]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/socket.c
sockfd_lookup_light(): switch to fdget^W^Waway from fget_light
[mirror_ubuntu-artful-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 #include <linux/magic.h>
89 #include <linux/slab.h>
90 #include <linux/xattr.h>
91
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 #include <net/busy_poll.h>
108
109 #ifdef CONFIG_NET_RX_BUSY_POLL
110 unsigned int sysctl_net_busy_read __read_mostly;
111 unsigned int sysctl_net_busy_poll __read_mostly;
112 #endif
113
114 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
115 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
116 unsigned long nr_segs, loff_t pos);
117 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
118 unsigned long nr_segs, loff_t pos);
119 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120
121 static int sock_close(struct inode *inode, struct file *file);
122 static unsigned int sock_poll(struct file *file,
123 struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_sendpage(struct file *file, struct page *page,
131 int offset, size_t size, loff_t *ppos, int more);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 struct pipe_inode_info *pipe, size_t len,
134 unsigned int flags);
135
136 /*
137 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138 * in the operation structures but are done directly via the socketcall() multiplexor.
139 */
140
141 static const struct file_operations socket_file_ops = {
142 .owner = THIS_MODULE,
143 .llseek = no_llseek,
144 .aio_read = sock_aio_read,
145 .aio_write = sock_aio_write,
146 .poll = sock_poll,
147 .unlocked_ioctl = sock_ioctl,
148 #ifdef CONFIG_COMPAT
149 .compat_ioctl = compat_sock_ioctl,
150 #endif
151 .mmap = sock_mmap,
152 .open = sock_no_open, /* special open code to disallow open via /proc */
153 .release = sock_close,
154 .fasync = sock_fasync,
155 .sendpage = sock_sendpage,
156 .splice_write = generic_splice_sendpage,
157 .splice_read = sock_splice_read,
158 };
159
160 /*
161 * The protocol list. Each protocol is registered in here.
162 */
163
164 static DEFINE_SPINLOCK(net_family_lock);
165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166
167 /*
168 * Statistics counters of the socket lists
169 */
170
171 static DEFINE_PER_CPU(int, sockets_in_use);
172
173 /*
174 * Support routines.
175 * Move socket addresses back and forth across the kernel/user
176 * divide and look after the messy bits.
177 */
178
179 /**
180 * move_addr_to_kernel - copy a socket address into kernel space
181 * @uaddr: Address in user space
182 * @kaddr: Address in kernel space
183 * @ulen: Length in user space
184 *
185 * The address is copied into kernel space. If the provided address is
186 * too long an error code of -EINVAL is returned. If the copy gives
187 * invalid addresses -EFAULT is returned. On a success 0 is returned.
188 */
189
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
191 {
192 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 return -EINVAL;
194 if (ulen == 0)
195 return 0;
196 if (copy_from_user(kaddr, uaddr, ulen))
197 return -EFAULT;
198 return audit_sockaddr(ulen, kaddr);
199 }
200
201 /**
202 * move_addr_to_user - copy an address to user space
203 * @kaddr: kernel space address
204 * @klen: length of address in kernel
205 * @uaddr: user space address
206 * @ulen: pointer to user length field
207 *
208 * The value pointed to by ulen on entry is the buffer length available.
209 * This is overwritten with the buffer space used. -EINVAL is returned
210 * if an overlong buffer is specified or a negative buffer size. -EFAULT
211 * is returned if either the buffer or the length field are not
212 * accessible.
213 * After copying the data up to the limit the user specifies, the true
214 * length of the data is written over the length limit the user
215 * specified. Zero is returned for a success.
216 */
217
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 void __user *uaddr, int __user *ulen)
220 {
221 int err;
222 int len;
223
224 BUG_ON(klen > sizeof(struct sockaddr_storage));
225 err = get_user(len, ulen);
226 if (err)
227 return err;
228 if (len > klen)
229 len = klen;
230 if (len < 0)
231 return -EINVAL;
232 if (len) {
233 if (audit_sockaddr(klen, kaddr))
234 return -ENOMEM;
235 if (copy_to_user(uaddr, kaddr, len))
236 return -EFAULT;
237 }
238 /*
239 * "fromlen shall refer to the value before truncation.."
240 * 1003.1g
241 */
242 return __put_user(klen, ulen);
243 }
244
245 static struct kmem_cache *sock_inode_cachep __read_mostly;
246
247 static struct inode *sock_alloc_inode(struct super_block *sb)
248 {
249 struct socket_alloc *ei;
250 struct socket_wq *wq;
251
252 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 if (!ei)
254 return NULL;
255 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
256 if (!wq) {
257 kmem_cache_free(sock_inode_cachep, ei);
258 return NULL;
259 }
260 init_waitqueue_head(&wq->wait);
261 wq->fasync_list = NULL;
262 RCU_INIT_POINTER(ei->socket.wq, wq);
263
264 ei->socket.state = SS_UNCONNECTED;
265 ei->socket.flags = 0;
266 ei->socket.ops = NULL;
267 ei->socket.sk = NULL;
268 ei->socket.file = NULL;
269
270 return &ei->vfs_inode;
271 }
272
273 static void sock_destroy_inode(struct inode *inode)
274 {
275 struct socket_alloc *ei;
276 struct socket_wq *wq;
277
278 ei = container_of(inode, struct socket_alloc, vfs_inode);
279 wq = rcu_dereference_protected(ei->socket.wq, 1);
280 kfree_rcu(wq, rcu);
281 kmem_cache_free(sock_inode_cachep, ei);
282 }
283
284 static void init_once(void *foo)
285 {
286 struct socket_alloc *ei = (struct socket_alloc *)foo;
287
288 inode_init_once(&ei->vfs_inode);
289 }
290
291 static int init_inodecache(void)
292 {
293 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
294 sizeof(struct socket_alloc),
295 0,
296 (SLAB_HWCACHE_ALIGN |
297 SLAB_RECLAIM_ACCOUNT |
298 SLAB_MEM_SPREAD),
299 init_once);
300 if (sock_inode_cachep == NULL)
301 return -ENOMEM;
302 return 0;
303 }
304
305 static const struct super_operations sockfs_ops = {
306 .alloc_inode = sock_alloc_inode,
307 .destroy_inode = sock_destroy_inode,
308 .statfs = simple_statfs,
309 };
310
311 /*
312 * sockfs_dname() is called from d_path().
313 */
314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
315 {
316 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
317 dentry->d_inode->i_ino);
318 }
319
320 static const struct dentry_operations sockfs_dentry_operations = {
321 .d_dname = sockfs_dname,
322 };
323
324 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
325 int flags, const char *dev_name, void *data)
326 {
327 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
328 &sockfs_dentry_operations, SOCKFS_MAGIC);
329 }
330
331 static struct vfsmount *sock_mnt __read_mostly;
332
333 static struct file_system_type sock_fs_type = {
334 .name = "sockfs",
335 .mount = sockfs_mount,
336 .kill_sb = kill_anon_super,
337 };
338
339 /*
340 * Obtains the first available file descriptor and sets it up for use.
341 *
342 * These functions create file structures and maps them to fd space
343 * of the current process. On success it returns file descriptor
344 * and file struct implicitly stored in sock->file.
345 * Note that another thread may close file descriptor before we return
346 * from this function. We use the fact that now we do not refer
347 * to socket after mapping. If one day we will need it, this
348 * function will increment ref. count on file by 1.
349 *
350 * In any case returned fd MAY BE not valid!
351 * This race condition is unavoidable
352 * with shared fd spaces, we cannot solve it inside kernel,
353 * but we take care of internal coherence yet.
354 */
355
356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
357 {
358 struct qstr name = { .name = "" };
359 struct path path;
360 struct file *file;
361
362 if (dname) {
363 name.name = dname;
364 name.len = strlen(name.name);
365 } else if (sock->sk) {
366 name.name = sock->sk->sk_prot_creator->name;
367 name.len = strlen(name.name);
368 }
369 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
370 if (unlikely(!path.dentry))
371 return ERR_PTR(-ENOMEM);
372 path.mnt = mntget(sock_mnt);
373
374 d_instantiate(path.dentry, SOCK_INODE(sock));
375 SOCK_INODE(sock)->i_fop = &socket_file_ops;
376
377 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
378 &socket_file_ops);
379 if (unlikely(IS_ERR(file))) {
380 /* drop dentry, keep inode */
381 ihold(path.dentry->d_inode);
382 path_put(&path);
383 return file;
384 }
385
386 sock->file = file;
387 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
388 file->private_data = sock;
389 return file;
390 }
391 EXPORT_SYMBOL(sock_alloc_file);
392
393 static int sock_map_fd(struct socket *sock, int flags)
394 {
395 struct file *newfile;
396 int fd = get_unused_fd_flags(flags);
397 if (unlikely(fd < 0))
398 return fd;
399
400 newfile = sock_alloc_file(sock, flags, NULL);
401 if (likely(!IS_ERR(newfile))) {
402 fd_install(fd, newfile);
403 return fd;
404 }
405
406 put_unused_fd(fd);
407 return PTR_ERR(newfile);
408 }
409
410 struct socket *sock_from_file(struct file *file, int *err)
411 {
412 if (file->f_op == &socket_file_ops)
413 return file->private_data; /* set in sock_map_fd */
414
415 *err = -ENOTSOCK;
416 return NULL;
417 }
418 EXPORT_SYMBOL(sock_from_file);
419
420 /**
421 * sockfd_lookup - Go from a file number to its socket slot
422 * @fd: file handle
423 * @err: pointer to an error code return
424 *
425 * The file handle passed in is locked and the socket it is bound
426 * too is returned. If an error occurs the err pointer is overwritten
427 * with a negative errno code and NULL is returned. The function checks
428 * for both invalid handles and passing a handle which is not a socket.
429 *
430 * On a success the socket object pointer is returned.
431 */
432
433 struct socket *sockfd_lookup(int fd, int *err)
434 {
435 struct file *file;
436 struct socket *sock;
437
438 file = fget(fd);
439 if (!file) {
440 *err = -EBADF;
441 return NULL;
442 }
443
444 sock = sock_from_file(file, err);
445 if (!sock)
446 fput(file);
447 return sock;
448 }
449 EXPORT_SYMBOL(sockfd_lookup);
450
451 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
452 {
453 struct fd f = fdget(fd);
454 struct socket *sock;
455
456 *err = -EBADF;
457 if (f.file) {
458 sock = sock_from_file(f.file, err);
459 if (likely(sock)) {
460 *fput_needed = f.flags;
461 return sock;
462 }
463 fdput(f);
464 }
465 return NULL;
466 }
467
468 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
469 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
470 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
471 static ssize_t sockfs_getxattr(struct dentry *dentry,
472 const char *name, void *value, size_t size)
473 {
474 const char *proto_name;
475 size_t proto_size;
476 int error;
477
478 error = -ENODATA;
479 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
480 proto_name = dentry->d_name.name;
481 proto_size = strlen(proto_name);
482
483 if (value) {
484 error = -ERANGE;
485 if (proto_size + 1 > size)
486 goto out;
487
488 strncpy(value, proto_name, proto_size + 1);
489 }
490 error = proto_size + 1;
491 }
492
493 out:
494 return error;
495 }
496
497 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
498 size_t size)
499 {
500 ssize_t len;
501 ssize_t used = 0;
502
503 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
504 if (len < 0)
505 return len;
506 used += len;
507 if (buffer) {
508 if (size < used)
509 return -ERANGE;
510 buffer += len;
511 }
512
513 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
514 used += len;
515 if (buffer) {
516 if (size < used)
517 return -ERANGE;
518 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
519 buffer += len;
520 }
521
522 return used;
523 }
524
525 static const struct inode_operations sockfs_inode_ops = {
526 .getxattr = sockfs_getxattr,
527 .listxattr = sockfs_listxattr,
528 };
529
530 /**
531 * sock_alloc - allocate a socket
532 *
533 * Allocate a new inode and socket object. The two are bound together
534 * and initialised. The socket is then returned. If we are out of inodes
535 * NULL is returned.
536 */
537
538 static struct socket *sock_alloc(void)
539 {
540 struct inode *inode;
541 struct socket *sock;
542
543 inode = new_inode_pseudo(sock_mnt->mnt_sb);
544 if (!inode)
545 return NULL;
546
547 sock = SOCKET_I(inode);
548
549 kmemcheck_annotate_bitfield(sock, type);
550 inode->i_ino = get_next_ino();
551 inode->i_mode = S_IFSOCK | S_IRWXUGO;
552 inode->i_uid = current_fsuid();
553 inode->i_gid = current_fsgid();
554 inode->i_op = &sockfs_inode_ops;
555
556 this_cpu_add(sockets_in_use, 1);
557 return sock;
558 }
559
560 /*
561 * In theory you can't get an open on this inode, but /proc provides
562 * a back door. Remember to keep it shut otherwise you'll let the
563 * creepy crawlies in.
564 */
565
566 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
567 {
568 return -ENXIO;
569 }
570
571 const struct file_operations bad_sock_fops = {
572 .owner = THIS_MODULE,
573 .open = sock_no_open,
574 .llseek = noop_llseek,
575 };
576
577 /**
578 * sock_release - close a socket
579 * @sock: socket to close
580 *
581 * The socket is released from the protocol stack if it has a release
582 * callback, and the inode is then released if the socket is bound to
583 * an inode not a file.
584 */
585
586 void sock_release(struct socket *sock)
587 {
588 if (sock->ops) {
589 struct module *owner = sock->ops->owner;
590
591 sock->ops->release(sock);
592 sock->ops = NULL;
593 module_put(owner);
594 }
595
596 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
597 printk(KERN_ERR "sock_release: fasync list not empty!\n");
598
599 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
600 return;
601
602 this_cpu_sub(sockets_in_use, 1);
603 if (!sock->file) {
604 iput(SOCK_INODE(sock));
605 return;
606 }
607 sock->file = NULL;
608 }
609 EXPORT_SYMBOL(sock_release);
610
611 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
612 {
613 *tx_flags = 0;
614 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
615 *tx_flags |= SKBTX_HW_TSTAMP;
616 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
617 *tx_flags |= SKBTX_SW_TSTAMP;
618 if (sock_flag(sk, SOCK_WIFI_STATUS))
619 *tx_flags |= SKBTX_WIFI_STATUS;
620 }
621 EXPORT_SYMBOL(sock_tx_timestamp);
622
623 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
624 struct msghdr *msg, size_t size)
625 {
626 struct sock_iocb *si = kiocb_to_siocb(iocb);
627
628 si->sock = sock;
629 si->scm = NULL;
630 si->msg = msg;
631 si->size = size;
632
633 return sock->ops->sendmsg(iocb, sock, msg, size);
634 }
635
636 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
637 struct msghdr *msg, size_t size)
638 {
639 int err = security_socket_sendmsg(sock, msg, size);
640
641 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
642 }
643
644 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
645 {
646 struct kiocb iocb;
647 struct sock_iocb siocb;
648 int ret;
649
650 init_sync_kiocb(&iocb, NULL);
651 iocb.private = &siocb;
652 ret = __sock_sendmsg(&iocb, sock, msg, size);
653 if (-EIOCBQUEUED == ret)
654 ret = wait_on_sync_kiocb(&iocb);
655 return ret;
656 }
657 EXPORT_SYMBOL(sock_sendmsg);
658
659 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
660 {
661 struct kiocb iocb;
662 struct sock_iocb siocb;
663 int ret;
664
665 init_sync_kiocb(&iocb, NULL);
666 iocb.private = &siocb;
667 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
668 if (-EIOCBQUEUED == ret)
669 ret = wait_on_sync_kiocb(&iocb);
670 return ret;
671 }
672
673 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
674 struct kvec *vec, size_t num, size_t size)
675 {
676 mm_segment_t oldfs = get_fs();
677 int result;
678
679 set_fs(KERNEL_DS);
680 /*
681 * the following is safe, since for compiler definitions of kvec and
682 * iovec are identical, yielding the same in-core layout and alignment
683 */
684 msg->msg_iov = (struct iovec *)vec;
685 msg->msg_iovlen = num;
686 result = sock_sendmsg(sock, msg, size);
687 set_fs(oldfs);
688 return result;
689 }
690 EXPORT_SYMBOL(kernel_sendmsg);
691
692 /*
693 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
694 */
695 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
696 struct sk_buff *skb)
697 {
698 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
699 struct timespec ts[3];
700 int empty = 1;
701 struct skb_shared_hwtstamps *shhwtstamps =
702 skb_hwtstamps(skb);
703
704 /* Race occurred between timestamp enabling and packet
705 receiving. Fill in the current time for now. */
706 if (need_software_tstamp && skb->tstamp.tv64 == 0)
707 __net_timestamp(skb);
708
709 if (need_software_tstamp) {
710 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
711 struct timeval tv;
712 skb_get_timestamp(skb, &tv);
713 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
714 sizeof(tv), &tv);
715 } else {
716 skb_get_timestampns(skb, &ts[0]);
717 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
718 sizeof(ts[0]), &ts[0]);
719 }
720 }
721
722
723 memset(ts, 0, sizeof(ts));
724 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
725 ktime_to_timespec_cond(skb->tstamp, ts + 0))
726 empty = 0;
727 if (shhwtstamps) {
728 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
729 ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
730 empty = 0;
731 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
732 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
733 empty = 0;
734 }
735 if (!empty)
736 put_cmsg(msg, SOL_SOCKET,
737 SCM_TIMESTAMPING, sizeof(ts), &ts);
738 }
739 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
740
741 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
742 struct sk_buff *skb)
743 {
744 int ack;
745
746 if (!sock_flag(sk, SOCK_WIFI_STATUS))
747 return;
748 if (!skb->wifi_acked_valid)
749 return;
750
751 ack = skb->wifi_acked;
752
753 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
754 }
755 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
756
757 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
758 struct sk_buff *skb)
759 {
760 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
761 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
762 sizeof(__u32), &skb->dropcount);
763 }
764
765 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
766 struct sk_buff *skb)
767 {
768 sock_recv_timestamp(msg, sk, skb);
769 sock_recv_drops(msg, sk, skb);
770 }
771 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
772
773 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
774 struct msghdr *msg, size_t size, int flags)
775 {
776 struct sock_iocb *si = kiocb_to_siocb(iocb);
777
778 si->sock = sock;
779 si->scm = NULL;
780 si->msg = msg;
781 si->size = size;
782 si->flags = flags;
783
784 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
785 }
786
787 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
788 struct msghdr *msg, size_t size, int flags)
789 {
790 int err = security_socket_recvmsg(sock, msg, size, flags);
791
792 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
793 }
794
795 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
796 size_t size, int flags)
797 {
798 struct kiocb iocb;
799 struct sock_iocb siocb;
800 int ret;
801
802 init_sync_kiocb(&iocb, NULL);
803 iocb.private = &siocb;
804 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
805 if (-EIOCBQUEUED == ret)
806 ret = wait_on_sync_kiocb(&iocb);
807 return ret;
808 }
809 EXPORT_SYMBOL(sock_recvmsg);
810
811 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
812 size_t size, int flags)
813 {
814 struct kiocb iocb;
815 struct sock_iocb siocb;
816 int ret;
817
818 init_sync_kiocb(&iocb, NULL);
819 iocb.private = &siocb;
820 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
821 if (-EIOCBQUEUED == ret)
822 ret = wait_on_sync_kiocb(&iocb);
823 return ret;
824 }
825
826 /**
827 * kernel_recvmsg - Receive a message from a socket (kernel space)
828 * @sock: The socket to receive the message from
829 * @msg: Received message
830 * @vec: Input s/g array for message data
831 * @num: Size of input s/g array
832 * @size: Number of bytes to read
833 * @flags: Message flags (MSG_DONTWAIT, etc...)
834 *
835 * On return the msg structure contains the scatter/gather array passed in the
836 * vec argument. The array is modified so that it consists of the unfilled
837 * portion of the original array.
838 *
839 * The returned value is the total number of bytes received, or an error.
840 */
841 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
842 struct kvec *vec, size_t num, size_t size, int flags)
843 {
844 mm_segment_t oldfs = get_fs();
845 int result;
846
847 set_fs(KERNEL_DS);
848 /*
849 * the following is safe, since for compiler definitions of kvec and
850 * iovec are identical, yielding the same in-core layout and alignment
851 */
852 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
853 result = sock_recvmsg(sock, msg, size, flags);
854 set_fs(oldfs);
855 return result;
856 }
857 EXPORT_SYMBOL(kernel_recvmsg);
858
859 static ssize_t sock_sendpage(struct file *file, struct page *page,
860 int offset, size_t size, loff_t *ppos, int more)
861 {
862 struct socket *sock;
863 int flags;
864
865 sock = file->private_data;
866
867 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
868 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
869 flags |= more;
870
871 return kernel_sendpage(sock, page, offset, size, flags);
872 }
873
874 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
875 struct pipe_inode_info *pipe, size_t len,
876 unsigned int flags)
877 {
878 struct socket *sock = file->private_data;
879
880 if (unlikely(!sock->ops->splice_read))
881 return -EINVAL;
882
883 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
884 }
885
886 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
887 struct sock_iocb *siocb)
888 {
889 if (!is_sync_kiocb(iocb))
890 BUG();
891
892 siocb->kiocb = iocb;
893 iocb->private = siocb;
894 return siocb;
895 }
896
897 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
898 struct file *file, const struct iovec *iov,
899 unsigned long nr_segs)
900 {
901 struct socket *sock = file->private_data;
902 size_t size = 0;
903 int i;
904
905 for (i = 0; i < nr_segs; i++)
906 size += iov[i].iov_len;
907
908 msg->msg_name = NULL;
909 msg->msg_namelen = 0;
910 msg->msg_control = NULL;
911 msg->msg_controllen = 0;
912 msg->msg_iov = (struct iovec *)iov;
913 msg->msg_iovlen = nr_segs;
914 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
915
916 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
917 }
918
919 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
920 unsigned long nr_segs, loff_t pos)
921 {
922 struct sock_iocb siocb, *x;
923
924 if (pos != 0)
925 return -ESPIPE;
926
927 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */
928 return 0;
929
930
931 x = alloc_sock_iocb(iocb, &siocb);
932 if (!x)
933 return -ENOMEM;
934 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
935 }
936
937 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
938 struct file *file, const struct iovec *iov,
939 unsigned long nr_segs)
940 {
941 struct socket *sock = file->private_data;
942 size_t size = 0;
943 int i;
944
945 for (i = 0; i < nr_segs; i++)
946 size += iov[i].iov_len;
947
948 msg->msg_name = NULL;
949 msg->msg_namelen = 0;
950 msg->msg_control = NULL;
951 msg->msg_controllen = 0;
952 msg->msg_iov = (struct iovec *)iov;
953 msg->msg_iovlen = nr_segs;
954 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
955 if (sock->type == SOCK_SEQPACKET)
956 msg->msg_flags |= MSG_EOR;
957
958 return __sock_sendmsg(iocb, sock, msg, size);
959 }
960
961 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
962 unsigned long nr_segs, loff_t pos)
963 {
964 struct sock_iocb siocb, *x;
965
966 if (pos != 0)
967 return -ESPIPE;
968
969 x = alloc_sock_iocb(iocb, &siocb);
970 if (!x)
971 return -ENOMEM;
972
973 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
974 }
975
976 /*
977 * Atomic setting of ioctl hooks to avoid race
978 * with module unload.
979 */
980
981 static DEFINE_MUTEX(br_ioctl_mutex);
982 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
983
984 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
985 {
986 mutex_lock(&br_ioctl_mutex);
987 br_ioctl_hook = hook;
988 mutex_unlock(&br_ioctl_mutex);
989 }
990 EXPORT_SYMBOL(brioctl_set);
991
992 static DEFINE_MUTEX(vlan_ioctl_mutex);
993 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
994
995 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
996 {
997 mutex_lock(&vlan_ioctl_mutex);
998 vlan_ioctl_hook = hook;
999 mutex_unlock(&vlan_ioctl_mutex);
1000 }
1001 EXPORT_SYMBOL(vlan_ioctl_set);
1002
1003 static DEFINE_MUTEX(dlci_ioctl_mutex);
1004 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1005
1006 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1007 {
1008 mutex_lock(&dlci_ioctl_mutex);
1009 dlci_ioctl_hook = hook;
1010 mutex_unlock(&dlci_ioctl_mutex);
1011 }
1012 EXPORT_SYMBOL(dlci_ioctl_set);
1013
1014 static long sock_do_ioctl(struct net *net, struct socket *sock,
1015 unsigned int cmd, unsigned long arg)
1016 {
1017 int err;
1018 void __user *argp = (void __user *)arg;
1019
1020 err = sock->ops->ioctl(sock, cmd, arg);
1021
1022 /*
1023 * If this ioctl is unknown try to hand it down
1024 * to the NIC driver.
1025 */
1026 if (err == -ENOIOCTLCMD)
1027 err = dev_ioctl(net, cmd, argp);
1028
1029 return err;
1030 }
1031
1032 /*
1033 * With an ioctl, arg may well be a user mode pointer, but we don't know
1034 * what to do with it - that's up to the protocol still.
1035 */
1036
1037 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1038 {
1039 struct socket *sock;
1040 struct sock *sk;
1041 void __user *argp = (void __user *)arg;
1042 int pid, err;
1043 struct net *net;
1044
1045 sock = file->private_data;
1046 sk = sock->sk;
1047 net = sock_net(sk);
1048 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1049 err = dev_ioctl(net, cmd, argp);
1050 } else
1051 #ifdef CONFIG_WEXT_CORE
1052 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1053 err = dev_ioctl(net, cmd, argp);
1054 } else
1055 #endif
1056 switch (cmd) {
1057 case FIOSETOWN:
1058 case SIOCSPGRP:
1059 err = -EFAULT;
1060 if (get_user(pid, (int __user *)argp))
1061 break;
1062 err = f_setown(sock->file, pid, 1);
1063 break;
1064 case FIOGETOWN:
1065 case SIOCGPGRP:
1066 err = put_user(f_getown(sock->file),
1067 (int __user *)argp);
1068 break;
1069 case SIOCGIFBR:
1070 case SIOCSIFBR:
1071 case SIOCBRADDBR:
1072 case SIOCBRDELBR:
1073 err = -ENOPKG;
1074 if (!br_ioctl_hook)
1075 request_module("bridge");
1076
1077 mutex_lock(&br_ioctl_mutex);
1078 if (br_ioctl_hook)
1079 err = br_ioctl_hook(net, cmd, argp);
1080 mutex_unlock(&br_ioctl_mutex);
1081 break;
1082 case SIOCGIFVLAN:
1083 case SIOCSIFVLAN:
1084 err = -ENOPKG;
1085 if (!vlan_ioctl_hook)
1086 request_module("8021q");
1087
1088 mutex_lock(&vlan_ioctl_mutex);
1089 if (vlan_ioctl_hook)
1090 err = vlan_ioctl_hook(net, argp);
1091 mutex_unlock(&vlan_ioctl_mutex);
1092 break;
1093 case SIOCADDDLCI:
1094 case SIOCDELDLCI:
1095 err = -ENOPKG;
1096 if (!dlci_ioctl_hook)
1097 request_module("dlci");
1098
1099 mutex_lock(&dlci_ioctl_mutex);
1100 if (dlci_ioctl_hook)
1101 err = dlci_ioctl_hook(cmd, argp);
1102 mutex_unlock(&dlci_ioctl_mutex);
1103 break;
1104 default:
1105 err = sock_do_ioctl(net, sock, cmd, arg);
1106 break;
1107 }
1108 return err;
1109 }
1110
1111 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1112 {
1113 int err;
1114 struct socket *sock = NULL;
1115
1116 err = security_socket_create(family, type, protocol, 1);
1117 if (err)
1118 goto out;
1119
1120 sock = sock_alloc();
1121 if (!sock) {
1122 err = -ENOMEM;
1123 goto out;
1124 }
1125
1126 sock->type = type;
1127 err = security_socket_post_create(sock, family, type, protocol, 1);
1128 if (err)
1129 goto out_release;
1130
1131 out:
1132 *res = sock;
1133 return err;
1134 out_release:
1135 sock_release(sock);
1136 sock = NULL;
1137 goto out;
1138 }
1139 EXPORT_SYMBOL(sock_create_lite);
1140
1141 /* No kernel lock held - perfect */
1142 static unsigned int sock_poll(struct file *file, poll_table *wait)
1143 {
1144 unsigned int busy_flag = 0;
1145 struct socket *sock;
1146
1147 /*
1148 * We can't return errors to poll, so it's either yes or no.
1149 */
1150 sock = file->private_data;
1151
1152 if (sk_can_busy_loop(sock->sk)) {
1153 /* this socket can poll_ll so tell the system call */
1154 busy_flag = POLL_BUSY_LOOP;
1155
1156 /* once, only if requested by syscall */
1157 if (wait && (wait->_key & POLL_BUSY_LOOP))
1158 sk_busy_loop(sock->sk, 1);
1159 }
1160
1161 return busy_flag | sock->ops->poll(file, sock, wait);
1162 }
1163
1164 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1165 {
1166 struct socket *sock = file->private_data;
1167
1168 return sock->ops->mmap(file, sock, vma);
1169 }
1170
1171 static int sock_close(struct inode *inode, struct file *filp)
1172 {
1173 sock_release(SOCKET_I(inode));
1174 return 0;
1175 }
1176
1177 /*
1178 * Update the socket async list
1179 *
1180 * Fasync_list locking strategy.
1181 *
1182 * 1. fasync_list is modified only under process context socket lock
1183 * i.e. under semaphore.
1184 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1185 * or under socket lock
1186 */
1187
1188 static int sock_fasync(int fd, struct file *filp, int on)
1189 {
1190 struct socket *sock = filp->private_data;
1191 struct sock *sk = sock->sk;
1192 struct socket_wq *wq;
1193
1194 if (sk == NULL)
1195 return -EINVAL;
1196
1197 lock_sock(sk);
1198 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1199 fasync_helper(fd, filp, on, &wq->fasync_list);
1200
1201 if (!wq->fasync_list)
1202 sock_reset_flag(sk, SOCK_FASYNC);
1203 else
1204 sock_set_flag(sk, SOCK_FASYNC);
1205
1206 release_sock(sk);
1207 return 0;
1208 }
1209
1210 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1211
1212 int sock_wake_async(struct socket *sock, int how, int band)
1213 {
1214 struct socket_wq *wq;
1215
1216 if (!sock)
1217 return -1;
1218 rcu_read_lock();
1219 wq = rcu_dereference(sock->wq);
1220 if (!wq || !wq->fasync_list) {
1221 rcu_read_unlock();
1222 return -1;
1223 }
1224 switch (how) {
1225 case SOCK_WAKE_WAITD:
1226 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1227 break;
1228 goto call_kill;
1229 case SOCK_WAKE_SPACE:
1230 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1231 break;
1232 /* fall through */
1233 case SOCK_WAKE_IO:
1234 call_kill:
1235 kill_fasync(&wq->fasync_list, SIGIO, band);
1236 break;
1237 case SOCK_WAKE_URG:
1238 kill_fasync(&wq->fasync_list, SIGURG, band);
1239 }
1240 rcu_read_unlock();
1241 return 0;
1242 }
1243 EXPORT_SYMBOL(sock_wake_async);
1244
1245 int __sock_create(struct net *net, int family, int type, int protocol,
1246 struct socket **res, int kern)
1247 {
1248 int err;
1249 struct socket *sock;
1250 const struct net_proto_family *pf;
1251
1252 /*
1253 * Check protocol is in range
1254 */
1255 if (family < 0 || family >= NPROTO)
1256 return -EAFNOSUPPORT;
1257 if (type < 0 || type >= SOCK_MAX)
1258 return -EINVAL;
1259
1260 /* Compatibility.
1261
1262 This uglymoron is moved from INET layer to here to avoid
1263 deadlock in module load.
1264 */
1265 if (family == PF_INET && type == SOCK_PACKET) {
1266 static int warned;
1267 if (!warned) {
1268 warned = 1;
1269 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1270 current->comm);
1271 }
1272 family = PF_PACKET;
1273 }
1274
1275 err = security_socket_create(family, type, protocol, kern);
1276 if (err)
1277 return err;
1278
1279 /*
1280 * Allocate the socket and allow the family to set things up. if
1281 * the protocol is 0, the family is instructed to select an appropriate
1282 * default.
1283 */
1284 sock = sock_alloc();
1285 if (!sock) {
1286 net_warn_ratelimited("socket: no more sockets\n");
1287 return -ENFILE; /* Not exactly a match, but its the
1288 closest posix thing */
1289 }
1290
1291 sock->type = type;
1292
1293 #ifdef CONFIG_MODULES
1294 /* Attempt to load a protocol module if the find failed.
1295 *
1296 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1297 * requested real, full-featured networking support upon configuration.
1298 * Otherwise module support will break!
1299 */
1300 if (rcu_access_pointer(net_families[family]) == NULL)
1301 request_module("net-pf-%d", family);
1302 #endif
1303
1304 rcu_read_lock();
1305 pf = rcu_dereference(net_families[family]);
1306 err = -EAFNOSUPPORT;
1307 if (!pf)
1308 goto out_release;
1309
1310 /*
1311 * We will call the ->create function, that possibly is in a loadable
1312 * module, so we have to bump that loadable module refcnt first.
1313 */
1314 if (!try_module_get(pf->owner))
1315 goto out_release;
1316
1317 /* Now protected by module ref count */
1318 rcu_read_unlock();
1319
1320 err = pf->create(net, sock, protocol, kern);
1321 if (err < 0)
1322 goto out_module_put;
1323
1324 /*
1325 * Now to bump the refcnt of the [loadable] module that owns this
1326 * socket at sock_release time we decrement its refcnt.
1327 */
1328 if (!try_module_get(sock->ops->owner))
1329 goto out_module_busy;
1330
1331 /*
1332 * Now that we're done with the ->create function, the [loadable]
1333 * module can have its refcnt decremented
1334 */
1335 module_put(pf->owner);
1336 err = security_socket_post_create(sock, family, type, protocol, kern);
1337 if (err)
1338 goto out_sock_release;
1339 *res = sock;
1340
1341 return 0;
1342
1343 out_module_busy:
1344 err = -EAFNOSUPPORT;
1345 out_module_put:
1346 sock->ops = NULL;
1347 module_put(pf->owner);
1348 out_sock_release:
1349 sock_release(sock);
1350 return err;
1351
1352 out_release:
1353 rcu_read_unlock();
1354 goto out_sock_release;
1355 }
1356 EXPORT_SYMBOL(__sock_create);
1357
1358 int sock_create(int family, int type, int protocol, struct socket **res)
1359 {
1360 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1361 }
1362 EXPORT_SYMBOL(sock_create);
1363
1364 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1365 {
1366 return __sock_create(&init_net, family, type, protocol, res, 1);
1367 }
1368 EXPORT_SYMBOL(sock_create_kern);
1369
1370 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1371 {
1372 int retval;
1373 struct socket *sock;
1374 int flags;
1375
1376 /* Check the SOCK_* constants for consistency. */
1377 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1378 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1379 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1380 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1381
1382 flags = type & ~SOCK_TYPE_MASK;
1383 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1384 return -EINVAL;
1385 type &= SOCK_TYPE_MASK;
1386
1387 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1388 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1389
1390 retval = sock_create(family, type, protocol, &sock);
1391 if (retval < 0)
1392 goto out;
1393
1394 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1395 if (retval < 0)
1396 goto out_release;
1397
1398 out:
1399 /* It may be already another descriptor 8) Not kernel problem. */
1400 return retval;
1401
1402 out_release:
1403 sock_release(sock);
1404 return retval;
1405 }
1406
1407 /*
1408 * Create a pair of connected sockets.
1409 */
1410
1411 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1412 int __user *, usockvec)
1413 {
1414 struct socket *sock1, *sock2;
1415 int fd1, fd2, err;
1416 struct file *newfile1, *newfile2;
1417 int flags;
1418
1419 flags = type & ~SOCK_TYPE_MASK;
1420 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1421 return -EINVAL;
1422 type &= SOCK_TYPE_MASK;
1423
1424 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1425 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1426
1427 /*
1428 * Obtain the first socket and check if the underlying protocol
1429 * supports the socketpair call.
1430 */
1431
1432 err = sock_create(family, type, protocol, &sock1);
1433 if (err < 0)
1434 goto out;
1435
1436 err = sock_create(family, type, protocol, &sock2);
1437 if (err < 0)
1438 goto out_release_1;
1439
1440 err = sock1->ops->socketpair(sock1, sock2);
1441 if (err < 0)
1442 goto out_release_both;
1443
1444 fd1 = get_unused_fd_flags(flags);
1445 if (unlikely(fd1 < 0)) {
1446 err = fd1;
1447 goto out_release_both;
1448 }
1449
1450 fd2 = get_unused_fd_flags(flags);
1451 if (unlikely(fd2 < 0)) {
1452 err = fd2;
1453 goto out_put_unused_1;
1454 }
1455
1456 newfile1 = sock_alloc_file(sock1, flags, NULL);
1457 if (unlikely(IS_ERR(newfile1))) {
1458 err = PTR_ERR(newfile1);
1459 goto out_put_unused_both;
1460 }
1461
1462 newfile2 = sock_alloc_file(sock2, flags, NULL);
1463 if (IS_ERR(newfile2)) {
1464 err = PTR_ERR(newfile2);
1465 goto out_fput_1;
1466 }
1467
1468 err = put_user(fd1, &usockvec[0]);
1469 if (err)
1470 goto out_fput_both;
1471
1472 err = put_user(fd2, &usockvec[1]);
1473 if (err)
1474 goto out_fput_both;
1475
1476 audit_fd_pair(fd1, fd2);
1477
1478 fd_install(fd1, newfile1);
1479 fd_install(fd2, newfile2);
1480 /* fd1 and fd2 may be already another descriptors.
1481 * Not kernel problem.
1482 */
1483
1484 return 0;
1485
1486 out_fput_both:
1487 fput(newfile2);
1488 fput(newfile1);
1489 put_unused_fd(fd2);
1490 put_unused_fd(fd1);
1491 goto out;
1492
1493 out_fput_1:
1494 fput(newfile1);
1495 put_unused_fd(fd2);
1496 put_unused_fd(fd1);
1497 sock_release(sock2);
1498 goto out;
1499
1500 out_put_unused_both:
1501 put_unused_fd(fd2);
1502 out_put_unused_1:
1503 put_unused_fd(fd1);
1504 out_release_both:
1505 sock_release(sock2);
1506 out_release_1:
1507 sock_release(sock1);
1508 out:
1509 return err;
1510 }
1511
1512 /*
1513 * Bind a name to a socket. Nothing much to do here since it's
1514 * the protocol's responsibility to handle the local address.
1515 *
1516 * We move the socket address to kernel space before we call
1517 * the protocol layer (having also checked the address is ok).
1518 */
1519
1520 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1521 {
1522 struct socket *sock;
1523 struct sockaddr_storage address;
1524 int err, fput_needed;
1525
1526 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1527 if (sock) {
1528 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1529 if (err >= 0) {
1530 err = security_socket_bind(sock,
1531 (struct sockaddr *)&address,
1532 addrlen);
1533 if (!err)
1534 err = sock->ops->bind(sock,
1535 (struct sockaddr *)
1536 &address, addrlen);
1537 }
1538 fput_light(sock->file, fput_needed);
1539 }
1540 return err;
1541 }
1542
1543 /*
1544 * Perform a listen. Basically, we allow the protocol to do anything
1545 * necessary for a listen, and if that works, we mark the socket as
1546 * ready for listening.
1547 */
1548
1549 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1550 {
1551 struct socket *sock;
1552 int err, fput_needed;
1553 int somaxconn;
1554
1555 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1556 if (sock) {
1557 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1558 if ((unsigned int)backlog > somaxconn)
1559 backlog = somaxconn;
1560
1561 err = security_socket_listen(sock, backlog);
1562 if (!err)
1563 err = sock->ops->listen(sock, backlog);
1564
1565 fput_light(sock->file, fput_needed);
1566 }
1567 return err;
1568 }
1569
1570 /*
1571 * For accept, we attempt to create a new socket, set up the link
1572 * with the client, wake up the client, then return the new
1573 * connected fd. We collect the address of the connector in kernel
1574 * space and move it to user at the very end. This is unclean because
1575 * we open the socket then return an error.
1576 *
1577 * 1003.1g adds the ability to recvmsg() to query connection pending
1578 * status to recvmsg. We need to add that support in a way thats
1579 * clean when we restucture accept also.
1580 */
1581
1582 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1583 int __user *, upeer_addrlen, int, flags)
1584 {
1585 struct socket *sock, *newsock;
1586 struct file *newfile;
1587 int err, len, newfd, fput_needed;
1588 struct sockaddr_storage address;
1589
1590 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1591 return -EINVAL;
1592
1593 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1594 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1595
1596 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1597 if (!sock)
1598 goto out;
1599
1600 err = -ENFILE;
1601 newsock = sock_alloc();
1602 if (!newsock)
1603 goto out_put;
1604
1605 newsock->type = sock->type;
1606 newsock->ops = sock->ops;
1607
1608 /*
1609 * We don't need try_module_get here, as the listening socket (sock)
1610 * has the protocol module (sock->ops->owner) held.
1611 */
1612 __module_get(newsock->ops->owner);
1613
1614 newfd = get_unused_fd_flags(flags);
1615 if (unlikely(newfd < 0)) {
1616 err = newfd;
1617 sock_release(newsock);
1618 goto out_put;
1619 }
1620 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1621 if (unlikely(IS_ERR(newfile))) {
1622 err = PTR_ERR(newfile);
1623 put_unused_fd(newfd);
1624 sock_release(newsock);
1625 goto out_put;
1626 }
1627
1628 err = security_socket_accept(sock, newsock);
1629 if (err)
1630 goto out_fd;
1631
1632 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1633 if (err < 0)
1634 goto out_fd;
1635
1636 if (upeer_sockaddr) {
1637 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1638 &len, 2) < 0) {
1639 err = -ECONNABORTED;
1640 goto out_fd;
1641 }
1642 err = move_addr_to_user(&address,
1643 len, upeer_sockaddr, upeer_addrlen);
1644 if (err < 0)
1645 goto out_fd;
1646 }
1647
1648 /* File flags are not inherited via accept() unlike another OSes. */
1649
1650 fd_install(newfd, newfile);
1651 err = newfd;
1652
1653 out_put:
1654 fput_light(sock->file, fput_needed);
1655 out:
1656 return err;
1657 out_fd:
1658 fput(newfile);
1659 put_unused_fd(newfd);
1660 goto out_put;
1661 }
1662
1663 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1664 int __user *, upeer_addrlen)
1665 {
1666 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1667 }
1668
1669 /*
1670 * Attempt to connect to a socket with the server address. The address
1671 * is in user space so we verify it is OK and move it to kernel space.
1672 *
1673 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1674 * break bindings
1675 *
1676 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1677 * other SEQPACKET protocols that take time to connect() as it doesn't
1678 * include the -EINPROGRESS status for such sockets.
1679 */
1680
1681 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1682 int, addrlen)
1683 {
1684 struct socket *sock;
1685 struct sockaddr_storage address;
1686 int err, fput_needed;
1687
1688 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1689 if (!sock)
1690 goto out;
1691 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1692 if (err < 0)
1693 goto out_put;
1694
1695 err =
1696 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1697 if (err)
1698 goto out_put;
1699
1700 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1701 sock->file->f_flags);
1702 out_put:
1703 fput_light(sock->file, fput_needed);
1704 out:
1705 return err;
1706 }
1707
1708 /*
1709 * Get the local address ('name') of a socket object. Move the obtained
1710 * name to user space.
1711 */
1712
1713 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1714 int __user *, usockaddr_len)
1715 {
1716 struct socket *sock;
1717 struct sockaddr_storage address;
1718 int len, err, fput_needed;
1719
1720 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1721 if (!sock)
1722 goto out;
1723
1724 err = security_socket_getsockname(sock);
1725 if (err)
1726 goto out_put;
1727
1728 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1729 if (err)
1730 goto out_put;
1731 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1732
1733 out_put:
1734 fput_light(sock->file, fput_needed);
1735 out:
1736 return err;
1737 }
1738
1739 /*
1740 * Get the remote address ('name') of a socket object. Move the obtained
1741 * name to user space.
1742 */
1743
1744 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1745 int __user *, usockaddr_len)
1746 {
1747 struct socket *sock;
1748 struct sockaddr_storage address;
1749 int len, err, fput_needed;
1750
1751 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1752 if (sock != NULL) {
1753 err = security_socket_getpeername(sock);
1754 if (err) {
1755 fput_light(sock->file, fput_needed);
1756 return err;
1757 }
1758
1759 err =
1760 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1761 1);
1762 if (!err)
1763 err = move_addr_to_user(&address, len, usockaddr,
1764 usockaddr_len);
1765 fput_light(sock->file, fput_needed);
1766 }
1767 return err;
1768 }
1769
1770 /*
1771 * Send a datagram to a given address. We move the address into kernel
1772 * space and check the user space data area is readable before invoking
1773 * the protocol.
1774 */
1775
1776 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1777 unsigned int, flags, struct sockaddr __user *, addr,
1778 int, addr_len)
1779 {
1780 struct socket *sock;
1781 struct sockaddr_storage address;
1782 int err;
1783 struct msghdr msg;
1784 struct iovec iov;
1785 int fput_needed;
1786
1787 if (len > INT_MAX)
1788 len = INT_MAX;
1789 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1790 if (!sock)
1791 goto out;
1792
1793 iov.iov_base = buff;
1794 iov.iov_len = len;
1795 msg.msg_name = NULL;
1796 msg.msg_iov = &iov;
1797 msg.msg_iovlen = 1;
1798 msg.msg_control = NULL;
1799 msg.msg_controllen = 0;
1800 msg.msg_namelen = 0;
1801 if (addr) {
1802 err = move_addr_to_kernel(addr, addr_len, &address);
1803 if (err < 0)
1804 goto out_put;
1805 msg.msg_name = (struct sockaddr *)&address;
1806 msg.msg_namelen = addr_len;
1807 }
1808 if (sock->file->f_flags & O_NONBLOCK)
1809 flags |= MSG_DONTWAIT;
1810 msg.msg_flags = flags;
1811 err = sock_sendmsg(sock, &msg, len);
1812
1813 out_put:
1814 fput_light(sock->file, fput_needed);
1815 out:
1816 return err;
1817 }
1818
1819 /*
1820 * Send a datagram down a socket.
1821 */
1822
1823 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1824 unsigned int, flags)
1825 {
1826 return sys_sendto(fd, buff, len, flags, NULL, 0);
1827 }
1828
1829 /*
1830 * Receive a frame from the socket and optionally record the address of the
1831 * sender. We verify the buffers are writable and if needed move the
1832 * sender address from kernel to user space.
1833 */
1834
1835 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1836 unsigned int, flags, struct sockaddr __user *, addr,
1837 int __user *, addr_len)
1838 {
1839 struct socket *sock;
1840 struct iovec iov;
1841 struct msghdr msg;
1842 struct sockaddr_storage address;
1843 int err, err2;
1844 int fput_needed;
1845
1846 if (size > INT_MAX)
1847 size = INT_MAX;
1848 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1849 if (!sock)
1850 goto out;
1851
1852 msg.msg_control = NULL;
1853 msg.msg_controllen = 0;
1854 msg.msg_iovlen = 1;
1855 msg.msg_iov = &iov;
1856 iov.iov_len = size;
1857 iov.iov_base = ubuf;
1858 /* Save some cycles and don't copy the address if not needed */
1859 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1860 /* We assume all kernel code knows the size of sockaddr_storage */
1861 msg.msg_namelen = 0;
1862 if (sock->file->f_flags & O_NONBLOCK)
1863 flags |= MSG_DONTWAIT;
1864 err = sock_recvmsg(sock, &msg, size, flags);
1865
1866 if (err >= 0 && addr != NULL) {
1867 err2 = move_addr_to_user(&address,
1868 msg.msg_namelen, addr, addr_len);
1869 if (err2 < 0)
1870 err = err2;
1871 }
1872
1873 fput_light(sock->file, fput_needed);
1874 out:
1875 return err;
1876 }
1877
1878 /*
1879 * Receive a datagram from a socket.
1880 */
1881
1882 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1883 unsigned int flags)
1884 {
1885 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1886 }
1887
1888 /*
1889 * Set a socket option. Because we don't know the option lengths we have
1890 * to pass the user mode parameter for the protocols to sort out.
1891 */
1892
1893 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1894 char __user *, optval, int, optlen)
1895 {
1896 int err, fput_needed;
1897 struct socket *sock;
1898
1899 if (optlen < 0)
1900 return -EINVAL;
1901
1902 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1903 if (sock != NULL) {
1904 err = security_socket_setsockopt(sock, level, optname);
1905 if (err)
1906 goto out_put;
1907
1908 if (level == SOL_SOCKET)
1909 err =
1910 sock_setsockopt(sock, level, optname, optval,
1911 optlen);
1912 else
1913 err =
1914 sock->ops->setsockopt(sock, level, optname, optval,
1915 optlen);
1916 out_put:
1917 fput_light(sock->file, fput_needed);
1918 }
1919 return err;
1920 }
1921
1922 /*
1923 * Get a socket option. Because we don't know the option lengths we have
1924 * to pass a user mode parameter for the protocols to sort out.
1925 */
1926
1927 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1928 char __user *, optval, int __user *, optlen)
1929 {
1930 int err, fput_needed;
1931 struct socket *sock;
1932
1933 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1934 if (sock != NULL) {
1935 err = security_socket_getsockopt(sock, level, optname);
1936 if (err)
1937 goto out_put;
1938
1939 if (level == SOL_SOCKET)
1940 err =
1941 sock_getsockopt(sock, level, optname, optval,
1942 optlen);
1943 else
1944 err =
1945 sock->ops->getsockopt(sock, level, optname, optval,
1946 optlen);
1947 out_put:
1948 fput_light(sock->file, fput_needed);
1949 }
1950 return err;
1951 }
1952
1953 /*
1954 * Shutdown a socket.
1955 */
1956
1957 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1958 {
1959 int err, fput_needed;
1960 struct socket *sock;
1961
1962 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1963 if (sock != NULL) {
1964 err = security_socket_shutdown(sock, how);
1965 if (!err)
1966 err = sock->ops->shutdown(sock, how);
1967 fput_light(sock->file, fput_needed);
1968 }
1969 return err;
1970 }
1971
1972 /* A couple of helpful macros for getting the address of the 32/64 bit
1973 * fields which are the same type (int / unsigned) on our platforms.
1974 */
1975 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1976 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1977 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1978
1979 struct used_address {
1980 struct sockaddr_storage name;
1981 unsigned int name_len;
1982 };
1983
1984 static int copy_msghdr_from_user(struct msghdr *kmsg,
1985 struct msghdr __user *umsg)
1986 {
1987 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1988 return -EFAULT;
1989 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1990 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1991 return 0;
1992 }
1993
1994 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1995 struct msghdr *msg_sys, unsigned int flags,
1996 struct used_address *used_address)
1997 {
1998 struct compat_msghdr __user *msg_compat =
1999 (struct compat_msghdr __user *)msg;
2000 struct sockaddr_storage address;
2001 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2002 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2003 __attribute__ ((aligned(sizeof(__kernel_size_t))));
2004 /* 20 is size of ipv6_pktinfo */
2005 unsigned char *ctl_buf = ctl;
2006 int err, ctl_len, total_len;
2007
2008 err = -EFAULT;
2009 if (MSG_CMSG_COMPAT & flags) {
2010 if (get_compat_msghdr(msg_sys, msg_compat))
2011 return -EFAULT;
2012 } else {
2013 err = copy_msghdr_from_user(msg_sys, msg);
2014 if (err)
2015 return err;
2016 }
2017
2018 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2019 err = -EMSGSIZE;
2020 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2021 goto out;
2022 err = -ENOMEM;
2023 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2024 GFP_KERNEL);
2025 if (!iov)
2026 goto out;
2027 }
2028
2029 /* This will also move the address data into kernel space */
2030 if (MSG_CMSG_COMPAT & flags) {
2031 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2032 } else
2033 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2034 if (err < 0)
2035 goto out_freeiov;
2036 total_len = err;
2037
2038 err = -ENOBUFS;
2039
2040 if (msg_sys->msg_controllen > INT_MAX)
2041 goto out_freeiov;
2042 ctl_len = msg_sys->msg_controllen;
2043 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2044 err =
2045 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2046 sizeof(ctl));
2047 if (err)
2048 goto out_freeiov;
2049 ctl_buf = msg_sys->msg_control;
2050 ctl_len = msg_sys->msg_controllen;
2051 } else if (ctl_len) {
2052 if (ctl_len > sizeof(ctl)) {
2053 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2054 if (ctl_buf == NULL)
2055 goto out_freeiov;
2056 }
2057 err = -EFAULT;
2058 /*
2059 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2060 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2061 * checking falls down on this.
2062 */
2063 if (copy_from_user(ctl_buf,
2064 (void __user __force *)msg_sys->msg_control,
2065 ctl_len))
2066 goto out_freectl;
2067 msg_sys->msg_control = ctl_buf;
2068 }
2069 msg_sys->msg_flags = flags;
2070
2071 if (sock->file->f_flags & O_NONBLOCK)
2072 msg_sys->msg_flags |= MSG_DONTWAIT;
2073 /*
2074 * If this is sendmmsg() and current destination address is same as
2075 * previously succeeded address, omit asking LSM's decision.
2076 * used_address->name_len is initialized to UINT_MAX so that the first
2077 * destination address never matches.
2078 */
2079 if (used_address && msg_sys->msg_name &&
2080 used_address->name_len == msg_sys->msg_namelen &&
2081 !memcmp(&used_address->name, msg_sys->msg_name,
2082 used_address->name_len)) {
2083 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2084 goto out_freectl;
2085 }
2086 err = sock_sendmsg(sock, msg_sys, total_len);
2087 /*
2088 * If this is sendmmsg() and sending to current destination address was
2089 * successful, remember it.
2090 */
2091 if (used_address && err >= 0) {
2092 used_address->name_len = msg_sys->msg_namelen;
2093 if (msg_sys->msg_name)
2094 memcpy(&used_address->name, msg_sys->msg_name,
2095 used_address->name_len);
2096 }
2097
2098 out_freectl:
2099 if (ctl_buf != ctl)
2100 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2101 out_freeiov:
2102 if (iov != iovstack)
2103 kfree(iov);
2104 out:
2105 return err;
2106 }
2107
2108 /*
2109 * BSD sendmsg interface
2110 */
2111
2112 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2113 {
2114 int fput_needed, err;
2115 struct msghdr msg_sys;
2116 struct socket *sock;
2117
2118 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2119 if (!sock)
2120 goto out;
2121
2122 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2123
2124 fput_light(sock->file, fput_needed);
2125 out:
2126 return err;
2127 }
2128
2129 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2130 {
2131 if (flags & MSG_CMSG_COMPAT)
2132 return -EINVAL;
2133 return __sys_sendmsg(fd, msg, flags);
2134 }
2135
2136 /*
2137 * Linux sendmmsg interface
2138 */
2139
2140 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2141 unsigned int flags)
2142 {
2143 int fput_needed, err, datagrams;
2144 struct socket *sock;
2145 struct mmsghdr __user *entry;
2146 struct compat_mmsghdr __user *compat_entry;
2147 struct msghdr msg_sys;
2148 struct used_address used_address;
2149
2150 if (vlen > UIO_MAXIOV)
2151 vlen = UIO_MAXIOV;
2152
2153 datagrams = 0;
2154
2155 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2156 if (!sock)
2157 return err;
2158
2159 used_address.name_len = UINT_MAX;
2160 entry = mmsg;
2161 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2162 err = 0;
2163
2164 while (datagrams < vlen) {
2165 if (MSG_CMSG_COMPAT & flags) {
2166 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2167 &msg_sys, flags, &used_address);
2168 if (err < 0)
2169 break;
2170 err = __put_user(err, &compat_entry->msg_len);
2171 ++compat_entry;
2172 } else {
2173 err = ___sys_sendmsg(sock,
2174 (struct msghdr __user *)entry,
2175 &msg_sys, flags, &used_address);
2176 if (err < 0)
2177 break;
2178 err = put_user(err, &entry->msg_len);
2179 ++entry;
2180 }
2181
2182 if (err)
2183 break;
2184 ++datagrams;
2185 }
2186
2187 fput_light(sock->file, fput_needed);
2188
2189 /* We only return an error if no datagrams were able to be sent */
2190 if (datagrams != 0)
2191 return datagrams;
2192
2193 return err;
2194 }
2195
2196 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2197 unsigned int, vlen, unsigned int, flags)
2198 {
2199 if (flags & MSG_CMSG_COMPAT)
2200 return -EINVAL;
2201 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2202 }
2203
2204 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2205 struct msghdr *msg_sys, unsigned int flags, int nosec)
2206 {
2207 struct compat_msghdr __user *msg_compat =
2208 (struct compat_msghdr __user *)msg;
2209 struct iovec iovstack[UIO_FASTIOV];
2210 struct iovec *iov = iovstack;
2211 unsigned long cmsg_ptr;
2212 int err, total_len, len;
2213
2214 /* kernel mode address */
2215 struct sockaddr_storage addr;
2216
2217 /* user mode address pointers */
2218 struct sockaddr __user *uaddr;
2219 int __user *uaddr_len;
2220
2221 if (MSG_CMSG_COMPAT & flags) {
2222 if (get_compat_msghdr(msg_sys, msg_compat))
2223 return -EFAULT;
2224 } else {
2225 err = copy_msghdr_from_user(msg_sys, msg);
2226 if (err)
2227 return err;
2228 }
2229
2230 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2231 err = -EMSGSIZE;
2232 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2233 goto out;
2234 err = -ENOMEM;
2235 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2236 GFP_KERNEL);
2237 if (!iov)
2238 goto out;
2239 }
2240
2241 /* Save the user-mode address (verify_iovec will change the
2242 * kernel msghdr to use the kernel address space)
2243 */
2244 uaddr = (__force void __user *)msg_sys->msg_name;
2245 uaddr_len = COMPAT_NAMELEN(msg);
2246 if (MSG_CMSG_COMPAT & flags)
2247 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2248 else
2249 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2250 if (err < 0)
2251 goto out_freeiov;
2252 total_len = err;
2253
2254 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2255 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2256
2257 /* We assume all kernel code knows the size of sockaddr_storage */
2258 msg_sys->msg_namelen = 0;
2259
2260 if (sock->file->f_flags & O_NONBLOCK)
2261 flags |= MSG_DONTWAIT;
2262 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2263 total_len, flags);
2264 if (err < 0)
2265 goto out_freeiov;
2266 len = err;
2267
2268 if (uaddr != NULL) {
2269 err = move_addr_to_user(&addr,
2270 msg_sys->msg_namelen, uaddr,
2271 uaddr_len);
2272 if (err < 0)
2273 goto out_freeiov;
2274 }
2275 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2276 COMPAT_FLAGS(msg));
2277 if (err)
2278 goto out_freeiov;
2279 if (MSG_CMSG_COMPAT & flags)
2280 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2281 &msg_compat->msg_controllen);
2282 else
2283 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2284 &msg->msg_controllen);
2285 if (err)
2286 goto out_freeiov;
2287 err = len;
2288
2289 out_freeiov:
2290 if (iov != iovstack)
2291 kfree(iov);
2292 out:
2293 return err;
2294 }
2295
2296 /*
2297 * BSD recvmsg interface
2298 */
2299
2300 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2301 {
2302 int fput_needed, err;
2303 struct msghdr msg_sys;
2304 struct socket *sock;
2305
2306 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2307 if (!sock)
2308 goto out;
2309
2310 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2311
2312 fput_light(sock->file, fput_needed);
2313 out:
2314 return err;
2315 }
2316
2317 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2318 unsigned int, flags)
2319 {
2320 if (flags & MSG_CMSG_COMPAT)
2321 return -EINVAL;
2322 return __sys_recvmsg(fd, msg, flags);
2323 }
2324
2325 /*
2326 * Linux recvmmsg interface
2327 */
2328
2329 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2330 unsigned int flags, struct timespec *timeout)
2331 {
2332 int fput_needed, err, datagrams;
2333 struct socket *sock;
2334 struct mmsghdr __user *entry;
2335 struct compat_mmsghdr __user *compat_entry;
2336 struct msghdr msg_sys;
2337 struct timespec end_time;
2338
2339 if (timeout &&
2340 poll_select_set_timeout(&end_time, timeout->tv_sec,
2341 timeout->tv_nsec))
2342 return -EINVAL;
2343
2344 datagrams = 0;
2345
2346 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2347 if (!sock)
2348 return err;
2349
2350 err = sock_error(sock->sk);
2351 if (err)
2352 goto out_put;
2353
2354 entry = mmsg;
2355 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2356
2357 while (datagrams < vlen) {
2358 /*
2359 * No need to ask LSM for more than the first datagram.
2360 */
2361 if (MSG_CMSG_COMPAT & flags) {
2362 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2363 &msg_sys, flags & ~MSG_WAITFORONE,
2364 datagrams);
2365 if (err < 0)
2366 break;
2367 err = __put_user(err, &compat_entry->msg_len);
2368 ++compat_entry;
2369 } else {
2370 err = ___sys_recvmsg(sock,
2371 (struct msghdr __user *)entry,
2372 &msg_sys, flags & ~MSG_WAITFORONE,
2373 datagrams);
2374 if (err < 0)
2375 break;
2376 err = put_user(err, &entry->msg_len);
2377 ++entry;
2378 }
2379
2380 if (err)
2381 break;
2382 ++datagrams;
2383
2384 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2385 if (flags & MSG_WAITFORONE)
2386 flags |= MSG_DONTWAIT;
2387
2388 if (timeout) {
2389 ktime_get_ts(timeout);
2390 *timeout = timespec_sub(end_time, *timeout);
2391 if (timeout->tv_sec < 0) {
2392 timeout->tv_sec = timeout->tv_nsec = 0;
2393 break;
2394 }
2395
2396 /* Timeout, return less than vlen datagrams */
2397 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2398 break;
2399 }
2400
2401 /* Out of band data, return right away */
2402 if (msg_sys.msg_flags & MSG_OOB)
2403 break;
2404 }
2405
2406 out_put:
2407 fput_light(sock->file, fput_needed);
2408
2409 if (err == 0)
2410 return datagrams;
2411
2412 if (datagrams != 0) {
2413 /*
2414 * We may return less entries than requested (vlen) if the
2415 * sock is non block and there aren't enough datagrams...
2416 */
2417 if (err != -EAGAIN) {
2418 /*
2419 * ... or if recvmsg returns an error after we
2420 * received some datagrams, where we record the
2421 * error to return on the next call or if the
2422 * app asks about it using getsockopt(SO_ERROR).
2423 */
2424 sock->sk->sk_err = -err;
2425 }
2426
2427 return datagrams;
2428 }
2429
2430 return err;
2431 }
2432
2433 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2434 unsigned int, vlen, unsigned int, flags,
2435 struct timespec __user *, timeout)
2436 {
2437 int datagrams;
2438 struct timespec timeout_sys;
2439
2440 if (flags & MSG_CMSG_COMPAT)
2441 return -EINVAL;
2442
2443 if (!timeout)
2444 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2445
2446 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2447 return -EFAULT;
2448
2449 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2450
2451 if (datagrams > 0 &&
2452 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2453 datagrams = -EFAULT;
2454
2455 return datagrams;
2456 }
2457
2458 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2459 /* Argument list sizes for sys_socketcall */
2460 #define AL(x) ((x) * sizeof(unsigned long))
2461 static const unsigned char nargs[21] = {
2462 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2463 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2464 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2465 AL(4), AL(5), AL(4)
2466 };
2467
2468 #undef AL
2469
2470 /*
2471 * System call vectors.
2472 *
2473 * Argument checking cleaned up. Saved 20% in size.
2474 * This function doesn't need to set the kernel lock because
2475 * it is set by the callees.
2476 */
2477
2478 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2479 {
2480 unsigned long a[AUDITSC_ARGS];
2481 unsigned long a0, a1;
2482 int err;
2483 unsigned int len;
2484
2485 if (call < 1 || call > SYS_SENDMMSG)
2486 return -EINVAL;
2487
2488 len = nargs[call];
2489 if (len > sizeof(a))
2490 return -EINVAL;
2491
2492 /* copy_from_user should be SMP safe. */
2493 if (copy_from_user(a, args, len))
2494 return -EFAULT;
2495
2496 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2497 if (err)
2498 return err;
2499
2500 a0 = a[0];
2501 a1 = a[1];
2502
2503 switch (call) {
2504 case SYS_SOCKET:
2505 err = sys_socket(a0, a1, a[2]);
2506 break;
2507 case SYS_BIND:
2508 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2509 break;
2510 case SYS_CONNECT:
2511 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2512 break;
2513 case SYS_LISTEN:
2514 err = sys_listen(a0, a1);
2515 break;
2516 case SYS_ACCEPT:
2517 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2518 (int __user *)a[2], 0);
2519 break;
2520 case SYS_GETSOCKNAME:
2521 err =
2522 sys_getsockname(a0, (struct sockaddr __user *)a1,
2523 (int __user *)a[2]);
2524 break;
2525 case SYS_GETPEERNAME:
2526 err =
2527 sys_getpeername(a0, (struct sockaddr __user *)a1,
2528 (int __user *)a[2]);
2529 break;
2530 case SYS_SOCKETPAIR:
2531 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2532 break;
2533 case SYS_SEND:
2534 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2535 break;
2536 case SYS_SENDTO:
2537 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2538 (struct sockaddr __user *)a[4], a[5]);
2539 break;
2540 case SYS_RECV:
2541 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2542 break;
2543 case SYS_RECVFROM:
2544 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2545 (struct sockaddr __user *)a[4],
2546 (int __user *)a[5]);
2547 break;
2548 case SYS_SHUTDOWN:
2549 err = sys_shutdown(a0, a1);
2550 break;
2551 case SYS_SETSOCKOPT:
2552 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2553 break;
2554 case SYS_GETSOCKOPT:
2555 err =
2556 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2557 (int __user *)a[4]);
2558 break;
2559 case SYS_SENDMSG:
2560 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2561 break;
2562 case SYS_SENDMMSG:
2563 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2564 break;
2565 case SYS_RECVMSG:
2566 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2567 break;
2568 case SYS_RECVMMSG:
2569 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2570 (struct timespec __user *)a[4]);
2571 break;
2572 case SYS_ACCEPT4:
2573 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2574 (int __user *)a[2], a[3]);
2575 break;
2576 default:
2577 err = -EINVAL;
2578 break;
2579 }
2580 return err;
2581 }
2582
2583 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2584
2585 /**
2586 * sock_register - add a socket protocol handler
2587 * @ops: description of protocol
2588 *
2589 * This function is called by a protocol handler that wants to
2590 * advertise its address family, and have it linked into the
2591 * socket interface. The value ops->family coresponds to the
2592 * socket system call protocol family.
2593 */
2594 int sock_register(const struct net_proto_family *ops)
2595 {
2596 int err;
2597
2598 if (ops->family >= NPROTO) {
2599 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2600 NPROTO);
2601 return -ENOBUFS;
2602 }
2603
2604 spin_lock(&net_family_lock);
2605 if (rcu_dereference_protected(net_families[ops->family],
2606 lockdep_is_held(&net_family_lock)))
2607 err = -EEXIST;
2608 else {
2609 rcu_assign_pointer(net_families[ops->family], ops);
2610 err = 0;
2611 }
2612 spin_unlock(&net_family_lock);
2613
2614 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2615 return err;
2616 }
2617 EXPORT_SYMBOL(sock_register);
2618
2619 /**
2620 * sock_unregister - remove a protocol handler
2621 * @family: protocol family to remove
2622 *
2623 * This function is called by a protocol handler that wants to
2624 * remove its address family, and have it unlinked from the
2625 * new socket creation.
2626 *
2627 * If protocol handler is a module, then it can use module reference
2628 * counts to protect against new references. If protocol handler is not
2629 * a module then it needs to provide its own protection in
2630 * the ops->create routine.
2631 */
2632 void sock_unregister(int family)
2633 {
2634 BUG_ON(family < 0 || family >= NPROTO);
2635
2636 spin_lock(&net_family_lock);
2637 RCU_INIT_POINTER(net_families[family], NULL);
2638 spin_unlock(&net_family_lock);
2639
2640 synchronize_rcu();
2641
2642 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2643 }
2644 EXPORT_SYMBOL(sock_unregister);
2645
2646 static int __init sock_init(void)
2647 {
2648 int err;
2649 /*
2650 * Initialize the network sysctl infrastructure.
2651 */
2652 err = net_sysctl_init();
2653 if (err)
2654 goto out;
2655
2656 /*
2657 * Initialize skbuff SLAB cache
2658 */
2659 skb_init();
2660
2661 /*
2662 * Initialize the protocols module.
2663 */
2664
2665 init_inodecache();
2666
2667 err = register_filesystem(&sock_fs_type);
2668 if (err)
2669 goto out_fs;
2670 sock_mnt = kern_mount(&sock_fs_type);
2671 if (IS_ERR(sock_mnt)) {
2672 err = PTR_ERR(sock_mnt);
2673 goto out_mount;
2674 }
2675
2676 /* The real protocol initialization is performed in later initcalls.
2677 */
2678
2679 #ifdef CONFIG_NETFILTER
2680 err = netfilter_init();
2681 if (err)
2682 goto out;
2683 #endif
2684
2685 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2686 skb_timestamping_init();
2687 #endif
2688
2689 out:
2690 return err;
2691
2692 out_mount:
2693 unregister_filesystem(&sock_fs_type);
2694 out_fs:
2695 goto out;
2696 }
2697
2698 core_initcall(sock_init); /* early initcall */
2699
2700 #ifdef CONFIG_PROC_FS
2701 void socket_seq_show(struct seq_file *seq)
2702 {
2703 int cpu;
2704 int counter = 0;
2705
2706 for_each_possible_cpu(cpu)
2707 counter += per_cpu(sockets_in_use, cpu);
2708
2709 /* It can be negative, by the way. 8) */
2710 if (counter < 0)
2711 counter = 0;
2712
2713 seq_printf(seq, "sockets: used %d\n", counter);
2714 }
2715 #endif /* CONFIG_PROC_FS */
2716
2717 #ifdef CONFIG_COMPAT
2718 static int do_siocgstamp(struct net *net, struct socket *sock,
2719 unsigned int cmd, void __user *up)
2720 {
2721 mm_segment_t old_fs = get_fs();
2722 struct timeval ktv;
2723 int err;
2724
2725 set_fs(KERNEL_DS);
2726 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2727 set_fs(old_fs);
2728 if (!err)
2729 err = compat_put_timeval(&ktv, up);
2730
2731 return err;
2732 }
2733
2734 static int do_siocgstampns(struct net *net, struct socket *sock,
2735 unsigned int cmd, void __user *up)
2736 {
2737 mm_segment_t old_fs = get_fs();
2738 struct timespec kts;
2739 int err;
2740
2741 set_fs(KERNEL_DS);
2742 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2743 set_fs(old_fs);
2744 if (!err)
2745 err = compat_put_timespec(&kts, up);
2746
2747 return err;
2748 }
2749
2750 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2751 {
2752 struct ifreq __user *uifr;
2753 int err;
2754
2755 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2756 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2757 return -EFAULT;
2758
2759 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2760 if (err)
2761 return err;
2762
2763 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2764 return -EFAULT;
2765
2766 return 0;
2767 }
2768
2769 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2770 {
2771 struct compat_ifconf ifc32;
2772 struct ifconf ifc;
2773 struct ifconf __user *uifc;
2774 struct compat_ifreq __user *ifr32;
2775 struct ifreq __user *ifr;
2776 unsigned int i, j;
2777 int err;
2778
2779 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2780 return -EFAULT;
2781
2782 memset(&ifc, 0, sizeof(ifc));
2783 if (ifc32.ifcbuf == 0) {
2784 ifc32.ifc_len = 0;
2785 ifc.ifc_len = 0;
2786 ifc.ifc_req = NULL;
2787 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2788 } else {
2789 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2790 sizeof(struct ifreq);
2791 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2792 ifc.ifc_len = len;
2793 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2794 ifr32 = compat_ptr(ifc32.ifcbuf);
2795 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2796 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2797 return -EFAULT;
2798 ifr++;
2799 ifr32++;
2800 }
2801 }
2802 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2803 return -EFAULT;
2804
2805 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2806 if (err)
2807 return err;
2808
2809 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2810 return -EFAULT;
2811
2812 ifr = ifc.ifc_req;
2813 ifr32 = compat_ptr(ifc32.ifcbuf);
2814 for (i = 0, j = 0;
2815 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2816 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2817 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2818 return -EFAULT;
2819 ifr32++;
2820 ifr++;
2821 }
2822
2823 if (ifc32.ifcbuf == 0) {
2824 /* Translate from 64-bit structure multiple to
2825 * a 32-bit one.
2826 */
2827 i = ifc.ifc_len;
2828 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2829 ifc32.ifc_len = i;
2830 } else {
2831 ifc32.ifc_len = i;
2832 }
2833 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2834 return -EFAULT;
2835
2836 return 0;
2837 }
2838
2839 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2840 {
2841 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2842 bool convert_in = false, convert_out = false;
2843 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2844 struct ethtool_rxnfc __user *rxnfc;
2845 struct ifreq __user *ifr;
2846 u32 rule_cnt = 0, actual_rule_cnt;
2847 u32 ethcmd;
2848 u32 data;
2849 int ret;
2850
2851 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2852 return -EFAULT;
2853
2854 compat_rxnfc = compat_ptr(data);
2855
2856 if (get_user(ethcmd, &compat_rxnfc->cmd))
2857 return -EFAULT;
2858
2859 /* Most ethtool structures are defined without padding.
2860 * Unfortunately struct ethtool_rxnfc is an exception.
2861 */
2862 switch (ethcmd) {
2863 default:
2864 break;
2865 case ETHTOOL_GRXCLSRLALL:
2866 /* Buffer size is variable */
2867 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2868 return -EFAULT;
2869 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2870 return -ENOMEM;
2871 buf_size += rule_cnt * sizeof(u32);
2872 /* fall through */
2873 case ETHTOOL_GRXRINGS:
2874 case ETHTOOL_GRXCLSRLCNT:
2875 case ETHTOOL_GRXCLSRULE:
2876 case ETHTOOL_SRXCLSRLINS:
2877 convert_out = true;
2878 /* fall through */
2879 case ETHTOOL_SRXCLSRLDEL:
2880 buf_size += sizeof(struct ethtool_rxnfc);
2881 convert_in = true;
2882 break;
2883 }
2884
2885 ifr = compat_alloc_user_space(buf_size);
2886 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2887
2888 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2889 return -EFAULT;
2890
2891 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2892 &ifr->ifr_ifru.ifru_data))
2893 return -EFAULT;
2894
2895 if (convert_in) {
2896 /* We expect there to be holes between fs.m_ext and
2897 * fs.ring_cookie and at the end of fs, but nowhere else.
2898 */
2899 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2900 sizeof(compat_rxnfc->fs.m_ext) !=
2901 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2902 sizeof(rxnfc->fs.m_ext));
2903 BUILD_BUG_ON(
2904 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2905 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2906 offsetof(struct ethtool_rxnfc, fs.location) -
2907 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2908
2909 if (copy_in_user(rxnfc, compat_rxnfc,
2910 (void __user *)(&rxnfc->fs.m_ext + 1) -
2911 (void __user *)rxnfc) ||
2912 copy_in_user(&rxnfc->fs.ring_cookie,
2913 &compat_rxnfc->fs.ring_cookie,
2914 (void __user *)(&rxnfc->fs.location + 1) -
2915 (void __user *)&rxnfc->fs.ring_cookie) ||
2916 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2917 sizeof(rxnfc->rule_cnt)))
2918 return -EFAULT;
2919 }
2920
2921 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2922 if (ret)
2923 return ret;
2924
2925 if (convert_out) {
2926 if (copy_in_user(compat_rxnfc, rxnfc,
2927 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2928 (const void __user *)rxnfc) ||
2929 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2930 &rxnfc->fs.ring_cookie,
2931 (const void __user *)(&rxnfc->fs.location + 1) -
2932 (const void __user *)&rxnfc->fs.ring_cookie) ||
2933 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2934 sizeof(rxnfc->rule_cnt)))
2935 return -EFAULT;
2936
2937 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2938 /* As an optimisation, we only copy the actual
2939 * number of rules that the underlying
2940 * function returned. Since Mallory might
2941 * change the rule count in user memory, we
2942 * check that it is less than the rule count
2943 * originally given (as the user buffer size),
2944 * which has been range-checked.
2945 */
2946 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2947 return -EFAULT;
2948 if (actual_rule_cnt < rule_cnt)
2949 rule_cnt = actual_rule_cnt;
2950 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2951 &rxnfc->rule_locs[0],
2952 rule_cnt * sizeof(u32)))
2953 return -EFAULT;
2954 }
2955 }
2956
2957 return 0;
2958 }
2959
2960 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2961 {
2962 void __user *uptr;
2963 compat_uptr_t uptr32;
2964 struct ifreq __user *uifr;
2965
2966 uifr = compat_alloc_user_space(sizeof(*uifr));
2967 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2968 return -EFAULT;
2969
2970 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2971 return -EFAULT;
2972
2973 uptr = compat_ptr(uptr32);
2974
2975 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2976 return -EFAULT;
2977
2978 return dev_ioctl(net, SIOCWANDEV, uifr);
2979 }
2980
2981 static int bond_ioctl(struct net *net, unsigned int cmd,
2982 struct compat_ifreq __user *ifr32)
2983 {
2984 struct ifreq kifr;
2985 mm_segment_t old_fs;
2986 int err;
2987
2988 switch (cmd) {
2989 case SIOCBONDENSLAVE:
2990 case SIOCBONDRELEASE:
2991 case SIOCBONDSETHWADDR:
2992 case SIOCBONDCHANGEACTIVE:
2993 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2994 return -EFAULT;
2995
2996 old_fs = get_fs();
2997 set_fs(KERNEL_DS);
2998 err = dev_ioctl(net, cmd,
2999 (struct ifreq __user __force *) &kifr);
3000 set_fs(old_fs);
3001
3002 return err;
3003 default:
3004 return -ENOIOCTLCMD;
3005 }
3006 }
3007
3008 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3009 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3010 struct compat_ifreq __user *u_ifreq32)
3011 {
3012 struct ifreq __user *u_ifreq64;
3013 char tmp_buf[IFNAMSIZ];
3014 void __user *data64;
3015 u32 data32;
3016
3017 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3018 IFNAMSIZ))
3019 return -EFAULT;
3020 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3021 return -EFAULT;
3022 data64 = compat_ptr(data32);
3023
3024 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3025
3026 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3027 IFNAMSIZ))
3028 return -EFAULT;
3029 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3030 return -EFAULT;
3031
3032 return dev_ioctl(net, cmd, u_ifreq64);
3033 }
3034
3035 static int dev_ifsioc(struct net *net, struct socket *sock,
3036 unsigned int cmd, struct compat_ifreq __user *uifr32)
3037 {
3038 struct ifreq __user *uifr;
3039 int err;
3040
3041 uifr = compat_alloc_user_space(sizeof(*uifr));
3042 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3043 return -EFAULT;
3044
3045 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3046
3047 if (!err) {
3048 switch (cmd) {
3049 case SIOCGIFFLAGS:
3050 case SIOCGIFMETRIC:
3051 case SIOCGIFMTU:
3052 case SIOCGIFMEM:
3053 case SIOCGIFHWADDR:
3054 case SIOCGIFINDEX:
3055 case SIOCGIFADDR:
3056 case SIOCGIFBRDADDR:
3057 case SIOCGIFDSTADDR:
3058 case SIOCGIFNETMASK:
3059 case SIOCGIFPFLAGS:
3060 case SIOCGIFTXQLEN:
3061 case SIOCGMIIPHY:
3062 case SIOCGMIIREG:
3063 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3064 err = -EFAULT;
3065 break;
3066 }
3067 }
3068 return err;
3069 }
3070
3071 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3072 struct compat_ifreq __user *uifr32)
3073 {
3074 struct ifreq ifr;
3075 struct compat_ifmap __user *uifmap32;
3076 mm_segment_t old_fs;
3077 int err;
3078
3079 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3080 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3081 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3082 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3083 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3084 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3085 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3086 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3087 if (err)
3088 return -EFAULT;
3089
3090 old_fs = get_fs();
3091 set_fs(KERNEL_DS);
3092 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3093 set_fs(old_fs);
3094
3095 if (cmd == SIOCGIFMAP && !err) {
3096 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3097 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3098 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3099 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3100 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3101 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3102 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3103 if (err)
3104 err = -EFAULT;
3105 }
3106 return err;
3107 }
3108
3109 struct rtentry32 {
3110 u32 rt_pad1;
3111 struct sockaddr rt_dst; /* target address */
3112 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3113 struct sockaddr rt_genmask; /* target network mask (IP) */
3114 unsigned short rt_flags;
3115 short rt_pad2;
3116 u32 rt_pad3;
3117 unsigned char rt_tos;
3118 unsigned char rt_class;
3119 short rt_pad4;
3120 short rt_metric; /* +1 for binary compatibility! */
3121 /* char * */ u32 rt_dev; /* forcing the device at add */
3122 u32 rt_mtu; /* per route MTU/Window */
3123 u32 rt_window; /* Window clamping */
3124 unsigned short rt_irtt; /* Initial RTT */
3125 };
3126
3127 struct in6_rtmsg32 {
3128 struct in6_addr rtmsg_dst;
3129 struct in6_addr rtmsg_src;
3130 struct in6_addr rtmsg_gateway;
3131 u32 rtmsg_type;
3132 u16 rtmsg_dst_len;
3133 u16 rtmsg_src_len;
3134 u32 rtmsg_metric;
3135 u32 rtmsg_info;
3136 u32 rtmsg_flags;
3137 s32 rtmsg_ifindex;
3138 };
3139
3140 static int routing_ioctl(struct net *net, struct socket *sock,
3141 unsigned int cmd, void __user *argp)
3142 {
3143 int ret;
3144 void *r = NULL;
3145 struct in6_rtmsg r6;
3146 struct rtentry r4;
3147 char devname[16];
3148 u32 rtdev;
3149 mm_segment_t old_fs = get_fs();
3150
3151 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3152 struct in6_rtmsg32 __user *ur6 = argp;
3153 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3154 3 * sizeof(struct in6_addr));
3155 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3156 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3157 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3158 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3159 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3160 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3161 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3162
3163 r = (void *) &r6;
3164 } else { /* ipv4 */
3165 struct rtentry32 __user *ur4 = argp;
3166 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3167 3 * sizeof(struct sockaddr));
3168 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3169 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3170 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3171 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3172 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3173 ret |= get_user(rtdev, &(ur4->rt_dev));
3174 if (rtdev) {
3175 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3176 r4.rt_dev = (char __user __force *)devname;
3177 devname[15] = 0;
3178 } else
3179 r4.rt_dev = NULL;
3180
3181 r = (void *) &r4;
3182 }
3183
3184 if (ret) {
3185 ret = -EFAULT;
3186 goto out;
3187 }
3188
3189 set_fs(KERNEL_DS);
3190 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3191 set_fs(old_fs);
3192
3193 out:
3194 return ret;
3195 }
3196
3197 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3198 * for some operations; this forces use of the newer bridge-utils that
3199 * use compatible ioctls
3200 */
3201 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3202 {
3203 compat_ulong_t tmp;
3204
3205 if (get_user(tmp, argp))
3206 return -EFAULT;
3207 if (tmp == BRCTL_GET_VERSION)
3208 return BRCTL_VERSION + 1;
3209 return -EINVAL;
3210 }
3211
3212 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3213 unsigned int cmd, unsigned long arg)
3214 {
3215 void __user *argp = compat_ptr(arg);
3216 struct sock *sk = sock->sk;
3217 struct net *net = sock_net(sk);
3218
3219 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3220 return compat_ifr_data_ioctl(net, cmd, argp);
3221
3222 switch (cmd) {
3223 case SIOCSIFBR:
3224 case SIOCGIFBR:
3225 return old_bridge_ioctl(argp);
3226 case SIOCGIFNAME:
3227 return dev_ifname32(net, argp);
3228 case SIOCGIFCONF:
3229 return dev_ifconf(net, argp);
3230 case SIOCETHTOOL:
3231 return ethtool_ioctl(net, argp);
3232 case SIOCWANDEV:
3233 return compat_siocwandev(net, argp);
3234 case SIOCGIFMAP:
3235 case SIOCSIFMAP:
3236 return compat_sioc_ifmap(net, cmd, argp);
3237 case SIOCBONDENSLAVE:
3238 case SIOCBONDRELEASE:
3239 case SIOCBONDSETHWADDR:
3240 case SIOCBONDCHANGEACTIVE:
3241 return bond_ioctl(net, cmd, argp);
3242 case SIOCADDRT:
3243 case SIOCDELRT:
3244 return routing_ioctl(net, sock, cmd, argp);
3245 case SIOCGSTAMP:
3246 return do_siocgstamp(net, sock, cmd, argp);
3247 case SIOCGSTAMPNS:
3248 return do_siocgstampns(net, sock, cmd, argp);
3249 case SIOCBONDSLAVEINFOQUERY:
3250 case SIOCBONDINFOQUERY:
3251 case SIOCSHWTSTAMP:
3252 case SIOCGHWTSTAMP:
3253 return compat_ifr_data_ioctl(net, cmd, argp);
3254
3255 case FIOSETOWN:
3256 case SIOCSPGRP:
3257 case FIOGETOWN:
3258 case SIOCGPGRP:
3259 case SIOCBRADDBR:
3260 case SIOCBRDELBR:
3261 case SIOCGIFVLAN:
3262 case SIOCSIFVLAN:
3263 case SIOCADDDLCI:
3264 case SIOCDELDLCI:
3265 return sock_ioctl(file, cmd, arg);
3266
3267 case SIOCGIFFLAGS:
3268 case SIOCSIFFLAGS:
3269 case SIOCGIFMETRIC:
3270 case SIOCSIFMETRIC:
3271 case SIOCGIFMTU:
3272 case SIOCSIFMTU:
3273 case SIOCGIFMEM:
3274 case SIOCSIFMEM:
3275 case SIOCGIFHWADDR:
3276 case SIOCSIFHWADDR:
3277 case SIOCADDMULTI:
3278 case SIOCDELMULTI:
3279 case SIOCGIFINDEX:
3280 case SIOCGIFADDR:
3281 case SIOCSIFADDR:
3282 case SIOCSIFHWBROADCAST:
3283 case SIOCDIFADDR:
3284 case SIOCGIFBRDADDR:
3285 case SIOCSIFBRDADDR:
3286 case SIOCGIFDSTADDR:
3287 case SIOCSIFDSTADDR:
3288 case SIOCGIFNETMASK:
3289 case SIOCSIFNETMASK:
3290 case SIOCSIFPFLAGS:
3291 case SIOCGIFPFLAGS:
3292 case SIOCGIFTXQLEN:
3293 case SIOCSIFTXQLEN:
3294 case SIOCBRADDIF:
3295 case SIOCBRDELIF:
3296 case SIOCSIFNAME:
3297 case SIOCGMIIPHY:
3298 case SIOCGMIIREG:
3299 case SIOCSMIIREG:
3300 return dev_ifsioc(net, sock, cmd, argp);
3301
3302 case SIOCSARP:
3303 case SIOCGARP:
3304 case SIOCDARP:
3305 case SIOCATMARK:
3306 return sock_do_ioctl(net, sock, cmd, arg);
3307 }
3308
3309 return -ENOIOCTLCMD;
3310 }
3311
3312 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3313 unsigned long arg)
3314 {
3315 struct socket *sock = file->private_data;
3316 int ret = -ENOIOCTLCMD;
3317 struct sock *sk;
3318 struct net *net;
3319
3320 sk = sock->sk;
3321 net = sock_net(sk);
3322
3323 if (sock->ops->compat_ioctl)
3324 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3325
3326 if (ret == -ENOIOCTLCMD &&
3327 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3328 ret = compat_wext_handle_ioctl(net, cmd, arg);
3329
3330 if (ret == -ENOIOCTLCMD)
3331 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3332
3333 return ret;
3334 }
3335 #endif
3336
3337 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3338 {
3339 return sock->ops->bind(sock, addr, addrlen);
3340 }
3341 EXPORT_SYMBOL(kernel_bind);
3342
3343 int kernel_listen(struct socket *sock, int backlog)
3344 {
3345 return sock->ops->listen(sock, backlog);
3346 }
3347 EXPORT_SYMBOL(kernel_listen);
3348
3349 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3350 {
3351 struct sock *sk = sock->sk;
3352 int err;
3353
3354 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3355 newsock);
3356 if (err < 0)
3357 goto done;
3358
3359 err = sock->ops->accept(sock, *newsock, flags);
3360 if (err < 0) {
3361 sock_release(*newsock);
3362 *newsock = NULL;
3363 goto done;
3364 }
3365
3366 (*newsock)->ops = sock->ops;
3367 __module_get((*newsock)->ops->owner);
3368
3369 done:
3370 return err;
3371 }
3372 EXPORT_SYMBOL(kernel_accept);
3373
3374 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3375 int flags)
3376 {
3377 return sock->ops->connect(sock, addr, addrlen, flags);
3378 }
3379 EXPORT_SYMBOL(kernel_connect);
3380
3381 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3382 int *addrlen)
3383 {
3384 return sock->ops->getname(sock, addr, addrlen, 0);
3385 }
3386 EXPORT_SYMBOL(kernel_getsockname);
3387
3388 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3389 int *addrlen)
3390 {
3391 return sock->ops->getname(sock, addr, addrlen, 1);
3392 }
3393 EXPORT_SYMBOL(kernel_getpeername);
3394
3395 int kernel_getsockopt(struct socket *sock, int level, int optname,
3396 char *optval, int *optlen)
3397 {
3398 mm_segment_t oldfs = get_fs();
3399 char __user *uoptval;
3400 int __user *uoptlen;
3401 int err;
3402
3403 uoptval = (char __user __force *) optval;
3404 uoptlen = (int __user __force *) optlen;
3405
3406 set_fs(KERNEL_DS);
3407 if (level == SOL_SOCKET)
3408 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3409 else
3410 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3411 uoptlen);
3412 set_fs(oldfs);
3413 return err;
3414 }
3415 EXPORT_SYMBOL(kernel_getsockopt);
3416
3417 int kernel_setsockopt(struct socket *sock, int level, int optname,
3418 char *optval, unsigned int optlen)
3419 {
3420 mm_segment_t oldfs = get_fs();
3421 char __user *uoptval;
3422 int err;
3423
3424 uoptval = (char __user __force *) optval;
3425
3426 set_fs(KERNEL_DS);
3427 if (level == SOL_SOCKET)
3428 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3429 else
3430 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3431 optlen);
3432 set_fs(oldfs);
3433 return err;
3434 }
3435 EXPORT_SYMBOL(kernel_setsockopt);
3436
3437 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3438 size_t size, int flags)
3439 {
3440 if (sock->ops->sendpage)
3441 return sock->ops->sendpage(sock, page, offset, size, flags);
3442
3443 return sock_no_sendpage(sock, page, offset, size, flags);
3444 }
3445 EXPORT_SYMBOL(kernel_sendpage);
3446
3447 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3448 {
3449 mm_segment_t oldfs = get_fs();
3450 int err;
3451
3452 set_fs(KERNEL_DS);
3453 err = sock->ops->ioctl(sock, cmd, arg);
3454 set_fs(oldfs);
3455
3456 return err;
3457 }
3458 EXPORT_SYMBOL(kernel_sock_ioctl);
3459
3460 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3461 {
3462 return sock->ops->shutdown(sock, how);
3463 }
3464 EXPORT_SYMBOL(kernel_sock_shutdown);