]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/socket.c
KVM: x86: Wrong flags on CMPS and SCAS emulation
[mirror_ubuntu-bionic-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
117 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
118 unsigned long nr_segs, loff_t pos);
119 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
120 unsigned long nr_segs, loff_t pos);
121 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
122
123 static int sock_close(struct inode *inode, struct file *file);
124 static unsigned int sock_poll(struct file *file,
125 struct poll_table_struct *wait);
126 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
127 #ifdef CONFIG_COMPAT
128 static long compat_sock_ioctl(struct file *file,
129 unsigned int cmd, unsigned long arg);
130 #endif
131 static int sock_fasync(int fd, struct file *filp, int on);
132 static ssize_t sock_sendpage(struct file *file, struct page *page,
133 int offset, size_t size, loff_t *ppos, int more);
134 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
135 struct pipe_inode_info *pipe, size_t len,
136 unsigned int flags);
137
138 /*
139 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
140 * in the operation structures but are done directly via the socketcall() multiplexor.
141 */
142
143 static const struct file_operations socket_file_ops = {
144 .owner = THIS_MODULE,
145 .llseek = no_llseek,
146 .aio_read = sock_aio_read,
147 .aio_write = sock_aio_write,
148 .poll = sock_poll,
149 .unlocked_ioctl = sock_ioctl,
150 #ifdef CONFIG_COMPAT
151 .compat_ioctl = compat_sock_ioctl,
152 #endif
153 .mmap = sock_mmap,
154 .open = sock_no_open, /* special open code to disallow open via /proc */
155 .release = sock_close,
156 .fasync = sock_fasync,
157 .sendpage = sock_sendpage,
158 .splice_write = generic_splice_sendpage,
159 .splice_read = sock_splice_read,
160 };
161
162 /*
163 * The protocol list. Each protocol is registered in here.
164 */
165
166 static DEFINE_SPINLOCK(net_family_lock);
167 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
168
169 /*
170 * Statistics counters of the socket lists
171 */
172
173 static DEFINE_PER_CPU(int, sockets_in_use);
174
175 /*
176 * Support routines.
177 * Move socket addresses back and forth across the kernel/user
178 * divide and look after the messy bits.
179 */
180
181 /**
182 * move_addr_to_kernel - copy a socket address into kernel space
183 * @uaddr: Address in user space
184 * @kaddr: Address in kernel space
185 * @ulen: Length in user space
186 *
187 * The address is copied into kernel space. If the provided address is
188 * too long an error code of -EINVAL is returned. If the copy gives
189 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 */
191
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 return -EINVAL;
196 if (ulen == 0)
197 return 0;
198 if (copy_from_user(kaddr, uaddr, ulen))
199 return -EFAULT;
200 return audit_sockaddr(ulen, kaddr);
201 }
202
203 /**
204 * move_addr_to_user - copy an address to user space
205 * @kaddr: kernel space address
206 * @klen: length of address in kernel
207 * @uaddr: user space address
208 * @ulen: pointer to user length field
209 *
210 * The value pointed to by ulen on entry is the buffer length available.
211 * This is overwritten with the buffer space used. -EINVAL is returned
212 * if an overlong buffer is specified or a negative buffer size. -EFAULT
213 * is returned if either the buffer or the length field are not
214 * accessible.
215 * After copying the data up to the limit the user specifies, the true
216 * length of the data is written over the length limit the user
217 * specified. Zero is returned for a success.
218 */
219
220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 void __user *uaddr, int __user *ulen)
222 {
223 int err;
224 int len;
225
226 BUG_ON(klen > sizeof(struct sockaddr_storage));
227 err = get_user(len, ulen);
228 if (err)
229 return err;
230 if (len > klen)
231 len = klen;
232 if (len < 0)
233 return -EINVAL;
234 if (len) {
235 if (audit_sockaddr(klen, kaddr))
236 return -ENOMEM;
237 if (copy_to_user(uaddr, kaddr, len))
238 return -EFAULT;
239 }
240 /*
241 * "fromlen shall refer to the value before truncation.."
242 * 1003.1g
243 */
244 return __put_user(klen, ulen);
245 }
246
247 static struct kmem_cache *sock_inode_cachep __read_mostly;
248
249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 struct socket_alloc *ei;
252 struct socket_wq *wq;
253
254 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
255 if (!ei)
256 return NULL;
257 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
258 if (!wq) {
259 kmem_cache_free(sock_inode_cachep, ei);
260 return NULL;
261 }
262 init_waitqueue_head(&wq->wait);
263 wq->fasync_list = NULL;
264 RCU_INIT_POINTER(ei->socket.wq, wq);
265
266 ei->socket.state = SS_UNCONNECTED;
267 ei->socket.flags = 0;
268 ei->socket.ops = NULL;
269 ei->socket.sk = NULL;
270 ei->socket.file = NULL;
271
272 return &ei->vfs_inode;
273 }
274
275 static void sock_destroy_inode(struct inode *inode)
276 {
277 struct socket_alloc *ei;
278 struct socket_wq *wq;
279
280 ei = container_of(inode, struct socket_alloc, vfs_inode);
281 wq = rcu_dereference_protected(ei->socket.wq, 1);
282 kfree_rcu(wq, rcu);
283 kmem_cache_free(sock_inode_cachep, ei);
284 }
285
286 static void init_once(void *foo)
287 {
288 struct socket_alloc *ei = (struct socket_alloc *)foo;
289
290 inode_init_once(&ei->vfs_inode);
291 }
292
293 static int init_inodecache(void)
294 {
295 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
296 sizeof(struct socket_alloc),
297 0,
298 (SLAB_HWCACHE_ALIGN |
299 SLAB_RECLAIM_ACCOUNT |
300 SLAB_MEM_SPREAD),
301 init_once);
302 if (sock_inode_cachep == NULL)
303 return -ENOMEM;
304 return 0;
305 }
306
307 static const struct super_operations sockfs_ops = {
308 .alloc_inode = sock_alloc_inode,
309 .destroy_inode = sock_destroy_inode,
310 .statfs = simple_statfs,
311 };
312
313 /*
314 * sockfs_dname() is called from d_path().
315 */
316 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
317 {
318 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
319 dentry->d_inode->i_ino);
320 }
321
322 static const struct dentry_operations sockfs_dentry_operations = {
323 .d_dname = sockfs_dname,
324 };
325
326 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
327 int flags, const char *dev_name, void *data)
328 {
329 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
330 &sockfs_dentry_operations, SOCKFS_MAGIC);
331 }
332
333 static struct vfsmount *sock_mnt __read_mostly;
334
335 static struct file_system_type sock_fs_type = {
336 .name = "sockfs",
337 .mount = sockfs_mount,
338 .kill_sb = kill_anon_super,
339 };
340
341 /*
342 * Obtains the first available file descriptor and sets it up for use.
343 *
344 * These functions create file structures and maps them to fd space
345 * of the current process. On success it returns file descriptor
346 * and file struct implicitly stored in sock->file.
347 * Note that another thread may close file descriptor before we return
348 * from this function. We use the fact that now we do not refer
349 * to socket after mapping. If one day we will need it, this
350 * function will increment ref. count on file by 1.
351 *
352 * In any case returned fd MAY BE not valid!
353 * This race condition is unavoidable
354 * with shared fd spaces, we cannot solve it inside kernel,
355 * but we take care of internal coherence yet.
356 */
357
358 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
359 {
360 struct qstr name = { .name = "" };
361 struct path path;
362 struct file *file;
363
364 if (dname) {
365 name.name = dname;
366 name.len = strlen(name.name);
367 } else if (sock->sk) {
368 name.name = sock->sk->sk_prot_creator->name;
369 name.len = strlen(name.name);
370 }
371 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
372 if (unlikely(!path.dentry))
373 return ERR_PTR(-ENOMEM);
374 path.mnt = mntget(sock_mnt);
375
376 d_instantiate(path.dentry, SOCK_INODE(sock));
377 SOCK_INODE(sock)->i_fop = &socket_file_ops;
378
379 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
380 &socket_file_ops);
381 if (unlikely(IS_ERR(file))) {
382 /* drop dentry, keep inode */
383 ihold(path.dentry->d_inode);
384 path_put(&path);
385 return file;
386 }
387
388 sock->file = file;
389 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
390 file->private_data = sock;
391 return file;
392 }
393 EXPORT_SYMBOL(sock_alloc_file);
394
395 static int sock_map_fd(struct socket *sock, int flags)
396 {
397 struct file *newfile;
398 int fd = get_unused_fd_flags(flags);
399 if (unlikely(fd < 0))
400 return fd;
401
402 newfile = sock_alloc_file(sock, flags, NULL);
403 if (likely(!IS_ERR(newfile))) {
404 fd_install(fd, newfile);
405 return fd;
406 }
407
408 put_unused_fd(fd);
409 return PTR_ERR(newfile);
410 }
411
412 struct socket *sock_from_file(struct file *file, int *err)
413 {
414 if (file->f_op == &socket_file_ops)
415 return file->private_data; /* set in sock_map_fd */
416
417 *err = -ENOTSOCK;
418 return NULL;
419 }
420 EXPORT_SYMBOL(sock_from_file);
421
422 /**
423 * sockfd_lookup - Go from a file number to its socket slot
424 * @fd: file handle
425 * @err: pointer to an error code return
426 *
427 * The file handle passed in is locked and the socket it is bound
428 * too is returned. If an error occurs the err pointer is overwritten
429 * with a negative errno code and NULL is returned. The function checks
430 * for both invalid handles and passing a handle which is not a socket.
431 *
432 * On a success the socket object pointer is returned.
433 */
434
435 struct socket *sockfd_lookup(int fd, int *err)
436 {
437 struct file *file;
438 struct socket *sock;
439
440 file = fget(fd);
441 if (!file) {
442 *err = -EBADF;
443 return NULL;
444 }
445
446 sock = sock_from_file(file, err);
447 if (!sock)
448 fput(file);
449 return sock;
450 }
451 EXPORT_SYMBOL(sockfd_lookup);
452
453 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
454 {
455 struct fd f = fdget(fd);
456 struct socket *sock;
457
458 *err = -EBADF;
459 if (f.file) {
460 sock = sock_from_file(f.file, err);
461 if (likely(sock)) {
462 *fput_needed = f.flags;
463 return sock;
464 }
465 fdput(f);
466 }
467 return NULL;
468 }
469
470 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
471 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
472 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
473 static ssize_t sockfs_getxattr(struct dentry *dentry,
474 const char *name, void *value, size_t size)
475 {
476 const char *proto_name;
477 size_t proto_size;
478 int error;
479
480 error = -ENODATA;
481 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
482 proto_name = dentry->d_name.name;
483 proto_size = strlen(proto_name);
484
485 if (value) {
486 error = -ERANGE;
487 if (proto_size + 1 > size)
488 goto out;
489
490 strncpy(value, proto_name, proto_size + 1);
491 }
492 error = proto_size + 1;
493 }
494
495 out:
496 return error;
497 }
498
499 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
500 size_t size)
501 {
502 ssize_t len;
503 ssize_t used = 0;
504
505 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
506 if (len < 0)
507 return len;
508 used += len;
509 if (buffer) {
510 if (size < used)
511 return -ERANGE;
512 buffer += len;
513 }
514
515 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
516 used += len;
517 if (buffer) {
518 if (size < used)
519 return -ERANGE;
520 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
521 buffer += len;
522 }
523
524 return used;
525 }
526
527 static const struct inode_operations sockfs_inode_ops = {
528 .getxattr = sockfs_getxattr,
529 .listxattr = sockfs_listxattr,
530 };
531
532 /**
533 * sock_alloc - allocate a socket
534 *
535 * Allocate a new inode and socket object. The two are bound together
536 * and initialised. The socket is then returned. If we are out of inodes
537 * NULL is returned.
538 */
539
540 static struct socket *sock_alloc(void)
541 {
542 struct inode *inode;
543 struct socket *sock;
544
545 inode = new_inode_pseudo(sock_mnt->mnt_sb);
546 if (!inode)
547 return NULL;
548
549 sock = SOCKET_I(inode);
550
551 kmemcheck_annotate_bitfield(sock, type);
552 inode->i_ino = get_next_ino();
553 inode->i_mode = S_IFSOCK | S_IRWXUGO;
554 inode->i_uid = current_fsuid();
555 inode->i_gid = current_fsgid();
556 inode->i_op = &sockfs_inode_ops;
557
558 this_cpu_add(sockets_in_use, 1);
559 return sock;
560 }
561
562 /*
563 * In theory you can't get an open on this inode, but /proc provides
564 * a back door. Remember to keep it shut otherwise you'll let the
565 * creepy crawlies in.
566 */
567
568 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
569 {
570 return -ENXIO;
571 }
572
573 const struct file_operations bad_sock_fops = {
574 .owner = THIS_MODULE,
575 .open = sock_no_open,
576 .llseek = noop_llseek,
577 };
578
579 /**
580 * sock_release - close a socket
581 * @sock: socket to close
582 *
583 * The socket is released from the protocol stack if it has a release
584 * callback, and the inode is then released if the socket is bound to
585 * an inode not a file.
586 */
587
588 void sock_release(struct socket *sock)
589 {
590 if (sock->ops) {
591 struct module *owner = sock->ops->owner;
592
593 sock->ops->release(sock);
594 sock->ops = NULL;
595 module_put(owner);
596 }
597
598 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
599 pr_err("%s: fasync list not empty!\n", __func__);
600
601 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
602 return;
603
604 this_cpu_sub(sockets_in_use, 1);
605 if (!sock->file) {
606 iput(SOCK_INODE(sock));
607 return;
608 }
609 sock->file = NULL;
610 }
611 EXPORT_SYMBOL(sock_release);
612
613 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
614 {
615 u8 flags = *tx_flags;
616
617 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
618 flags |= SKBTX_HW_TSTAMP;
619
620 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
621 flags |= SKBTX_SW_TSTAMP;
622
623 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
624 flags |= SKBTX_SCHED_TSTAMP;
625
626 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
627 flags |= SKBTX_ACK_TSTAMP;
628
629 *tx_flags = flags;
630 }
631 EXPORT_SYMBOL(__sock_tx_timestamp);
632
633 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
634 struct msghdr *msg, size_t size)
635 {
636 struct sock_iocb *si = kiocb_to_siocb(iocb);
637
638 si->sock = sock;
639 si->scm = NULL;
640 si->msg = msg;
641 si->size = size;
642
643 return sock->ops->sendmsg(iocb, sock, msg, size);
644 }
645
646 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
647 struct msghdr *msg, size_t size)
648 {
649 int err = security_socket_sendmsg(sock, msg, size);
650
651 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
652 }
653
654 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
655 {
656 struct kiocb iocb;
657 struct sock_iocb siocb;
658 int ret;
659
660 init_sync_kiocb(&iocb, NULL);
661 iocb.private = &siocb;
662 ret = __sock_sendmsg(&iocb, sock, msg, size);
663 if (-EIOCBQUEUED == ret)
664 ret = wait_on_sync_kiocb(&iocb);
665 return ret;
666 }
667 EXPORT_SYMBOL(sock_sendmsg);
668
669 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
670 {
671 struct kiocb iocb;
672 struct sock_iocb siocb;
673 int ret;
674
675 init_sync_kiocb(&iocb, NULL);
676 iocb.private = &siocb;
677 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
678 if (-EIOCBQUEUED == ret)
679 ret = wait_on_sync_kiocb(&iocb);
680 return ret;
681 }
682
683 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
684 struct kvec *vec, size_t num, size_t size)
685 {
686 mm_segment_t oldfs = get_fs();
687 int result;
688
689 set_fs(KERNEL_DS);
690 /*
691 * the following is safe, since for compiler definitions of kvec and
692 * iovec are identical, yielding the same in-core layout and alignment
693 */
694 msg->msg_iov = (struct iovec *)vec;
695 msg->msg_iovlen = num;
696 result = sock_sendmsg(sock, msg, size);
697 set_fs(oldfs);
698 return result;
699 }
700 EXPORT_SYMBOL(kernel_sendmsg);
701
702 /*
703 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
704 */
705 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
706 struct sk_buff *skb)
707 {
708 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
709 struct scm_timestamping tss;
710 int empty = 1;
711 struct skb_shared_hwtstamps *shhwtstamps =
712 skb_hwtstamps(skb);
713
714 /* Race occurred between timestamp enabling and packet
715 receiving. Fill in the current time for now. */
716 if (need_software_tstamp && skb->tstamp.tv64 == 0)
717 __net_timestamp(skb);
718
719 if (need_software_tstamp) {
720 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
721 struct timeval tv;
722 skb_get_timestamp(skb, &tv);
723 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
724 sizeof(tv), &tv);
725 } else {
726 struct timespec ts;
727 skb_get_timestampns(skb, &ts);
728 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
729 sizeof(ts), &ts);
730 }
731 }
732
733 memset(&tss, 0, sizeof(tss));
734 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
735 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
736 empty = 0;
737 if (shhwtstamps &&
738 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
739 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
740 empty = 0;
741 if (!empty)
742 put_cmsg(msg, SOL_SOCKET,
743 SCM_TIMESTAMPING, sizeof(tss), &tss);
744 }
745 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
746
747 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
748 struct sk_buff *skb)
749 {
750 int ack;
751
752 if (!sock_flag(sk, SOCK_WIFI_STATUS))
753 return;
754 if (!skb->wifi_acked_valid)
755 return;
756
757 ack = skb->wifi_acked;
758
759 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
760 }
761 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
762
763 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
764 struct sk_buff *skb)
765 {
766 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
767 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
768 sizeof(__u32), &skb->dropcount);
769 }
770
771 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
772 struct sk_buff *skb)
773 {
774 sock_recv_timestamp(msg, sk, skb);
775 sock_recv_drops(msg, sk, skb);
776 }
777 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
778
779 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
780 struct msghdr *msg, size_t size, int flags)
781 {
782 struct sock_iocb *si = kiocb_to_siocb(iocb);
783
784 si->sock = sock;
785 si->scm = NULL;
786 si->msg = msg;
787 si->size = size;
788 si->flags = flags;
789
790 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
791 }
792
793 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
794 struct msghdr *msg, size_t size, int flags)
795 {
796 int err = security_socket_recvmsg(sock, msg, size, flags);
797
798 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
799 }
800
801 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
802 size_t size, int flags)
803 {
804 struct kiocb iocb;
805 struct sock_iocb siocb;
806 int ret;
807
808 init_sync_kiocb(&iocb, NULL);
809 iocb.private = &siocb;
810 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
811 if (-EIOCBQUEUED == ret)
812 ret = wait_on_sync_kiocb(&iocb);
813 return ret;
814 }
815 EXPORT_SYMBOL(sock_recvmsg);
816
817 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
818 size_t size, int flags)
819 {
820 struct kiocb iocb;
821 struct sock_iocb siocb;
822 int ret;
823
824 init_sync_kiocb(&iocb, NULL);
825 iocb.private = &siocb;
826 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
827 if (-EIOCBQUEUED == ret)
828 ret = wait_on_sync_kiocb(&iocb);
829 return ret;
830 }
831
832 /**
833 * kernel_recvmsg - Receive a message from a socket (kernel space)
834 * @sock: The socket to receive the message from
835 * @msg: Received message
836 * @vec: Input s/g array for message data
837 * @num: Size of input s/g array
838 * @size: Number of bytes to read
839 * @flags: Message flags (MSG_DONTWAIT, etc...)
840 *
841 * On return the msg structure contains the scatter/gather array passed in the
842 * vec argument. The array is modified so that it consists of the unfilled
843 * portion of the original array.
844 *
845 * The returned value is the total number of bytes received, or an error.
846 */
847 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
848 struct kvec *vec, size_t num, size_t size, int flags)
849 {
850 mm_segment_t oldfs = get_fs();
851 int result;
852
853 set_fs(KERNEL_DS);
854 /*
855 * the following is safe, since for compiler definitions of kvec and
856 * iovec are identical, yielding the same in-core layout and alignment
857 */
858 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
859 result = sock_recvmsg(sock, msg, size, flags);
860 set_fs(oldfs);
861 return result;
862 }
863 EXPORT_SYMBOL(kernel_recvmsg);
864
865 static ssize_t sock_sendpage(struct file *file, struct page *page,
866 int offset, size_t size, loff_t *ppos, int more)
867 {
868 struct socket *sock;
869 int flags;
870
871 sock = file->private_data;
872
873 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
874 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
875 flags |= more;
876
877 return kernel_sendpage(sock, page, offset, size, flags);
878 }
879
880 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
881 struct pipe_inode_info *pipe, size_t len,
882 unsigned int flags)
883 {
884 struct socket *sock = file->private_data;
885
886 if (unlikely(!sock->ops->splice_read))
887 return -EINVAL;
888
889 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
890 }
891
892 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
893 struct sock_iocb *siocb)
894 {
895 if (!is_sync_kiocb(iocb))
896 BUG();
897
898 siocb->kiocb = iocb;
899 iocb->private = siocb;
900 return siocb;
901 }
902
903 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
904 struct file *file, const struct iovec *iov,
905 unsigned long nr_segs)
906 {
907 struct socket *sock = file->private_data;
908 size_t size = 0;
909 int i;
910
911 for (i = 0; i < nr_segs; i++)
912 size += iov[i].iov_len;
913
914 msg->msg_name = NULL;
915 msg->msg_namelen = 0;
916 msg->msg_control = NULL;
917 msg->msg_controllen = 0;
918 msg->msg_iov = (struct iovec *)iov;
919 msg->msg_iovlen = nr_segs;
920 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
921
922 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
923 }
924
925 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
926 unsigned long nr_segs, loff_t pos)
927 {
928 struct sock_iocb siocb, *x;
929
930 if (pos != 0)
931 return -ESPIPE;
932
933 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */
934 return 0;
935
936
937 x = alloc_sock_iocb(iocb, &siocb);
938 if (!x)
939 return -ENOMEM;
940 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
941 }
942
943 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
944 struct file *file, const struct iovec *iov,
945 unsigned long nr_segs)
946 {
947 struct socket *sock = file->private_data;
948 size_t size = 0;
949 int i;
950
951 for (i = 0; i < nr_segs; i++)
952 size += iov[i].iov_len;
953
954 msg->msg_name = NULL;
955 msg->msg_namelen = 0;
956 msg->msg_control = NULL;
957 msg->msg_controllen = 0;
958 msg->msg_iov = (struct iovec *)iov;
959 msg->msg_iovlen = nr_segs;
960 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
961 if (sock->type == SOCK_SEQPACKET)
962 msg->msg_flags |= MSG_EOR;
963
964 return __sock_sendmsg(iocb, sock, msg, size);
965 }
966
967 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
968 unsigned long nr_segs, loff_t pos)
969 {
970 struct sock_iocb siocb, *x;
971
972 if (pos != 0)
973 return -ESPIPE;
974
975 x = alloc_sock_iocb(iocb, &siocb);
976 if (!x)
977 return -ENOMEM;
978
979 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
980 }
981
982 /*
983 * Atomic setting of ioctl hooks to avoid race
984 * with module unload.
985 */
986
987 static DEFINE_MUTEX(br_ioctl_mutex);
988 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
989
990 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
991 {
992 mutex_lock(&br_ioctl_mutex);
993 br_ioctl_hook = hook;
994 mutex_unlock(&br_ioctl_mutex);
995 }
996 EXPORT_SYMBOL(brioctl_set);
997
998 static DEFINE_MUTEX(vlan_ioctl_mutex);
999 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1000
1001 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1002 {
1003 mutex_lock(&vlan_ioctl_mutex);
1004 vlan_ioctl_hook = hook;
1005 mutex_unlock(&vlan_ioctl_mutex);
1006 }
1007 EXPORT_SYMBOL(vlan_ioctl_set);
1008
1009 static DEFINE_MUTEX(dlci_ioctl_mutex);
1010 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1011
1012 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1013 {
1014 mutex_lock(&dlci_ioctl_mutex);
1015 dlci_ioctl_hook = hook;
1016 mutex_unlock(&dlci_ioctl_mutex);
1017 }
1018 EXPORT_SYMBOL(dlci_ioctl_set);
1019
1020 static long sock_do_ioctl(struct net *net, struct socket *sock,
1021 unsigned int cmd, unsigned long arg)
1022 {
1023 int err;
1024 void __user *argp = (void __user *)arg;
1025
1026 err = sock->ops->ioctl(sock, cmd, arg);
1027
1028 /*
1029 * If this ioctl is unknown try to hand it down
1030 * to the NIC driver.
1031 */
1032 if (err == -ENOIOCTLCMD)
1033 err = dev_ioctl(net, cmd, argp);
1034
1035 return err;
1036 }
1037
1038 /*
1039 * With an ioctl, arg may well be a user mode pointer, but we don't know
1040 * what to do with it - that's up to the protocol still.
1041 */
1042
1043 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1044 {
1045 struct socket *sock;
1046 struct sock *sk;
1047 void __user *argp = (void __user *)arg;
1048 int pid, err;
1049 struct net *net;
1050
1051 sock = file->private_data;
1052 sk = sock->sk;
1053 net = sock_net(sk);
1054 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1055 err = dev_ioctl(net, cmd, argp);
1056 } else
1057 #ifdef CONFIG_WEXT_CORE
1058 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1059 err = dev_ioctl(net, cmd, argp);
1060 } else
1061 #endif
1062 switch (cmd) {
1063 case FIOSETOWN:
1064 case SIOCSPGRP:
1065 err = -EFAULT;
1066 if (get_user(pid, (int __user *)argp))
1067 break;
1068 f_setown(sock->file, pid, 1);
1069 err = 0;
1070 break;
1071 case FIOGETOWN:
1072 case SIOCGPGRP:
1073 err = put_user(f_getown(sock->file),
1074 (int __user *)argp);
1075 break;
1076 case SIOCGIFBR:
1077 case SIOCSIFBR:
1078 case SIOCBRADDBR:
1079 case SIOCBRDELBR:
1080 err = -ENOPKG;
1081 if (!br_ioctl_hook)
1082 request_module("bridge");
1083
1084 mutex_lock(&br_ioctl_mutex);
1085 if (br_ioctl_hook)
1086 err = br_ioctl_hook(net, cmd, argp);
1087 mutex_unlock(&br_ioctl_mutex);
1088 break;
1089 case SIOCGIFVLAN:
1090 case SIOCSIFVLAN:
1091 err = -ENOPKG;
1092 if (!vlan_ioctl_hook)
1093 request_module("8021q");
1094
1095 mutex_lock(&vlan_ioctl_mutex);
1096 if (vlan_ioctl_hook)
1097 err = vlan_ioctl_hook(net, argp);
1098 mutex_unlock(&vlan_ioctl_mutex);
1099 break;
1100 case SIOCADDDLCI:
1101 case SIOCDELDLCI:
1102 err = -ENOPKG;
1103 if (!dlci_ioctl_hook)
1104 request_module("dlci");
1105
1106 mutex_lock(&dlci_ioctl_mutex);
1107 if (dlci_ioctl_hook)
1108 err = dlci_ioctl_hook(cmd, argp);
1109 mutex_unlock(&dlci_ioctl_mutex);
1110 break;
1111 default:
1112 err = sock_do_ioctl(net, sock, cmd, arg);
1113 break;
1114 }
1115 return err;
1116 }
1117
1118 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1119 {
1120 int err;
1121 struct socket *sock = NULL;
1122
1123 err = security_socket_create(family, type, protocol, 1);
1124 if (err)
1125 goto out;
1126
1127 sock = sock_alloc();
1128 if (!sock) {
1129 err = -ENOMEM;
1130 goto out;
1131 }
1132
1133 sock->type = type;
1134 err = security_socket_post_create(sock, family, type, protocol, 1);
1135 if (err)
1136 goto out_release;
1137
1138 out:
1139 *res = sock;
1140 return err;
1141 out_release:
1142 sock_release(sock);
1143 sock = NULL;
1144 goto out;
1145 }
1146 EXPORT_SYMBOL(sock_create_lite);
1147
1148 /* No kernel lock held - perfect */
1149 static unsigned int sock_poll(struct file *file, poll_table *wait)
1150 {
1151 unsigned int busy_flag = 0;
1152 struct socket *sock;
1153
1154 /*
1155 * We can't return errors to poll, so it's either yes or no.
1156 */
1157 sock = file->private_data;
1158
1159 if (sk_can_busy_loop(sock->sk)) {
1160 /* this socket can poll_ll so tell the system call */
1161 busy_flag = POLL_BUSY_LOOP;
1162
1163 /* once, only if requested by syscall */
1164 if (wait && (wait->_key & POLL_BUSY_LOOP))
1165 sk_busy_loop(sock->sk, 1);
1166 }
1167
1168 return busy_flag | sock->ops->poll(file, sock, wait);
1169 }
1170
1171 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1172 {
1173 struct socket *sock = file->private_data;
1174
1175 return sock->ops->mmap(file, sock, vma);
1176 }
1177
1178 static int sock_close(struct inode *inode, struct file *filp)
1179 {
1180 sock_release(SOCKET_I(inode));
1181 return 0;
1182 }
1183
1184 /*
1185 * Update the socket async list
1186 *
1187 * Fasync_list locking strategy.
1188 *
1189 * 1. fasync_list is modified only under process context socket lock
1190 * i.e. under semaphore.
1191 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1192 * or under socket lock
1193 */
1194
1195 static int sock_fasync(int fd, struct file *filp, int on)
1196 {
1197 struct socket *sock = filp->private_data;
1198 struct sock *sk = sock->sk;
1199 struct socket_wq *wq;
1200
1201 if (sk == NULL)
1202 return -EINVAL;
1203
1204 lock_sock(sk);
1205 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1206 fasync_helper(fd, filp, on, &wq->fasync_list);
1207
1208 if (!wq->fasync_list)
1209 sock_reset_flag(sk, SOCK_FASYNC);
1210 else
1211 sock_set_flag(sk, SOCK_FASYNC);
1212
1213 release_sock(sk);
1214 return 0;
1215 }
1216
1217 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1218
1219 int sock_wake_async(struct socket *sock, int how, int band)
1220 {
1221 struct socket_wq *wq;
1222
1223 if (!sock)
1224 return -1;
1225 rcu_read_lock();
1226 wq = rcu_dereference(sock->wq);
1227 if (!wq || !wq->fasync_list) {
1228 rcu_read_unlock();
1229 return -1;
1230 }
1231 switch (how) {
1232 case SOCK_WAKE_WAITD:
1233 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1234 break;
1235 goto call_kill;
1236 case SOCK_WAKE_SPACE:
1237 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1238 break;
1239 /* fall through */
1240 case SOCK_WAKE_IO:
1241 call_kill:
1242 kill_fasync(&wq->fasync_list, SIGIO, band);
1243 break;
1244 case SOCK_WAKE_URG:
1245 kill_fasync(&wq->fasync_list, SIGURG, band);
1246 }
1247 rcu_read_unlock();
1248 return 0;
1249 }
1250 EXPORT_SYMBOL(sock_wake_async);
1251
1252 int __sock_create(struct net *net, int family, int type, int protocol,
1253 struct socket **res, int kern)
1254 {
1255 int err;
1256 struct socket *sock;
1257 const struct net_proto_family *pf;
1258
1259 /*
1260 * Check protocol is in range
1261 */
1262 if (family < 0 || family >= NPROTO)
1263 return -EAFNOSUPPORT;
1264 if (type < 0 || type >= SOCK_MAX)
1265 return -EINVAL;
1266
1267 /* Compatibility.
1268
1269 This uglymoron is moved from INET layer to here to avoid
1270 deadlock in module load.
1271 */
1272 if (family == PF_INET && type == SOCK_PACKET) {
1273 static int warned;
1274 if (!warned) {
1275 warned = 1;
1276 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1277 current->comm);
1278 }
1279 family = PF_PACKET;
1280 }
1281
1282 err = security_socket_create(family, type, protocol, kern);
1283 if (err)
1284 return err;
1285
1286 /*
1287 * Allocate the socket and allow the family to set things up. if
1288 * the protocol is 0, the family is instructed to select an appropriate
1289 * default.
1290 */
1291 sock = sock_alloc();
1292 if (!sock) {
1293 net_warn_ratelimited("socket: no more sockets\n");
1294 return -ENFILE; /* Not exactly a match, but its the
1295 closest posix thing */
1296 }
1297
1298 sock->type = type;
1299
1300 #ifdef CONFIG_MODULES
1301 /* Attempt to load a protocol module if the find failed.
1302 *
1303 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1304 * requested real, full-featured networking support upon configuration.
1305 * Otherwise module support will break!
1306 */
1307 if (rcu_access_pointer(net_families[family]) == NULL)
1308 request_module("net-pf-%d", family);
1309 #endif
1310
1311 rcu_read_lock();
1312 pf = rcu_dereference(net_families[family]);
1313 err = -EAFNOSUPPORT;
1314 if (!pf)
1315 goto out_release;
1316
1317 /*
1318 * We will call the ->create function, that possibly is in a loadable
1319 * module, so we have to bump that loadable module refcnt first.
1320 */
1321 if (!try_module_get(pf->owner))
1322 goto out_release;
1323
1324 /* Now protected by module ref count */
1325 rcu_read_unlock();
1326
1327 err = pf->create(net, sock, protocol, kern);
1328 if (err < 0)
1329 goto out_module_put;
1330
1331 /*
1332 * Now to bump the refcnt of the [loadable] module that owns this
1333 * socket at sock_release time we decrement its refcnt.
1334 */
1335 if (!try_module_get(sock->ops->owner))
1336 goto out_module_busy;
1337
1338 /*
1339 * Now that we're done with the ->create function, the [loadable]
1340 * module can have its refcnt decremented
1341 */
1342 module_put(pf->owner);
1343 err = security_socket_post_create(sock, family, type, protocol, kern);
1344 if (err)
1345 goto out_sock_release;
1346 *res = sock;
1347
1348 return 0;
1349
1350 out_module_busy:
1351 err = -EAFNOSUPPORT;
1352 out_module_put:
1353 sock->ops = NULL;
1354 module_put(pf->owner);
1355 out_sock_release:
1356 sock_release(sock);
1357 return err;
1358
1359 out_release:
1360 rcu_read_unlock();
1361 goto out_sock_release;
1362 }
1363 EXPORT_SYMBOL(__sock_create);
1364
1365 int sock_create(int family, int type, int protocol, struct socket **res)
1366 {
1367 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1368 }
1369 EXPORT_SYMBOL(sock_create);
1370
1371 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1372 {
1373 return __sock_create(&init_net, family, type, protocol, res, 1);
1374 }
1375 EXPORT_SYMBOL(sock_create_kern);
1376
1377 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1378 {
1379 int retval;
1380 struct socket *sock;
1381 int flags;
1382
1383 /* Check the SOCK_* constants for consistency. */
1384 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1385 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1386 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1387 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1388
1389 flags = type & ~SOCK_TYPE_MASK;
1390 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1391 return -EINVAL;
1392 type &= SOCK_TYPE_MASK;
1393
1394 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1395 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1396
1397 retval = sock_create(family, type, protocol, &sock);
1398 if (retval < 0)
1399 goto out;
1400
1401 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1402 if (retval < 0)
1403 goto out_release;
1404
1405 out:
1406 /* It may be already another descriptor 8) Not kernel problem. */
1407 return retval;
1408
1409 out_release:
1410 sock_release(sock);
1411 return retval;
1412 }
1413
1414 /*
1415 * Create a pair of connected sockets.
1416 */
1417
1418 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1419 int __user *, usockvec)
1420 {
1421 struct socket *sock1, *sock2;
1422 int fd1, fd2, err;
1423 struct file *newfile1, *newfile2;
1424 int flags;
1425
1426 flags = type & ~SOCK_TYPE_MASK;
1427 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1428 return -EINVAL;
1429 type &= SOCK_TYPE_MASK;
1430
1431 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1432 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1433
1434 /*
1435 * Obtain the first socket and check if the underlying protocol
1436 * supports the socketpair call.
1437 */
1438
1439 err = sock_create(family, type, protocol, &sock1);
1440 if (err < 0)
1441 goto out;
1442
1443 err = sock_create(family, type, protocol, &sock2);
1444 if (err < 0)
1445 goto out_release_1;
1446
1447 err = sock1->ops->socketpair(sock1, sock2);
1448 if (err < 0)
1449 goto out_release_both;
1450
1451 fd1 = get_unused_fd_flags(flags);
1452 if (unlikely(fd1 < 0)) {
1453 err = fd1;
1454 goto out_release_both;
1455 }
1456
1457 fd2 = get_unused_fd_flags(flags);
1458 if (unlikely(fd2 < 0)) {
1459 err = fd2;
1460 goto out_put_unused_1;
1461 }
1462
1463 newfile1 = sock_alloc_file(sock1, flags, NULL);
1464 if (unlikely(IS_ERR(newfile1))) {
1465 err = PTR_ERR(newfile1);
1466 goto out_put_unused_both;
1467 }
1468
1469 newfile2 = sock_alloc_file(sock2, flags, NULL);
1470 if (IS_ERR(newfile2)) {
1471 err = PTR_ERR(newfile2);
1472 goto out_fput_1;
1473 }
1474
1475 err = put_user(fd1, &usockvec[0]);
1476 if (err)
1477 goto out_fput_both;
1478
1479 err = put_user(fd2, &usockvec[1]);
1480 if (err)
1481 goto out_fput_both;
1482
1483 audit_fd_pair(fd1, fd2);
1484
1485 fd_install(fd1, newfile1);
1486 fd_install(fd2, newfile2);
1487 /* fd1 and fd2 may be already another descriptors.
1488 * Not kernel problem.
1489 */
1490
1491 return 0;
1492
1493 out_fput_both:
1494 fput(newfile2);
1495 fput(newfile1);
1496 put_unused_fd(fd2);
1497 put_unused_fd(fd1);
1498 goto out;
1499
1500 out_fput_1:
1501 fput(newfile1);
1502 put_unused_fd(fd2);
1503 put_unused_fd(fd1);
1504 sock_release(sock2);
1505 goto out;
1506
1507 out_put_unused_both:
1508 put_unused_fd(fd2);
1509 out_put_unused_1:
1510 put_unused_fd(fd1);
1511 out_release_both:
1512 sock_release(sock2);
1513 out_release_1:
1514 sock_release(sock1);
1515 out:
1516 return err;
1517 }
1518
1519 /*
1520 * Bind a name to a socket. Nothing much to do here since it's
1521 * the protocol's responsibility to handle the local address.
1522 *
1523 * We move the socket address to kernel space before we call
1524 * the protocol layer (having also checked the address is ok).
1525 */
1526
1527 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1528 {
1529 struct socket *sock;
1530 struct sockaddr_storage address;
1531 int err, fput_needed;
1532
1533 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1534 if (sock) {
1535 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1536 if (err >= 0) {
1537 err = security_socket_bind(sock,
1538 (struct sockaddr *)&address,
1539 addrlen);
1540 if (!err)
1541 err = sock->ops->bind(sock,
1542 (struct sockaddr *)
1543 &address, addrlen);
1544 }
1545 fput_light(sock->file, fput_needed);
1546 }
1547 return err;
1548 }
1549
1550 /*
1551 * Perform a listen. Basically, we allow the protocol to do anything
1552 * necessary for a listen, and if that works, we mark the socket as
1553 * ready for listening.
1554 */
1555
1556 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1557 {
1558 struct socket *sock;
1559 int err, fput_needed;
1560 int somaxconn;
1561
1562 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1563 if (sock) {
1564 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1565 if ((unsigned int)backlog > somaxconn)
1566 backlog = somaxconn;
1567
1568 err = security_socket_listen(sock, backlog);
1569 if (!err)
1570 err = sock->ops->listen(sock, backlog);
1571
1572 fput_light(sock->file, fput_needed);
1573 }
1574 return err;
1575 }
1576
1577 /*
1578 * For accept, we attempt to create a new socket, set up the link
1579 * with the client, wake up the client, then return the new
1580 * connected fd. We collect the address of the connector in kernel
1581 * space and move it to user at the very end. This is unclean because
1582 * we open the socket then return an error.
1583 *
1584 * 1003.1g adds the ability to recvmsg() to query connection pending
1585 * status to recvmsg. We need to add that support in a way thats
1586 * clean when we restucture accept also.
1587 */
1588
1589 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1590 int __user *, upeer_addrlen, int, flags)
1591 {
1592 struct socket *sock, *newsock;
1593 struct file *newfile;
1594 int err, len, newfd, fput_needed;
1595 struct sockaddr_storage address;
1596
1597 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1598 return -EINVAL;
1599
1600 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1601 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1602
1603 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1604 if (!sock)
1605 goto out;
1606
1607 err = -ENFILE;
1608 newsock = sock_alloc();
1609 if (!newsock)
1610 goto out_put;
1611
1612 newsock->type = sock->type;
1613 newsock->ops = sock->ops;
1614
1615 /*
1616 * We don't need try_module_get here, as the listening socket (sock)
1617 * has the protocol module (sock->ops->owner) held.
1618 */
1619 __module_get(newsock->ops->owner);
1620
1621 newfd = get_unused_fd_flags(flags);
1622 if (unlikely(newfd < 0)) {
1623 err = newfd;
1624 sock_release(newsock);
1625 goto out_put;
1626 }
1627 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1628 if (unlikely(IS_ERR(newfile))) {
1629 err = PTR_ERR(newfile);
1630 put_unused_fd(newfd);
1631 sock_release(newsock);
1632 goto out_put;
1633 }
1634
1635 err = security_socket_accept(sock, newsock);
1636 if (err)
1637 goto out_fd;
1638
1639 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1640 if (err < 0)
1641 goto out_fd;
1642
1643 if (upeer_sockaddr) {
1644 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1645 &len, 2) < 0) {
1646 err = -ECONNABORTED;
1647 goto out_fd;
1648 }
1649 err = move_addr_to_user(&address,
1650 len, upeer_sockaddr, upeer_addrlen);
1651 if (err < 0)
1652 goto out_fd;
1653 }
1654
1655 /* File flags are not inherited via accept() unlike another OSes. */
1656
1657 fd_install(newfd, newfile);
1658 err = newfd;
1659
1660 out_put:
1661 fput_light(sock->file, fput_needed);
1662 out:
1663 return err;
1664 out_fd:
1665 fput(newfile);
1666 put_unused_fd(newfd);
1667 goto out_put;
1668 }
1669
1670 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1671 int __user *, upeer_addrlen)
1672 {
1673 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1674 }
1675
1676 /*
1677 * Attempt to connect to a socket with the server address. The address
1678 * is in user space so we verify it is OK and move it to kernel space.
1679 *
1680 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1681 * break bindings
1682 *
1683 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1684 * other SEQPACKET protocols that take time to connect() as it doesn't
1685 * include the -EINPROGRESS status for such sockets.
1686 */
1687
1688 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1689 int, addrlen)
1690 {
1691 struct socket *sock;
1692 struct sockaddr_storage address;
1693 int err, fput_needed;
1694
1695 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1696 if (!sock)
1697 goto out;
1698 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1699 if (err < 0)
1700 goto out_put;
1701
1702 err =
1703 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1704 if (err)
1705 goto out_put;
1706
1707 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1708 sock->file->f_flags);
1709 out_put:
1710 fput_light(sock->file, fput_needed);
1711 out:
1712 return err;
1713 }
1714
1715 /*
1716 * Get the local address ('name') of a socket object. Move the obtained
1717 * name to user space.
1718 */
1719
1720 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1721 int __user *, usockaddr_len)
1722 {
1723 struct socket *sock;
1724 struct sockaddr_storage address;
1725 int len, err, fput_needed;
1726
1727 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1728 if (!sock)
1729 goto out;
1730
1731 err = security_socket_getsockname(sock);
1732 if (err)
1733 goto out_put;
1734
1735 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1736 if (err)
1737 goto out_put;
1738 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1739
1740 out_put:
1741 fput_light(sock->file, fput_needed);
1742 out:
1743 return err;
1744 }
1745
1746 /*
1747 * Get the remote address ('name') of a socket object. Move the obtained
1748 * name to user space.
1749 */
1750
1751 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1752 int __user *, usockaddr_len)
1753 {
1754 struct socket *sock;
1755 struct sockaddr_storage address;
1756 int len, err, fput_needed;
1757
1758 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1759 if (sock != NULL) {
1760 err = security_socket_getpeername(sock);
1761 if (err) {
1762 fput_light(sock->file, fput_needed);
1763 return err;
1764 }
1765
1766 err =
1767 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1768 1);
1769 if (!err)
1770 err = move_addr_to_user(&address, len, usockaddr,
1771 usockaddr_len);
1772 fput_light(sock->file, fput_needed);
1773 }
1774 return err;
1775 }
1776
1777 /*
1778 * Send a datagram to a given address. We move the address into kernel
1779 * space and check the user space data area is readable before invoking
1780 * the protocol.
1781 */
1782
1783 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1784 unsigned int, flags, struct sockaddr __user *, addr,
1785 int, addr_len)
1786 {
1787 struct socket *sock;
1788 struct sockaddr_storage address;
1789 int err;
1790 struct msghdr msg;
1791 struct iovec iov;
1792 int fput_needed;
1793
1794 if (len > INT_MAX)
1795 len = INT_MAX;
1796 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1797 if (!sock)
1798 goto out;
1799
1800 iov.iov_base = buff;
1801 iov.iov_len = len;
1802 msg.msg_name = NULL;
1803 msg.msg_iov = &iov;
1804 msg.msg_iovlen = 1;
1805 msg.msg_control = NULL;
1806 msg.msg_controllen = 0;
1807 msg.msg_namelen = 0;
1808 if (addr) {
1809 err = move_addr_to_kernel(addr, addr_len, &address);
1810 if (err < 0)
1811 goto out_put;
1812 msg.msg_name = (struct sockaddr *)&address;
1813 msg.msg_namelen = addr_len;
1814 }
1815 if (sock->file->f_flags & O_NONBLOCK)
1816 flags |= MSG_DONTWAIT;
1817 msg.msg_flags = flags;
1818 err = sock_sendmsg(sock, &msg, len);
1819
1820 out_put:
1821 fput_light(sock->file, fput_needed);
1822 out:
1823 return err;
1824 }
1825
1826 /*
1827 * Send a datagram down a socket.
1828 */
1829
1830 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1831 unsigned int, flags)
1832 {
1833 return sys_sendto(fd, buff, len, flags, NULL, 0);
1834 }
1835
1836 /*
1837 * Receive a frame from the socket and optionally record the address of the
1838 * sender. We verify the buffers are writable and if needed move the
1839 * sender address from kernel to user space.
1840 */
1841
1842 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1843 unsigned int, flags, struct sockaddr __user *, addr,
1844 int __user *, addr_len)
1845 {
1846 struct socket *sock;
1847 struct iovec iov;
1848 struct msghdr msg;
1849 struct sockaddr_storage address;
1850 int err, err2;
1851 int fput_needed;
1852
1853 if (size > INT_MAX)
1854 size = INT_MAX;
1855 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1856 if (!sock)
1857 goto out;
1858
1859 msg.msg_control = NULL;
1860 msg.msg_controllen = 0;
1861 msg.msg_iovlen = 1;
1862 msg.msg_iov = &iov;
1863 iov.iov_len = size;
1864 iov.iov_base = ubuf;
1865 /* Save some cycles and don't copy the address if not needed */
1866 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1867 /* We assume all kernel code knows the size of sockaddr_storage */
1868 msg.msg_namelen = 0;
1869 if (sock->file->f_flags & O_NONBLOCK)
1870 flags |= MSG_DONTWAIT;
1871 err = sock_recvmsg(sock, &msg, size, flags);
1872
1873 if (err >= 0 && addr != NULL) {
1874 err2 = move_addr_to_user(&address,
1875 msg.msg_namelen, addr, addr_len);
1876 if (err2 < 0)
1877 err = err2;
1878 }
1879
1880 fput_light(sock->file, fput_needed);
1881 out:
1882 return err;
1883 }
1884
1885 /*
1886 * Receive a datagram from a socket.
1887 */
1888
1889 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1890 unsigned int, flags)
1891 {
1892 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1893 }
1894
1895 /*
1896 * Set a socket option. Because we don't know the option lengths we have
1897 * to pass the user mode parameter for the protocols to sort out.
1898 */
1899
1900 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1901 char __user *, optval, int, optlen)
1902 {
1903 int err, fput_needed;
1904 struct socket *sock;
1905
1906 if (optlen < 0)
1907 return -EINVAL;
1908
1909 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1910 if (sock != NULL) {
1911 err = security_socket_setsockopt(sock, level, optname);
1912 if (err)
1913 goto out_put;
1914
1915 if (level == SOL_SOCKET)
1916 err =
1917 sock_setsockopt(sock, level, optname, optval,
1918 optlen);
1919 else
1920 err =
1921 sock->ops->setsockopt(sock, level, optname, optval,
1922 optlen);
1923 out_put:
1924 fput_light(sock->file, fput_needed);
1925 }
1926 return err;
1927 }
1928
1929 /*
1930 * Get a socket option. Because we don't know the option lengths we have
1931 * to pass a user mode parameter for the protocols to sort out.
1932 */
1933
1934 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1935 char __user *, optval, int __user *, optlen)
1936 {
1937 int err, fput_needed;
1938 struct socket *sock;
1939
1940 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1941 if (sock != NULL) {
1942 err = security_socket_getsockopt(sock, level, optname);
1943 if (err)
1944 goto out_put;
1945
1946 if (level == SOL_SOCKET)
1947 err =
1948 sock_getsockopt(sock, level, optname, optval,
1949 optlen);
1950 else
1951 err =
1952 sock->ops->getsockopt(sock, level, optname, optval,
1953 optlen);
1954 out_put:
1955 fput_light(sock->file, fput_needed);
1956 }
1957 return err;
1958 }
1959
1960 /*
1961 * Shutdown a socket.
1962 */
1963
1964 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1965 {
1966 int err, fput_needed;
1967 struct socket *sock;
1968
1969 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1970 if (sock != NULL) {
1971 err = security_socket_shutdown(sock, how);
1972 if (!err)
1973 err = sock->ops->shutdown(sock, how);
1974 fput_light(sock->file, fput_needed);
1975 }
1976 return err;
1977 }
1978
1979 /* A couple of helpful macros for getting the address of the 32/64 bit
1980 * fields which are the same type (int / unsigned) on our platforms.
1981 */
1982 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1983 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1984 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1985
1986 struct used_address {
1987 struct sockaddr_storage name;
1988 unsigned int name_len;
1989 };
1990
1991 static int copy_msghdr_from_user(struct msghdr *kmsg,
1992 struct msghdr __user *umsg)
1993 {
1994 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1995 return -EFAULT;
1996
1997 if (kmsg->msg_name == NULL)
1998 kmsg->msg_namelen = 0;
1999
2000 if (kmsg->msg_namelen < 0)
2001 return -EINVAL;
2002
2003 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2004 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2005 return 0;
2006 }
2007
2008 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
2009 struct msghdr *msg_sys, unsigned int flags,
2010 struct used_address *used_address)
2011 {
2012 struct compat_msghdr __user *msg_compat =
2013 (struct compat_msghdr __user *)msg;
2014 struct sockaddr_storage address;
2015 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2016 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2017 __attribute__ ((aligned(sizeof(__kernel_size_t))));
2018 /* 20 is size of ipv6_pktinfo */
2019 unsigned char *ctl_buf = ctl;
2020 int err, ctl_len, total_len;
2021
2022 err = -EFAULT;
2023 if (MSG_CMSG_COMPAT & flags) {
2024 if (get_compat_msghdr(msg_sys, msg_compat))
2025 return -EFAULT;
2026 } else {
2027 err = copy_msghdr_from_user(msg_sys, msg);
2028 if (err)
2029 return err;
2030 }
2031
2032 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2033 err = -EMSGSIZE;
2034 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2035 goto out;
2036 err = -ENOMEM;
2037 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2038 GFP_KERNEL);
2039 if (!iov)
2040 goto out;
2041 }
2042
2043 /* This will also move the address data into kernel space */
2044 if (MSG_CMSG_COMPAT & flags) {
2045 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2046 } else
2047 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2048 if (err < 0)
2049 goto out_freeiov;
2050 total_len = err;
2051
2052 err = -ENOBUFS;
2053
2054 if (msg_sys->msg_controllen > INT_MAX)
2055 goto out_freeiov;
2056 ctl_len = msg_sys->msg_controllen;
2057 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2058 err =
2059 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2060 sizeof(ctl));
2061 if (err)
2062 goto out_freeiov;
2063 ctl_buf = msg_sys->msg_control;
2064 ctl_len = msg_sys->msg_controllen;
2065 } else if (ctl_len) {
2066 if (ctl_len > sizeof(ctl)) {
2067 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2068 if (ctl_buf == NULL)
2069 goto out_freeiov;
2070 }
2071 err = -EFAULT;
2072 /*
2073 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2074 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2075 * checking falls down on this.
2076 */
2077 if (copy_from_user(ctl_buf,
2078 (void __user __force *)msg_sys->msg_control,
2079 ctl_len))
2080 goto out_freectl;
2081 msg_sys->msg_control = ctl_buf;
2082 }
2083 msg_sys->msg_flags = flags;
2084
2085 if (sock->file->f_flags & O_NONBLOCK)
2086 msg_sys->msg_flags |= MSG_DONTWAIT;
2087 /*
2088 * If this is sendmmsg() and current destination address is same as
2089 * previously succeeded address, omit asking LSM's decision.
2090 * used_address->name_len is initialized to UINT_MAX so that the first
2091 * destination address never matches.
2092 */
2093 if (used_address && msg_sys->msg_name &&
2094 used_address->name_len == msg_sys->msg_namelen &&
2095 !memcmp(&used_address->name, msg_sys->msg_name,
2096 used_address->name_len)) {
2097 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2098 goto out_freectl;
2099 }
2100 err = sock_sendmsg(sock, msg_sys, total_len);
2101 /*
2102 * If this is sendmmsg() and sending to current destination address was
2103 * successful, remember it.
2104 */
2105 if (used_address && err >= 0) {
2106 used_address->name_len = msg_sys->msg_namelen;
2107 if (msg_sys->msg_name)
2108 memcpy(&used_address->name, msg_sys->msg_name,
2109 used_address->name_len);
2110 }
2111
2112 out_freectl:
2113 if (ctl_buf != ctl)
2114 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2115 out_freeiov:
2116 if (iov != iovstack)
2117 kfree(iov);
2118 out:
2119 return err;
2120 }
2121
2122 /*
2123 * BSD sendmsg interface
2124 */
2125
2126 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2127 {
2128 int fput_needed, err;
2129 struct msghdr msg_sys;
2130 struct socket *sock;
2131
2132 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2133 if (!sock)
2134 goto out;
2135
2136 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2137
2138 fput_light(sock->file, fput_needed);
2139 out:
2140 return err;
2141 }
2142
2143 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2144 {
2145 if (flags & MSG_CMSG_COMPAT)
2146 return -EINVAL;
2147 return __sys_sendmsg(fd, msg, flags);
2148 }
2149
2150 /*
2151 * Linux sendmmsg interface
2152 */
2153
2154 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2155 unsigned int flags)
2156 {
2157 int fput_needed, err, datagrams;
2158 struct socket *sock;
2159 struct mmsghdr __user *entry;
2160 struct compat_mmsghdr __user *compat_entry;
2161 struct msghdr msg_sys;
2162 struct used_address used_address;
2163
2164 if (vlen > UIO_MAXIOV)
2165 vlen = UIO_MAXIOV;
2166
2167 datagrams = 0;
2168
2169 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2170 if (!sock)
2171 return err;
2172
2173 used_address.name_len = UINT_MAX;
2174 entry = mmsg;
2175 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2176 err = 0;
2177
2178 while (datagrams < vlen) {
2179 if (MSG_CMSG_COMPAT & flags) {
2180 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2181 &msg_sys, flags, &used_address);
2182 if (err < 0)
2183 break;
2184 err = __put_user(err, &compat_entry->msg_len);
2185 ++compat_entry;
2186 } else {
2187 err = ___sys_sendmsg(sock,
2188 (struct msghdr __user *)entry,
2189 &msg_sys, flags, &used_address);
2190 if (err < 0)
2191 break;
2192 err = put_user(err, &entry->msg_len);
2193 ++entry;
2194 }
2195
2196 if (err)
2197 break;
2198 ++datagrams;
2199 }
2200
2201 fput_light(sock->file, fput_needed);
2202
2203 /* We only return an error if no datagrams were able to be sent */
2204 if (datagrams != 0)
2205 return datagrams;
2206
2207 return err;
2208 }
2209
2210 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2211 unsigned int, vlen, unsigned int, flags)
2212 {
2213 if (flags & MSG_CMSG_COMPAT)
2214 return -EINVAL;
2215 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2216 }
2217
2218 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2219 struct msghdr *msg_sys, unsigned int flags, int nosec)
2220 {
2221 struct compat_msghdr __user *msg_compat =
2222 (struct compat_msghdr __user *)msg;
2223 struct iovec iovstack[UIO_FASTIOV];
2224 struct iovec *iov = iovstack;
2225 unsigned long cmsg_ptr;
2226 int err, total_len, len;
2227
2228 /* kernel mode address */
2229 struct sockaddr_storage addr;
2230
2231 /* user mode address pointers */
2232 struct sockaddr __user *uaddr;
2233 int __user *uaddr_len;
2234
2235 if (MSG_CMSG_COMPAT & flags) {
2236 if (get_compat_msghdr(msg_sys, msg_compat))
2237 return -EFAULT;
2238 } else {
2239 err = copy_msghdr_from_user(msg_sys, msg);
2240 if (err)
2241 return err;
2242 }
2243
2244 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2245 err = -EMSGSIZE;
2246 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2247 goto out;
2248 err = -ENOMEM;
2249 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2250 GFP_KERNEL);
2251 if (!iov)
2252 goto out;
2253 }
2254
2255 /* Save the user-mode address (verify_iovec will change the
2256 * kernel msghdr to use the kernel address space)
2257 */
2258 uaddr = (__force void __user *)msg_sys->msg_name;
2259 uaddr_len = COMPAT_NAMELEN(msg);
2260 if (MSG_CMSG_COMPAT & flags)
2261 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2262 else
2263 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2264 if (err < 0)
2265 goto out_freeiov;
2266 total_len = err;
2267
2268 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2269 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2270
2271 /* We assume all kernel code knows the size of sockaddr_storage */
2272 msg_sys->msg_namelen = 0;
2273
2274 if (sock->file->f_flags & O_NONBLOCK)
2275 flags |= MSG_DONTWAIT;
2276 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2277 total_len, flags);
2278 if (err < 0)
2279 goto out_freeiov;
2280 len = err;
2281
2282 if (uaddr != NULL) {
2283 err = move_addr_to_user(&addr,
2284 msg_sys->msg_namelen, uaddr,
2285 uaddr_len);
2286 if (err < 0)
2287 goto out_freeiov;
2288 }
2289 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2290 COMPAT_FLAGS(msg));
2291 if (err)
2292 goto out_freeiov;
2293 if (MSG_CMSG_COMPAT & flags)
2294 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2295 &msg_compat->msg_controllen);
2296 else
2297 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2298 &msg->msg_controllen);
2299 if (err)
2300 goto out_freeiov;
2301 err = len;
2302
2303 out_freeiov:
2304 if (iov != iovstack)
2305 kfree(iov);
2306 out:
2307 return err;
2308 }
2309
2310 /*
2311 * BSD recvmsg interface
2312 */
2313
2314 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2315 {
2316 int fput_needed, err;
2317 struct msghdr msg_sys;
2318 struct socket *sock;
2319
2320 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2321 if (!sock)
2322 goto out;
2323
2324 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2325
2326 fput_light(sock->file, fput_needed);
2327 out:
2328 return err;
2329 }
2330
2331 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2332 unsigned int, flags)
2333 {
2334 if (flags & MSG_CMSG_COMPAT)
2335 return -EINVAL;
2336 return __sys_recvmsg(fd, msg, flags);
2337 }
2338
2339 /*
2340 * Linux recvmmsg interface
2341 */
2342
2343 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2344 unsigned int flags, struct timespec *timeout)
2345 {
2346 int fput_needed, err, datagrams;
2347 struct socket *sock;
2348 struct mmsghdr __user *entry;
2349 struct compat_mmsghdr __user *compat_entry;
2350 struct msghdr msg_sys;
2351 struct timespec end_time;
2352
2353 if (timeout &&
2354 poll_select_set_timeout(&end_time, timeout->tv_sec,
2355 timeout->tv_nsec))
2356 return -EINVAL;
2357
2358 datagrams = 0;
2359
2360 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2361 if (!sock)
2362 return err;
2363
2364 err = sock_error(sock->sk);
2365 if (err)
2366 goto out_put;
2367
2368 entry = mmsg;
2369 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2370
2371 while (datagrams < vlen) {
2372 /*
2373 * No need to ask LSM for more than the first datagram.
2374 */
2375 if (MSG_CMSG_COMPAT & flags) {
2376 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2377 &msg_sys, flags & ~MSG_WAITFORONE,
2378 datagrams);
2379 if (err < 0)
2380 break;
2381 err = __put_user(err, &compat_entry->msg_len);
2382 ++compat_entry;
2383 } else {
2384 err = ___sys_recvmsg(sock,
2385 (struct msghdr __user *)entry,
2386 &msg_sys, flags & ~MSG_WAITFORONE,
2387 datagrams);
2388 if (err < 0)
2389 break;
2390 err = put_user(err, &entry->msg_len);
2391 ++entry;
2392 }
2393
2394 if (err)
2395 break;
2396 ++datagrams;
2397
2398 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2399 if (flags & MSG_WAITFORONE)
2400 flags |= MSG_DONTWAIT;
2401
2402 if (timeout) {
2403 ktime_get_ts(timeout);
2404 *timeout = timespec_sub(end_time, *timeout);
2405 if (timeout->tv_sec < 0) {
2406 timeout->tv_sec = timeout->tv_nsec = 0;
2407 break;
2408 }
2409
2410 /* Timeout, return less than vlen datagrams */
2411 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2412 break;
2413 }
2414
2415 /* Out of band data, return right away */
2416 if (msg_sys.msg_flags & MSG_OOB)
2417 break;
2418 }
2419
2420 out_put:
2421 fput_light(sock->file, fput_needed);
2422
2423 if (err == 0)
2424 return datagrams;
2425
2426 if (datagrams != 0) {
2427 /*
2428 * We may return less entries than requested (vlen) if the
2429 * sock is non block and there aren't enough datagrams...
2430 */
2431 if (err != -EAGAIN) {
2432 /*
2433 * ... or if recvmsg returns an error after we
2434 * received some datagrams, where we record the
2435 * error to return on the next call or if the
2436 * app asks about it using getsockopt(SO_ERROR).
2437 */
2438 sock->sk->sk_err = -err;
2439 }
2440
2441 return datagrams;
2442 }
2443
2444 return err;
2445 }
2446
2447 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2448 unsigned int, vlen, unsigned int, flags,
2449 struct timespec __user *, timeout)
2450 {
2451 int datagrams;
2452 struct timespec timeout_sys;
2453
2454 if (flags & MSG_CMSG_COMPAT)
2455 return -EINVAL;
2456
2457 if (!timeout)
2458 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2459
2460 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2461 return -EFAULT;
2462
2463 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2464
2465 if (datagrams > 0 &&
2466 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2467 datagrams = -EFAULT;
2468
2469 return datagrams;
2470 }
2471
2472 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2473 /* Argument list sizes for sys_socketcall */
2474 #define AL(x) ((x) * sizeof(unsigned long))
2475 static const unsigned char nargs[21] = {
2476 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2477 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2478 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2479 AL(4), AL(5), AL(4)
2480 };
2481
2482 #undef AL
2483
2484 /*
2485 * System call vectors.
2486 *
2487 * Argument checking cleaned up. Saved 20% in size.
2488 * This function doesn't need to set the kernel lock because
2489 * it is set by the callees.
2490 */
2491
2492 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2493 {
2494 unsigned long a[AUDITSC_ARGS];
2495 unsigned long a0, a1;
2496 int err;
2497 unsigned int len;
2498
2499 if (call < 1 || call > SYS_SENDMMSG)
2500 return -EINVAL;
2501
2502 len = nargs[call];
2503 if (len > sizeof(a))
2504 return -EINVAL;
2505
2506 /* copy_from_user should be SMP safe. */
2507 if (copy_from_user(a, args, len))
2508 return -EFAULT;
2509
2510 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2511 if (err)
2512 return err;
2513
2514 a0 = a[0];
2515 a1 = a[1];
2516
2517 switch (call) {
2518 case SYS_SOCKET:
2519 err = sys_socket(a0, a1, a[2]);
2520 break;
2521 case SYS_BIND:
2522 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2523 break;
2524 case SYS_CONNECT:
2525 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2526 break;
2527 case SYS_LISTEN:
2528 err = sys_listen(a0, a1);
2529 break;
2530 case SYS_ACCEPT:
2531 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2532 (int __user *)a[2], 0);
2533 break;
2534 case SYS_GETSOCKNAME:
2535 err =
2536 sys_getsockname(a0, (struct sockaddr __user *)a1,
2537 (int __user *)a[2]);
2538 break;
2539 case SYS_GETPEERNAME:
2540 err =
2541 sys_getpeername(a0, (struct sockaddr __user *)a1,
2542 (int __user *)a[2]);
2543 break;
2544 case SYS_SOCKETPAIR:
2545 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2546 break;
2547 case SYS_SEND:
2548 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2549 break;
2550 case SYS_SENDTO:
2551 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2552 (struct sockaddr __user *)a[4], a[5]);
2553 break;
2554 case SYS_RECV:
2555 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2556 break;
2557 case SYS_RECVFROM:
2558 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2559 (struct sockaddr __user *)a[4],
2560 (int __user *)a[5]);
2561 break;
2562 case SYS_SHUTDOWN:
2563 err = sys_shutdown(a0, a1);
2564 break;
2565 case SYS_SETSOCKOPT:
2566 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2567 break;
2568 case SYS_GETSOCKOPT:
2569 err =
2570 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2571 (int __user *)a[4]);
2572 break;
2573 case SYS_SENDMSG:
2574 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2575 break;
2576 case SYS_SENDMMSG:
2577 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2578 break;
2579 case SYS_RECVMSG:
2580 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2581 break;
2582 case SYS_RECVMMSG:
2583 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2584 (struct timespec __user *)a[4]);
2585 break;
2586 case SYS_ACCEPT4:
2587 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2588 (int __user *)a[2], a[3]);
2589 break;
2590 default:
2591 err = -EINVAL;
2592 break;
2593 }
2594 return err;
2595 }
2596
2597 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2598
2599 /**
2600 * sock_register - add a socket protocol handler
2601 * @ops: description of protocol
2602 *
2603 * This function is called by a protocol handler that wants to
2604 * advertise its address family, and have it linked into the
2605 * socket interface. The value ops->family corresponds to the
2606 * socket system call protocol family.
2607 */
2608 int sock_register(const struct net_proto_family *ops)
2609 {
2610 int err;
2611
2612 if (ops->family >= NPROTO) {
2613 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2614 return -ENOBUFS;
2615 }
2616
2617 spin_lock(&net_family_lock);
2618 if (rcu_dereference_protected(net_families[ops->family],
2619 lockdep_is_held(&net_family_lock)))
2620 err = -EEXIST;
2621 else {
2622 rcu_assign_pointer(net_families[ops->family], ops);
2623 err = 0;
2624 }
2625 spin_unlock(&net_family_lock);
2626
2627 pr_info("NET: Registered protocol family %d\n", ops->family);
2628 return err;
2629 }
2630 EXPORT_SYMBOL(sock_register);
2631
2632 /**
2633 * sock_unregister - remove a protocol handler
2634 * @family: protocol family to remove
2635 *
2636 * This function is called by a protocol handler that wants to
2637 * remove its address family, and have it unlinked from the
2638 * new socket creation.
2639 *
2640 * If protocol handler is a module, then it can use module reference
2641 * counts to protect against new references. If protocol handler is not
2642 * a module then it needs to provide its own protection in
2643 * the ops->create routine.
2644 */
2645 void sock_unregister(int family)
2646 {
2647 BUG_ON(family < 0 || family >= NPROTO);
2648
2649 spin_lock(&net_family_lock);
2650 RCU_INIT_POINTER(net_families[family], NULL);
2651 spin_unlock(&net_family_lock);
2652
2653 synchronize_rcu();
2654
2655 pr_info("NET: Unregistered protocol family %d\n", family);
2656 }
2657 EXPORT_SYMBOL(sock_unregister);
2658
2659 static int __init sock_init(void)
2660 {
2661 int err;
2662 /*
2663 * Initialize the network sysctl infrastructure.
2664 */
2665 err = net_sysctl_init();
2666 if (err)
2667 goto out;
2668
2669 /*
2670 * Initialize skbuff SLAB cache
2671 */
2672 skb_init();
2673
2674 /*
2675 * Initialize the protocols module.
2676 */
2677
2678 init_inodecache();
2679
2680 err = register_filesystem(&sock_fs_type);
2681 if (err)
2682 goto out_fs;
2683 sock_mnt = kern_mount(&sock_fs_type);
2684 if (IS_ERR(sock_mnt)) {
2685 err = PTR_ERR(sock_mnt);
2686 goto out_mount;
2687 }
2688
2689 /* The real protocol initialization is performed in later initcalls.
2690 */
2691
2692 #ifdef CONFIG_NETFILTER
2693 err = netfilter_init();
2694 if (err)
2695 goto out;
2696 #endif
2697
2698 ptp_classifier_init();
2699
2700 out:
2701 return err;
2702
2703 out_mount:
2704 unregister_filesystem(&sock_fs_type);
2705 out_fs:
2706 goto out;
2707 }
2708
2709 core_initcall(sock_init); /* early initcall */
2710
2711 #ifdef CONFIG_PROC_FS
2712 void socket_seq_show(struct seq_file *seq)
2713 {
2714 int cpu;
2715 int counter = 0;
2716
2717 for_each_possible_cpu(cpu)
2718 counter += per_cpu(sockets_in_use, cpu);
2719
2720 /* It can be negative, by the way. 8) */
2721 if (counter < 0)
2722 counter = 0;
2723
2724 seq_printf(seq, "sockets: used %d\n", counter);
2725 }
2726 #endif /* CONFIG_PROC_FS */
2727
2728 #ifdef CONFIG_COMPAT
2729 static int do_siocgstamp(struct net *net, struct socket *sock,
2730 unsigned int cmd, void __user *up)
2731 {
2732 mm_segment_t old_fs = get_fs();
2733 struct timeval ktv;
2734 int err;
2735
2736 set_fs(KERNEL_DS);
2737 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2738 set_fs(old_fs);
2739 if (!err)
2740 err = compat_put_timeval(&ktv, up);
2741
2742 return err;
2743 }
2744
2745 static int do_siocgstampns(struct net *net, struct socket *sock,
2746 unsigned int cmd, void __user *up)
2747 {
2748 mm_segment_t old_fs = get_fs();
2749 struct timespec kts;
2750 int err;
2751
2752 set_fs(KERNEL_DS);
2753 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2754 set_fs(old_fs);
2755 if (!err)
2756 err = compat_put_timespec(&kts, up);
2757
2758 return err;
2759 }
2760
2761 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2762 {
2763 struct ifreq __user *uifr;
2764 int err;
2765
2766 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2767 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2768 return -EFAULT;
2769
2770 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2771 if (err)
2772 return err;
2773
2774 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2775 return -EFAULT;
2776
2777 return 0;
2778 }
2779
2780 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2781 {
2782 struct compat_ifconf ifc32;
2783 struct ifconf ifc;
2784 struct ifconf __user *uifc;
2785 struct compat_ifreq __user *ifr32;
2786 struct ifreq __user *ifr;
2787 unsigned int i, j;
2788 int err;
2789
2790 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2791 return -EFAULT;
2792
2793 memset(&ifc, 0, sizeof(ifc));
2794 if (ifc32.ifcbuf == 0) {
2795 ifc32.ifc_len = 0;
2796 ifc.ifc_len = 0;
2797 ifc.ifc_req = NULL;
2798 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2799 } else {
2800 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2801 sizeof(struct ifreq);
2802 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2803 ifc.ifc_len = len;
2804 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2805 ifr32 = compat_ptr(ifc32.ifcbuf);
2806 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2807 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2808 return -EFAULT;
2809 ifr++;
2810 ifr32++;
2811 }
2812 }
2813 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2814 return -EFAULT;
2815
2816 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2817 if (err)
2818 return err;
2819
2820 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2821 return -EFAULT;
2822
2823 ifr = ifc.ifc_req;
2824 ifr32 = compat_ptr(ifc32.ifcbuf);
2825 for (i = 0, j = 0;
2826 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2827 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2828 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2829 return -EFAULT;
2830 ifr32++;
2831 ifr++;
2832 }
2833
2834 if (ifc32.ifcbuf == 0) {
2835 /* Translate from 64-bit structure multiple to
2836 * a 32-bit one.
2837 */
2838 i = ifc.ifc_len;
2839 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2840 ifc32.ifc_len = i;
2841 } else {
2842 ifc32.ifc_len = i;
2843 }
2844 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2845 return -EFAULT;
2846
2847 return 0;
2848 }
2849
2850 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2851 {
2852 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2853 bool convert_in = false, convert_out = false;
2854 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2855 struct ethtool_rxnfc __user *rxnfc;
2856 struct ifreq __user *ifr;
2857 u32 rule_cnt = 0, actual_rule_cnt;
2858 u32 ethcmd;
2859 u32 data;
2860 int ret;
2861
2862 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2863 return -EFAULT;
2864
2865 compat_rxnfc = compat_ptr(data);
2866
2867 if (get_user(ethcmd, &compat_rxnfc->cmd))
2868 return -EFAULT;
2869
2870 /* Most ethtool structures are defined without padding.
2871 * Unfortunately struct ethtool_rxnfc is an exception.
2872 */
2873 switch (ethcmd) {
2874 default:
2875 break;
2876 case ETHTOOL_GRXCLSRLALL:
2877 /* Buffer size is variable */
2878 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2879 return -EFAULT;
2880 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2881 return -ENOMEM;
2882 buf_size += rule_cnt * sizeof(u32);
2883 /* fall through */
2884 case ETHTOOL_GRXRINGS:
2885 case ETHTOOL_GRXCLSRLCNT:
2886 case ETHTOOL_GRXCLSRULE:
2887 case ETHTOOL_SRXCLSRLINS:
2888 convert_out = true;
2889 /* fall through */
2890 case ETHTOOL_SRXCLSRLDEL:
2891 buf_size += sizeof(struct ethtool_rxnfc);
2892 convert_in = true;
2893 break;
2894 }
2895
2896 ifr = compat_alloc_user_space(buf_size);
2897 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2898
2899 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2900 return -EFAULT;
2901
2902 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2903 &ifr->ifr_ifru.ifru_data))
2904 return -EFAULT;
2905
2906 if (convert_in) {
2907 /* We expect there to be holes between fs.m_ext and
2908 * fs.ring_cookie and at the end of fs, but nowhere else.
2909 */
2910 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2911 sizeof(compat_rxnfc->fs.m_ext) !=
2912 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2913 sizeof(rxnfc->fs.m_ext));
2914 BUILD_BUG_ON(
2915 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2916 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2917 offsetof(struct ethtool_rxnfc, fs.location) -
2918 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2919
2920 if (copy_in_user(rxnfc, compat_rxnfc,
2921 (void __user *)(&rxnfc->fs.m_ext + 1) -
2922 (void __user *)rxnfc) ||
2923 copy_in_user(&rxnfc->fs.ring_cookie,
2924 &compat_rxnfc->fs.ring_cookie,
2925 (void __user *)(&rxnfc->fs.location + 1) -
2926 (void __user *)&rxnfc->fs.ring_cookie) ||
2927 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2928 sizeof(rxnfc->rule_cnt)))
2929 return -EFAULT;
2930 }
2931
2932 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2933 if (ret)
2934 return ret;
2935
2936 if (convert_out) {
2937 if (copy_in_user(compat_rxnfc, rxnfc,
2938 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2939 (const void __user *)rxnfc) ||
2940 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2941 &rxnfc->fs.ring_cookie,
2942 (const void __user *)(&rxnfc->fs.location + 1) -
2943 (const void __user *)&rxnfc->fs.ring_cookie) ||
2944 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2945 sizeof(rxnfc->rule_cnt)))
2946 return -EFAULT;
2947
2948 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2949 /* As an optimisation, we only copy the actual
2950 * number of rules that the underlying
2951 * function returned. Since Mallory might
2952 * change the rule count in user memory, we
2953 * check that it is less than the rule count
2954 * originally given (as the user buffer size),
2955 * which has been range-checked.
2956 */
2957 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2958 return -EFAULT;
2959 if (actual_rule_cnt < rule_cnt)
2960 rule_cnt = actual_rule_cnt;
2961 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2962 &rxnfc->rule_locs[0],
2963 rule_cnt * sizeof(u32)))
2964 return -EFAULT;
2965 }
2966 }
2967
2968 return 0;
2969 }
2970
2971 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2972 {
2973 void __user *uptr;
2974 compat_uptr_t uptr32;
2975 struct ifreq __user *uifr;
2976
2977 uifr = compat_alloc_user_space(sizeof(*uifr));
2978 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2979 return -EFAULT;
2980
2981 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2982 return -EFAULT;
2983
2984 uptr = compat_ptr(uptr32);
2985
2986 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2987 return -EFAULT;
2988
2989 return dev_ioctl(net, SIOCWANDEV, uifr);
2990 }
2991
2992 static int bond_ioctl(struct net *net, unsigned int cmd,
2993 struct compat_ifreq __user *ifr32)
2994 {
2995 struct ifreq kifr;
2996 mm_segment_t old_fs;
2997 int err;
2998
2999 switch (cmd) {
3000 case SIOCBONDENSLAVE:
3001 case SIOCBONDRELEASE:
3002 case SIOCBONDSETHWADDR:
3003 case SIOCBONDCHANGEACTIVE:
3004 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
3005 return -EFAULT;
3006
3007 old_fs = get_fs();
3008 set_fs(KERNEL_DS);
3009 err = dev_ioctl(net, cmd,
3010 (struct ifreq __user __force *) &kifr);
3011 set_fs(old_fs);
3012
3013 return err;
3014 default:
3015 return -ENOIOCTLCMD;
3016 }
3017 }
3018
3019 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3020 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3021 struct compat_ifreq __user *u_ifreq32)
3022 {
3023 struct ifreq __user *u_ifreq64;
3024 char tmp_buf[IFNAMSIZ];
3025 void __user *data64;
3026 u32 data32;
3027
3028 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3029 IFNAMSIZ))
3030 return -EFAULT;
3031 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3032 return -EFAULT;
3033 data64 = compat_ptr(data32);
3034
3035 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3036
3037 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3038 IFNAMSIZ))
3039 return -EFAULT;
3040 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3041 return -EFAULT;
3042
3043 return dev_ioctl(net, cmd, u_ifreq64);
3044 }
3045
3046 static int dev_ifsioc(struct net *net, struct socket *sock,
3047 unsigned int cmd, struct compat_ifreq __user *uifr32)
3048 {
3049 struct ifreq __user *uifr;
3050 int err;
3051
3052 uifr = compat_alloc_user_space(sizeof(*uifr));
3053 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3054 return -EFAULT;
3055
3056 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3057
3058 if (!err) {
3059 switch (cmd) {
3060 case SIOCGIFFLAGS:
3061 case SIOCGIFMETRIC:
3062 case SIOCGIFMTU:
3063 case SIOCGIFMEM:
3064 case SIOCGIFHWADDR:
3065 case SIOCGIFINDEX:
3066 case SIOCGIFADDR:
3067 case SIOCGIFBRDADDR:
3068 case SIOCGIFDSTADDR:
3069 case SIOCGIFNETMASK:
3070 case SIOCGIFPFLAGS:
3071 case SIOCGIFTXQLEN:
3072 case SIOCGMIIPHY:
3073 case SIOCGMIIREG:
3074 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3075 err = -EFAULT;
3076 break;
3077 }
3078 }
3079 return err;
3080 }
3081
3082 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3083 struct compat_ifreq __user *uifr32)
3084 {
3085 struct ifreq ifr;
3086 struct compat_ifmap __user *uifmap32;
3087 mm_segment_t old_fs;
3088 int err;
3089
3090 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3091 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3092 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3093 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3094 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3095 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3096 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3097 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3098 if (err)
3099 return -EFAULT;
3100
3101 old_fs = get_fs();
3102 set_fs(KERNEL_DS);
3103 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3104 set_fs(old_fs);
3105
3106 if (cmd == SIOCGIFMAP && !err) {
3107 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3108 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3109 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3110 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3111 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3112 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3113 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3114 if (err)
3115 err = -EFAULT;
3116 }
3117 return err;
3118 }
3119
3120 struct rtentry32 {
3121 u32 rt_pad1;
3122 struct sockaddr rt_dst; /* target address */
3123 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3124 struct sockaddr rt_genmask; /* target network mask (IP) */
3125 unsigned short rt_flags;
3126 short rt_pad2;
3127 u32 rt_pad3;
3128 unsigned char rt_tos;
3129 unsigned char rt_class;
3130 short rt_pad4;
3131 short rt_metric; /* +1 for binary compatibility! */
3132 /* char * */ u32 rt_dev; /* forcing the device at add */
3133 u32 rt_mtu; /* per route MTU/Window */
3134 u32 rt_window; /* Window clamping */
3135 unsigned short rt_irtt; /* Initial RTT */
3136 };
3137
3138 struct in6_rtmsg32 {
3139 struct in6_addr rtmsg_dst;
3140 struct in6_addr rtmsg_src;
3141 struct in6_addr rtmsg_gateway;
3142 u32 rtmsg_type;
3143 u16 rtmsg_dst_len;
3144 u16 rtmsg_src_len;
3145 u32 rtmsg_metric;
3146 u32 rtmsg_info;
3147 u32 rtmsg_flags;
3148 s32 rtmsg_ifindex;
3149 };
3150
3151 static int routing_ioctl(struct net *net, struct socket *sock,
3152 unsigned int cmd, void __user *argp)
3153 {
3154 int ret;
3155 void *r = NULL;
3156 struct in6_rtmsg r6;
3157 struct rtentry r4;
3158 char devname[16];
3159 u32 rtdev;
3160 mm_segment_t old_fs = get_fs();
3161
3162 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3163 struct in6_rtmsg32 __user *ur6 = argp;
3164 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3165 3 * sizeof(struct in6_addr));
3166 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3167 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3168 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3169 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3170 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3171 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3172 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3173
3174 r = (void *) &r6;
3175 } else { /* ipv4 */
3176 struct rtentry32 __user *ur4 = argp;
3177 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3178 3 * sizeof(struct sockaddr));
3179 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3180 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3181 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3182 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3183 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3184 ret |= get_user(rtdev, &(ur4->rt_dev));
3185 if (rtdev) {
3186 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3187 r4.rt_dev = (char __user __force *)devname;
3188 devname[15] = 0;
3189 } else
3190 r4.rt_dev = NULL;
3191
3192 r = (void *) &r4;
3193 }
3194
3195 if (ret) {
3196 ret = -EFAULT;
3197 goto out;
3198 }
3199
3200 set_fs(KERNEL_DS);
3201 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3202 set_fs(old_fs);
3203
3204 out:
3205 return ret;
3206 }
3207
3208 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3209 * for some operations; this forces use of the newer bridge-utils that
3210 * use compatible ioctls
3211 */
3212 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3213 {
3214 compat_ulong_t tmp;
3215
3216 if (get_user(tmp, argp))
3217 return -EFAULT;
3218 if (tmp == BRCTL_GET_VERSION)
3219 return BRCTL_VERSION + 1;
3220 return -EINVAL;
3221 }
3222
3223 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3224 unsigned int cmd, unsigned long arg)
3225 {
3226 void __user *argp = compat_ptr(arg);
3227 struct sock *sk = sock->sk;
3228 struct net *net = sock_net(sk);
3229
3230 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3231 return compat_ifr_data_ioctl(net, cmd, argp);
3232
3233 switch (cmd) {
3234 case SIOCSIFBR:
3235 case SIOCGIFBR:
3236 return old_bridge_ioctl(argp);
3237 case SIOCGIFNAME:
3238 return dev_ifname32(net, argp);
3239 case SIOCGIFCONF:
3240 return dev_ifconf(net, argp);
3241 case SIOCETHTOOL:
3242 return ethtool_ioctl(net, argp);
3243 case SIOCWANDEV:
3244 return compat_siocwandev(net, argp);
3245 case SIOCGIFMAP:
3246 case SIOCSIFMAP:
3247 return compat_sioc_ifmap(net, cmd, argp);
3248 case SIOCBONDENSLAVE:
3249 case SIOCBONDRELEASE:
3250 case SIOCBONDSETHWADDR:
3251 case SIOCBONDCHANGEACTIVE:
3252 return bond_ioctl(net, cmd, argp);
3253 case SIOCADDRT:
3254 case SIOCDELRT:
3255 return routing_ioctl(net, sock, cmd, argp);
3256 case SIOCGSTAMP:
3257 return do_siocgstamp(net, sock, cmd, argp);
3258 case SIOCGSTAMPNS:
3259 return do_siocgstampns(net, sock, cmd, argp);
3260 case SIOCBONDSLAVEINFOQUERY:
3261 case SIOCBONDINFOQUERY:
3262 case SIOCSHWTSTAMP:
3263 case SIOCGHWTSTAMP:
3264 return compat_ifr_data_ioctl(net, cmd, argp);
3265
3266 case FIOSETOWN:
3267 case SIOCSPGRP:
3268 case FIOGETOWN:
3269 case SIOCGPGRP:
3270 case SIOCBRADDBR:
3271 case SIOCBRDELBR:
3272 case SIOCGIFVLAN:
3273 case SIOCSIFVLAN:
3274 case SIOCADDDLCI:
3275 case SIOCDELDLCI:
3276 return sock_ioctl(file, cmd, arg);
3277
3278 case SIOCGIFFLAGS:
3279 case SIOCSIFFLAGS:
3280 case SIOCGIFMETRIC:
3281 case SIOCSIFMETRIC:
3282 case SIOCGIFMTU:
3283 case SIOCSIFMTU:
3284 case SIOCGIFMEM:
3285 case SIOCSIFMEM:
3286 case SIOCGIFHWADDR:
3287 case SIOCSIFHWADDR:
3288 case SIOCADDMULTI:
3289 case SIOCDELMULTI:
3290 case SIOCGIFINDEX:
3291 case SIOCGIFADDR:
3292 case SIOCSIFADDR:
3293 case SIOCSIFHWBROADCAST:
3294 case SIOCDIFADDR:
3295 case SIOCGIFBRDADDR:
3296 case SIOCSIFBRDADDR:
3297 case SIOCGIFDSTADDR:
3298 case SIOCSIFDSTADDR:
3299 case SIOCGIFNETMASK:
3300 case SIOCSIFNETMASK:
3301 case SIOCSIFPFLAGS:
3302 case SIOCGIFPFLAGS:
3303 case SIOCGIFTXQLEN:
3304 case SIOCSIFTXQLEN:
3305 case SIOCBRADDIF:
3306 case SIOCBRDELIF:
3307 case SIOCSIFNAME:
3308 case SIOCGMIIPHY:
3309 case SIOCGMIIREG:
3310 case SIOCSMIIREG:
3311 return dev_ifsioc(net, sock, cmd, argp);
3312
3313 case SIOCSARP:
3314 case SIOCGARP:
3315 case SIOCDARP:
3316 case SIOCATMARK:
3317 return sock_do_ioctl(net, sock, cmd, arg);
3318 }
3319
3320 return -ENOIOCTLCMD;
3321 }
3322
3323 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3324 unsigned long arg)
3325 {
3326 struct socket *sock = file->private_data;
3327 int ret = -ENOIOCTLCMD;
3328 struct sock *sk;
3329 struct net *net;
3330
3331 sk = sock->sk;
3332 net = sock_net(sk);
3333
3334 if (sock->ops->compat_ioctl)
3335 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3336
3337 if (ret == -ENOIOCTLCMD &&
3338 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3339 ret = compat_wext_handle_ioctl(net, cmd, arg);
3340
3341 if (ret == -ENOIOCTLCMD)
3342 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3343
3344 return ret;
3345 }
3346 #endif
3347
3348 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3349 {
3350 return sock->ops->bind(sock, addr, addrlen);
3351 }
3352 EXPORT_SYMBOL(kernel_bind);
3353
3354 int kernel_listen(struct socket *sock, int backlog)
3355 {
3356 return sock->ops->listen(sock, backlog);
3357 }
3358 EXPORT_SYMBOL(kernel_listen);
3359
3360 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3361 {
3362 struct sock *sk = sock->sk;
3363 int err;
3364
3365 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3366 newsock);
3367 if (err < 0)
3368 goto done;
3369
3370 err = sock->ops->accept(sock, *newsock, flags);
3371 if (err < 0) {
3372 sock_release(*newsock);
3373 *newsock = NULL;
3374 goto done;
3375 }
3376
3377 (*newsock)->ops = sock->ops;
3378 __module_get((*newsock)->ops->owner);
3379
3380 done:
3381 return err;
3382 }
3383 EXPORT_SYMBOL(kernel_accept);
3384
3385 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3386 int flags)
3387 {
3388 return sock->ops->connect(sock, addr, addrlen, flags);
3389 }
3390 EXPORT_SYMBOL(kernel_connect);
3391
3392 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3393 int *addrlen)
3394 {
3395 return sock->ops->getname(sock, addr, addrlen, 0);
3396 }
3397 EXPORT_SYMBOL(kernel_getsockname);
3398
3399 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3400 int *addrlen)
3401 {
3402 return sock->ops->getname(sock, addr, addrlen, 1);
3403 }
3404 EXPORT_SYMBOL(kernel_getpeername);
3405
3406 int kernel_getsockopt(struct socket *sock, int level, int optname,
3407 char *optval, int *optlen)
3408 {
3409 mm_segment_t oldfs = get_fs();
3410 char __user *uoptval;
3411 int __user *uoptlen;
3412 int err;
3413
3414 uoptval = (char __user __force *) optval;
3415 uoptlen = (int __user __force *) optlen;
3416
3417 set_fs(KERNEL_DS);
3418 if (level == SOL_SOCKET)
3419 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3420 else
3421 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3422 uoptlen);
3423 set_fs(oldfs);
3424 return err;
3425 }
3426 EXPORT_SYMBOL(kernel_getsockopt);
3427
3428 int kernel_setsockopt(struct socket *sock, int level, int optname,
3429 char *optval, unsigned int optlen)
3430 {
3431 mm_segment_t oldfs = get_fs();
3432 char __user *uoptval;
3433 int err;
3434
3435 uoptval = (char __user __force *) optval;
3436
3437 set_fs(KERNEL_DS);
3438 if (level == SOL_SOCKET)
3439 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3440 else
3441 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3442 optlen);
3443 set_fs(oldfs);
3444 return err;
3445 }
3446 EXPORT_SYMBOL(kernel_setsockopt);
3447
3448 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3449 size_t size, int flags)
3450 {
3451 if (sock->ops->sendpage)
3452 return sock->ops->sendpage(sock, page, offset, size, flags);
3453
3454 return sock_no_sendpage(sock, page, offset, size, flags);
3455 }
3456 EXPORT_SYMBOL(kernel_sendpage);
3457
3458 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3459 {
3460 mm_segment_t oldfs = get_fs();
3461 int err;
3462
3463 set_fs(KERNEL_DS);
3464 err = sock->ops->ioctl(sock, cmd, arg);
3465 set_fs(oldfs);
3466
3467 return err;
3468 }
3469 EXPORT_SYMBOL(kernel_sock_ioctl);
3470
3471 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3472 {
3473 return sock->ops->shutdown(sock, how);
3474 }
3475 EXPORT_SYMBOL(kernel_sock_shutdown);