]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/socket.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux-tile
[mirror_ubuntu-jammy-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
117 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
118 unsigned long nr_segs, loff_t pos);
119 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
120 unsigned long nr_segs, loff_t pos);
121 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
122
123 static int sock_close(struct inode *inode, struct file *file);
124 static unsigned int sock_poll(struct file *file,
125 struct poll_table_struct *wait);
126 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
127 #ifdef CONFIG_COMPAT
128 static long compat_sock_ioctl(struct file *file,
129 unsigned int cmd, unsigned long arg);
130 #endif
131 static int sock_fasync(int fd, struct file *filp, int on);
132 static ssize_t sock_sendpage(struct file *file, struct page *page,
133 int offset, size_t size, loff_t *ppos, int more);
134 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
135 struct pipe_inode_info *pipe, size_t len,
136 unsigned int flags);
137
138 /*
139 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
140 * in the operation structures but are done directly via the socketcall() multiplexor.
141 */
142
143 static const struct file_operations socket_file_ops = {
144 .owner = THIS_MODULE,
145 .llseek = no_llseek,
146 .aio_read = sock_aio_read,
147 .aio_write = sock_aio_write,
148 .poll = sock_poll,
149 .unlocked_ioctl = sock_ioctl,
150 #ifdef CONFIG_COMPAT
151 .compat_ioctl = compat_sock_ioctl,
152 #endif
153 .mmap = sock_mmap,
154 .open = sock_no_open, /* special open code to disallow open via /proc */
155 .release = sock_close,
156 .fasync = sock_fasync,
157 .sendpage = sock_sendpage,
158 .splice_write = generic_splice_sendpage,
159 .splice_read = sock_splice_read,
160 };
161
162 /*
163 * The protocol list. Each protocol is registered in here.
164 */
165
166 static DEFINE_SPINLOCK(net_family_lock);
167 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
168
169 /*
170 * Statistics counters of the socket lists
171 */
172
173 static DEFINE_PER_CPU(int, sockets_in_use);
174
175 /*
176 * Support routines.
177 * Move socket addresses back and forth across the kernel/user
178 * divide and look after the messy bits.
179 */
180
181 /**
182 * move_addr_to_kernel - copy a socket address into kernel space
183 * @uaddr: Address in user space
184 * @kaddr: Address in kernel space
185 * @ulen: Length in user space
186 *
187 * The address is copied into kernel space. If the provided address is
188 * too long an error code of -EINVAL is returned. If the copy gives
189 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 */
191
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 return -EINVAL;
196 if (ulen == 0)
197 return 0;
198 if (copy_from_user(kaddr, uaddr, ulen))
199 return -EFAULT;
200 return audit_sockaddr(ulen, kaddr);
201 }
202
203 /**
204 * move_addr_to_user - copy an address to user space
205 * @kaddr: kernel space address
206 * @klen: length of address in kernel
207 * @uaddr: user space address
208 * @ulen: pointer to user length field
209 *
210 * The value pointed to by ulen on entry is the buffer length available.
211 * This is overwritten with the buffer space used. -EINVAL is returned
212 * if an overlong buffer is specified or a negative buffer size. -EFAULT
213 * is returned if either the buffer or the length field are not
214 * accessible.
215 * After copying the data up to the limit the user specifies, the true
216 * length of the data is written over the length limit the user
217 * specified. Zero is returned for a success.
218 */
219
220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 void __user *uaddr, int __user *ulen)
222 {
223 int err;
224 int len;
225
226 BUG_ON(klen > sizeof(struct sockaddr_storage));
227 err = get_user(len, ulen);
228 if (err)
229 return err;
230 if (len > klen)
231 len = klen;
232 if (len < 0)
233 return -EINVAL;
234 if (len) {
235 if (audit_sockaddr(klen, kaddr))
236 return -ENOMEM;
237 if (copy_to_user(uaddr, kaddr, len))
238 return -EFAULT;
239 }
240 /*
241 * "fromlen shall refer to the value before truncation.."
242 * 1003.1g
243 */
244 return __put_user(klen, ulen);
245 }
246
247 static struct kmem_cache *sock_inode_cachep __read_mostly;
248
249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 struct socket_alloc *ei;
252 struct socket_wq *wq;
253
254 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
255 if (!ei)
256 return NULL;
257 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
258 if (!wq) {
259 kmem_cache_free(sock_inode_cachep, ei);
260 return NULL;
261 }
262 init_waitqueue_head(&wq->wait);
263 wq->fasync_list = NULL;
264 RCU_INIT_POINTER(ei->socket.wq, wq);
265
266 ei->socket.state = SS_UNCONNECTED;
267 ei->socket.flags = 0;
268 ei->socket.ops = NULL;
269 ei->socket.sk = NULL;
270 ei->socket.file = NULL;
271
272 return &ei->vfs_inode;
273 }
274
275 static void sock_destroy_inode(struct inode *inode)
276 {
277 struct socket_alloc *ei;
278 struct socket_wq *wq;
279
280 ei = container_of(inode, struct socket_alloc, vfs_inode);
281 wq = rcu_dereference_protected(ei->socket.wq, 1);
282 kfree_rcu(wq, rcu);
283 kmem_cache_free(sock_inode_cachep, ei);
284 }
285
286 static void init_once(void *foo)
287 {
288 struct socket_alloc *ei = (struct socket_alloc *)foo;
289
290 inode_init_once(&ei->vfs_inode);
291 }
292
293 static int init_inodecache(void)
294 {
295 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
296 sizeof(struct socket_alloc),
297 0,
298 (SLAB_HWCACHE_ALIGN |
299 SLAB_RECLAIM_ACCOUNT |
300 SLAB_MEM_SPREAD),
301 init_once);
302 if (sock_inode_cachep == NULL)
303 return -ENOMEM;
304 return 0;
305 }
306
307 static const struct super_operations sockfs_ops = {
308 .alloc_inode = sock_alloc_inode,
309 .destroy_inode = sock_destroy_inode,
310 .statfs = simple_statfs,
311 };
312
313 /*
314 * sockfs_dname() is called from d_path().
315 */
316 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
317 {
318 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
319 dentry->d_inode->i_ino);
320 }
321
322 static const struct dentry_operations sockfs_dentry_operations = {
323 .d_dname = sockfs_dname,
324 };
325
326 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
327 int flags, const char *dev_name, void *data)
328 {
329 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
330 &sockfs_dentry_operations, SOCKFS_MAGIC);
331 }
332
333 static struct vfsmount *sock_mnt __read_mostly;
334
335 static struct file_system_type sock_fs_type = {
336 .name = "sockfs",
337 .mount = sockfs_mount,
338 .kill_sb = kill_anon_super,
339 };
340
341 /*
342 * Obtains the first available file descriptor and sets it up for use.
343 *
344 * These functions create file structures and maps them to fd space
345 * of the current process. On success it returns file descriptor
346 * and file struct implicitly stored in sock->file.
347 * Note that another thread may close file descriptor before we return
348 * from this function. We use the fact that now we do not refer
349 * to socket after mapping. If one day we will need it, this
350 * function will increment ref. count on file by 1.
351 *
352 * In any case returned fd MAY BE not valid!
353 * This race condition is unavoidable
354 * with shared fd spaces, we cannot solve it inside kernel,
355 * but we take care of internal coherence yet.
356 */
357
358 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
359 {
360 struct qstr name = { .name = "" };
361 struct path path;
362 struct file *file;
363
364 if (dname) {
365 name.name = dname;
366 name.len = strlen(name.name);
367 } else if (sock->sk) {
368 name.name = sock->sk->sk_prot_creator->name;
369 name.len = strlen(name.name);
370 }
371 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
372 if (unlikely(!path.dentry))
373 return ERR_PTR(-ENOMEM);
374 path.mnt = mntget(sock_mnt);
375
376 d_instantiate(path.dentry, SOCK_INODE(sock));
377 SOCK_INODE(sock)->i_fop = &socket_file_ops;
378
379 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
380 &socket_file_ops);
381 if (unlikely(IS_ERR(file))) {
382 /* drop dentry, keep inode */
383 ihold(path.dentry->d_inode);
384 path_put(&path);
385 return file;
386 }
387
388 sock->file = file;
389 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
390 file->private_data = sock;
391 return file;
392 }
393 EXPORT_SYMBOL(sock_alloc_file);
394
395 static int sock_map_fd(struct socket *sock, int flags)
396 {
397 struct file *newfile;
398 int fd = get_unused_fd_flags(flags);
399 if (unlikely(fd < 0))
400 return fd;
401
402 newfile = sock_alloc_file(sock, flags, NULL);
403 if (likely(!IS_ERR(newfile))) {
404 fd_install(fd, newfile);
405 return fd;
406 }
407
408 put_unused_fd(fd);
409 return PTR_ERR(newfile);
410 }
411
412 struct socket *sock_from_file(struct file *file, int *err)
413 {
414 if (file->f_op == &socket_file_ops)
415 return file->private_data; /* set in sock_map_fd */
416
417 *err = -ENOTSOCK;
418 return NULL;
419 }
420 EXPORT_SYMBOL(sock_from_file);
421
422 /**
423 * sockfd_lookup - Go from a file number to its socket slot
424 * @fd: file handle
425 * @err: pointer to an error code return
426 *
427 * The file handle passed in is locked and the socket it is bound
428 * too is returned. If an error occurs the err pointer is overwritten
429 * with a negative errno code and NULL is returned. The function checks
430 * for both invalid handles and passing a handle which is not a socket.
431 *
432 * On a success the socket object pointer is returned.
433 */
434
435 struct socket *sockfd_lookup(int fd, int *err)
436 {
437 struct file *file;
438 struct socket *sock;
439
440 file = fget(fd);
441 if (!file) {
442 *err = -EBADF;
443 return NULL;
444 }
445
446 sock = sock_from_file(file, err);
447 if (!sock)
448 fput(file);
449 return sock;
450 }
451 EXPORT_SYMBOL(sockfd_lookup);
452
453 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
454 {
455 struct fd f = fdget(fd);
456 struct socket *sock;
457
458 *err = -EBADF;
459 if (f.file) {
460 sock = sock_from_file(f.file, err);
461 if (likely(sock)) {
462 *fput_needed = f.flags;
463 return sock;
464 }
465 fdput(f);
466 }
467 return NULL;
468 }
469
470 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
471 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
472 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
473 static ssize_t sockfs_getxattr(struct dentry *dentry,
474 const char *name, void *value, size_t size)
475 {
476 const char *proto_name;
477 size_t proto_size;
478 int error;
479
480 error = -ENODATA;
481 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
482 proto_name = dentry->d_name.name;
483 proto_size = strlen(proto_name);
484
485 if (value) {
486 error = -ERANGE;
487 if (proto_size + 1 > size)
488 goto out;
489
490 strncpy(value, proto_name, proto_size + 1);
491 }
492 error = proto_size + 1;
493 }
494
495 out:
496 return error;
497 }
498
499 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
500 size_t size)
501 {
502 ssize_t len;
503 ssize_t used = 0;
504
505 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
506 if (len < 0)
507 return len;
508 used += len;
509 if (buffer) {
510 if (size < used)
511 return -ERANGE;
512 buffer += len;
513 }
514
515 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
516 used += len;
517 if (buffer) {
518 if (size < used)
519 return -ERANGE;
520 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
521 buffer += len;
522 }
523
524 return used;
525 }
526
527 static const struct inode_operations sockfs_inode_ops = {
528 .getxattr = sockfs_getxattr,
529 .listxattr = sockfs_listxattr,
530 };
531
532 /**
533 * sock_alloc - allocate a socket
534 *
535 * Allocate a new inode and socket object. The two are bound together
536 * and initialised. The socket is then returned. If we are out of inodes
537 * NULL is returned.
538 */
539
540 static struct socket *sock_alloc(void)
541 {
542 struct inode *inode;
543 struct socket *sock;
544
545 inode = new_inode_pseudo(sock_mnt->mnt_sb);
546 if (!inode)
547 return NULL;
548
549 sock = SOCKET_I(inode);
550
551 kmemcheck_annotate_bitfield(sock, type);
552 inode->i_ino = get_next_ino();
553 inode->i_mode = S_IFSOCK | S_IRWXUGO;
554 inode->i_uid = current_fsuid();
555 inode->i_gid = current_fsgid();
556 inode->i_op = &sockfs_inode_ops;
557
558 this_cpu_add(sockets_in_use, 1);
559 return sock;
560 }
561
562 /*
563 * In theory you can't get an open on this inode, but /proc provides
564 * a back door. Remember to keep it shut otherwise you'll let the
565 * creepy crawlies in.
566 */
567
568 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
569 {
570 return -ENXIO;
571 }
572
573 const struct file_operations bad_sock_fops = {
574 .owner = THIS_MODULE,
575 .open = sock_no_open,
576 .llseek = noop_llseek,
577 };
578
579 /**
580 * sock_release - close a socket
581 * @sock: socket to close
582 *
583 * The socket is released from the protocol stack if it has a release
584 * callback, and the inode is then released if the socket is bound to
585 * an inode not a file.
586 */
587
588 void sock_release(struct socket *sock)
589 {
590 if (sock->ops) {
591 struct module *owner = sock->ops->owner;
592
593 sock->ops->release(sock);
594 sock->ops = NULL;
595 module_put(owner);
596 }
597
598 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
599 pr_err("%s: fasync list not empty!\n", __func__);
600
601 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
602 return;
603
604 this_cpu_sub(sockets_in_use, 1);
605 if (!sock->file) {
606 iput(SOCK_INODE(sock));
607 return;
608 }
609 sock->file = NULL;
610 }
611 EXPORT_SYMBOL(sock_release);
612
613 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
614 {
615 u8 flags = *tx_flags;
616
617 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
618 flags |= SKBTX_HW_TSTAMP;
619
620 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
621 flags |= SKBTX_SW_TSTAMP;
622
623 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
624 flags |= SKBTX_SCHED_TSTAMP;
625
626 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
627 flags |= SKBTX_ACK_TSTAMP;
628
629 *tx_flags = flags;
630 }
631 EXPORT_SYMBOL(__sock_tx_timestamp);
632
633 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
634 struct msghdr *msg, size_t size)
635 {
636 struct sock_iocb *si = kiocb_to_siocb(iocb);
637
638 si->sock = sock;
639 si->scm = NULL;
640 si->msg = msg;
641 si->size = size;
642
643 return sock->ops->sendmsg(iocb, sock, msg, size);
644 }
645
646 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
647 struct msghdr *msg, size_t size)
648 {
649 int err = security_socket_sendmsg(sock, msg, size);
650
651 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
652 }
653
654 static int do_sock_sendmsg(struct socket *sock, struct msghdr *msg,
655 size_t size, bool nosec)
656 {
657 struct kiocb iocb;
658 struct sock_iocb siocb;
659 int ret;
660
661 init_sync_kiocb(&iocb, NULL);
662 iocb.private = &siocb;
663 ret = nosec ? __sock_sendmsg_nosec(&iocb, sock, msg, size) :
664 __sock_sendmsg(&iocb, sock, msg, size);
665 if (-EIOCBQUEUED == ret)
666 ret = wait_on_sync_kiocb(&iocb);
667 return ret;
668 }
669
670 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
671 {
672 return do_sock_sendmsg(sock, msg, size, false);
673 }
674 EXPORT_SYMBOL(sock_sendmsg);
675
676 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
677 {
678 return do_sock_sendmsg(sock, msg, size, true);
679 }
680
681 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
682 struct kvec *vec, size_t num, size_t size)
683 {
684 mm_segment_t oldfs = get_fs();
685 int result;
686
687 set_fs(KERNEL_DS);
688 /*
689 * the following is safe, since for compiler definitions of kvec and
690 * iovec are identical, yielding the same in-core layout and alignment
691 */
692 iov_iter_init(&msg->msg_iter, WRITE, (struct iovec *)vec, num, size);
693 result = sock_sendmsg(sock, msg, size);
694 set_fs(oldfs);
695 return result;
696 }
697 EXPORT_SYMBOL(kernel_sendmsg);
698
699 /*
700 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
701 */
702 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
703 struct sk_buff *skb)
704 {
705 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
706 struct scm_timestamping tss;
707 int empty = 1;
708 struct skb_shared_hwtstamps *shhwtstamps =
709 skb_hwtstamps(skb);
710
711 /* Race occurred between timestamp enabling and packet
712 receiving. Fill in the current time for now. */
713 if (need_software_tstamp && skb->tstamp.tv64 == 0)
714 __net_timestamp(skb);
715
716 if (need_software_tstamp) {
717 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
718 struct timeval tv;
719 skb_get_timestamp(skb, &tv);
720 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
721 sizeof(tv), &tv);
722 } else {
723 struct timespec ts;
724 skb_get_timestampns(skb, &ts);
725 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
726 sizeof(ts), &ts);
727 }
728 }
729
730 memset(&tss, 0, sizeof(tss));
731 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
732 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
733 empty = 0;
734 if (shhwtstamps &&
735 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
736 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
737 empty = 0;
738 if (!empty)
739 put_cmsg(msg, SOL_SOCKET,
740 SCM_TIMESTAMPING, sizeof(tss), &tss);
741 }
742 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
743
744 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
745 struct sk_buff *skb)
746 {
747 int ack;
748
749 if (!sock_flag(sk, SOCK_WIFI_STATUS))
750 return;
751 if (!skb->wifi_acked_valid)
752 return;
753
754 ack = skb->wifi_acked;
755
756 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
757 }
758 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
759
760 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
761 struct sk_buff *skb)
762 {
763 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
764 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
765 sizeof(__u32), &skb->dropcount);
766 }
767
768 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
769 struct sk_buff *skb)
770 {
771 sock_recv_timestamp(msg, sk, skb);
772 sock_recv_drops(msg, sk, skb);
773 }
774 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
775
776 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
777 struct msghdr *msg, size_t size, int flags)
778 {
779 struct sock_iocb *si = kiocb_to_siocb(iocb);
780
781 si->sock = sock;
782 si->scm = NULL;
783 si->msg = msg;
784 si->size = size;
785 si->flags = flags;
786
787 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
788 }
789
790 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
791 struct msghdr *msg, size_t size, int flags)
792 {
793 int err = security_socket_recvmsg(sock, msg, size, flags);
794
795 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
796 }
797
798 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
799 size_t size, int flags)
800 {
801 struct kiocb iocb;
802 struct sock_iocb siocb;
803 int ret;
804
805 init_sync_kiocb(&iocb, NULL);
806 iocb.private = &siocb;
807 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
808 if (-EIOCBQUEUED == ret)
809 ret = wait_on_sync_kiocb(&iocb);
810 return ret;
811 }
812 EXPORT_SYMBOL(sock_recvmsg);
813
814 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
815 size_t size, int flags)
816 {
817 struct kiocb iocb;
818 struct sock_iocb siocb;
819 int ret;
820
821 init_sync_kiocb(&iocb, NULL);
822 iocb.private = &siocb;
823 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
824 if (-EIOCBQUEUED == ret)
825 ret = wait_on_sync_kiocb(&iocb);
826 return ret;
827 }
828
829 /**
830 * kernel_recvmsg - Receive a message from a socket (kernel space)
831 * @sock: The socket to receive the message from
832 * @msg: Received message
833 * @vec: Input s/g array for message data
834 * @num: Size of input s/g array
835 * @size: Number of bytes to read
836 * @flags: Message flags (MSG_DONTWAIT, etc...)
837 *
838 * On return the msg structure contains the scatter/gather array passed in the
839 * vec argument. The array is modified so that it consists of the unfilled
840 * portion of the original array.
841 *
842 * The returned value is the total number of bytes received, or an error.
843 */
844 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
845 struct kvec *vec, size_t num, size_t size, int flags)
846 {
847 mm_segment_t oldfs = get_fs();
848 int result;
849
850 set_fs(KERNEL_DS);
851 /*
852 * the following is safe, since for compiler definitions of kvec and
853 * iovec are identical, yielding the same in-core layout and alignment
854 */
855 iov_iter_init(&msg->msg_iter, READ, (struct iovec *)vec, num, size);
856 result = sock_recvmsg(sock, msg, size, flags);
857 set_fs(oldfs);
858 return result;
859 }
860 EXPORT_SYMBOL(kernel_recvmsg);
861
862 static ssize_t sock_sendpage(struct file *file, struct page *page,
863 int offset, size_t size, loff_t *ppos, int more)
864 {
865 struct socket *sock;
866 int flags;
867
868 sock = file->private_data;
869
870 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
871 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
872 flags |= more;
873
874 return kernel_sendpage(sock, page, offset, size, flags);
875 }
876
877 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
878 struct pipe_inode_info *pipe, size_t len,
879 unsigned int flags)
880 {
881 struct socket *sock = file->private_data;
882
883 if (unlikely(!sock->ops->splice_read))
884 return -EINVAL;
885
886 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
887 }
888
889 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
890 struct sock_iocb *siocb)
891 {
892 if (!is_sync_kiocb(iocb))
893 BUG();
894
895 siocb->kiocb = iocb;
896 iocb->private = siocb;
897 return siocb;
898 }
899
900 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
901 struct file *file, const struct iovec *iov,
902 unsigned long nr_segs)
903 {
904 struct socket *sock = file->private_data;
905 size_t size = 0;
906 int i;
907
908 for (i = 0; i < nr_segs; i++)
909 size += iov[i].iov_len;
910
911 msg->msg_name = NULL;
912 msg->msg_namelen = 0;
913 msg->msg_control = NULL;
914 msg->msg_controllen = 0;
915 iov_iter_init(&msg->msg_iter, READ, iov, nr_segs, size);
916 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
917
918 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
919 }
920
921 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
922 unsigned long nr_segs, loff_t pos)
923 {
924 struct sock_iocb siocb, *x;
925
926 if (pos != 0)
927 return -ESPIPE;
928
929 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */
930 return 0;
931
932
933 x = alloc_sock_iocb(iocb, &siocb);
934 if (!x)
935 return -ENOMEM;
936 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
937 }
938
939 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
940 struct file *file, const struct iovec *iov,
941 unsigned long nr_segs)
942 {
943 struct socket *sock = file->private_data;
944 size_t size = 0;
945 int i;
946
947 for (i = 0; i < nr_segs; i++)
948 size += iov[i].iov_len;
949
950 msg->msg_name = NULL;
951 msg->msg_namelen = 0;
952 msg->msg_control = NULL;
953 msg->msg_controllen = 0;
954 iov_iter_init(&msg->msg_iter, WRITE, iov, nr_segs, size);
955 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
956 if (sock->type == SOCK_SEQPACKET)
957 msg->msg_flags |= MSG_EOR;
958
959 return __sock_sendmsg(iocb, sock, msg, size);
960 }
961
962 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
963 unsigned long nr_segs, loff_t pos)
964 {
965 struct sock_iocb siocb, *x;
966
967 if (pos != 0)
968 return -ESPIPE;
969
970 x = alloc_sock_iocb(iocb, &siocb);
971 if (!x)
972 return -ENOMEM;
973
974 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
975 }
976
977 /*
978 * Atomic setting of ioctl hooks to avoid race
979 * with module unload.
980 */
981
982 static DEFINE_MUTEX(br_ioctl_mutex);
983 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
984
985 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
986 {
987 mutex_lock(&br_ioctl_mutex);
988 br_ioctl_hook = hook;
989 mutex_unlock(&br_ioctl_mutex);
990 }
991 EXPORT_SYMBOL(brioctl_set);
992
993 static DEFINE_MUTEX(vlan_ioctl_mutex);
994 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
995
996 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
997 {
998 mutex_lock(&vlan_ioctl_mutex);
999 vlan_ioctl_hook = hook;
1000 mutex_unlock(&vlan_ioctl_mutex);
1001 }
1002 EXPORT_SYMBOL(vlan_ioctl_set);
1003
1004 static DEFINE_MUTEX(dlci_ioctl_mutex);
1005 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1006
1007 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1008 {
1009 mutex_lock(&dlci_ioctl_mutex);
1010 dlci_ioctl_hook = hook;
1011 mutex_unlock(&dlci_ioctl_mutex);
1012 }
1013 EXPORT_SYMBOL(dlci_ioctl_set);
1014
1015 static long sock_do_ioctl(struct net *net, struct socket *sock,
1016 unsigned int cmd, unsigned long arg)
1017 {
1018 int err;
1019 void __user *argp = (void __user *)arg;
1020
1021 err = sock->ops->ioctl(sock, cmd, arg);
1022
1023 /*
1024 * If this ioctl is unknown try to hand it down
1025 * to the NIC driver.
1026 */
1027 if (err == -ENOIOCTLCMD)
1028 err = dev_ioctl(net, cmd, argp);
1029
1030 return err;
1031 }
1032
1033 /*
1034 * With an ioctl, arg may well be a user mode pointer, but we don't know
1035 * what to do with it - that's up to the protocol still.
1036 */
1037
1038 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1039 {
1040 struct socket *sock;
1041 struct sock *sk;
1042 void __user *argp = (void __user *)arg;
1043 int pid, err;
1044 struct net *net;
1045
1046 sock = file->private_data;
1047 sk = sock->sk;
1048 net = sock_net(sk);
1049 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1050 err = dev_ioctl(net, cmd, argp);
1051 } else
1052 #ifdef CONFIG_WEXT_CORE
1053 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1054 err = dev_ioctl(net, cmd, argp);
1055 } else
1056 #endif
1057 switch (cmd) {
1058 case FIOSETOWN:
1059 case SIOCSPGRP:
1060 err = -EFAULT;
1061 if (get_user(pid, (int __user *)argp))
1062 break;
1063 f_setown(sock->file, pid, 1);
1064 err = 0;
1065 break;
1066 case FIOGETOWN:
1067 case SIOCGPGRP:
1068 err = put_user(f_getown(sock->file),
1069 (int __user *)argp);
1070 break;
1071 case SIOCGIFBR:
1072 case SIOCSIFBR:
1073 case SIOCBRADDBR:
1074 case SIOCBRDELBR:
1075 err = -ENOPKG;
1076 if (!br_ioctl_hook)
1077 request_module("bridge");
1078
1079 mutex_lock(&br_ioctl_mutex);
1080 if (br_ioctl_hook)
1081 err = br_ioctl_hook(net, cmd, argp);
1082 mutex_unlock(&br_ioctl_mutex);
1083 break;
1084 case SIOCGIFVLAN:
1085 case SIOCSIFVLAN:
1086 err = -ENOPKG;
1087 if (!vlan_ioctl_hook)
1088 request_module("8021q");
1089
1090 mutex_lock(&vlan_ioctl_mutex);
1091 if (vlan_ioctl_hook)
1092 err = vlan_ioctl_hook(net, argp);
1093 mutex_unlock(&vlan_ioctl_mutex);
1094 break;
1095 case SIOCADDDLCI:
1096 case SIOCDELDLCI:
1097 err = -ENOPKG;
1098 if (!dlci_ioctl_hook)
1099 request_module("dlci");
1100
1101 mutex_lock(&dlci_ioctl_mutex);
1102 if (dlci_ioctl_hook)
1103 err = dlci_ioctl_hook(cmd, argp);
1104 mutex_unlock(&dlci_ioctl_mutex);
1105 break;
1106 default:
1107 err = sock_do_ioctl(net, sock, cmd, arg);
1108 break;
1109 }
1110 return err;
1111 }
1112
1113 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1114 {
1115 int err;
1116 struct socket *sock = NULL;
1117
1118 err = security_socket_create(family, type, protocol, 1);
1119 if (err)
1120 goto out;
1121
1122 sock = sock_alloc();
1123 if (!sock) {
1124 err = -ENOMEM;
1125 goto out;
1126 }
1127
1128 sock->type = type;
1129 err = security_socket_post_create(sock, family, type, protocol, 1);
1130 if (err)
1131 goto out_release;
1132
1133 out:
1134 *res = sock;
1135 return err;
1136 out_release:
1137 sock_release(sock);
1138 sock = NULL;
1139 goto out;
1140 }
1141 EXPORT_SYMBOL(sock_create_lite);
1142
1143 /* No kernel lock held - perfect */
1144 static unsigned int sock_poll(struct file *file, poll_table *wait)
1145 {
1146 unsigned int busy_flag = 0;
1147 struct socket *sock;
1148
1149 /*
1150 * We can't return errors to poll, so it's either yes or no.
1151 */
1152 sock = file->private_data;
1153
1154 if (sk_can_busy_loop(sock->sk)) {
1155 /* this socket can poll_ll so tell the system call */
1156 busy_flag = POLL_BUSY_LOOP;
1157
1158 /* once, only if requested by syscall */
1159 if (wait && (wait->_key & POLL_BUSY_LOOP))
1160 sk_busy_loop(sock->sk, 1);
1161 }
1162
1163 return busy_flag | sock->ops->poll(file, sock, wait);
1164 }
1165
1166 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1167 {
1168 struct socket *sock = file->private_data;
1169
1170 return sock->ops->mmap(file, sock, vma);
1171 }
1172
1173 static int sock_close(struct inode *inode, struct file *filp)
1174 {
1175 sock_release(SOCKET_I(inode));
1176 return 0;
1177 }
1178
1179 /*
1180 * Update the socket async list
1181 *
1182 * Fasync_list locking strategy.
1183 *
1184 * 1. fasync_list is modified only under process context socket lock
1185 * i.e. under semaphore.
1186 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1187 * or under socket lock
1188 */
1189
1190 static int sock_fasync(int fd, struct file *filp, int on)
1191 {
1192 struct socket *sock = filp->private_data;
1193 struct sock *sk = sock->sk;
1194 struct socket_wq *wq;
1195
1196 if (sk == NULL)
1197 return -EINVAL;
1198
1199 lock_sock(sk);
1200 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1201 fasync_helper(fd, filp, on, &wq->fasync_list);
1202
1203 if (!wq->fasync_list)
1204 sock_reset_flag(sk, SOCK_FASYNC);
1205 else
1206 sock_set_flag(sk, SOCK_FASYNC);
1207
1208 release_sock(sk);
1209 return 0;
1210 }
1211
1212 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1213
1214 int sock_wake_async(struct socket *sock, int how, int band)
1215 {
1216 struct socket_wq *wq;
1217
1218 if (!sock)
1219 return -1;
1220 rcu_read_lock();
1221 wq = rcu_dereference(sock->wq);
1222 if (!wq || !wq->fasync_list) {
1223 rcu_read_unlock();
1224 return -1;
1225 }
1226 switch (how) {
1227 case SOCK_WAKE_WAITD:
1228 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1229 break;
1230 goto call_kill;
1231 case SOCK_WAKE_SPACE:
1232 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1233 break;
1234 /* fall through */
1235 case SOCK_WAKE_IO:
1236 call_kill:
1237 kill_fasync(&wq->fasync_list, SIGIO, band);
1238 break;
1239 case SOCK_WAKE_URG:
1240 kill_fasync(&wq->fasync_list, SIGURG, band);
1241 }
1242 rcu_read_unlock();
1243 return 0;
1244 }
1245 EXPORT_SYMBOL(sock_wake_async);
1246
1247 int __sock_create(struct net *net, int family, int type, int protocol,
1248 struct socket **res, int kern)
1249 {
1250 int err;
1251 struct socket *sock;
1252 const struct net_proto_family *pf;
1253
1254 /*
1255 * Check protocol is in range
1256 */
1257 if (family < 0 || family >= NPROTO)
1258 return -EAFNOSUPPORT;
1259 if (type < 0 || type >= SOCK_MAX)
1260 return -EINVAL;
1261
1262 /* Compatibility.
1263
1264 This uglymoron is moved from INET layer to here to avoid
1265 deadlock in module load.
1266 */
1267 if (family == PF_INET && type == SOCK_PACKET) {
1268 static int warned;
1269 if (!warned) {
1270 warned = 1;
1271 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1272 current->comm);
1273 }
1274 family = PF_PACKET;
1275 }
1276
1277 err = security_socket_create(family, type, protocol, kern);
1278 if (err)
1279 return err;
1280
1281 /*
1282 * Allocate the socket and allow the family to set things up. if
1283 * the protocol is 0, the family is instructed to select an appropriate
1284 * default.
1285 */
1286 sock = sock_alloc();
1287 if (!sock) {
1288 net_warn_ratelimited("socket: no more sockets\n");
1289 return -ENFILE; /* Not exactly a match, but its the
1290 closest posix thing */
1291 }
1292
1293 sock->type = type;
1294
1295 #ifdef CONFIG_MODULES
1296 /* Attempt to load a protocol module if the find failed.
1297 *
1298 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1299 * requested real, full-featured networking support upon configuration.
1300 * Otherwise module support will break!
1301 */
1302 if (rcu_access_pointer(net_families[family]) == NULL)
1303 request_module("net-pf-%d", family);
1304 #endif
1305
1306 rcu_read_lock();
1307 pf = rcu_dereference(net_families[family]);
1308 err = -EAFNOSUPPORT;
1309 if (!pf)
1310 goto out_release;
1311
1312 /*
1313 * We will call the ->create function, that possibly is in a loadable
1314 * module, so we have to bump that loadable module refcnt first.
1315 */
1316 if (!try_module_get(pf->owner))
1317 goto out_release;
1318
1319 /* Now protected by module ref count */
1320 rcu_read_unlock();
1321
1322 err = pf->create(net, sock, protocol, kern);
1323 if (err < 0)
1324 goto out_module_put;
1325
1326 /*
1327 * Now to bump the refcnt of the [loadable] module that owns this
1328 * socket at sock_release time we decrement its refcnt.
1329 */
1330 if (!try_module_get(sock->ops->owner))
1331 goto out_module_busy;
1332
1333 /*
1334 * Now that we're done with the ->create function, the [loadable]
1335 * module can have its refcnt decremented
1336 */
1337 module_put(pf->owner);
1338 err = security_socket_post_create(sock, family, type, protocol, kern);
1339 if (err)
1340 goto out_sock_release;
1341 *res = sock;
1342
1343 return 0;
1344
1345 out_module_busy:
1346 err = -EAFNOSUPPORT;
1347 out_module_put:
1348 sock->ops = NULL;
1349 module_put(pf->owner);
1350 out_sock_release:
1351 sock_release(sock);
1352 return err;
1353
1354 out_release:
1355 rcu_read_unlock();
1356 goto out_sock_release;
1357 }
1358 EXPORT_SYMBOL(__sock_create);
1359
1360 int sock_create(int family, int type, int protocol, struct socket **res)
1361 {
1362 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1363 }
1364 EXPORT_SYMBOL(sock_create);
1365
1366 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1367 {
1368 return __sock_create(&init_net, family, type, protocol, res, 1);
1369 }
1370 EXPORT_SYMBOL(sock_create_kern);
1371
1372 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1373 {
1374 int retval;
1375 struct socket *sock;
1376 int flags;
1377
1378 /* Check the SOCK_* constants for consistency. */
1379 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1380 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1381 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1382 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1383
1384 flags = type & ~SOCK_TYPE_MASK;
1385 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1386 return -EINVAL;
1387 type &= SOCK_TYPE_MASK;
1388
1389 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1390 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1391
1392 retval = sock_create(family, type, protocol, &sock);
1393 if (retval < 0)
1394 goto out;
1395
1396 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1397 if (retval < 0)
1398 goto out_release;
1399
1400 out:
1401 /* It may be already another descriptor 8) Not kernel problem. */
1402 return retval;
1403
1404 out_release:
1405 sock_release(sock);
1406 return retval;
1407 }
1408
1409 /*
1410 * Create a pair of connected sockets.
1411 */
1412
1413 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1414 int __user *, usockvec)
1415 {
1416 struct socket *sock1, *sock2;
1417 int fd1, fd2, err;
1418 struct file *newfile1, *newfile2;
1419 int flags;
1420
1421 flags = type & ~SOCK_TYPE_MASK;
1422 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1423 return -EINVAL;
1424 type &= SOCK_TYPE_MASK;
1425
1426 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1427 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1428
1429 /*
1430 * Obtain the first socket and check if the underlying protocol
1431 * supports the socketpair call.
1432 */
1433
1434 err = sock_create(family, type, protocol, &sock1);
1435 if (err < 0)
1436 goto out;
1437
1438 err = sock_create(family, type, protocol, &sock2);
1439 if (err < 0)
1440 goto out_release_1;
1441
1442 err = sock1->ops->socketpair(sock1, sock2);
1443 if (err < 0)
1444 goto out_release_both;
1445
1446 fd1 = get_unused_fd_flags(flags);
1447 if (unlikely(fd1 < 0)) {
1448 err = fd1;
1449 goto out_release_both;
1450 }
1451
1452 fd2 = get_unused_fd_flags(flags);
1453 if (unlikely(fd2 < 0)) {
1454 err = fd2;
1455 goto out_put_unused_1;
1456 }
1457
1458 newfile1 = sock_alloc_file(sock1, flags, NULL);
1459 if (unlikely(IS_ERR(newfile1))) {
1460 err = PTR_ERR(newfile1);
1461 goto out_put_unused_both;
1462 }
1463
1464 newfile2 = sock_alloc_file(sock2, flags, NULL);
1465 if (IS_ERR(newfile2)) {
1466 err = PTR_ERR(newfile2);
1467 goto out_fput_1;
1468 }
1469
1470 err = put_user(fd1, &usockvec[0]);
1471 if (err)
1472 goto out_fput_both;
1473
1474 err = put_user(fd2, &usockvec[1]);
1475 if (err)
1476 goto out_fput_both;
1477
1478 audit_fd_pair(fd1, fd2);
1479
1480 fd_install(fd1, newfile1);
1481 fd_install(fd2, newfile2);
1482 /* fd1 and fd2 may be already another descriptors.
1483 * Not kernel problem.
1484 */
1485
1486 return 0;
1487
1488 out_fput_both:
1489 fput(newfile2);
1490 fput(newfile1);
1491 put_unused_fd(fd2);
1492 put_unused_fd(fd1);
1493 goto out;
1494
1495 out_fput_1:
1496 fput(newfile1);
1497 put_unused_fd(fd2);
1498 put_unused_fd(fd1);
1499 sock_release(sock2);
1500 goto out;
1501
1502 out_put_unused_both:
1503 put_unused_fd(fd2);
1504 out_put_unused_1:
1505 put_unused_fd(fd1);
1506 out_release_both:
1507 sock_release(sock2);
1508 out_release_1:
1509 sock_release(sock1);
1510 out:
1511 return err;
1512 }
1513
1514 /*
1515 * Bind a name to a socket. Nothing much to do here since it's
1516 * the protocol's responsibility to handle the local address.
1517 *
1518 * We move the socket address to kernel space before we call
1519 * the protocol layer (having also checked the address is ok).
1520 */
1521
1522 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1523 {
1524 struct socket *sock;
1525 struct sockaddr_storage address;
1526 int err, fput_needed;
1527
1528 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1529 if (sock) {
1530 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1531 if (err >= 0) {
1532 err = security_socket_bind(sock,
1533 (struct sockaddr *)&address,
1534 addrlen);
1535 if (!err)
1536 err = sock->ops->bind(sock,
1537 (struct sockaddr *)
1538 &address, addrlen);
1539 }
1540 fput_light(sock->file, fput_needed);
1541 }
1542 return err;
1543 }
1544
1545 /*
1546 * Perform a listen. Basically, we allow the protocol to do anything
1547 * necessary for a listen, and if that works, we mark the socket as
1548 * ready for listening.
1549 */
1550
1551 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1552 {
1553 struct socket *sock;
1554 int err, fput_needed;
1555 int somaxconn;
1556
1557 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1558 if (sock) {
1559 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1560 if ((unsigned int)backlog > somaxconn)
1561 backlog = somaxconn;
1562
1563 err = security_socket_listen(sock, backlog);
1564 if (!err)
1565 err = sock->ops->listen(sock, backlog);
1566
1567 fput_light(sock->file, fput_needed);
1568 }
1569 return err;
1570 }
1571
1572 /*
1573 * For accept, we attempt to create a new socket, set up the link
1574 * with the client, wake up the client, then return the new
1575 * connected fd. We collect the address of the connector in kernel
1576 * space and move it to user at the very end. This is unclean because
1577 * we open the socket then return an error.
1578 *
1579 * 1003.1g adds the ability to recvmsg() to query connection pending
1580 * status to recvmsg. We need to add that support in a way thats
1581 * clean when we restucture accept also.
1582 */
1583
1584 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1585 int __user *, upeer_addrlen, int, flags)
1586 {
1587 struct socket *sock, *newsock;
1588 struct file *newfile;
1589 int err, len, newfd, fput_needed;
1590 struct sockaddr_storage address;
1591
1592 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1593 return -EINVAL;
1594
1595 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1596 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1597
1598 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1599 if (!sock)
1600 goto out;
1601
1602 err = -ENFILE;
1603 newsock = sock_alloc();
1604 if (!newsock)
1605 goto out_put;
1606
1607 newsock->type = sock->type;
1608 newsock->ops = sock->ops;
1609
1610 /*
1611 * We don't need try_module_get here, as the listening socket (sock)
1612 * has the protocol module (sock->ops->owner) held.
1613 */
1614 __module_get(newsock->ops->owner);
1615
1616 newfd = get_unused_fd_flags(flags);
1617 if (unlikely(newfd < 0)) {
1618 err = newfd;
1619 sock_release(newsock);
1620 goto out_put;
1621 }
1622 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1623 if (unlikely(IS_ERR(newfile))) {
1624 err = PTR_ERR(newfile);
1625 put_unused_fd(newfd);
1626 sock_release(newsock);
1627 goto out_put;
1628 }
1629
1630 err = security_socket_accept(sock, newsock);
1631 if (err)
1632 goto out_fd;
1633
1634 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1635 if (err < 0)
1636 goto out_fd;
1637
1638 if (upeer_sockaddr) {
1639 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1640 &len, 2) < 0) {
1641 err = -ECONNABORTED;
1642 goto out_fd;
1643 }
1644 err = move_addr_to_user(&address,
1645 len, upeer_sockaddr, upeer_addrlen);
1646 if (err < 0)
1647 goto out_fd;
1648 }
1649
1650 /* File flags are not inherited via accept() unlike another OSes. */
1651
1652 fd_install(newfd, newfile);
1653 err = newfd;
1654
1655 out_put:
1656 fput_light(sock->file, fput_needed);
1657 out:
1658 return err;
1659 out_fd:
1660 fput(newfile);
1661 put_unused_fd(newfd);
1662 goto out_put;
1663 }
1664
1665 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1666 int __user *, upeer_addrlen)
1667 {
1668 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1669 }
1670
1671 /*
1672 * Attempt to connect to a socket with the server address. The address
1673 * is in user space so we verify it is OK and move it to kernel space.
1674 *
1675 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1676 * break bindings
1677 *
1678 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1679 * other SEQPACKET protocols that take time to connect() as it doesn't
1680 * include the -EINPROGRESS status for such sockets.
1681 */
1682
1683 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1684 int, addrlen)
1685 {
1686 struct socket *sock;
1687 struct sockaddr_storage address;
1688 int err, fput_needed;
1689
1690 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1691 if (!sock)
1692 goto out;
1693 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1694 if (err < 0)
1695 goto out_put;
1696
1697 err =
1698 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1699 if (err)
1700 goto out_put;
1701
1702 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1703 sock->file->f_flags);
1704 out_put:
1705 fput_light(sock->file, fput_needed);
1706 out:
1707 return err;
1708 }
1709
1710 /*
1711 * Get the local address ('name') of a socket object. Move the obtained
1712 * name to user space.
1713 */
1714
1715 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1716 int __user *, usockaddr_len)
1717 {
1718 struct socket *sock;
1719 struct sockaddr_storage address;
1720 int len, err, fput_needed;
1721
1722 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1723 if (!sock)
1724 goto out;
1725
1726 err = security_socket_getsockname(sock);
1727 if (err)
1728 goto out_put;
1729
1730 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1731 if (err)
1732 goto out_put;
1733 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1734
1735 out_put:
1736 fput_light(sock->file, fput_needed);
1737 out:
1738 return err;
1739 }
1740
1741 /*
1742 * Get the remote address ('name') of a socket object. Move the obtained
1743 * name to user space.
1744 */
1745
1746 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1747 int __user *, usockaddr_len)
1748 {
1749 struct socket *sock;
1750 struct sockaddr_storage address;
1751 int len, err, fput_needed;
1752
1753 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1754 if (sock != NULL) {
1755 err = security_socket_getpeername(sock);
1756 if (err) {
1757 fput_light(sock->file, fput_needed);
1758 return err;
1759 }
1760
1761 err =
1762 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1763 1);
1764 if (!err)
1765 err = move_addr_to_user(&address, len, usockaddr,
1766 usockaddr_len);
1767 fput_light(sock->file, fput_needed);
1768 }
1769 return err;
1770 }
1771
1772 /*
1773 * Send a datagram to a given address. We move the address into kernel
1774 * space and check the user space data area is readable before invoking
1775 * the protocol.
1776 */
1777
1778 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1779 unsigned int, flags, struct sockaddr __user *, addr,
1780 int, addr_len)
1781 {
1782 struct socket *sock;
1783 struct sockaddr_storage address;
1784 int err;
1785 struct msghdr msg;
1786 struct iovec iov;
1787 int fput_needed;
1788
1789 if (len > INT_MAX)
1790 len = INT_MAX;
1791 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1792 if (!sock)
1793 goto out;
1794
1795 iov.iov_base = buff;
1796 iov.iov_len = len;
1797 msg.msg_name = NULL;
1798 iov_iter_init(&msg.msg_iter, WRITE, &iov, 1, len);
1799 msg.msg_control = NULL;
1800 msg.msg_controllen = 0;
1801 msg.msg_namelen = 0;
1802 if (addr) {
1803 err = move_addr_to_kernel(addr, addr_len, &address);
1804 if (err < 0)
1805 goto out_put;
1806 msg.msg_name = (struct sockaddr *)&address;
1807 msg.msg_namelen = addr_len;
1808 }
1809 if (sock->file->f_flags & O_NONBLOCK)
1810 flags |= MSG_DONTWAIT;
1811 msg.msg_flags = flags;
1812 err = sock_sendmsg(sock, &msg, len);
1813
1814 out_put:
1815 fput_light(sock->file, fput_needed);
1816 out:
1817 return err;
1818 }
1819
1820 /*
1821 * Send a datagram down a socket.
1822 */
1823
1824 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1825 unsigned int, flags)
1826 {
1827 return sys_sendto(fd, buff, len, flags, NULL, 0);
1828 }
1829
1830 /*
1831 * Receive a frame from the socket and optionally record the address of the
1832 * sender. We verify the buffers are writable and if needed move the
1833 * sender address from kernel to user space.
1834 */
1835
1836 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1837 unsigned int, flags, struct sockaddr __user *, addr,
1838 int __user *, addr_len)
1839 {
1840 struct socket *sock;
1841 struct iovec iov;
1842 struct msghdr msg;
1843 struct sockaddr_storage address;
1844 int err, err2;
1845 int fput_needed;
1846
1847 if (size > INT_MAX)
1848 size = INT_MAX;
1849 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1850 if (!sock)
1851 goto out;
1852
1853 msg.msg_control = NULL;
1854 msg.msg_controllen = 0;
1855 iov.iov_len = size;
1856 iov.iov_base = ubuf;
1857 iov_iter_init(&msg.msg_iter, READ, &iov, 1, size);
1858 /* Save some cycles and don't copy the address if not needed */
1859 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1860 /* We assume all kernel code knows the size of sockaddr_storage */
1861 msg.msg_namelen = 0;
1862 if (sock->file->f_flags & O_NONBLOCK)
1863 flags |= MSG_DONTWAIT;
1864 err = sock_recvmsg(sock, &msg, size, flags);
1865
1866 if (err >= 0 && addr != NULL) {
1867 err2 = move_addr_to_user(&address,
1868 msg.msg_namelen, addr, addr_len);
1869 if (err2 < 0)
1870 err = err2;
1871 }
1872
1873 fput_light(sock->file, fput_needed);
1874 out:
1875 return err;
1876 }
1877
1878 /*
1879 * Receive a datagram from a socket.
1880 */
1881
1882 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1883 unsigned int, flags)
1884 {
1885 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1886 }
1887
1888 /*
1889 * Set a socket option. Because we don't know the option lengths we have
1890 * to pass the user mode parameter for the protocols to sort out.
1891 */
1892
1893 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1894 char __user *, optval, int, optlen)
1895 {
1896 int err, fput_needed;
1897 struct socket *sock;
1898
1899 if (optlen < 0)
1900 return -EINVAL;
1901
1902 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1903 if (sock != NULL) {
1904 err = security_socket_setsockopt(sock, level, optname);
1905 if (err)
1906 goto out_put;
1907
1908 if (level == SOL_SOCKET)
1909 err =
1910 sock_setsockopt(sock, level, optname, optval,
1911 optlen);
1912 else
1913 err =
1914 sock->ops->setsockopt(sock, level, optname, optval,
1915 optlen);
1916 out_put:
1917 fput_light(sock->file, fput_needed);
1918 }
1919 return err;
1920 }
1921
1922 /*
1923 * Get a socket option. Because we don't know the option lengths we have
1924 * to pass a user mode parameter for the protocols to sort out.
1925 */
1926
1927 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1928 char __user *, optval, int __user *, optlen)
1929 {
1930 int err, fput_needed;
1931 struct socket *sock;
1932
1933 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1934 if (sock != NULL) {
1935 err = security_socket_getsockopt(sock, level, optname);
1936 if (err)
1937 goto out_put;
1938
1939 if (level == SOL_SOCKET)
1940 err =
1941 sock_getsockopt(sock, level, optname, optval,
1942 optlen);
1943 else
1944 err =
1945 sock->ops->getsockopt(sock, level, optname, optval,
1946 optlen);
1947 out_put:
1948 fput_light(sock->file, fput_needed);
1949 }
1950 return err;
1951 }
1952
1953 /*
1954 * Shutdown a socket.
1955 */
1956
1957 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1958 {
1959 int err, fput_needed;
1960 struct socket *sock;
1961
1962 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1963 if (sock != NULL) {
1964 err = security_socket_shutdown(sock, how);
1965 if (!err)
1966 err = sock->ops->shutdown(sock, how);
1967 fput_light(sock->file, fput_needed);
1968 }
1969 return err;
1970 }
1971
1972 /* A couple of helpful macros for getting the address of the 32/64 bit
1973 * fields which are the same type (int / unsigned) on our platforms.
1974 */
1975 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1976 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1977 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1978
1979 struct used_address {
1980 struct sockaddr_storage name;
1981 unsigned int name_len;
1982 };
1983
1984 static ssize_t copy_msghdr_from_user(struct msghdr *kmsg,
1985 struct user_msghdr __user *umsg,
1986 struct sockaddr __user **save_addr,
1987 struct iovec **iov)
1988 {
1989 struct sockaddr __user *uaddr;
1990 struct iovec __user *uiov;
1991 size_t nr_segs;
1992 ssize_t err;
1993
1994 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1995 __get_user(uaddr, &umsg->msg_name) ||
1996 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1997 __get_user(uiov, &umsg->msg_iov) ||
1998 __get_user(nr_segs, &umsg->msg_iovlen) ||
1999 __get_user(kmsg->msg_control, &umsg->msg_control) ||
2000 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
2001 __get_user(kmsg->msg_flags, &umsg->msg_flags))
2002 return -EFAULT;
2003
2004 if (!uaddr)
2005 kmsg->msg_namelen = 0;
2006
2007 if (kmsg->msg_namelen < 0)
2008 return -EINVAL;
2009
2010 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2011 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2012
2013 if (save_addr)
2014 *save_addr = uaddr;
2015
2016 if (uaddr && kmsg->msg_namelen) {
2017 if (!save_addr) {
2018 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
2019 kmsg->msg_name);
2020 if (err < 0)
2021 return err;
2022 }
2023 } else {
2024 kmsg->msg_name = NULL;
2025 kmsg->msg_namelen = 0;
2026 }
2027
2028 if (nr_segs > UIO_MAXIOV)
2029 return -EMSGSIZE;
2030
2031 err = rw_copy_check_uvector(save_addr ? READ : WRITE,
2032 uiov, nr_segs,
2033 UIO_FASTIOV, *iov, iov);
2034 if (err >= 0)
2035 iov_iter_init(&kmsg->msg_iter, save_addr ? READ : WRITE,
2036 *iov, nr_segs, err);
2037 return err;
2038 }
2039
2040 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2041 struct msghdr *msg_sys, unsigned int flags,
2042 struct used_address *used_address)
2043 {
2044 struct compat_msghdr __user *msg_compat =
2045 (struct compat_msghdr __user *)msg;
2046 struct sockaddr_storage address;
2047 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2048 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2049 __attribute__ ((aligned(sizeof(__kernel_size_t))));
2050 /* 20 is size of ipv6_pktinfo */
2051 unsigned char *ctl_buf = ctl;
2052 int ctl_len, total_len;
2053 ssize_t err;
2054
2055 msg_sys->msg_name = &address;
2056
2057 if (MSG_CMSG_COMPAT & flags)
2058 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2059 else
2060 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2061 if (err < 0)
2062 goto out_freeiov;
2063 total_len = err;
2064
2065 err = -ENOBUFS;
2066
2067 if (msg_sys->msg_controllen > INT_MAX)
2068 goto out_freeiov;
2069 ctl_len = msg_sys->msg_controllen;
2070 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2071 err =
2072 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2073 sizeof(ctl));
2074 if (err)
2075 goto out_freeiov;
2076 ctl_buf = msg_sys->msg_control;
2077 ctl_len = msg_sys->msg_controllen;
2078 } else if (ctl_len) {
2079 if (ctl_len > sizeof(ctl)) {
2080 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2081 if (ctl_buf == NULL)
2082 goto out_freeiov;
2083 }
2084 err = -EFAULT;
2085 /*
2086 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2087 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2088 * checking falls down on this.
2089 */
2090 if (copy_from_user(ctl_buf,
2091 (void __user __force *)msg_sys->msg_control,
2092 ctl_len))
2093 goto out_freectl;
2094 msg_sys->msg_control = ctl_buf;
2095 }
2096 msg_sys->msg_flags = flags;
2097
2098 if (sock->file->f_flags & O_NONBLOCK)
2099 msg_sys->msg_flags |= MSG_DONTWAIT;
2100 /*
2101 * If this is sendmmsg() and current destination address is same as
2102 * previously succeeded address, omit asking LSM's decision.
2103 * used_address->name_len is initialized to UINT_MAX so that the first
2104 * destination address never matches.
2105 */
2106 if (used_address && msg_sys->msg_name &&
2107 used_address->name_len == msg_sys->msg_namelen &&
2108 !memcmp(&used_address->name, msg_sys->msg_name,
2109 used_address->name_len)) {
2110 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2111 goto out_freectl;
2112 }
2113 err = sock_sendmsg(sock, msg_sys, total_len);
2114 /*
2115 * If this is sendmmsg() and sending to current destination address was
2116 * successful, remember it.
2117 */
2118 if (used_address && err >= 0) {
2119 used_address->name_len = msg_sys->msg_namelen;
2120 if (msg_sys->msg_name)
2121 memcpy(&used_address->name, msg_sys->msg_name,
2122 used_address->name_len);
2123 }
2124
2125 out_freectl:
2126 if (ctl_buf != ctl)
2127 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2128 out_freeiov:
2129 if (iov != iovstack)
2130 kfree(iov);
2131 return err;
2132 }
2133
2134 /*
2135 * BSD sendmsg interface
2136 */
2137
2138 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2139 {
2140 int fput_needed, err;
2141 struct msghdr msg_sys;
2142 struct socket *sock;
2143
2144 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2145 if (!sock)
2146 goto out;
2147
2148 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2149
2150 fput_light(sock->file, fput_needed);
2151 out:
2152 return err;
2153 }
2154
2155 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2156 {
2157 if (flags & MSG_CMSG_COMPAT)
2158 return -EINVAL;
2159 return __sys_sendmsg(fd, msg, flags);
2160 }
2161
2162 /*
2163 * Linux sendmmsg interface
2164 */
2165
2166 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2167 unsigned int flags)
2168 {
2169 int fput_needed, err, datagrams;
2170 struct socket *sock;
2171 struct mmsghdr __user *entry;
2172 struct compat_mmsghdr __user *compat_entry;
2173 struct msghdr msg_sys;
2174 struct used_address used_address;
2175
2176 if (vlen > UIO_MAXIOV)
2177 vlen = UIO_MAXIOV;
2178
2179 datagrams = 0;
2180
2181 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2182 if (!sock)
2183 return err;
2184
2185 used_address.name_len = UINT_MAX;
2186 entry = mmsg;
2187 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2188 err = 0;
2189
2190 while (datagrams < vlen) {
2191 if (MSG_CMSG_COMPAT & flags) {
2192 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2193 &msg_sys, flags, &used_address);
2194 if (err < 0)
2195 break;
2196 err = __put_user(err, &compat_entry->msg_len);
2197 ++compat_entry;
2198 } else {
2199 err = ___sys_sendmsg(sock,
2200 (struct user_msghdr __user *)entry,
2201 &msg_sys, flags, &used_address);
2202 if (err < 0)
2203 break;
2204 err = put_user(err, &entry->msg_len);
2205 ++entry;
2206 }
2207
2208 if (err)
2209 break;
2210 ++datagrams;
2211 }
2212
2213 fput_light(sock->file, fput_needed);
2214
2215 /* We only return an error if no datagrams were able to be sent */
2216 if (datagrams != 0)
2217 return datagrams;
2218
2219 return err;
2220 }
2221
2222 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2223 unsigned int, vlen, unsigned int, flags)
2224 {
2225 if (flags & MSG_CMSG_COMPAT)
2226 return -EINVAL;
2227 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2228 }
2229
2230 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2231 struct msghdr *msg_sys, unsigned int flags, int nosec)
2232 {
2233 struct compat_msghdr __user *msg_compat =
2234 (struct compat_msghdr __user *)msg;
2235 struct iovec iovstack[UIO_FASTIOV];
2236 struct iovec *iov = iovstack;
2237 unsigned long cmsg_ptr;
2238 int total_len, len;
2239 ssize_t err;
2240
2241 /* kernel mode address */
2242 struct sockaddr_storage addr;
2243
2244 /* user mode address pointers */
2245 struct sockaddr __user *uaddr;
2246 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2247
2248 msg_sys->msg_name = &addr;
2249
2250 if (MSG_CMSG_COMPAT & flags)
2251 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2252 else
2253 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2254 if (err < 0)
2255 goto out_freeiov;
2256 total_len = err;
2257
2258 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2259 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2260
2261 /* We assume all kernel code knows the size of sockaddr_storage */
2262 msg_sys->msg_namelen = 0;
2263
2264 if (sock->file->f_flags & O_NONBLOCK)
2265 flags |= MSG_DONTWAIT;
2266 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2267 total_len, flags);
2268 if (err < 0)
2269 goto out_freeiov;
2270 len = err;
2271
2272 if (uaddr != NULL) {
2273 err = move_addr_to_user(&addr,
2274 msg_sys->msg_namelen, uaddr,
2275 uaddr_len);
2276 if (err < 0)
2277 goto out_freeiov;
2278 }
2279 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2280 COMPAT_FLAGS(msg));
2281 if (err)
2282 goto out_freeiov;
2283 if (MSG_CMSG_COMPAT & flags)
2284 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2285 &msg_compat->msg_controllen);
2286 else
2287 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2288 &msg->msg_controllen);
2289 if (err)
2290 goto out_freeiov;
2291 err = len;
2292
2293 out_freeiov:
2294 if (iov != iovstack)
2295 kfree(iov);
2296 return err;
2297 }
2298
2299 /*
2300 * BSD recvmsg interface
2301 */
2302
2303 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2304 {
2305 int fput_needed, err;
2306 struct msghdr msg_sys;
2307 struct socket *sock;
2308
2309 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2310 if (!sock)
2311 goto out;
2312
2313 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2314
2315 fput_light(sock->file, fput_needed);
2316 out:
2317 return err;
2318 }
2319
2320 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2321 unsigned int, flags)
2322 {
2323 if (flags & MSG_CMSG_COMPAT)
2324 return -EINVAL;
2325 return __sys_recvmsg(fd, msg, flags);
2326 }
2327
2328 /*
2329 * Linux recvmmsg interface
2330 */
2331
2332 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2333 unsigned int flags, struct timespec *timeout)
2334 {
2335 int fput_needed, err, datagrams;
2336 struct socket *sock;
2337 struct mmsghdr __user *entry;
2338 struct compat_mmsghdr __user *compat_entry;
2339 struct msghdr msg_sys;
2340 struct timespec end_time;
2341
2342 if (timeout &&
2343 poll_select_set_timeout(&end_time, timeout->tv_sec,
2344 timeout->tv_nsec))
2345 return -EINVAL;
2346
2347 datagrams = 0;
2348
2349 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2350 if (!sock)
2351 return err;
2352
2353 err = sock_error(sock->sk);
2354 if (err)
2355 goto out_put;
2356
2357 entry = mmsg;
2358 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2359
2360 while (datagrams < vlen) {
2361 /*
2362 * No need to ask LSM for more than the first datagram.
2363 */
2364 if (MSG_CMSG_COMPAT & flags) {
2365 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2366 &msg_sys, flags & ~MSG_WAITFORONE,
2367 datagrams);
2368 if (err < 0)
2369 break;
2370 err = __put_user(err, &compat_entry->msg_len);
2371 ++compat_entry;
2372 } else {
2373 err = ___sys_recvmsg(sock,
2374 (struct user_msghdr __user *)entry,
2375 &msg_sys, flags & ~MSG_WAITFORONE,
2376 datagrams);
2377 if (err < 0)
2378 break;
2379 err = put_user(err, &entry->msg_len);
2380 ++entry;
2381 }
2382
2383 if (err)
2384 break;
2385 ++datagrams;
2386
2387 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2388 if (flags & MSG_WAITFORONE)
2389 flags |= MSG_DONTWAIT;
2390
2391 if (timeout) {
2392 ktime_get_ts(timeout);
2393 *timeout = timespec_sub(end_time, *timeout);
2394 if (timeout->tv_sec < 0) {
2395 timeout->tv_sec = timeout->tv_nsec = 0;
2396 break;
2397 }
2398
2399 /* Timeout, return less than vlen datagrams */
2400 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2401 break;
2402 }
2403
2404 /* Out of band data, return right away */
2405 if (msg_sys.msg_flags & MSG_OOB)
2406 break;
2407 }
2408
2409 out_put:
2410 fput_light(sock->file, fput_needed);
2411
2412 if (err == 0)
2413 return datagrams;
2414
2415 if (datagrams != 0) {
2416 /*
2417 * We may return less entries than requested (vlen) if the
2418 * sock is non block and there aren't enough datagrams...
2419 */
2420 if (err != -EAGAIN) {
2421 /*
2422 * ... or if recvmsg returns an error after we
2423 * received some datagrams, where we record the
2424 * error to return on the next call or if the
2425 * app asks about it using getsockopt(SO_ERROR).
2426 */
2427 sock->sk->sk_err = -err;
2428 }
2429
2430 return datagrams;
2431 }
2432
2433 return err;
2434 }
2435
2436 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2437 unsigned int, vlen, unsigned int, flags,
2438 struct timespec __user *, timeout)
2439 {
2440 int datagrams;
2441 struct timespec timeout_sys;
2442
2443 if (flags & MSG_CMSG_COMPAT)
2444 return -EINVAL;
2445
2446 if (!timeout)
2447 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2448
2449 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2450 return -EFAULT;
2451
2452 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2453
2454 if (datagrams > 0 &&
2455 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2456 datagrams = -EFAULT;
2457
2458 return datagrams;
2459 }
2460
2461 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2462 /* Argument list sizes for sys_socketcall */
2463 #define AL(x) ((x) * sizeof(unsigned long))
2464 static const unsigned char nargs[21] = {
2465 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2466 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2467 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2468 AL(4), AL(5), AL(4)
2469 };
2470
2471 #undef AL
2472
2473 /*
2474 * System call vectors.
2475 *
2476 * Argument checking cleaned up. Saved 20% in size.
2477 * This function doesn't need to set the kernel lock because
2478 * it is set by the callees.
2479 */
2480
2481 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2482 {
2483 unsigned long a[AUDITSC_ARGS];
2484 unsigned long a0, a1;
2485 int err;
2486 unsigned int len;
2487
2488 if (call < 1 || call > SYS_SENDMMSG)
2489 return -EINVAL;
2490
2491 len = nargs[call];
2492 if (len > sizeof(a))
2493 return -EINVAL;
2494
2495 /* copy_from_user should be SMP safe. */
2496 if (copy_from_user(a, args, len))
2497 return -EFAULT;
2498
2499 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2500 if (err)
2501 return err;
2502
2503 a0 = a[0];
2504 a1 = a[1];
2505
2506 switch (call) {
2507 case SYS_SOCKET:
2508 err = sys_socket(a0, a1, a[2]);
2509 break;
2510 case SYS_BIND:
2511 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2512 break;
2513 case SYS_CONNECT:
2514 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2515 break;
2516 case SYS_LISTEN:
2517 err = sys_listen(a0, a1);
2518 break;
2519 case SYS_ACCEPT:
2520 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2521 (int __user *)a[2], 0);
2522 break;
2523 case SYS_GETSOCKNAME:
2524 err =
2525 sys_getsockname(a0, (struct sockaddr __user *)a1,
2526 (int __user *)a[2]);
2527 break;
2528 case SYS_GETPEERNAME:
2529 err =
2530 sys_getpeername(a0, (struct sockaddr __user *)a1,
2531 (int __user *)a[2]);
2532 break;
2533 case SYS_SOCKETPAIR:
2534 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2535 break;
2536 case SYS_SEND:
2537 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2538 break;
2539 case SYS_SENDTO:
2540 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2541 (struct sockaddr __user *)a[4], a[5]);
2542 break;
2543 case SYS_RECV:
2544 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2545 break;
2546 case SYS_RECVFROM:
2547 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2548 (struct sockaddr __user *)a[4],
2549 (int __user *)a[5]);
2550 break;
2551 case SYS_SHUTDOWN:
2552 err = sys_shutdown(a0, a1);
2553 break;
2554 case SYS_SETSOCKOPT:
2555 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2556 break;
2557 case SYS_GETSOCKOPT:
2558 err =
2559 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2560 (int __user *)a[4]);
2561 break;
2562 case SYS_SENDMSG:
2563 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2564 break;
2565 case SYS_SENDMMSG:
2566 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2567 break;
2568 case SYS_RECVMSG:
2569 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2570 break;
2571 case SYS_RECVMMSG:
2572 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2573 (struct timespec __user *)a[4]);
2574 break;
2575 case SYS_ACCEPT4:
2576 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2577 (int __user *)a[2], a[3]);
2578 break;
2579 default:
2580 err = -EINVAL;
2581 break;
2582 }
2583 return err;
2584 }
2585
2586 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2587
2588 /**
2589 * sock_register - add a socket protocol handler
2590 * @ops: description of protocol
2591 *
2592 * This function is called by a protocol handler that wants to
2593 * advertise its address family, and have it linked into the
2594 * socket interface. The value ops->family corresponds to the
2595 * socket system call protocol family.
2596 */
2597 int sock_register(const struct net_proto_family *ops)
2598 {
2599 int err;
2600
2601 if (ops->family >= NPROTO) {
2602 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2603 return -ENOBUFS;
2604 }
2605
2606 spin_lock(&net_family_lock);
2607 if (rcu_dereference_protected(net_families[ops->family],
2608 lockdep_is_held(&net_family_lock)))
2609 err = -EEXIST;
2610 else {
2611 rcu_assign_pointer(net_families[ops->family], ops);
2612 err = 0;
2613 }
2614 spin_unlock(&net_family_lock);
2615
2616 pr_info("NET: Registered protocol family %d\n", ops->family);
2617 return err;
2618 }
2619 EXPORT_SYMBOL(sock_register);
2620
2621 /**
2622 * sock_unregister - remove a protocol handler
2623 * @family: protocol family to remove
2624 *
2625 * This function is called by a protocol handler that wants to
2626 * remove its address family, and have it unlinked from the
2627 * new socket creation.
2628 *
2629 * If protocol handler is a module, then it can use module reference
2630 * counts to protect against new references. If protocol handler is not
2631 * a module then it needs to provide its own protection in
2632 * the ops->create routine.
2633 */
2634 void sock_unregister(int family)
2635 {
2636 BUG_ON(family < 0 || family >= NPROTO);
2637
2638 spin_lock(&net_family_lock);
2639 RCU_INIT_POINTER(net_families[family], NULL);
2640 spin_unlock(&net_family_lock);
2641
2642 synchronize_rcu();
2643
2644 pr_info("NET: Unregistered protocol family %d\n", family);
2645 }
2646 EXPORT_SYMBOL(sock_unregister);
2647
2648 static int __init sock_init(void)
2649 {
2650 int err;
2651 /*
2652 * Initialize the network sysctl infrastructure.
2653 */
2654 err = net_sysctl_init();
2655 if (err)
2656 goto out;
2657
2658 /*
2659 * Initialize skbuff SLAB cache
2660 */
2661 skb_init();
2662
2663 /*
2664 * Initialize the protocols module.
2665 */
2666
2667 init_inodecache();
2668
2669 err = register_filesystem(&sock_fs_type);
2670 if (err)
2671 goto out_fs;
2672 sock_mnt = kern_mount(&sock_fs_type);
2673 if (IS_ERR(sock_mnt)) {
2674 err = PTR_ERR(sock_mnt);
2675 goto out_mount;
2676 }
2677
2678 /* The real protocol initialization is performed in later initcalls.
2679 */
2680
2681 #ifdef CONFIG_NETFILTER
2682 err = netfilter_init();
2683 if (err)
2684 goto out;
2685 #endif
2686
2687 ptp_classifier_init();
2688
2689 out:
2690 return err;
2691
2692 out_mount:
2693 unregister_filesystem(&sock_fs_type);
2694 out_fs:
2695 goto out;
2696 }
2697
2698 core_initcall(sock_init); /* early initcall */
2699
2700 #ifdef CONFIG_PROC_FS
2701 void socket_seq_show(struct seq_file *seq)
2702 {
2703 int cpu;
2704 int counter = 0;
2705
2706 for_each_possible_cpu(cpu)
2707 counter += per_cpu(sockets_in_use, cpu);
2708
2709 /* It can be negative, by the way. 8) */
2710 if (counter < 0)
2711 counter = 0;
2712
2713 seq_printf(seq, "sockets: used %d\n", counter);
2714 }
2715 #endif /* CONFIG_PROC_FS */
2716
2717 #ifdef CONFIG_COMPAT
2718 static int do_siocgstamp(struct net *net, struct socket *sock,
2719 unsigned int cmd, void __user *up)
2720 {
2721 mm_segment_t old_fs = get_fs();
2722 struct timeval ktv;
2723 int err;
2724
2725 set_fs(KERNEL_DS);
2726 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2727 set_fs(old_fs);
2728 if (!err)
2729 err = compat_put_timeval(&ktv, up);
2730
2731 return err;
2732 }
2733
2734 static int do_siocgstampns(struct net *net, struct socket *sock,
2735 unsigned int cmd, void __user *up)
2736 {
2737 mm_segment_t old_fs = get_fs();
2738 struct timespec kts;
2739 int err;
2740
2741 set_fs(KERNEL_DS);
2742 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2743 set_fs(old_fs);
2744 if (!err)
2745 err = compat_put_timespec(&kts, up);
2746
2747 return err;
2748 }
2749
2750 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2751 {
2752 struct ifreq __user *uifr;
2753 int err;
2754
2755 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2756 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2757 return -EFAULT;
2758
2759 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2760 if (err)
2761 return err;
2762
2763 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2764 return -EFAULT;
2765
2766 return 0;
2767 }
2768
2769 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2770 {
2771 struct compat_ifconf ifc32;
2772 struct ifconf ifc;
2773 struct ifconf __user *uifc;
2774 struct compat_ifreq __user *ifr32;
2775 struct ifreq __user *ifr;
2776 unsigned int i, j;
2777 int err;
2778
2779 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2780 return -EFAULT;
2781
2782 memset(&ifc, 0, sizeof(ifc));
2783 if (ifc32.ifcbuf == 0) {
2784 ifc32.ifc_len = 0;
2785 ifc.ifc_len = 0;
2786 ifc.ifc_req = NULL;
2787 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2788 } else {
2789 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2790 sizeof(struct ifreq);
2791 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2792 ifc.ifc_len = len;
2793 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2794 ifr32 = compat_ptr(ifc32.ifcbuf);
2795 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2796 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2797 return -EFAULT;
2798 ifr++;
2799 ifr32++;
2800 }
2801 }
2802 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2803 return -EFAULT;
2804
2805 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2806 if (err)
2807 return err;
2808
2809 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2810 return -EFAULT;
2811
2812 ifr = ifc.ifc_req;
2813 ifr32 = compat_ptr(ifc32.ifcbuf);
2814 for (i = 0, j = 0;
2815 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2816 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2817 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2818 return -EFAULT;
2819 ifr32++;
2820 ifr++;
2821 }
2822
2823 if (ifc32.ifcbuf == 0) {
2824 /* Translate from 64-bit structure multiple to
2825 * a 32-bit one.
2826 */
2827 i = ifc.ifc_len;
2828 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2829 ifc32.ifc_len = i;
2830 } else {
2831 ifc32.ifc_len = i;
2832 }
2833 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2834 return -EFAULT;
2835
2836 return 0;
2837 }
2838
2839 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2840 {
2841 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2842 bool convert_in = false, convert_out = false;
2843 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2844 struct ethtool_rxnfc __user *rxnfc;
2845 struct ifreq __user *ifr;
2846 u32 rule_cnt = 0, actual_rule_cnt;
2847 u32 ethcmd;
2848 u32 data;
2849 int ret;
2850
2851 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2852 return -EFAULT;
2853
2854 compat_rxnfc = compat_ptr(data);
2855
2856 if (get_user(ethcmd, &compat_rxnfc->cmd))
2857 return -EFAULT;
2858
2859 /* Most ethtool structures are defined without padding.
2860 * Unfortunately struct ethtool_rxnfc is an exception.
2861 */
2862 switch (ethcmd) {
2863 default:
2864 break;
2865 case ETHTOOL_GRXCLSRLALL:
2866 /* Buffer size is variable */
2867 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2868 return -EFAULT;
2869 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2870 return -ENOMEM;
2871 buf_size += rule_cnt * sizeof(u32);
2872 /* fall through */
2873 case ETHTOOL_GRXRINGS:
2874 case ETHTOOL_GRXCLSRLCNT:
2875 case ETHTOOL_GRXCLSRULE:
2876 case ETHTOOL_SRXCLSRLINS:
2877 convert_out = true;
2878 /* fall through */
2879 case ETHTOOL_SRXCLSRLDEL:
2880 buf_size += sizeof(struct ethtool_rxnfc);
2881 convert_in = true;
2882 break;
2883 }
2884
2885 ifr = compat_alloc_user_space(buf_size);
2886 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2887
2888 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2889 return -EFAULT;
2890
2891 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2892 &ifr->ifr_ifru.ifru_data))
2893 return -EFAULT;
2894
2895 if (convert_in) {
2896 /* We expect there to be holes between fs.m_ext and
2897 * fs.ring_cookie and at the end of fs, but nowhere else.
2898 */
2899 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2900 sizeof(compat_rxnfc->fs.m_ext) !=
2901 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2902 sizeof(rxnfc->fs.m_ext));
2903 BUILD_BUG_ON(
2904 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2905 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2906 offsetof(struct ethtool_rxnfc, fs.location) -
2907 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2908
2909 if (copy_in_user(rxnfc, compat_rxnfc,
2910 (void __user *)(&rxnfc->fs.m_ext + 1) -
2911 (void __user *)rxnfc) ||
2912 copy_in_user(&rxnfc->fs.ring_cookie,
2913 &compat_rxnfc->fs.ring_cookie,
2914 (void __user *)(&rxnfc->fs.location + 1) -
2915 (void __user *)&rxnfc->fs.ring_cookie) ||
2916 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2917 sizeof(rxnfc->rule_cnt)))
2918 return -EFAULT;
2919 }
2920
2921 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2922 if (ret)
2923 return ret;
2924
2925 if (convert_out) {
2926 if (copy_in_user(compat_rxnfc, rxnfc,
2927 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2928 (const void __user *)rxnfc) ||
2929 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2930 &rxnfc->fs.ring_cookie,
2931 (const void __user *)(&rxnfc->fs.location + 1) -
2932 (const void __user *)&rxnfc->fs.ring_cookie) ||
2933 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2934 sizeof(rxnfc->rule_cnt)))
2935 return -EFAULT;
2936
2937 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2938 /* As an optimisation, we only copy the actual
2939 * number of rules that the underlying
2940 * function returned. Since Mallory might
2941 * change the rule count in user memory, we
2942 * check that it is less than the rule count
2943 * originally given (as the user buffer size),
2944 * which has been range-checked.
2945 */
2946 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2947 return -EFAULT;
2948 if (actual_rule_cnt < rule_cnt)
2949 rule_cnt = actual_rule_cnt;
2950 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2951 &rxnfc->rule_locs[0],
2952 rule_cnt * sizeof(u32)))
2953 return -EFAULT;
2954 }
2955 }
2956
2957 return 0;
2958 }
2959
2960 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2961 {
2962 void __user *uptr;
2963 compat_uptr_t uptr32;
2964 struct ifreq __user *uifr;
2965
2966 uifr = compat_alloc_user_space(sizeof(*uifr));
2967 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2968 return -EFAULT;
2969
2970 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2971 return -EFAULT;
2972
2973 uptr = compat_ptr(uptr32);
2974
2975 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2976 return -EFAULT;
2977
2978 return dev_ioctl(net, SIOCWANDEV, uifr);
2979 }
2980
2981 static int bond_ioctl(struct net *net, unsigned int cmd,
2982 struct compat_ifreq __user *ifr32)
2983 {
2984 struct ifreq kifr;
2985 mm_segment_t old_fs;
2986 int err;
2987
2988 switch (cmd) {
2989 case SIOCBONDENSLAVE:
2990 case SIOCBONDRELEASE:
2991 case SIOCBONDSETHWADDR:
2992 case SIOCBONDCHANGEACTIVE:
2993 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2994 return -EFAULT;
2995
2996 old_fs = get_fs();
2997 set_fs(KERNEL_DS);
2998 err = dev_ioctl(net, cmd,
2999 (struct ifreq __user __force *) &kifr);
3000 set_fs(old_fs);
3001
3002 return err;
3003 default:
3004 return -ENOIOCTLCMD;
3005 }
3006 }
3007
3008 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3009 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3010 struct compat_ifreq __user *u_ifreq32)
3011 {
3012 struct ifreq __user *u_ifreq64;
3013 char tmp_buf[IFNAMSIZ];
3014 void __user *data64;
3015 u32 data32;
3016
3017 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3018 IFNAMSIZ))
3019 return -EFAULT;
3020 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3021 return -EFAULT;
3022 data64 = compat_ptr(data32);
3023
3024 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3025
3026 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3027 IFNAMSIZ))
3028 return -EFAULT;
3029 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3030 return -EFAULT;
3031
3032 return dev_ioctl(net, cmd, u_ifreq64);
3033 }
3034
3035 static int dev_ifsioc(struct net *net, struct socket *sock,
3036 unsigned int cmd, struct compat_ifreq __user *uifr32)
3037 {
3038 struct ifreq __user *uifr;
3039 int err;
3040
3041 uifr = compat_alloc_user_space(sizeof(*uifr));
3042 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3043 return -EFAULT;
3044
3045 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3046
3047 if (!err) {
3048 switch (cmd) {
3049 case SIOCGIFFLAGS:
3050 case SIOCGIFMETRIC:
3051 case SIOCGIFMTU:
3052 case SIOCGIFMEM:
3053 case SIOCGIFHWADDR:
3054 case SIOCGIFINDEX:
3055 case SIOCGIFADDR:
3056 case SIOCGIFBRDADDR:
3057 case SIOCGIFDSTADDR:
3058 case SIOCGIFNETMASK:
3059 case SIOCGIFPFLAGS:
3060 case SIOCGIFTXQLEN:
3061 case SIOCGMIIPHY:
3062 case SIOCGMIIREG:
3063 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3064 err = -EFAULT;
3065 break;
3066 }
3067 }
3068 return err;
3069 }
3070
3071 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3072 struct compat_ifreq __user *uifr32)
3073 {
3074 struct ifreq ifr;
3075 struct compat_ifmap __user *uifmap32;
3076 mm_segment_t old_fs;
3077 int err;
3078
3079 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3080 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3081 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3082 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3083 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3084 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3085 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3086 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3087 if (err)
3088 return -EFAULT;
3089
3090 old_fs = get_fs();
3091 set_fs(KERNEL_DS);
3092 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3093 set_fs(old_fs);
3094
3095 if (cmd == SIOCGIFMAP && !err) {
3096 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3097 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3098 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3099 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3100 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3101 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3102 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3103 if (err)
3104 err = -EFAULT;
3105 }
3106 return err;
3107 }
3108
3109 struct rtentry32 {
3110 u32 rt_pad1;
3111 struct sockaddr rt_dst; /* target address */
3112 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3113 struct sockaddr rt_genmask; /* target network mask (IP) */
3114 unsigned short rt_flags;
3115 short rt_pad2;
3116 u32 rt_pad3;
3117 unsigned char rt_tos;
3118 unsigned char rt_class;
3119 short rt_pad4;
3120 short rt_metric; /* +1 for binary compatibility! */
3121 /* char * */ u32 rt_dev; /* forcing the device at add */
3122 u32 rt_mtu; /* per route MTU/Window */
3123 u32 rt_window; /* Window clamping */
3124 unsigned short rt_irtt; /* Initial RTT */
3125 };
3126
3127 struct in6_rtmsg32 {
3128 struct in6_addr rtmsg_dst;
3129 struct in6_addr rtmsg_src;
3130 struct in6_addr rtmsg_gateway;
3131 u32 rtmsg_type;
3132 u16 rtmsg_dst_len;
3133 u16 rtmsg_src_len;
3134 u32 rtmsg_metric;
3135 u32 rtmsg_info;
3136 u32 rtmsg_flags;
3137 s32 rtmsg_ifindex;
3138 };
3139
3140 static int routing_ioctl(struct net *net, struct socket *sock,
3141 unsigned int cmd, void __user *argp)
3142 {
3143 int ret;
3144 void *r = NULL;
3145 struct in6_rtmsg r6;
3146 struct rtentry r4;
3147 char devname[16];
3148 u32 rtdev;
3149 mm_segment_t old_fs = get_fs();
3150
3151 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3152 struct in6_rtmsg32 __user *ur6 = argp;
3153 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3154 3 * sizeof(struct in6_addr));
3155 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3156 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3157 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3158 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3159 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3160 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3161 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3162
3163 r = (void *) &r6;
3164 } else { /* ipv4 */
3165 struct rtentry32 __user *ur4 = argp;
3166 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3167 3 * sizeof(struct sockaddr));
3168 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3169 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3170 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3171 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3172 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3173 ret |= get_user(rtdev, &(ur4->rt_dev));
3174 if (rtdev) {
3175 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3176 r4.rt_dev = (char __user __force *)devname;
3177 devname[15] = 0;
3178 } else
3179 r4.rt_dev = NULL;
3180
3181 r = (void *) &r4;
3182 }
3183
3184 if (ret) {
3185 ret = -EFAULT;
3186 goto out;
3187 }
3188
3189 set_fs(KERNEL_DS);
3190 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3191 set_fs(old_fs);
3192
3193 out:
3194 return ret;
3195 }
3196
3197 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3198 * for some operations; this forces use of the newer bridge-utils that
3199 * use compatible ioctls
3200 */
3201 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3202 {
3203 compat_ulong_t tmp;
3204
3205 if (get_user(tmp, argp))
3206 return -EFAULT;
3207 if (tmp == BRCTL_GET_VERSION)
3208 return BRCTL_VERSION + 1;
3209 return -EINVAL;
3210 }
3211
3212 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3213 unsigned int cmd, unsigned long arg)
3214 {
3215 void __user *argp = compat_ptr(arg);
3216 struct sock *sk = sock->sk;
3217 struct net *net = sock_net(sk);
3218
3219 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3220 return compat_ifr_data_ioctl(net, cmd, argp);
3221
3222 switch (cmd) {
3223 case SIOCSIFBR:
3224 case SIOCGIFBR:
3225 return old_bridge_ioctl(argp);
3226 case SIOCGIFNAME:
3227 return dev_ifname32(net, argp);
3228 case SIOCGIFCONF:
3229 return dev_ifconf(net, argp);
3230 case SIOCETHTOOL:
3231 return ethtool_ioctl(net, argp);
3232 case SIOCWANDEV:
3233 return compat_siocwandev(net, argp);
3234 case SIOCGIFMAP:
3235 case SIOCSIFMAP:
3236 return compat_sioc_ifmap(net, cmd, argp);
3237 case SIOCBONDENSLAVE:
3238 case SIOCBONDRELEASE:
3239 case SIOCBONDSETHWADDR:
3240 case SIOCBONDCHANGEACTIVE:
3241 return bond_ioctl(net, cmd, argp);
3242 case SIOCADDRT:
3243 case SIOCDELRT:
3244 return routing_ioctl(net, sock, cmd, argp);
3245 case SIOCGSTAMP:
3246 return do_siocgstamp(net, sock, cmd, argp);
3247 case SIOCGSTAMPNS:
3248 return do_siocgstampns(net, sock, cmd, argp);
3249 case SIOCBONDSLAVEINFOQUERY:
3250 case SIOCBONDINFOQUERY:
3251 case SIOCSHWTSTAMP:
3252 case SIOCGHWTSTAMP:
3253 return compat_ifr_data_ioctl(net, cmd, argp);
3254
3255 case FIOSETOWN:
3256 case SIOCSPGRP:
3257 case FIOGETOWN:
3258 case SIOCGPGRP:
3259 case SIOCBRADDBR:
3260 case SIOCBRDELBR:
3261 case SIOCGIFVLAN:
3262 case SIOCSIFVLAN:
3263 case SIOCADDDLCI:
3264 case SIOCDELDLCI:
3265 return sock_ioctl(file, cmd, arg);
3266
3267 case SIOCGIFFLAGS:
3268 case SIOCSIFFLAGS:
3269 case SIOCGIFMETRIC:
3270 case SIOCSIFMETRIC:
3271 case SIOCGIFMTU:
3272 case SIOCSIFMTU:
3273 case SIOCGIFMEM:
3274 case SIOCSIFMEM:
3275 case SIOCGIFHWADDR:
3276 case SIOCSIFHWADDR:
3277 case SIOCADDMULTI:
3278 case SIOCDELMULTI:
3279 case SIOCGIFINDEX:
3280 case SIOCGIFADDR:
3281 case SIOCSIFADDR:
3282 case SIOCSIFHWBROADCAST:
3283 case SIOCDIFADDR:
3284 case SIOCGIFBRDADDR:
3285 case SIOCSIFBRDADDR:
3286 case SIOCGIFDSTADDR:
3287 case SIOCSIFDSTADDR:
3288 case SIOCGIFNETMASK:
3289 case SIOCSIFNETMASK:
3290 case SIOCSIFPFLAGS:
3291 case SIOCGIFPFLAGS:
3292 case SIOCGIFTXQLEN:
3293 case SIOCSIFTXQLEN:
3294 case SIOCBRADDIF:
3295 case SIOCBRDELIF:
3296 case SIOCSIFNAME:
3297 case SIOCGMIIPHY:
3298 case SIOCGMIIREG:
3299 case SIOCSMIIREG:
3300 return dev_ifsioc(net, sock, cmd, argp);
3301
3302 case SIOCSARP:
3303 case SIOCGARP:
3304 case SIOCDARP:
3305 case SIOCATMARK:
3306 return sock_do_ioctl(net, sock, cmd, arg);
3307 }
3308
3309 return -ENOIOCTLCMD;
3310 }
3311
3312 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3313 unsigned long arg)
3314 {
3315 struct socket *sock = file->private_data;
3316 int ret = -ENOIOCTLCMD;
3317 struct sock *sk;
3318 struct net *net;
3319
3320 sk = sock->sk;
3321 net = sock_net(sk);
3322
3323 if (sock->ops->compat_ioctl)
3324 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3325
3326 if (ret == -ENOIOCTLCMD &&
3327 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3328 ret = compat_wext_handle_ioctl(net, cmd, arg);
3329
3330 if (ret == -ENOIOCTLCMD)
3331 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3332
3333 return ret;
3334 }
3335 #endif
3336
3337 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3338 {
3339 return sock->ops->bind(sock, addr, addrlen);
3340 }
3341 EXPORT_SYMBOL(kernel_bind);
3342
3343 int kernel_listen(struct socket *sock, int backlog)
3344 {
3345 return sock->ops->listen(sock, backlog);
3346 }
3347 EXPORT_SYMBOL(kernel_listen);
3348
3349 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3350 {
3351 struct sock *sk = sock->sk;
3352 int err;
3353
3354 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3355 newsock);
3356 if (err < 0)
3357 goto done;
3358
3359 err = sock->ops->accept(sock, *newsock, flags);
3360 if (err < 0) {
3361 sock_release(*newsock);
3362 *newsock = NULL;
3363 goto done;
3364 }
3365
3366 (*newsock)->ops = sock->ops;
3367 __module_get((*newsock)->ops->owner);
3368
3369 done:
3370 return err;
3371 }
3372 EXPORT_SYMBOL(kernel_accept);
3373
3374 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3375 int flags)
3376 {
3377 return sock->ops->connect(sock, addr, addrlen, flags);
3378 }
3379 EXPORT_SYMBOL(kernel_connect);
3380
3381 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3382 int *addrlen)
3383 {
3384 return sock->ops->getname(sock, addr, addrlen, 0);
3385 }
3386 EXPORT_SYMBOL(kernel_getsockname);
3387
3388 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3389 int *addrlen)
3390 {
3391 return sock->ops->getname(sock, addr, addrlen, 1);
3392 }
3393 EXPORT_SYMBOL(kernel_getpeername);
3394
3395 int kernel_getsockopt(struct socket *sock, int level, int optname,
3396 char *optval, int *optlen)
3397 {
3398 mm_segment_t oldfs = get_fs();
3399 char __user *uoptval;
3400 int __user *uoptlen;
3401 int err;
3402
3403 uoptval = (char __user __force *) optval;
3404 uoptlen = (int __user __force *) optlen;
3405
3406 set_fs(KERNEL_DS);
3407 if (level == SOL_SOCKET)
3408 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3409 else
3410 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3411 uoptlen);
3412 set_fs(oldfs);
3413 return err;
3414 }
3415 EXPORT_SYMBOL(kernel_getsockopt);
3416
3417 int kernel_setsockopt(struct socket *sock, int level, int optname,
3418 char *optval, unsigned int optlen)
3419 {
3420 mm_segment_t oldfs = get_fs();
3421 char __user *uoptval;
3422 int err;
3423
3424 uoptval = (char __user __force *) optval;
3425
3426 set_fs(KERNEL_DS);
3427 if (level == SOL_SOCKET)
3428 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3429 else
3430 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3431 optlen);
3432 set_fs(oldfs);
3433 return err;
3434 }
3435 EXPORT_SYMBOL(kernel_setsockopt);
3436
3437 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3438 size_t size, int flags)
3439 {
3440 if (sock->ops->sendpage)
3441 return sock->ops->sendpage(sock, page, offset, size, flags);
3442
3443 return sock_no_sendpage(sock, page, offset, size, flags);
3444 }
3445 EXPORT_SYMBOL(kernel_sendpage);
3446
3447 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3448 {
3449 mm_segment_t oldfs = get_fs();
3450 int err;
3451
3452 set_fs(KERNEL_DS);
3453 err = sock->ops->ioctl(sock, cmd, arg);
3454 set_fs(oldfs);
3455
3456 return err;
3457 }
3458 EXPORT_SYMBOL(kernel_sock_ioctl);
3459
3460 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3461 {
3462 return sock->ops->shutdown(sock, how);
3463 }
3464 EXPORT_SYMBOL(kernel_sock_shutdown);