sendpage(sock, page, offset, size, flags);
3466
3467 return sock_no_sendpage(sock, page, offset, size, flags);
3468 }
3469 EXPORT_SYMBOL(kernel_sendpage);
3470
3471 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3472 {
3473 mm_segment_t oldfs = get_fs();
3474 int err;
3475
3476 set_fs(KERNEL_DS);
3477 err = sock->ops->ioctl(sock, cmd, arg);
3478 set_fs(oldfs);
3479
3480 return err;
3481 }
3482 EXPORT_SYMBOL(kernel_sock_ioctl);
3483
3484 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3485 {
3486 return sock->ops->shutdown(sock, how);
3487 }
3488 EXPORT_SYMBOL(kernel_sock_shutdown);