]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/socket.c
Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156 };
157
158 /*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165 /*
166 * Statistics counters of the socket lists
167 */
168
169 static DEFINE_PER_CPU(int, sockets_in_use);
170
171 /*
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
175 */
176
177 /**
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
182 *
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
186 */
187
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
197 }
198
199 /**
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
205 *
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
214 */
215
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
218 {
219 int err;
220 int len;
221
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
235 }
236 /*
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
239 */
240 return __put_user(klen, ulen);
241 }
242
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
249
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
257 }
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 RCU_INIT_POINTER(ei->socket.wq, wq);
261
262 ei->socket.state = SS_UNCONNECTED;
263 ei->socket.flags = 0;
264 ei->socket.ops = NULL;
265 ei->socket.sk = NULL;
266 ei->socket.file = NULL;
267
268 return &ei->vfs_inode;
269 }
270
271 static void sock_destroy_inode(struct inode *inode)
272 {
273 struct socket_alloc *ei;
274 struct socket_wq *wq;
275
276 ei = container_of(inode, struct socket_alloc, vfs_inode);
277 wq = rcu_dereference_protected(ei->socket.wq, 1);
278 kfree_rcu(wq, rcu);
279 kmem_cache_free(sock_inode_cachep, ei);
280 }
281
282 static void init_once(void *foo)
283 {
284 struct socket_alloc *ei = (struct socket_alloc *)foo;
285
286 inode_init_once(&ei->vfs_inode);
287 }
288
289 static int init_inodecache(void)
290 {
291 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
292 sizeof(struct socket_alloc),
293 0,
294 (SLAB_HWCACHE_ALIGN |
295 SLAB_RECLAIM_ACCOUNT |
296 SLAB_MEM_SPREAD),
297 init_once);
298 if (sock_inode_cachep == NULL)
299 return -ENOMEM;
300 return 0;
301 }
302
303 static const struct super_operations sockfs_ops = {
304 .alloc_inode = sock_alloc_inode,
305 .destroy_inode = sock_destroy_inode,
306 .statfs = simple_statfs,
307 };
308
309 /*
310 * sockfs_dname() is called from d_path().
311 */
312 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
313 {
314 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
315 dentry->d_inode->i_ino);
316 }
317
318 static const struct dentry_operations sockfs_dentry_operations = {
319 .d_dname = sockfs_dname,
320 };
321
322 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
323 int flags, const char *dev_name, void *data)
324 {
325 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
326 &sockfs_dentry_operations, SOCKFS_MAGIC);
327 }
328
329 static struct vfsmount *sock_mnt __read_mostly;
330
331 static struct file_system_type sock_fs_type = {
332 .name = "sockfs",
333 .mount = sockfs_mount,
334 .kill_sb = kill_anon_super,
335 };
336
337 /*
338 * Obtains the first available file descriptor and sets it up for use.
339 *
340 * These functions create file structures and maps them to fd space
341 * of the current process. On success it returns file descriptor
342 * and file struct implicitly stored in sock->file.
343 * Note that another thread may close file descriptor before we return
344 * from this function. We use the fact that now we do not refer
345 * to socket after mapping. If one day we will need it, this
346 * function will increment ref. count on file by 1.
347 *
348 * In any case returned fd MAY BE not valid!
349 * This race condition is unavoidable
350 * with shared fd spaces, we cannot solve it inside kernel,
351 * but we take care of internal coherence yet.
352 */
353
354 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
355 {
356 struct qstr name = { .name = "" };
357 struct path path;
358 struct file *file;
359
360 if (dname) {
361 name.name = dname;
362 name.len = strlen(name.name);
363 } else if (sock->sk) {
364 name.name = sock->sk->sk_prot_creator->name;
365 name.len = strlen(name.name);
366 }
367 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
368 if (unlikely(!path.dentry))
369 return ERR_PTR(-ENOMEM);
370 path.mnt = mntget(sock_mnt);
371
372 d_instantiate(path.dentry, SOCK_INODE(sock));
373
374 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
375 &socket_file_ops);
376 if (unlikely(IS_ERR(file))) {
377 /* drop dentry, keep inode */
378 ihold(path.dentry->d_inode);
379 path_put(&path);
380 return file;
381 }
382
383 sock->file = file;
384 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
385 file->private_data = sock;
386 return file;
387 }
388 EXPORT_SYMBOL(sock_alloc_file);
389
390 static int sock_map_fd(struct socket *sock, int flags)
391 {
392 struct file *newfile;
393 int fd = get_unused_fd_flags(flags);
394 if (unlikely(fd < 0))
395 return fd;
396
397 newfile = sock_alloc_file(sock, flags, NULL);
398 if (likely(!IS_ERR(newfile))) {
399 fd_install(fd, newfile);
400 return fd;
401 }
402
403 put_unused_fd(fd);
404 return PTR_ERR(newfile);
405 }
406
407 struct socket *sock_from_file(struct file *file, int *err)
408 {
409 if (file->f_op == &socket_file_ops)
410 return file->private_data; /* set in sock_map_fd */
411
412 *err = -ENOTSOCK;
413 return NULL;
414 }
415 EXPORT_SYMBOL(sock_from_file);
416
417 /**
418 * sockfd_lookup - Go from a file number to its socket slot
419 * @fd: file handle
420 * @err: pointer to an error code return
421 *
422 * The file handle passed in is locked and the socket it is bound
423 * too is returned. If an error occurs the err pointer is overwritten
424 * with a negative errno code and NULL is returned. The function checks
425 * for both invalid handles and passing a handle which is not a socket.
426 *
427 * On a success the socket object pointer is returned.
428 */
429
430 struct socket *sockfd_lookup(int fd, int *err)
431 {
432 struct file *file;
433 struct socket *sock;
434
435 file = fget(fd);
436 if (!file) {
437 *err = -EBADF;
438 return NULL;
439 }
440
441 sock = sock_from_file(file, err);
442 if (!sock)
443 fput(file);
444 return sock;
445 }
446 EXPORT_SYMBOL(sockfd_lookup);
447
448 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
449 {
450 struct fd f = fdget(fd);
451 struct socket *sock;
452
453 *err = -EBADF;
454 if (f.file) {
455 sock = sock_from_file(f.file, err);
456 if (likely(sock)) {
457 *fput_needed = f.flags;
458 return sock;
459 }
460 fdput(f);
461 }
462 return NULL;
463 }
464
465 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
466 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
467 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
468 static ssize_t sockfs_getxattr(struct dentry *dentry,
469 const char *name, void *value, size_t size)
470 {
471 const char *proto_name;
472 size_t proto_size;
473 int error;
474
475 error = -ENODATA;
476 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
477 proto_name = dentry->d_name.name;
478 proto_size = strlen(proto_name);
479
480 if (value) {
481 error = -ERANGE;
482 if (proto_size + 1 > size)
483 goto out;
484
485 strncpy(value, proto_name, proto_size + 1);
486 }
487 error = proto_size + 1;
488 }
489
490 out:
491 return error;
492 }
493
494 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
495 size_t size)
496 {
497 ssize_t len;
498 ssize_t used = 0;
499
500 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
501 if (len < 0)
502 return len;
503 used += len;
504 if (buffer) {
505 if (size < used)
506 return -ERANGE;
507 buffer += len;
508 }
509
510 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
511 used += len;
512 if (buffer) {
513 if (size < used)
514 return -ERANGE;
515 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
516 buffer += len;
517 }
518
519 return used;
520 }
521
522 static const struct inode_operations sockfs_inode_ops = {
523 .getxattr = sockfs_getxattr,
524 .listxattr = sockfs_listxattr,
525 };
526
527 /**
528 * sock_alloc - allocate a socket
529 *
530 * Allocate a new inode and socket object. The two are bound together
531 * and initialised. The socket is then returned. If we are out of inodes
532 * NULL is returned.
533 */
534
535 static struct socket *sock_alloc(void)
536 {
537 struct inode *inode;
538 struct socket *sock;
539
540 inode = new_inode_pseudo(sock_mnt->mnt_sb);
541 if (!inode)
542 return NULL;
543
544 sock = SOCKET_I(inode);
545
546 kmemcheck_annotate_bitfield(sock, type);
547 inode->i_ino = get_next_ino();
548 inode->i_mode = S_IFSOCK | S_IRWXUGO;
549 inode->i_uid = current_fsuid();
550 inode->i_gid = current_fsgid();
551 inode->i_op = &sockfs_inode_ops;
552
553 this_cpu_add(sockets_in_use, 1);
554 return sock;
555 }
556
557 /**
558 * sock_release - close a socket
559 * @sock: socket to close
560 *
561 * The socket is released from the protocol stack if it has a release
562 * callback, and the inode is then released if the socket is bound to
563 * an inode not a file.
564 */
565
566 void sock_release(struct socket *sock)
567 {
568 if (sock->ops) {
569 struct module *owner = sock->ops->owner;
570
571 sock->ops->release(sock);
572 sock->ops = NULL;
573 module_put(owner);
574 }
575
576 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
577 pr_err("%s: fasync list not empty!\n", __func__);
578
579 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
580 return;
581
582 this_cpu_sub(sockets_in_use, 1);
583 if (!sock->file) {
584 iput(SOCK_INODE(sock));
585 return;
586 }
587 sock->file = NULL;
588 }
589 EXPORT_SYMBOL(sock_release);
590
591 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
592 {
593 u8 flags = *tx_flags;
594
595 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
596 flags |= SKBTX_HW_TSTAMP;
597
598 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
599 flags |= SKBTX_SW_TSTAMP;
600
601 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
602 flags |= SKBTX_SCHED_TSTAMP;
603
604 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
605 flags |= SKBTX_ACK_TSTAMP;
606
607 *tx_flags = flags;
608 }
609 EXPORT_SYMBOL(__sock_tx_timestamp);
610
611 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
612 {
613 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
614 BUG_ON(ret == -EIOCBQUEUED);
615 return ret;
616 }
617
618 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
619 {
620 int err = security_socket_sendmsg(sock, msg,
621 msg_data_left(msg));
622
623 return err ?: sock_sendmsg_nosec(sock, msg);
624 }
625 EXPORT_SYMBOL(sock_sendmsg);
626
627 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
628 struct kvec *vec, size_t num, size_t size)
629 {
630 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
631 return sock_sendmsg(sock, msg);
632 }
633 EXPORT_SYMBOL(kernel_sendmsg);
634
635 /*
636 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
637 */
638 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
639 struct sk_buff *skb)
640 {
641 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
642 struct scm_timestamping tss;
643 int empty = 1;
644 struct skb_shared_hwtstamps *shhwtstamps =
645 skb_hwtstamps(skb);
646
647 /* Race occurred between timestamp enabling and packet
648 receiving. Fill in the current time for now. */
649 if (need_software_tstamp && skb->tstamp.tv64 == 0)
650 __net_timestamp(skb);
651
652 if (need_software_tstamp) {
653 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
654 struct timeval tv;
655 skb_get_timestamp(skb, &tv);
656 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
657 sizeof(tv), &tv);
658 } else {
659 struct timespec ts;
660 skb_get_timestampns(skb, &ts);
661 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
662 sizeof(ts), &ts);
663 }
664 }
665
666 memset(&tss, 0, sizeof(tss));
667 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
668 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
669 empty = 0;
670 if (shhwtstamps &&
671 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
672 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
673 empty = 0;
674 if (!empty)
675 put_cmsg(msg, SOL_SOCKET,
676 SCM_TIMESTAMPING, sizeof(tss), &tss);
677 }
678 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
679
680 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
681 struct sk_buff *skb)
682 {
683 int ack;
684
685 if (!sock_flag(sk, SOCK_WIFI_STATUS))
686 return;
687 if (!skb->wifi_acked_valid)
688 return;
689
690 ack = skb->wifi_acked;
691
692 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
693 }
694 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
695
696 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
697 struct sk_buff *skb)
698 {
699 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
700 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
701 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
702 }
703
704 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
705 struct sk_buff *skb)
706 {
707 sock_recv_timestamp(msg, sk, skb);
708 sock_recv_drops(msg, sk, skb);
709 }
710 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
711
712 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
713 size_t size, int flags)
714 {
715 return sock->ops->recvmsg(sock, msg, size, flags);
716 }
717
718 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
719 int flags)
720 {
721 int err = security_socket_recvmsg(sock, msg, size, flags);
722
723 return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
724 }
725 EXPORT_SYMBOL(sock_recvmsg);
726
727 /**
728 * kernel_recvmsg - Receive a message from a socket (kernel space)
729 * @sock: The socket to receive the message from
730 * @msg: Received message
731 * @vec: Input s/g array for message data
732 * @num: Size of input s/g array
733 * @size: Number of bytes to read
734 * @flags: Message flags (MSG_DONTWAIT, etc...)
735 *
736 * On return the msg structure contains the scatter/gather array passed in the
737 * vec argument. The array is modified so that it consists of the unfilled
738 * portion of the original array.
739 *
740 * The returned value is the total number of bytes received, or an error.
741 */
742 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
743 struct kvec *vec, size_t num, size_t size, int flags)
744 {
745 mm_segment_t oldfs = get_fs();
746 int result;
747
748 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
749 set_fs(KERNEL_DS);
750 result = sock_recvmsg(sock, msg, size, flags);
751 set_fs(oldfs);
752 return result;
753 }
754 EXPORT_SYMBOL(kernel_recvmsg);
755
756 static ssize_t sock_sendpage(struct file *file, struct page *page,
757 int offset, size_t size, loff_t *ppos, int more)
758 {
759 struct socket *sock;
760 int flags;
761
762 sock = file->private_data;
763
764 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
765 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
766 flags |= more;
767
768 return kernel_sendpage(sock, page, offset, size, flags);
769 }
770
771 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
772 struct pipe_inode_info *pipe, size_t len,
773 unsigned int flags)
774 {
775 struct socket *sock = file->private_data;
776
777 if (unlikely(!sock->ops->splice_read))
778 return -EINVAL;
779
780 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
781 }
782
783 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
784 {
785 struct file *file = iocb->ki_filp;
786 struct socket *sock = file->private_data;
787 struct msghdr msg = {.msg_iter = *to,
788 .msg_iocb = iocb};
789 ssize_t res;
790
791 if (file->f_flags & O_NONBLOCK)
792 msg.msg_flags = MSG_DONTWAIT;
793
794 if (iocb->ki_pos != 0)
795 return -ESPIPE;
796
797 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
798 return 0;
799
800 res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags);
801 *to = msg.msg_iter;
802 return res;
803 }
804
805 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
806 {
807 struct file *file = iocb->ki_filp;
808 struct socket *sock = file->private_data;
809 struct msghdr msg = {.msg_iter = *from,
810 .msg_iocb = iocb};
811 ssize_t res;
812
813 if (iocb->ki_pos != 0)
814 return -ESPIPE;
815
816 if (file->f_flags & O_NONBLOCK)
817 msg.msg_flags = MSG_DONTWAIT;
818
819 if (sock->type == SOCK_SEQPACKET)
820 msg.msg_flags |= MSG_EOR;
821
822 res = sock_sendmsg(sock, &msg);
823 *from = msg.msg_iter;
824 return res;
825 }
826
827 /*
828 * Atomic setting of ioctl hooks to avoid race
829 * with module unload.
830 */
831
832 static DEFINE_MUTEX(br_ioctl_mutex);
833 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
834
835 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
836 {
837 mutex_lock(&br_ioctl_mutex);
838 br_ioctl_hook = hook;
839 mutex_unlock(&br_ioctl_mutex);
840 }
841 EXPORT_SYMBOL(brioctl_set);
842
843 static DEFINE_MUTEX(vlan_ioctl_mutex);
844 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
845
846 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
847 {
848 mutex_lock(&vlan_ioctl_mutex);
849 vlan_ioctl_hook = hook;
850 mutex_unlock(&vlan_ioctl_mutex);
851 }
852 EXPORT_SYMBOL(vlan_ioctl_set);
853
854 static DEFINE_MUTEX(dlci_ioctl_mutex);
855 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
856
857 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
858 {
859 mutex_lock(&dlci_ioctl_mutex);
860 dlci_ioctl_hook = hook;
861 mutex_unlock(&dlci_ioctl_mutex);
862 }
863 EXPORT_SYMBOL(dlci_ioctl_set);
864
865 static long sock_do_ioctl(struct net *net, struct socket *sock,
866 unsigned int cmd, unsigned long arg)
867 {
868 int err;
869 void __user *argp = (void __user *)arg;
870
871 err = sock->ops->ioctl(sock, cmd, arg);
872
873 /*
874 * If this ioctl is unknown try to hand it down
875 * to the NIC driver.
876 */
877 if (err == -ENOIOCTLCMD)
878 err = dev_ioctl(net, cmd, argp);
879
880 return err;
881 }
882
883 /*
884 * With an ioctl, arg may well be a user mode pointer, but we don't know
885 * what to do with it - that's up to the protocol still.
886 */
887
888 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
889 {
890 struct socket *sock;
891 struct sock *sk;
892 void __user *argp = (void __user *)arg;
893 int pid, err;
894 struct net *net;
895
896 sock = file->private_data;
897 sk = sock->sk;
898 net = sock_net(sk);
899 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
900 err = dev_ioctl(net, cmd, argp);
901 } else
902 #ifdef CONFIG_WEXT_CORE
903 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
904 err = dev_ioctl(net, cmd, argp);
905 } else
906 #endif
907 switch (cmd) {
908 case FIOSETOWN:
909 case SIOCSPGRP:
910 err = -EFAULT;
911 if (get_user(pid, (int __user *)argp))
912 break;
913 f_setown(sock->file, pid, 1);
914 err = 0;
915 break;
916 case FIOGETOWN:
917 case SIOCGPGRP:
918 err = put_user(f_getown(sock->file),
919 (int __user *)argp);
920 break;
921 case SIOCGIFBR:
922 case SIOCSIFBR:
923 case SIOCBRADDBR:
924 case SIOCBRDELBR:
925 err = -ENOPKG;
926 if (!br_ioctl_hook)
927 request_module("bridge");
928
929 mutex_lock(&br_ioctl_mutex);
930 if (br_ioctl_hook)
931 err = br_ioctl_hook(net, cmd, argp);
932 mutex_unlock(&br_ioctl_mutex);
933 break;
934 case SIOCGIFVLAN:
935 case SIOCSIFVLAN:
936 err = -ENOPKG;
937 if (!vlan_ioctl_hook)
938 request_module("8021q");
939
940 mutex_lock(&vlan_ioctl_mutex);
941 if (vlan_ioctl_hook)
942 err = vlan_ioctl_hook(net, argp);
943 mutex_unlock(&vlan_ioctl_mutex);
944 break;
945 case SIOCADDDLCI:
946 case SIOCDELDLCI:
947 err = -ENOPKG;
948 if (!dlci_ioctl_hook)
949 request_module("dlci");
950
951 mutex_lock(&dlci_ioctl_mutex);
952 if (dlci_ioctl_hook)
953 err = dlci_ioctl_hook(cmd, argp);
954 mutex_unlock(&dlci_ioctl_mutex);
955 break;
956 default:
957 err = sock_do_ioctl(net, sock, cmd, arg);
958 break;
959 }
960 return err;
961 }
962
963 int sock_create_lite(int family, int type, int protocol, struct socket **res)
964 {
965 int err;
966 struct socket *sock = NULL;
967
968 err = security_socket_create(family, type, protocol, 1);
969 if (err)
970 goto out;
971
972 sock = sock_alloc();
973 if (!sock) {
974 err = -ENOMEM;
975 goto out;
976 }
977
978 sock->type = type;
979 err = security_socket_post_create(sock, family, type, protocol, 1);
980 if (err)
981 goto out_release;
982
983 out:
984 *res = sock;
985 return err;
986 out_release:
987 sock_release(sock);
988 sock = NULL;
989 goto out;
990 }
991 EXPORT_SYMBOL(sock_create_lite);
992
993 /* No kernel lock held - perfect */
994 static unsigned int sock_poll(struct file *file, poll_table *wait)
995 {
996 unsigned int busy_flag = 0;
997 struct socket *sock;
998
999 /*
1000 * We can't return errors to poll, so it's either yes or no.
1001 */
1002 sock = file->private_data;
1003
1004 if (sk_can_busy_loop(sock->sk)) {
1005 /* this socket can poll_ll so tell the system call */
1006 busy_flag = POLL_BUSY_LOOP;
1007
1008 /* once, only if requested by syscall */
1009 if (wait && (wait->_key & POLL_BUSY_LOOP))
1010 sk_busy_loop(sock->sk, 1);
1011 }
1012
1013 return busy_flag | sock->ops->poll(file, sock, wait);
1014 }
1015
1016 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1017 {
1018 struct socket *sock = file->private_data;
1019
1020 return sock->ops->mmap(file, sock, vma);
1021 }
1022
1023 static int sock_close(struct inode *inode, struct file *filp)
1024 {
1025 sock_release(SOCKET_I(inode));
1026 return 0;
1027 }
1028
1029 /*
1030 * Update the socket async list
1031 *
1032 * Fasync_list locking strategy.
1033 *
1034 * 1. fasync_list is modified only under process context socket lock
1035 * i.e. under semaphore.
1036 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1037 * or under socket lock
1038 */
1039
1040 static int sock_fasync(int fd, struct file *filp, int on)
1041 {
1042 struct socket *sock = filp->private_data;
1043 struct sock *sk = sock->sk;
1044 struct socket_wq *wq;
1045
1046 if (sk == NULL)
1047 return -EINVAL;
1048
1049 lock_sock(sk);
1050 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1051 fasync_helper(fd, filp, on, &wq->fasync_list);
1052
1053 if (!wq->fasync_list)
1054 sock_reset_flag(sk, SOCK_FASYNC);
1055 else
1056 sock_set_flag(sk, SOCK_FASYNC);
1057
1058 release_sock(sk);
1059 return 0;
1060 }
1061
1062 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1063
1064 int sock_wake_async(struct socket *sock, int how, int band)
1065 {
1066 struct socket_wq *wq;
1067
1068 if (!sock)
1069 return -1;
1070 rcu_read_lock();
1071 wq = rcu_dereference(sock->wq);
1072 if (!wq || !wq->fasync_list) {
1073 rcu_read_unlock();
1074 return -1;
1075 }
1076 switch (how) {
1077 case SOCK_WAKE_WAITD:
1078 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1079 break;
1080 goto call_kill;
1081 case SOCK_WAKE_SPACE:
1082 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1083 break;
1084 /* fall through */
1085 case SOCK_WAKE_IO:
1086 call_kill:
1087 kill_fasync(&wq->fasync_list, SIGIO, band);
1088 break;
1089 case SOCK_WAKE_URG:
1090 kill_fasync(&wq->fasync_list, SIGURG, band);
1091 }
1092 rcu_read_unlock();
1093 return 0;
1094 }
1095 EXPORT_SYMBOL(sock_wake_async);
1096
1097 int __sock_create(struct net *net, int family, int type, int protocol,
1098 struct socket **res, int kern)
1099 {
1100 int err;
1101 struct socket *sock;
1102 const struct net_proto_family *pf;
1103
1104 /*
1105 * Check protocol is in range
1106 */
1107 if (family < 0 || family >= NPROTO)
1108 return -EAFNOSUPPORT;
1109 if (type < 0 || type >= SOCK_MAX)
1110 return -EINVAL;
1111
1112 /* Compatibility.
1113
1114 This uglymoron is moved from INET layer to here to avoid
1115 deadlock in module load.
1116 */
1117 if (family == PF_INET && type == SOCK_PACKET) {
1118 static int warned;
1119 if (!warned) {
1120 warned = 1;
1121 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1122 current->comm);
1123 }
1124 family = PF_PACKET;
1125 }
1126
1127 err = security_socket_create(family, type, protocol, kern);
1128 if (err)
1129 return err;
1130
1131 /*
1132 * Allocate the socket and allow the family to set things up. if
1133 * the protocol is 0, the family is instructed to select an appropriate
1134 * default.
1135 */
1136 sock = sock_alloc();
1137 if (!sock) {
1138 net_warn_ratelimited("socket: no more sockets\n");
1139 return -ENFILE; /* Not exactly a match, but its the
1140 closest posix thing */
1141 }
1142
1143 sock->type = type;
1144
1145 #ifdef CONFIG_MODULES
1146 /* Attempt to load a protocol module if the find failed.
1147 *
1148 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1149 * requested real, full-featured networking support upon configuration.
1150 * Otherwise module support will break!
1151 */
1152 if (rcu_access_pointer(net_families[family]) == NULL)
1153 request_module("net-pf-%d", family);
1154 #endif
1155
1156 rcu_read_lock();
1157 pf = rcu_dereference(net_families[family]);
1158 err = -EAFNOSUPPORT;
1159 if (!pf)
1160 goto out_release;
1161
1162 /*
1163 * We will call the ->create function, that possibly is in a loadable
1164 * module, so we have to bump that loadable module refcnt first.
1165 */
1166 if (!try_module_get(pf->owner))
1167 goto out_release;
1168
1169 /* Now protected by module ref count */
1170 rcu_read_unlock();
1171
1172 err = pf->create(net, sock, protocol, kern);
1173 if (err < 0)
1174 goto out_module_put;
1175
1176 /*
1177 * Now to bump the refcnt of the [loadable] module that owns this
1178 * socket at sock_release time we decrement its refcnt.
1179 */
1180 if (!try_module_get(sock->ops->owner))
1181 goto out_module_busy;
1182
1183 /*
1184 * Now that we're done with the ->create function, the [loadable]
1185 * module can have its refcnt decremented
1186 */
1187 module_put(pf->owner);
1188 err = security_socket_post_create(sock, family, type, protocol, kern);
1189 if (err)
1190 goto out_sock_release;
1191 *res = sock;
1192
1193 return 0;
1194
1195 out_module_busy:
1196 err = -EAFNOSUPPORT;
1197 out_module_put:
1198 sock->ops = NULL;
1199 module_put(pf->owner);
1200 out_sock_release:
1201 sock_release(sock);
1202 return err;
1203
1204 out_release:
1205 rcu_read_unlock();
1206 goto out_sock_release;
1207 }
1208 EXPORT_SYMBOL(__sock_create);
1209
1210 int sock_create(int family, int type, int protocol, struct socket **res)
1211 {
1212 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1213 }
1214 EXPORT_SYMBOL(sock_create);
1215
1216 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1217 {
1218 return __sock_create(&init_net, family, type, protocol, res, 1);
1219 }
1220 EXPORT_SYMBOL(sock_create_kern);
1221
1222 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1223 {
1224 int retval;
1225 struct socket *sock;
1226 int flags;
1227
1228 /* Check the SOCK_* constants for consistency. */
1229 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1230 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1231 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1232 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1233
1234 flags = type & ~SOCK_TYPE_MASK;
1235 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1236 return -EINVAL;
1237 type &= SOCK_TYPE_MASK;
1238
1239 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1240 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1241
1242 retval = sock_create(family, type, protocol, &sock);
1243 if (retval < 0)
1244 goto out;
1245
1246 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1247 if (retval < 0)
1248 goto out_release;
1249
1250 out:
1251 /* It may be already another descriptor 8) Not kernel problem. */
1252 return retval;
1253
1254 out_release:
1255 sock_release(sock);
1256 return retval;
1257 }
1258
1259 /*
1260 * Create a pair of connected sockets.
1261 */
1262
1263 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1264 int __user *, usockvec)
1265 {
1266 struct socket *sock1, *sock2;
1267 int fd1, fd2, err;
1268 struct file *newfile1, *newfile2;
1269 int flags;
1270
1271 flags = type & ~SOCK_TYPE_MASK;
1272 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1273 return -EINVAL;
1274 type &= SOCK_TYPE_MASK;
1275
1276 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1277 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1278
1279 /*
1280 * Obtain the first socket and check if the underlying protocol
1281 * supports the socketpair call.
1282 */
1283
1284 err = sock_create(family, type, protocol, &sock1);
1285 if (err < 0)
1286 goto out;
1287
1288 err = sock_create(family, type, protocol, &sock2);
1289 if (err < 0)
1290 goto out_release_1;
1291
1292 err = sock1->ops->socketpair(sock1, sock2);
1293 if (err < 0)
1294 goto out_release_both;
1295
1296 fd1 = get_unused_fd_flags(flags);
1297 if (unlikely(fd1 < 0)) {
1298 err = fd1;
1299 goto out_release_both;
1300 }
1301
1302 fd2 = get_unused_fd_flags(flags);
1303 if (unlikely(fd2 < 0)) {
1304 err = fd2;
1305 goto out_put_unused_1;
1306 }
1307
1308 newfile1 = sock_alloc_file(sock1, flags, NULL);
1309 if (unlikely(IS_ERR(newfile1))) {
1310 err = PTR_ERR(newfile1);
1311 goto out_put_unused_both;
1312 }
1313
1314 newfile2 = sock_alloc_file(sock2, flags, NULL);
1315 if (IS_ERR(newfile2)) {
1316 err = PTR_ERR(newfile2);
1317 goto out_fput_1;
1318 }
1319
1320 err = put_user(fd1, &usockvec[0]);
1321 if (err)
1322 goto out_fput_both;
1323
1324 err = put_user(fd2, &usockvec[1]);
1325 if (err)
1326 goto out_fput_both;
1327
1328 audit_fd_pair(fd1, fd2);
1329
1330 fd_install(fd1, newfile1);
1331 fd_install(fd2, newfile2);
1332 /* fd1 and fd2 may be already another descriptors.
1333 * Not kernel problem.
1334 */
1335
1336 return 0;
1337
1338 out_fput_both:
1339 fput(newfile2);
1340 fput(newfile1);
1341 put_unused_fd(fd2);
1342 put_unused_fd(fd1);
1343 goto out;
1344
1345 out_fput_1:
1346 fput(newfile1);
1347 put_unused_fd(fd2);
1348 put_unused_fd(fd1);
1349 sock_release(sock2);
1350 goto out;
1351
1352 out_put_unused_both:
1353 put_unused_fd(fd2);
1354 out_put_unused_1:
1355 put_unused_fd(fd1);
1356 out_release_both:
1357 sock_release(sock2);
1358 out_release_1:
1359 sock_release(sock1);
1360 out:
1361 return err;
1362 }
1363
1364 /*
1365 * Bind a name to a socket. Nothing much to do here since it's
1366 * the protocol's responsibility to handle the local address.
1367 *
1368 * We move the socket address to kernel space before we call
1369 * the protocol layer (having also checked the address is ok).
1370 */
1371
1372 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1373 {
1374 struct socket *sock;
1375 struct sockaddr_storage address;
1376 int err, fput_needed;
1377
1378 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1379 if (sock) {
1380 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1381 if (err >= 0) {
1382 err = security_socket_bind(sock,
1383 (struct sockaddr *)&address,
1384 addrlen);
1385 if (!err)
1386 err = sock->ops->bind(sock,
1387 (struct sockaddr *)
1388 &address, addrlen);
1389 }
1390 fput_light(sock->file, fput_needed);
1391 }
1392 return err;
1393 }
1394
1395 /*
1396 * Perform a listen. Basically, we allow the protocol to do anything
1397 * necessary for a listen, and if that works, we mark the socket as
1398 * ready for listening.
1399 */
1400
1401 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1402 {
1403 struct socket *sock;
1404 int err, fput_needed;
1405 int somaxconn;
1406
1407 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1408 if (sock) {
1409 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1410 if ((unsigned int)backlog > somaxconn)
1411 backlog = somaxconn;
1412
1413 err = security_socket_listen(sock, backlog);
1414 if (!err)
1415 err = sock->ops->listen(sock, backlog);
1416
1417 fput_light(sock->file, fput_needed);
1418 }
1419 return err;
1420 }
1421
1422 /*
1423 * For accept, we attempt to create a new socket, set up the link
1424 * with the client, wake up the client, then return the new
1425 * connected fd. We collect the address of the connector in kernel
1426 * space and move it to user at the very end. This is unclean because
1427 * we open the socket then return an error.
1428 *
1429 * 1003.1g adds the ability to recvmsg() to query connection pending
1430 * status to recvmsg. We need to add that support in a way thats
1431 * clean when we restucture accept also.
1432 */
1433
1434 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1435 int __user *, upeer_addrlen, int, flags)
1436 {
1437 struct socket *sock, *newsock;
1438 struct file *newfile;
1439 int err, len, newfd, fput_needed;
1440 struct sockaddr_storage address;
1441
1442 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1443 return -EINVAL;
1444
1445 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1446 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1447
1448 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1449 if (!sock)
1450 goto out;
1451
1452 err = -ENFILE;
1453 newsock = sock_alloc();
1454 if (!newsock)
1455 goto out_put;
1456
1457 newsock->type = sock->type;
1458 newsock->ops = sock->ops;
1459
1460 /*
1461 * We don't need try_module_get here, as the listening socket (sock)
1462 * has the protocol module (sock->ops->owner) held.
1463 */
1464 __module_get(newsock->ops->owner);
1465
1466 newfd = get_unused_fd_flags(flags);
1467 if (unlikely(newfd < 0)) {
1468 err = newfd;
1469 sock_release(newsock);
1470 goto out_put;
1471 }
1472 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1473 if (unlikely(IS_ERR(newfile))) {
1474 err = PTR_ERR(newfile);
1475 put_unused_fd(newfd);
1476 sock_release(newsock);
1477 goto out_put;
1478 }
1479
1480 err = security_socket_accept(sock, newsock);
1481 if (err)
1482 goto out_fd;
1483
1484 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1485 if (err < 0)
1486 goto out_fd;
1487
1488 if (upeer_sockaddr) {
1489 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1490 &len, 2) < 0) {
1491 err = -ECONNABORTED;
1492 goto out_fd;
1493 }
1494 err = move_addr_to_user(&address,
1495 len, upeer_sockaddr, upeer_addrlen);
1496 if (err < 0)
1497 goto out_fd;
1498 }
1499
1500 /* File flags are not inherited via accept() unlike another OSes. */
1501
1502 fd_install(newfd, newfile);
1503 err = newfd;
1504
1505 out_put:
1506 fput_light(sock->file, fput_needed);
1507 out:
1508 return err;
1509 out_fd:
1510 fput(newfile);
1511 put_unused_fd(newfd);
1512 goto out_put;
1513 }
1514
1515 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1516 int __user *, upeer_addrlen)
1517 {
1518 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1519 }
1520
1521 /*
1522 * Attempt to connect to a socket with the server address. The address
1523 * is in user space so we verify it is OK and move it to kernel space.
1524 *
1525 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1526 * break bindings
1527 *
1528 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1529 * other SEQPACKET protocols that take time to connect() as it doesn't
1530 * include the -EINPROGRESS status for such sockets.
1531 */
1532
1533 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1534 int, addrlen)
1535 {
1536 struct socket *sock;
1537 struct sockaddr_storage address;
1538 int err, fput_needed;
1539
1540 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1541 if (!sock)
1542 goto out;
1543 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1544 if (err < 0)
1545 goto out_put;
1546
1547 err =
1548 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1549 if (err)
1550 goto out_put;
1551
1552 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1553 sock->file->f_flags);
1554 out_put:
1555 fput_light(sock->file, fput_needed);
1556 out:
1557 return err;
1558 }
1559
1560 /*
1561 * Get the local address ('name') of a socket object. Move the obtained
1562 * name to user space.
1563 */
1564
1565 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1566 int __user *, usockaddr_len)
1567 {
1568 struct socket *sock;
1569 struct sockaddr_storage address;
1570 int len, err, fput_needed;
1571
1572 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1573 if (!sock)
1574 goto out;
1575
1576 err = security_socket_getsockname(sock);
1577 if (err)
1578 goto out_put;
1579
1580 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1581 if (err)
1582 goto out_put;
1583 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1584
1585 out_put:
1586 fput_light(sock->file, fput_needed);
1587 out:
1588 return err;
1589 }
1590
1591 /*
1592 * Get the remote address ('name') of a socket object. Move the obtained
1593 * name to user space.
1594 */
1595
1596 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1597 int __user *, usockaddr_len)
1598 {
1599 struct socket *sock;
1600 struct sockaddr_storage address;
1601 int len, err, fput_needed;
1602
1603 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1604 if (sock != NULL) {
1605 err = security_socket_getpeername(sock);
1606 if (err) {
1607 fput_light(sock->file, fput_needed);
1608 return err;
1609 }
1610
1611 err =
1612 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1613 1);
1614 if (!err)
1615 err = move_addr_to_user(&address, len, usockaddr,
1616 usockaddr_len);
1617 fput_light(sock->file, fput_needed);
1618 }
1619 return err;
1620 }
1621
1622 /*
1623 * Send a datagram to a given address. We move the address into kernel
1624 * space and check the user space data area is readable before invoking
1625 * the protocol.
1626 */
1627
1628 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1629 unsigned int, flags, struct sockaddr __user *, addr,
1630 int, addr_len)
1631 {
1632 struct socket *sock;
1633 struct sockaddr_storage address;
1634 int err;
1635 struct msghdr msg;
1636 struct iovec iov;
1637 int fput_needed;
1638
1639 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1640 if (unlikely(err))
1641 return err;
1642 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1643 if (!sock)
1644 goto out;
1645
1646 msg.msg_name = NULL;
1647 msg.msg_control = NULL;
1648 msg.msg_controllen = 0;
1649 msg.msg_namelen = 0;
1650 if (addr) {
1651 err = move_addr_to_kernel(addr, addr_len, &address);
1652 if (err < 0)
1653 goto out_put;
1654 msg.msg_name = (struct sockaddr *)&address;
1655 msg.msg_namelen = addr_len;
1656 }
1657 if (sock->file->f_flags & O_NONBLOCK)
1658 flags |= MSG_DONTWAIT;
1659 msg.msg_flags = flags;
1660 err = sock_sendmsg(sock, &msg);
1661
1662 out_put:
1663 fput_light(sock->file, fput_needed);
1664 out:
1665 return err;
1666 }
1667
1668 /*
1669 * Send a datagram down a socket.
1670 */
1671
1672 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1673 unsigned int, flags)
1674 {
1675 return sys_sendto(fd, buff, len, flags, NULL, 0);
1676 }
1677
1678 /*
1679 * Receive a frame from the socket and optionally record the address of the
1680 * sender. We verify the buffers are writable and if needed move the
1681 * sender address from kernel to user space.
1682 */
1683
1684 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1685 unsigned int, flags, struct sockaddr __user *, addr,
1686 int __user *, addr_len)
1687 {
1688 struct socket *sock;
1689 struct iovec iov;
1690 struct msghdr msg;
1691 struct sockaddr_storage address;
1692 int err, err2;
1693 int fput_needed;
1694
1695 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1696 if (unlikely(err))
1697 return err;
1698 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1699 if (!sock)
1700 goto out;
1701
1702 msg.msg_control = NULL;
1703 msg.msg_controllen = 0;
1704 /* Save some cycles and don't copy the address if not needed */
1705 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1706 /* We assume all kernel code knows the size of sockaddr_storage */
1707 msg.msg_namelen = 0;
1708 if (sock->file->f_flags & O_NONBLOCK)
1709 flags |= MSG_DONTWAIT;
1710 err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags);
1711
1712 if (err >= 0 && addr != NULL) {
1713 err2 = move_addr_to_user(&address,
1714 msg.msg_namelen, addr, addr_len);
1715 if (err2 < 0)
1716 err = err2;
1717 }
1718
1719 fput_light(sock->file, fput_needed);
1720 out:
1721 return err;
1722 }
1723
1724 /*
1725 * Receive a datagram from a socket.
1726 */
1727
1728 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1729 unsigned int, flags)
1730 {
1731 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1732 }
1733
1734 /*
1735 * Set a socket option. Because we don't know the option lengths we have
1736 * to pass the user mode parameter for the protocols to sort out.
1737 */
1738
1739 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1740 char __user *, optval, int, optlen)
1741 {
1742 int err, fput_needed;
1743 struct socket *sock;
1744
1745 if (optlen < 0)
1746 return -EINVAL;
1747
1748 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1749 if (sock != NULL) {
1750 err = security_socket_setsockopt(sock, level, optname);
1751 if (err)
1752 goto out_put;
1753
1754 if (level == SOL_SOCKET)
1755 err =
1756 sock_setsockopt(sock, level, optname, optval,
1757 optlen);
1758 else
1759 err =
1760 sock->ops->setsockopt(sock, level, optname, optval,
1761 optlen);
1762 out_put:
1763 fput_light(sock->file, fput_needed);
1764 }
1765 return err;
1766 }
1767
1768 /*
1769 * Get a socket option. Because we don't know the option lengths we have
1770 * to pass a user mode parameter for the protocols to sort out.
1771 */
1772
1773 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1774 char __user *, optval, int __user *, optlen)
1775 {
1776 int err, fput_needed;
1777 struct socket *sock;
1778
1779 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1780 if (sock != NULL) {
1781 err = security_socket_getsockopt(sock, level, optname);
1782 if (err)
1783 goto out_put;
1784
1785 if (level == SOL_SOCKET)
1786 err =
1787 sock_getsockopt(sock, level, optname, optval,
1788 optlen);
1789 else
1790 err =
1791 sock->ops->getsockopt(sock, level, optname, optval,
1792 optlen);
1793 out_put:
1794 fput_light(sock->file, fput_needed);
1795 }
1796 return err;
1797 }
1798
1799 /*
1800 * Shutdown a socket.
1801 */
1802
1803 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1804 {
1805 int err, fput_needed;
1806 struct socket *sock;
1807
1808 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1809 if (sock != NULL) {
1810 err = security_socket_shutdown(sock, how);
1811 if (!err)
1812 err = sock->ops->shutdown(sock, how);
1813 fput_light(sock->file, fput_needed);
1814 }
1815 return err;
1816 }
1817
1818 /* A couple of helpful macros for getting the address of the 32/64 bit
1819 * fields which are the same type (int / unsigned) on our platforms.
1820 */
1821 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1822 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1823 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1824
1825 struct used_address {
1826 struct sockaddr_storage name;
1827 unsigned int name_len;
1828 };
1829
1830 static int copy_msghdr_from_user(struct msghdr *kmsg,
1831 struct user_msghdr __user *umsg,
1832 struct sockaddr __user **save_addr,
1833 struct iovec **iov)
1834 {
1835 struct sockaddr __user *uaddr;
1836 struct iovec __user *uiov;
1837 size_t nr_segs;
1838 ssize_t err;
1839
1840 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1841 __get_user(uaddr, &umsg->msg_name) ||
1842 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1843 __get_user(uiov, &umsg->msg_iov) ||
1844 __get_user(nr_segs, &umsg->msg_iovlen) ||
1845 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1846 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1847 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1848 return -EFAULT;
1849
1850 if (!uaddr)
1851 kmsg->msg_namelen = 0;
1852
1853 if (kmsg->msg_namelen < 0)
1854 return -EINVAL;
1855
1856 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1857 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1858
1859 if (save_addr)
1860 *save_addr = uaddr;
1861
1862 if (uaddr && kmsg->msg_namelen) {
1863 if (!save_addr) {
1864 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1865 kmsg->msg_name);
1866 if (err < 0)
1867 return err;
1868 }
1869 } else {
1870 kmsg->msg_name = NULL;
1871 kmsg->msg_namelen = 0;
1872 }
1873
1874 if (nr_segs > UIO_MAXIOV)
1875 return -EMSGSIZE;
1876
1877 kmsg->msg_iocb = NULL;
1878
1879 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1880 UIO_FASTIOV, iov, &kmsg->msg_iter);
1881 }
1882
1883 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1884 struct msghdr *msg_sys, unsigned int flags,
1885 struct used_address *used_address)
1886 {
1887 struct compat_msghdr __user *msg_compat =
1888 (struct compat_msghdr __user *)msg;
1889 struct sockaddr_storage address;
1890 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1891 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1892 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1893 /* 20 is size of ipv6_pktinfo */
1894 unsigned char *ctl_buf = ctl;
1895 int ctl_len;
1896 ssize_t err;
1897
1898 msg_sys->msg_name = &address;
1899
1900 if (MSG_CMSG_COMPAT & flags)
1901 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1902 else
1903 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1904 if (err < 0)
1905 return err;
1906
1907 err = -ENOBUFS;
1908
1909 if (msg_sys->msg_controllen > INT_MAX)
1910 goto out_freeiov;
1911 ctl_len = msg_sys->msg_controllen;
1912 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1913 err =
1914 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1915 sizeof(ctl));
1916 if (err)
1917 goto out_freeiov;
1918 ctl_buf = msg_sys->msg_control;
1919 ctl_len = msg_sys->msg_controllen;
1920 } else if (ctl_len) {
1921 if (ctl_len > sizeof(ctl)) {
1922 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1923 if (ctl_buf == NULL)
1924 goto out_freeiov;
1925 }
1926 err = -EFAULT;
1927 /*
1928 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1929 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1930 * checking falls down on this.
1931 */
1932 if (copy_from_user(ctl_buf,
1933 (void __user __force *)msg_sys->msg_control,
1934 ctl_len))
1935 goto out_freectl;
1936 msg_sys->msg_control = ctl_buf;
1937 }
1938 msg_sys->msg_flags = flags;
1939
1940 if (sock->file->f_flags & O_NONBLOCK)
1941 msg_sys->msg_flags |= MSG_DONTWAIT;
1942 /*
1943 * If this is sendmmsg() and current destination address is same as
1944 * previously succeeded address, omit asking LSM's decision.
1945 * used_address->name_len is initialized to UINT_MAX so that the first
1946 * destination address never matches.
1947 */
1948 if (used_address && msg_sys->msg_name &&
1949 used_address->name_len == msg_sys->msg_namelen &&
1950 !memcmp(&used_address->name, msg_sys->msg_name,
1951 used_address->name_len)) {
1952 err = sock_sendmsg_nosec(sock, msg_sys);
1953 goto out_freectl;
1954 }
1955 err = sock_sendmsg(sock, msg_sys);
1956 /*
1957 * If this is sendmmsg() and sending to current destination address was
1958 * successful, remember it.
1959 */
1960 if (used_address && err >= 0) {
1961 used_address->name_len = msg_sys->msg_namelen;
1962 if (msg_sys->msg_name)
1963 memcpy(&used_address->name, msg_sys->msg_name,
1964 used_address->name_len);
1965 }
1966
1967 out_freectl:
1968 if (ctl_buf != ctl)
1969 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1970 out_freeiov:
1971 kfree(iov);
1972 return err;
1973 }
1974
1975 /*
1976 * BSD sendmsg interface
1977 */
1978
1979 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1980 {
1981 int fput_needed, err;
1982 struct msghdr msg_sys;
1983 struct socket *sock;
1984
1985 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1986 if (!sock)
1987 goto out;
1988
1989 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
1990
1991 fput_light(sock->file, fput_needed);
1992 out:
1993 return err;
1994 }
1995
1996 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1997 {
1998 if (flags & MSG_CMSG_COMPAT)
1999 return -EINVAL;
2000 return __sys_sendmsg(fd, msg, flags);
2001 }
2002
2003 /*
2004 * Linux sendmmsg interface
2005 */
2006
2007 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2008 unsigned int flags)
2009 {
2010 int fput_needed, err, datagrams;
2011 struct socket *sock;
2012 struct mmsghdr __user *entry;
2013 struct compat_mmsghdr __user *compat_entry;
2014 struct msghdr msg_sys;
2015 struct used_address used_address;
2016
2017 if (vlen > UIO_MAXIOV)
2018 vlen = UIO_MAXIOV;
2019
2020 datagrams = 0;
2021
2022 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2023 if (!sock)
2024 return err;
2025
2026 used_address.name_len = UINT_MAX;
2027 entry = mmsg;
2028 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2029 err = 0;
2030
2031 while (datagrams < vlen) {
2032 if (MSG_CMSG_COMPAT & flags) {
2033 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2034 &msg_sys, flags, &used_address);
2035 if (err < 0)
2036 break;
2037 err = __put_user(err, &compat_entry->msg_len);
2038 ++compat_entry;
2039 } else {
2040 err = ___sys_sendmsg(sock,
2041 (struct user_msghdr __user *)entry,
2042 &msg_sys, flags, &used_address);
2043 if (err < 0)
2044 break;
2045 err = put_user(err, &entry->msg_len);
2046 ++entry;
2047 }
2048
2049 if (err)
2050 break;
2051 ++datagrams;
2052 }
2053
2054 fput_light(sock->file, fput_needed);
2055
2056 /* We only return an error if no datagrams were able to be sent */
2057 if (datagrams != 0)
2058 return datagrams;
2059
2060 return err;
2061 }
2062
2063 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2064 unsigned int, vlen, unsigned int, flags)
2065 {
2066 if (flags & MSG_CMSG_COMPAT)
2067 return -EINVAL;
2068 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2069 }
2070
2071 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2072 struct msghdr *msg_sys, unsigned int flags, int nosec)
2073 {
2074 struct compat_msghdr __user *msg_compat =
2075 (struct compat_msghdr __user *)msg;
2076 struct iovec iovstack[UIO_FASTIOV];
2077 struct iovec *iov = iovstack;
2078 unsigned long cmsg_ptr;
2079 int total_len, len;
2080 ssize_t err;
2081
2082 /* kernel mode address */
2083 struct sockaddr_storage addr;
2084
2085 /* user mode address pointers */
2086 struct sockaddr __user *uaddr;
2087 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2088
2089 msg_sys->msg_name = &addr;
2090
2091 if (MSG_CMSG_COMPAT & flags)
2092 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2093 else
2094 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2095 if (err < 0)
2096 return err;
2097 total_len = iov_iter_count(&msg_sys->msg_iter);
2098
2099 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2100 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2101
2102 /* We assume all kernel code knows the size of sockaddr_storage */
2103 msg_sys->msg_namelen = 0;
2104
2105 if (sock->file->f_flags & O_NONBLOCK)
2106 flags |= MSG_DONTWAIT;
2107 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2108 total_len, flags);
2109 if (err < 0)
2110 goto out_freeiov;
2111 len = err;
2112
2113 if (uaddr != NULL) {
2114 err = move_addr_to_user(&addr,
2115 msg_sys->msg_namelen, uaddr,
2116 uaddr_len);
2117 if (err < 0)
2118 goto out_freeiov;
2119 }
2120 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2121 COMPAT_FLAGS(msg));
2122 if (err)
2123 goto out_freeiov;
2124 if (MSG_CMSG_COMPAT & flags)
2125 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2126 &msg_compat->msg_controllen);
2127 else
2128 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2129 &msg->msg_controllen);
2130 if (err)
2131 goto out_freeiov;
2132 err = len;
2133
2134 out_freeiov:
2135 kfree(iov);
2136 return err;
2137 }
2138
2139 /*
2140 * BSD recvmsg interface
2141 */
2142
2143 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2144 {
2145 int fput_needed, err;
2146 struct msghdr msg_sys;
2147 struct socket *sock;
2148
2149 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2150 if (!sock)
2151 goto out;
2152
2153 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2154
2155 fput_light(sock->file, fput_needed);
2156 out:
2157 return err;
2158 }
2159
2160 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2161 unsigned int, flags)
2162 {
2163 if (flags & MSG_CMSG_COMPAT)
2164 return -EINVAL;
2165 return __sys_recvmsg(fd, msg, flags);
2166 }
2167
2168 /*
2169 * Linux recvmmsg interface
2170 */
2171
2172 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2173 unsigned int flags, struct timespec *timeout)
2174 {
2175 int fput_needed, err, datagrams;
2176 struct socket *sock;
2177 struct mmsghdr __user *entry;
2178 struct compat_mmsghdr __user *compat_entry;
2179 struct msghdr msg_sys;
2180 struct timespec end_time;
2181
2182 if (timeout &&
2183 poll_select_set_timeout(&end_time, timeout->tv_sec,
2184 timeout->tv_nsec))
2185 return -EINVAL;
2186
2187 datagrams = 0;
2188
2189 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2190 if (!sock)
2191 return err;
2192
2193 err = sock_error(sock->sk);
2194 if (err)
2195 goto out_put;
2196
2197 entry = mmsg;
2198 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2199
2200 while (datagrams < vlen) {
2201 /*
2202 * No need to ask LSM for more than the first datagram.
2203 */
2204 if (MSG_CMSG_COMPAT & flags) {
2205 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2206 &msg_sys, flags & ~MSG_WAITFORONE,
2207 datagrams);
2208 if (err < 0)
2209 break;
2210 err = __put_user(err, &compat_entry->msg_len);
2211 ++compat_entry;
2212 } else {
2213 err = ___sys_recvmsg(sock,
2214 (struct user_msghdr __user *)entry,
2215 &msg_sys, flags & ~MSG_WAITFORONE,
2216 datagrams);
2217 if (err < 0)
2218 break;
2219 err = put_user(err, &entry->msg_len);
2220 ++entry;
2221 }
2222
2223 if (err)
2224 break;
2225 ++datagrams;
2226
2227 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2228 if (flags & MSG_WAITFORONE)
2229 flags |= MSG_DONTWAIT;
2230
2231 if (timeout) {
2232 ktime_get_ts(timeout);
2233 *timeout = timespec_sub(end_time, *timeout);
2234 if (timeout->tv_sec < 0) {
2235 timeout->tv_sec = timeout->tv_nsec = 0;
2236 break;
2237 }
2238
2239 /* Timeout, return less than vlen datagrams */
2240 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2241 break;
2242 }
2243
2244 /* Out of band data, return right away */
2245 if (msg_sys.msg_flags & MSG_OOB)
2246 break;
2247 }
2248
2249 out_put:
2250 fput_light(sock->file, fput_needed);
2251
2252 if (err == 0)
2253 return datagrams;
2254
2255 if (datagrams != 0) {
2256 /*
2257 * We may return less entries than requested (vlen) if the
2258 * sock is non block and there aren't enough datagrams...
2259 */
2260 if (err != -EAGAIN) {
2261 /*
2262 * ... or if recvmsg returns an error after we
2263 * received some datagrams, where we record the
2264 * error to return on the next call or if the
2265 * app asks about it using getsockopt(SO_ERROR).
2266 */
2267 sock->sk->sk_err = -err;
2268 }
2269
2270 return datagrams;
2271 }
2272
2273 return err;
2274 }
2275
2276 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2277 unsigned int, vlen, unsigned int, flags,
2278 struct timespec __user *, timeout)
2279 {
2280 int datagrams;
2281 struct timespec timeout_sys;
2282
2283 if (flags & MSG_CMSG_COMPAT)
2284 return -EINVAL;
2285
2286 if (!timeout)
2287 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2288
2289 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2290 return -EFAULT;
2291
2292 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2293
2294 if (datagrams > 0 &&
2295 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2296 datagrams = -EFAULT;
2297
2298 return datagrams;
2299 }
2300
2301 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2302 /* Argument list sizes for sys_socketcall */
2303 #define AL(x) ((x) * sizeof(unsigned long))
2304 static const unsigned char nargs[21] = {
2305 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2306 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2307 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2308 AL(4), AL(5), AL(4)
2309 };
2310
2311 #undef AL
2312
2313 /*
2314 * System call vectors.
2315 *
2316 * Argument checking cleaned up. Saved 20% in size.
2317 * This function doesn't need to set the kernel lock because
2318 * it is set by the callees.
2319 */
2320
2321 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2322 {
2323 unsigned long a[AUDITSC_ARGS];
2324 unsigned long a0, a1;
2325 int err;
2326 unsigned int len;
2327
2328 if (call < 1 || call > SYS_SENDMMSG)
2329 return -EINVAL;
2330
2331 len = nargs[call];
2332 if (len > sizeof(a))
2333 return -EINVAL;
2334
2335 /* copy_from_user should be SMP safe. */
2336 if (copy_from_user(a, args, len))
2337 return -EFAULT;
2338
2339 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2340 if (err)
2341 return err;
2342
2343 a0 = a[0];
2344 a1 = a[1];
2345
2346 switch (call) {
2347 case SYS_SOCKET:
2348 err = sys_socket(a0, a1, a[2]);
2349 break;
2350 case SYS_BIND:
2351 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2352 break;
2353 case SYS_CONNECT:
2354 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2355 break;
2356 case SYS_LISTEN:
2357 err = sys_listen(a0, a1);
2358 break;
2359 case SYS_ACCEPT:
2360 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2361 (int __user *)a[2], 0);
2362 break;
2363 case SYS_GETSOCKNAME:
2364 err =
2365 sys_getsockname(a0, (struct sockaddr __user *)a1,
2366 (int __user *)a[2]);
2367 break;
2368 case SYS_GETPEERNAME:
2369 err =
2370 sys_getpeername(a0, (struct sockaddr __user *)a1,
2371 (int __user *)a[2]);
2372 break;
2373 case SYS_SOCKETPAIR:
2374 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2375 break;
2376 case SYS_SEND:
2377 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2378 break;
2379 case SYS_SENDTO:
2380 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2381 (struct sockaddr __user *)a[4], a[5]);
2382 break;
2383 case SYS_RECV:
2384 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2385 break;
2386 case SYS_RECVFROM:
2387 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2388 (struct sockaddr __user *)a[4],
2389 (int __user *)a[5]);
2390 break;
2391 case SYS_SHUTDOWN:
2392 err = sys_shutdown(a0, a1);
2393 break;
2394 case SYS_SETSOCKOPT:
2395 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2396 break;
2397 case SYS_GETSOCKOPT:
2398 err =
2399 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2400 (int __user *)a[4]);
2401 break;
2402 case SYS_SENDMSG:
2403 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2404 break;
2405 case SYS_SENDMMSG:
2406 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2407 break;
2408 case SYS_RECVMSG:
2409 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2410 break;
2411 case SYS_RECVMMSG:
2412 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2413 (struct timespec __user *)a[4]);
2414 break;
2415 case SYS_ACCEPT4:
2416 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2417 (int __user *)a[2], a[3]);
2418 break;
2419 default:
2420 err = -EINVAL;
2421 break;
2422 }
2423 return err;
2424 }
2425
2426 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2427
2428 /**
2429 * sock_register - add a socket protocol handler
2430 * @ops: description of protocol
2431 *
2432 * This function is called by a protocol handler that wants to
2433 * advertise its address family, and have it linked into the
2434 * socket interface. The value ops->family corresponds to the
2435 * socket system call protocol family.
2436 */
2437 int sock_register(const struct net_proto_family *ops)
2438 {
2439 int err;
2440
2441 if (ops->family >= NPROTO) {
2442 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2443 return -ENOBUFS;
2444 }
2445
2446 spin_lock(&net_family_lock);
2447 if (rcu_dereference_protected(net_families[ops->family],
2448 lockdep_is_held(&net_family_lock)))
2449 err = -EEXIST;
2450 else {
2451 rcu_assign_pointer(net_families[ops->family], ops);
2452 err = 0;
2453 }
2454 spin_unlock(&net_family_lock);
2455
2456 pr_info("NET: Registered protocol family %d\n", ops->family);
2457 return err;
2458 }
2459 EXPORT_SYMBOL(sock_register);
2460
2461 /**
2462 * sock_unregister - remove a protocol handler
2463 * @family: protocol family to remove
2464 *
2465 * This function is called by a protocol handler that wants to
2466 * remove its address family, and have it unlinked from the
2467 * new socket creation.
2468 *
2469 * If protocol handler is a module, then it can use module reference
2470 * counts to protect against new references. If protocol handler is not
2471 * a module then it needs to provide its own protection in
2472 * the ops->create routine.
2473 */
2474 void sock_unregister(int family)
2475 {
2476 BUG_ON(family < 0 || family >= NPROTO);
2477
2478 spin_lock(&net_family_lock);
2479 RCU_INIT_POINTER(net_families[family], NULL);
2480 spin_unlock(&net_family_lock);
2481
2482 synchronize_rcu();
2483
2484 pr_info("NET: Unregistered protocol family %d\n", family);
2485 }
2486 EXPORT_SYMBOL(sock_unregister);
2487
2488 static int __init sock_init(void)
2489 {
2490 int err;
2491 /*
2492 * Initialize the network sysctl infrastructure.
2493 */
2494 err = net_sysctl_init();
2495 if (err)
2496 goto out;
2497
2498 /*
2499 * Initialize skbuff SLAB cache
2500 */
2501 skb_init();
2502
2503 /*
2504 * Initialize the protocols module.
2505 */
2506
2507 init_inodecache();
2508
2509 err = register_filesystem(&sock_fs_type);
2510 if (err)
2511 goto out_fs;
2512 sock_mnt = kern_mount(&sock_fs_type);
2513 if (IS_ERR(sock_mnt)) {
2514 err = PTR_ERR(sock_mnt);
2515 goto out_mount;
2516 }
2517
2518 /* The real protocol initialization is performed in later initcalls.
2519 */
2520
2521 #ifdef CONFIG_NETFILTER
2522 err = netfilter_init();
2523 if (err)
2524 goto out;
2525 #endif
2526
2527 ptp_classifier_init();
2528
2529 out:
2530 return err;
2531
2532 out_mount:
2533 unregister_filesystem(&sock_fs_type);
2534 out_fs:
2535 goto out;
2536 }
2537
2538 core_initcall(sock_init); /* early initcall */
2539
2540 #ifdef CONFIG_PROC_FS
2541 void socket_seq_show(struct seq_file *seq)
2542 {
2543 int cpu;
2544 int counter = 0;
2545
2546 for_each_possible_cpu(cpu)
2547 counter += per_cpu(sockets_in_use, cpu);
2548
2549 /* It can be negative, by the way. 8) */
2550 if (counter < 0)
2551 counter = 0;
2552
2553 seq_printf(seq, "sockets: used %d\n", counter);
2554 }
2555 #endif /* CONFIG_PROC_FS */
2556
2557 #ifdef CONFIG_COMPAT
2558 static int do_siocgstamp(struct net *net, struct socket *sock,
2559 unsigned int cmd, void __user *up)
2560 {
2561 mm_segment_t old_fs = get_fs();
2562 struct timeval ktv;
2563 int err;
2564
2565 set_fs(KERNEL_DS);
2566 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2567 set_fs(old_fs);
2568 if (!err)
2569 err = compat_put_timeval(&ktv, up);
2570
2571 return err;
2572 }
2573
2574 static int do_siocgstampns(struct net *net, struct socket *sock,
2575 unsigned int cmd, void __user *up)
2576 {
2577 mm_segment_t old_fs = get_fs();
2578 struct timespec kts;
2579 int err;
2580
2581 set_fs(KERNEL_DS);
2582 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2583 set_fs(old_fs);
2584 if (!err)
2585 err = compat_put_timespec(&kts, up);
2586
2587 return err;
2588 }
2589
2590 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2591 {
2592 struct ifreq __user *uifr;
2593 int err;
2594
2595 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2596 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2597 return -EFAULT;
2598
2599 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2600 if (err)
2601 return err;
2602
2603 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2604 return -EFAULT;
2605
2606 return 0;
2607 }
2608
2609 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2610 {
2611 struct compat_ifconf ifc32;
2612 struct ifconf ifc;
2613 struct ifconf __user *uifc;
2614 struct compat_ifreq __user *ifr32;
2615 struct ifreq __user *ifr;
2616 unsigned int i, j;
2617 int err;
2618
2619 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2620 return -EFAULT;
2621
2622 memset(&ifc, 0, sizeof(ifc));
2623 if (ifc32.ifcbuf == 0) {
2624 ifc32.ifc_len = 0;
2625 ifc.ifc_len = 0;
2626 ifc.ifc_req = NULL;
2627 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2628 } else {
2629 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2630 sizeof(struct ifreq);
2631 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2632 ifc.ifc_len = len;
2633 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2634 ifr32 = compat_ptr(ifc32.ifcbuf);
2635 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2636 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2637 return -EFAULT;
2638 ifr++;
2639 ifr32++;
2640 }
2641 }
2642 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2643 return -EFAULT;
2644
2645 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2646 if (err)
2647 return err;
2648
2649 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2650 return -EFAULT;
2651
2652 ifr = ifc.ifc_req;
2653 ifr32 = compat_ptr(ifc32.ifcbuf);
2654 for (i = 0, j = 0;
2655 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2656 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2657 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2658 return -EFAULT;
2659 ifr32++;
2660 ifr++;
2661 }
2662
2663 if (ifc32.ifcbuf == 0) {
2664 /* Translate from 64-bit structure multiple to
2665 * a 32-bit one.
2666 */
2667 i = ifc.ifc_len;
2668 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2669 ifc32.ifc_len = i;
2670 } else {
2671 ifc32.ifc_len = i;
2672 }
2673 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2674 return -EFAULT;
2675
2676 return 0;
2677 }
2678
2679 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2680 {
2681 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2682 bool convert_in = false, convert_out = false;
2683 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2684 struct ethtool_rxnfc __user *rxnfc;
2685 struct ifreq __user *ifr;
2686 u32 rule_cnt = 0, actual_rule_cnt;
2687 u32 ethcmd;
2688 u32 data;
2689 int ret;
2690
2691 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2692 return -EFAULT;
2693
2694 compat_rxnfc = compat_ptr(data);
2695
2696 if (get_user(ethcmd, &compat_rxnfc->cmd))
2697 return -EFAULT;
2698
2699 /* Most ethtool structures are defined without padding.
2700 * Unfortunately struct ethtool_rxnfc is an exception.
2701 */
2702 switch (ethcmd) {
2703 default:
2704 break;
2705 case ETHTOOL_GRXCLSRLALL:
2706 /* Buffer size is variable */
2707 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2708 return -EFAULT;
2709 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2710 return -ENOMEM;
2711 buf_size += rule_cnt * sizeof(u32);
2712 /* fall through */
2713 case ETHTOOL_GRXRINGS:
2714 case ETHTOOL_GRXCLSRLCNT:
2715 case ETHTOOL_GRXCLSRULE:
2716 case ETHTOOL_SRXCLSRLINS:
2717 convert_out = true;
2718 /* fall through */
2719 case ETHTOOL_SRXCLSRLDEL:
2720 buf_size += sizeof(struct ethtool_rxnfc);
2721 convert_in = true;
2722 break;
2723 }
2724
2725 ifr = compat_alloc_user_space(buf_size);
2726 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2727
2728 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2729 return -EFAULT;
2730
2731 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2732 &ifr->ifr_ifru.ifru_data))
2733 return -EFAULT;
2734
2735 if (convert_in) {
2736 /* We expect there to be holes between fs.m_ext and
2737 * fs.ring_cookie and at the end of fs, but nowhere else.
2738 */
2739 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2740 sizeof(compat_rxnfc->fs.m_ext) !=
2741 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2742 sizeof(rxnfc->fs.m_ext));
2743 BUILD_BUG_ON(
2744 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2745 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2746 offsetof(struct ethtool_rxnfc, fs.location) -
2747 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2748
2749 if (copy_in_user(rxnfc, compat_rxnfc,
2750 (void __user *)(&rxnfc->fs.m_ext + 1) -
2751 (void __user *)rxnfc) ||
2752 copy_in_user(&rxnfc->fs.ring_cookie,
2753 &compat_rxnfc->fs.ring_cookie,
2754 (void __user *)(&rxnfc->fs.location + 1) -
2755 (void __user *)&rxnfc->fs.ring_cookie) ||
2756 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2757 sizeof(rxnfc->rule_cnt)))
2758 return -EFAULT;
2759 }
2760
2761 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2762 if (ret)
2763 return ret;
2764
2765 if (convert_out) {
2766 if (copy_in_user(compat_rxnfc, rxnfc,
2767 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2768 (const void __user *)rxnfc) ||
2769 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2770 &rxnfc->fs.ring_cookie,
2771 (const void __user *)(&rxnfc->fs.location + 1) -
2772 (const void __user *)&rxnfc->fs.ring_cookie) ||
2773 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2774 sizeof(rxnfc->rule_cnt)))
2775 return -EFAULT;
2776
2777 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2778 /* As an optimisation, we only copy the actual
2779 * number of rules that the underlying
2780 * function returned. Since Mallory might
2781 * change the rule count in user memory, we
2782 * check that it is less than the rule count
2783 * originally given (as the user buffer size),
2784 * which has been range-checked.
2785 */
2786 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2787 return -EFAULT;
2788 if (actual_rule_cnt < rule_cnt)
2789 rule_cnt = actual_rule_cnt;
2790 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2791 &rxnfc->rule_locs[0],
2792 rule_cnt * sizeof(u32)))
2793 return -EFAULT;
2794 }
2795 }
2796
2797 return 0;
2798 }
2799
2800 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2801 {
2802 void __user *uptr;
2803 compat_uptr_t uptr32;
2804 struct ifreq __user *uifr;
2805
2806 uifr = compat_alloc_user_space(sizeof(*uifr));
2807 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2808 return -EFAULT;
2809
2810 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2811 return -EFAULT;
2812
2813 uptr = compat_ptr(uptr32);
2814
2815 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2816 return -EFAULT;
2817
2818 return dev_ioctl(net, SIOCWANDEV, uifr);
2819 }
2820
2821 static int bond_ioctl(struct net *net, unsigned int cmd,
2822 struct compat_ifreq __user *ifr32)
2823 {
2824 struct ifreq kifr;
2825 mm_segment_t old_fs;
2826 int err;
2827
2828 switch (cmd) {
2829 case SIOCBONDENSLAVE:
2830 case SIOCBONDRELEASE:
2831 case SIOCBONDSETHWADDR:
2832 case SIOCBONDCHANGEACTIVE:
2833 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2834 return -EFAULT;
2835
2836 old_fs = get_fs();
2837 set_fs(KERNEL_DS);
2838 err = dev_ioctl(net, cmd,
2839 (struct ifreq __user __force *) &kifr);
2840 set_fs(old_fs);
2841
2842 return err;
2843 default:
2844 return -ENOIOCTLCMD;
2845 }
2846 }
2847
2848 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2849 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2850 struct compat_ifreq __user *u_ifreq32)
2851 {
2852 struct ifreq __user *u_ifreq64;
2853 char tmp_buf[IFNAMSIZ];
2854 void __user *data64;
2855 u32 data32;
2856
2857 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2858 IFNAMSIZ))
2859 return -EFAULT;
2860 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2861 return -EFAULT;
2862 data64 = compat_ptr(data32);
2863
2864 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2865
2866 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2867 IFNAMSIZ))
2868 return -EFAULT;
2869 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2870 return -EFAULT;
2871
2872 return dev_ioctl(net, cmd, u_ifreq64);
2873 }
2874
2875 static int dev_ifsioc(struct net *net, struct socket *sock,
2876 unsigned int cmd, struct compat_ifreq __user *uifr32)
2877 {
2878 struct ifreq __user *uifr;
2879 int err;
2880
2881 uifr = compat_alloc_user_space(sizeof(*uifr));
2882 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2883 return -EFAULT;
2884
2885 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2886
2887 if (!err) {
2888 switch (cmd) {
2889 case SIOCGIFFLAGS:
2890 case SIOCGIFMETRIC:
2891 case SIOCGIFMTU:
2892 case SIOCGIFMEM:
2893 case SIOCGIFHWADDR:
2894 case SIOCGIFINDEX:
2895 case SIOCGIFADDR:
2896 case SIOCGIFBRDADDR:
2897 case SIOCGIFDSTADDR:
2898 case SIOCGIFNETMASK:
2899 case SIOCGIFPFLAGS:
2900 case SIOCGIFTXQLEN:
2901 case SIOCGMIIPHY:
2902 case SIOCGMIIREG:
2903 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2904 err = -EFAULT;
2905 break;
2906 }
2907 }
2908 return err;
2909 }
2910
2911 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2912 struct compat_ifreq __user *uifr32)
2913 {
2914 struct ifreq ifr;
2915 struct compat_ifmap __user *uifmap32;
2916 mm_segment_t old_fs;
2917 int err;
2918
2919 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2920 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2921 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2922 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2923 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2924 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2925 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2926 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2927 if (err)
2928 return -EFAULT;
2929
2930 old_fs = get_fs();
2931 set_fs(KERNEL_DS);
2932 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2933 set_fs(old_fs);
2934
2935 if (cmd == SIOCGIFMAP && !err) {
2936 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2937 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2938 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2939 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2940 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2941 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2942 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2943 if (err)
2944 err = -EFAULT;
2945 }
2946 return err;
2947 }
2948
2949 struct rtentry32 {
2950 u32 rt_pad1;
2951 struct sockaddr rt_dst; /* target address */
2952 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2953 struct sockaddr rt_genmask; /* target network mask (IP) */
2954 unsigned short rt_flags;
2955 short rt_pad2;
2956 u32 rt_pad3;
2957 unsigned char rt_tos;
2958 unsigned char rt_class;
2959 short rt_pad4;
2960 short rt_metric; /* +1 for binary compatibility! */
2961 /* char * */ u32 rt_dev; /* forcing the device at add */
2962 u32 rt_mtu; /* per route MTU/Window */
2963 u32 rt_window; /* Window clamping */
2964 unsigned short rt_irtt; /* Initial RTT */
2965 };
2966
2967 struct in6_rtmsg32 {
2968 struct in6_addr rtmsg_dst;
2969 struct in6_addr rtmsg_src;
2970 struct in6_addr rtmsg_gateway;
2971 u32 rtmsg_type;
2972 u16 rtmsg_dst_len;
2973 u16 rtmsg_src_len;
2974 u32 rtmsg_metric;
2975 u32 rtmsg_info;
2976 u32 rtmsg_flags;
2977 s32 rtmsg_ifindex;
2978 };
2979
2980 static int routing_ioctl(struct net *net, struct socket *sock,
2981 unsigned int cmd, void __user *argp)
2982 {
2983 int ret;
2984 void *r = NULL;
2985 struct in6_rtmsg r6;
2986 struct rtentry r4;
2987 char devname[16];
2988 u32 rtdev;
2989 mm_segment_t old_fs = get_fs();
2990
2991 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2992 struct in6_rtmsg32 __user *ur6 = argp;
2993 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2994 3 * sizeof(struct in6_addr));
2995 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2996 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2997 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2998 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2999 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3000 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3001 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3002
3003 r = (void *) &r6;
3004 } else { /* ipv4 */
3005 struct rtentry32 __user *ur4 = argp;
3006 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3007 3 * sizeof(struct sockaddr));
3008 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3009 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3010 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3011 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3012 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3013 ret |= get_user(rtdev, &(ur4->rt_dev));
3014 if (rtdev) {
3015 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3016 r4.rt_dev = (char __user __force *)devname;
3017 devname[15] = 0;
3018 } else
3019 r4.rt_dev = NULL;
3020
3021 r = (void *) &r4;
3022 }
3023
3024 if (ret) {
3025 ret = -EFAULT;
3026 goto out;
3027 }
3028
3029 set_fs(KERNEL_DS);
3030 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3031 set_fs(old_fs);
3032
3033 out:
3034 return ret;
3035 }
3036
3037 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3038 * for some operations; this forces use of the newer bridge-utils that
3039 * use compatible ioctls
3040 */
3041 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3042 {
3043 compat_ulong_t tmp;
3044
3045 if (get_user(tmp, argp))
3046 return -EFAULT;
3047 if (tmp == BRCTL_GET_VERSION)
3048 return BRCTL_VERSION + 1;
3049 return -EINVAL;
3050 }
3051
3052 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3053 unsigned int cmd, unsigned long arg)
3054 {
3055 void __user *argp = compat_ptr(arg);
3056 struct sock *sk = sock->sk;
3057 struct net *net = sock_net(sk);
3058
3059 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3060 return compat_ifr_data_ioctl(net, cmd, argp);
3061
3062 switch (cmd) {
3063 case SIOCSIFBR:
3064 case SIOCGIFBR:
3065 return old_bridge_ioctl(argp);
3066 case SIOCGIFNAME:
3067 return dev_ifname32(net, argp);
3068 case SIOCGIFCONF:
3069 return dev_ifconf(net, argp);
3070 case SIOCETHTOOL:
3071 return ethtool_ioctl(net, argp);
3072 case SIOCWANDEV:
3073 return compat_siocwandev(net, argp);
3074 case SIOCGIFMAP:
3075 case SIOCSIFMAP:
3076 return compat_sioc_ifmap(net, cmd, argp);
3077 case SIOCBONDENSLAVE:
3078 case SIOCBONDRELEASE:
3079 case SIOCBONDSETHWADDR:
3080 case SIOCBONDCHANGEACTIVE:
3081 return bond_ioctl(net, cmd, argp);
3082 case SIOCADDRT:
3083 case SIOCDELRT:
3084 return routing_ioctl(net, sock, cmd, argp);
3085 case SIOCGSTAMP:
3086 return do_siocgstamp(net, sock, cmd, argp);
3087 case SIOCGSTAMPNS:
3088 return do_siocgstampns(net, sock, cmd, argp);
3089 case SIOCBONDSLAVEINFOQUERY:
3090 case SIOCBONDINFOQUERY:
3091 case SIOCSHWTSTAMP:
3092 case SIOCGHWTSTAMP:
3093 return compat_ifr_data_ioctl(net, cmd, argp);
3094
3095 case FIOSETOWN:
3096 case SIOCSPGRP:
3097 case FIOGETOWN:
3098 case SIOCGPGRP:
3099 case SIOCBRADDBR:
3100 case SIOCBRDELBR:
3101 case SIOCGIFVLAN:
3102 case SIOCSIFVLAN:
3103 case SIOCADDDLCI:
3104 case SIOCDELDLCI:
3105 return sock_ioctl(file, cmd, arg);
3106
3107 case SIOCGIFFLAGS:
3108 case SIOCSIFFLAGS:
3109 case SIOCGIFMETRIC:
3110 case SIOCSIFMETRIC:
3111 case SIOCGIFMTU:
3112 case SIOCSIFMTU:
3113 case SIOCGIFMEM:
3114 case SIOCSIFMEM:
3115 case SIOCGIFHWADDR:
3116 case SIOCSIFHWADDR:
3117 case SIOCADDMULTI:
3118 case SIOCDELMULTI:
3119 case SIOCGIFINDEX:
3120 case SIOCGIFADDR:
3121 case SIOCSIFADDR:
3122 case SIOCSIFHWBROADCAST:
3123 case SIOCDIFADDR:
3124 case SIOCGIFBRDADDR:
3125 case SIOCSIFBRDADDR:
3126 case SIOCGIFDSTADDR:
3127 case SIOCSIFDSTADDR:
3128 case SIOCGIFNETMASK:
3129 case SIOCSIFNETMASK:
3130 case SIOCSIFPFLAGS:
3131 case SIOCGIFPFLAGS:
3132 case SIOCGIFTXQLEN:
3133 case SIOCSIFTXQLEN:
3134 case SIOCBRADDIF:
3135 case SIOCBRDELIF:
3136 case SIOCSIFNAME:
3137 case SIOCGMIIPHY:
3138 case SIOCGMIIREG:
3139 case SIOCSMIIREG:
3140 return dev_ifsioc(net, sock, cmd, argp);
3141
3142 case SIOCSARP:
3143 case SIOCGARP:
3144 case SIOCDARP:
3145 case SIOCATMARK:
3146 return sock_do_ioctl(net, sock, cmd, arg);
3147 }
3148
3149 return -ENOIOCTLCMD;
3150 }
3151
3152 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3153 unsigned long arg)
3154 {
3155 struct socket *sock = file->private_data;
3156 int ret = -ENOIOCTLCMD;
3157 struct sock *sk;
3158 struct net *net;
3159
3160 sk = sock->sk;
3161 net = sock_net(sk);
3162
3163 if (sock->ops->compat_ioctl)
3164 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3165
3166 if (ret == -ENOIOCTLCMD &&
3167 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3168 ret = compat_wext_handle_ioctl(net, cmd, arg);
3169
3170 if (ret == -ENOIOCTLCMD)
3171 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3172
3173 return ret;
3174 }
3175 #endif
3176
3177 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3178 {
3179 return sock->ops->bind(sock, addr, addrlen);
3180 }
3181 EXPORT_SYMBOL(kernel_bind);
3182
3183 int kernel_listen(struct socket *sock, int backlog)
3184 {
3185 return sock->ops->listen(sock, backlog);
3186 }
3187 EXPORT_SYMBOL(kernel_listen);
3188
3189 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3190 {
3191 struct sock *sk = sock->sk;
3192 int err;
3193
3194 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3195 newsock);
3196 if (err < 0)
3197 goto done;
3198
3199 err = sock->ops->accept(sock, *newsock, flags);
3200 if (err < 0) {
3201 sock_release(*newsock);
3202 *newsock = NULL;
3203 goto done;
3204 }
3205
3206 (*newsock)->ops = sock->ops;
3207 __module_get((*newsock)->ops->owner);
3208
3209 done:
3210 return err;
3211 }
3212 EXPORT_SYMBOL(kernel_accept);
3213
3214 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3215 int flags)
3216 {
3217 return sock->ops->connect(sock, addr, addrlen, flags);
3218 }
3219 EXPORT_SYMBOL(kernel_connect);
3220
3221 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3222 int *addrlen)
3223 {
3224 return sock->ops->getname(sock, addr, addrlen, 0);
3225 }
3226 EXPORT_SYMBOL(kernel_getsockname);
3227
3228 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3229 int *addrlen)
3230 {
3231 return sock->ops->getname(sock, addr, addrlen, 1);
3232 }
3233 EXPORT_SYMBOL(kernel_getpeername);
3234
3235 int kernel_getsockopt(struct socket *sock, int level, int optname,
3236 char *optval, int *optlen)
3237 {
3238 mm_segment_t oldfs = get_fs();
3239 char __user *uoptval;
3240 int __user *uoptlen;
3241 int err;
3242
3243 uoptval = (char __user __force *) optval;
3244 uoptlen = (int __user __force *) optlen;
3245
3246 set_fs(KERNEL_DS);
3247 if (level == SOL_SOCKET)
3248 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3249 else
3250 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3251 uoptlen);
3252 set_fs(oldfs);
3253 return err;
3254 }
3255 EXPORT_SYMBOL(kernel_getsockopt);
3256
3257 int kernel_setsockopt(struct socket *sock, int level, int optname,
3258 char *optval, unsigned int optlen)
3259 {
3260 mm_segment_t oldfs = get_fs();
3261 char __user *uoptval;
3262 int err;
3263
3264 uoptval = (char __user __force *) optval;
3265
3266 set_fs(KERNEL_DS);
3267 if (level == SOL_SOCKET)
3268 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3269 else
3270 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3271 optlen);
3272 set_fs(oldfs);
3273 return err;
3274 }
3275 EXPORT_SYMBOL(kernel_setsockopt);
3276
3277 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3278 size_t size, int flags)
3279 {
3280 if (sock->ops->sendpage)
3281 return sock->ops->sendpage(sock, page, offset, size, flags);
3282
3283 return sock_no_sendpage(sock, page, offset, size, flags);
3284 }
3285 EXPORT_SYMBOL(kernel_sendpage);
3286
3287 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3288 {
3289 mm_segment_t oldfs = get_fs();
3290 int err;
3291
3292 set_fs(KERNEL_DS);
3293 err = sock->ops->ioctl(sock, cmd, arg);
3294 set_fs(oldfs);
3295
3296 return err;
3297 }
3298 EXPORT_SYMBOL(kernel_sock_ioctl);
3299
3300 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3301 {
3302 return sock->ops->shutdown(sock, how);
3303 }
3304 EXPORT_SYMBOL(kernel_sock_shutdown);