]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - net/socket.c
Merge branch 'for-5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu
[mirror_ubuntu-focal-kernel.git] / net / socket.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/sockios.h>
104 #include <net/busy_poll.h>
105 #include <linux/errqueue.h>
106
107 #ifdef CONFIG_NET_RX_BUSY_POLL
108 unsigned int sysctl_net_busy_read __read_mostly;
109 unsigned int sysctl_net_busy_poll __read_mostly;
110 #endif
111
112 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
113 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
114 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115
116 static int sock_close(struct inode *inode, struct file *file);
117 static __poll_t sock_poll(struct file *file,
118 struct poll_table_struct *wait);
119 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
120 #ifdef CONFIG_COMPAT
121 static long compat_sock_ioctl(struct file *file,
122 unsigned int cmd, unsigned long arg);
123 #endif
124 static int sock_fasync(int fd, struct file *filp, int on);
125 static ssize_t sock_sendpage(struct file *file, struct page *page,
126 int offset, size_t size, loff_t *ppos, int more);
127 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
128 struct pipe_inode_info *pipe, size_t len,
129 unsigned int flags);
130
131 /*
132 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
133 * in the operation structures but are done directly via the socketcall() multiplexor.
134 */
135
136 static const struct file_operations socket_file_ops = {
137 .owner = THIS_MODULE,
138 .llseek = no_llseek,
139 .read_iter = sock_read_iter,
140 .write_iter = sock_write_iter,
141 .poll = sock_poll,
142 .unlocked_ioctl = sock_ioctl,
143 #ifdef CONFIG_COMPAT
144 .compat_ioctl = compat_sock_ioctl,
145 #endif
146 .mmap = sock_mmap,
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
152 };
153
154 /*
155 * The protocol list. Each protocol is registered in here.
156 */
157
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160
161 /*
162 * Support routines.
163 * Move socket addresses back and forth across the kernel/user
164 * divide and look after the messy bits.
165 */
166
167 /**
168 * move_addr_to_kernel - copy a socket address into kernel space
169 * @uaddr: Address in user space
170 * @kaddr: Address in kernel space
171 * @ulen: Length in user space
172 *
173 * The address is copied into kernel space. If the provided address is
174 * too long an error code of -EINVAL is returned. If the copy gives
175 * invalid addresses -EFAULT is returned. On a success 0 is returned.
176 */
177
178 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
179 {
180 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
181 return -EINVAL;
182 if (ulen == 0)
183 return 0;
184 if (copy_from_user(kaddr, uaddr, ulen))
185 return -EFAULT;
186 return audit_sockaddr(ulen, kaddr);
187 }
188
189 /**
190 * move_addr_to_user - copy an address to user space
191 * @kaddr: kernel space address
192 * @klen: length of address in kernel
193 * @uaddr: user space address
194 * @ulen: pointer to user length field
195 *
196 * The value pointed to by ulen on entry is the buffer length available.
197 * This is overwritten with the buffer space used. -EINVAL is returned
198 * if an overlong buffer is specified or a negative buffer size. -EFAULT
199 * is returned if either the buffer or the length field are not
200 * accessible.
201 * After copying the data up to the limit the user specifies, the true
202 * length of the data is written over the length limit the user
203 * specified. Zero is returned for a success.
204 */
205
206 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
207 void __user *uaddr, int __user *ulen)
208 {
209 int err;
210 int len;
211
212 BUG_ON(klen > sizeof(struct sockaddr_storage));
213 err = get_user(len, ulen);
214 if (err)
215 return err;
216 if (len > klen)
217 len = klen;
218 if (len < 0)
219 return -EINVAL;
220 if (len) {
221 if (audit_sockaddr(klen, kaddr))
222 return -ENOMEM;
223 if (copy_to_user(uaddr, kaddr, len))
224 return -EFAULT;
225 }
226 /*
227 * "fromlen shall refer to the value before truncation.."
228 * 1003.1g
229 */
230 return __put_user(klen, ulen);
231 }
232
233 static struct kmem_cache *sock_inode_cachep __ro_after_init;
234
235 static struct inode *sock_alloc_inode(struct super_block *sb)
236 {
237 struct socket_alloc *ei;
238
239 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
240 if (!ei)
241 return NULL;
242 init_waitqueue_head(&ei->socket.wq.wait);
243 ei->socket.wq.fasync_list = NULL;
244 ei->socket.wq.flags = 0;
245
246 ei->socket.state = SS_UNCONNECTED;
247 ei->socket.flags = 0;
248 ei->socket.ops = NULL;
249 ei->socket.sk = NULL;
250 ei->socket.file = NULL;
251
252 return &ei->vfs_inode;
253 }
254
255 static void sock_free_inode(struct inode *inode)
256 {
257 struct socket_alloc *ei;
258
259 ei = container_of(inode, struct socket_alloc, vfs_inode);
260 kmem_cache_free(sock_inode_cachep, ei);
261 }
262
263 static void init_once(void *foo)
264 {
265 struct socket_alloc *ei = (struct socket_alloc *)foo;
266
267 inode_init_once(&ei->vfs_inode);
268 }
269
270 static void init_inodecache(void)
271 {
272 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
273 sizeof(struct socket_alloc),
274 0,
275 (SLAB_HWCACHE_ALIGN |
276 SLAB_RECLAIM_ACCOUNT |
277 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
278 init_once);
279 BUG_ON(sock_inode_cachep == NULL);
280 }
281
282 static const struct super_operations sockfs_ops = {
283 .alloc_inode = sock_alloc_inode,
284 .free_inode = sock_free_inode,
285 .statfs = simple_statfs,
286 };
287
288 /*
289 * sockfs_dname() is called from d_path().
290 */
291 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
292 {
293 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
294 d_inode(dentry)->i_ino);
295 }
296
297 static const struct dentry_operations sockfs_dentry_operations = {
298 .d_dname = sockfs_dname,
299 };
300
301 static int sockfs_xattr_get(const struct xattr_handler *handler,
302 struct dentry *dentry, struct inode *inode,
303 const char *suffix, void *value, size_t size)
304 {
305 if (value) {
306 if (dentry->d_name.len + 1 > size)
307 return -ERANGE;
308 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
309 }
310 return dentry->d_name.len + 1;
311 }
312
313 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
314 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
315 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
316
317 static const struct xattr_handler sockfs_xattr_handler = {
318 .name = XATTR_NAME_SOCKPROTONAME,
319 .get = sockfs_xattr_get,
320 };
321
322 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
323 struct dentry *dentry, struct inode *inode,
324 const char *suffix, const void *value,
325 size_t size, int flags)
326 {
327 /* Handled by LSM. */
328 return -EAGAIN;
329 }
330
331 static const struct xattr_handler sockfs_security_xattr_handler = {
332 .prefix = XATTR_SECURITY_PREFIX,
333 .set = sockfs_security_xattr_set,
334 };
335
336 static const struct xattr_handler *sockfs_xattr_handlers[] = {
337 &sockfs_xattr_handler,
338 &sockfs_security_xattr_handler,
339 NULL
340 };
341
342 static int sockfs_init_fs_context(struct fs_context *fc)
343 {
344 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
345 if (!ctx)
346 return -ENOMEM;
347 ctx->ops = &sockfs_ops;
348 ctx->dops = &sockfs_dentry_operations;
349 ctx->xattr = sockfs_xattr_handlers;
350 return 0;
351 }
352
353 static struct vfsmount *sock_mnt __read_mostly;
354
355 static struct file_system_type sock_fs_type = {
356 .name = "sockfs",
357 .init_fs_context = sockfs_init_fs_context,
358 .kill_sb = kill_anon_super,
359 };
360
361 /*
362 * Obtains the first available file descriptor and sets it up for use.
363 *
364 * These functions create file structures and maps them to fd space
365 * of the current process. On success it returns file descriptor
366 * and file struct implicitly stored in sock->file.
367 * Note that another thread may close file descriptor before we return
368 * from this function. We use the fact that now we do not refer
369 * to socket after mapping. If one day we will need it, this
370 * function will increment ref. count on file by 1.
371 *
372 * In any case returned fd MAY BE not valid!
373 * This race condition is unavoidable
374 * with shared fd spaces, we cannot solve it inside kernel,
375 * but we take care of internal coherence yet.
376 */
377
378 /**
379 * sock_alloc_file - Bind a &socket to a &file
380 * @sock: socket
381 * @flags: file status flags
382 * @dname: protocol name
383 *
384 * Returns the &file bound with @sock, implicitly storing it
385 * in sock->file. If dname is %NULL, sets to "".
386 * On failure the return is a ERR pointer (see linux/err.h).
387 * This function uses GFP_KERNEL internally.
388 */
389
390 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
391 {
392 struct file *file;
393
394 if (!dname)
395 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
396
397 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
398 O_RDWR | (flags & O_NONBLOCK),
399 &socket_file_ops);
400 if (IS_ERR(file)) {
401 sock_release(sock);
402 return file;
403 }
404
405 sock->file = file;
406 file->private_data = sock;
407 return file;
408 }
409 EXPORT_SYMBOL(sock_alloc_file);
410
411 static int sock_map_fd(struct socket *sock, int flags)
412 {
413 struct file *newfile;
414 int fd = get_unused_fd_flags(flags);
415 if (unlikely(fd < 0)) {
416 sock_release(sock);
417 return fd;
418 }
419
420 newfile = sock_alloc_file(sock, flags, NULL);
421 if (!IS_ERR(newfile)) {
422 fd_install(fd, newfile);
423 return fd;
424 }
425
426 put_unused_fd(fd);
427 return PTR_ERR(newfile);
428 }
429
430 /**
431 * sock_from_file - Return the &socket bounded to @file.
432 * @file: file
433 * @err: pointer to an error code return
434 *
435 * On failure returns %NULL and assigns -ENOTSOCK to @err.
436 */
437
438 struct socket *sock_from_file(struct file *file, int *err)
439 {
440 if (file->f_op == &socket_file_ops)
441 return file->private_data; /* set in sock_map_fd */
442
443 *err = -ENOTSOCK;
444 return NULL;
445 }
446 EXPORT_SYMBOL(sock_from_file);
447
448 /**
449 * sockfd_lookup - Go from a file number to its socket slot
450 * @fd: file handle
451 * @err: pointer to an error code return
452 *
453 * The file handle passed in is locked and the socket it is bound
454 * to is returned. If an error occurs the err pointer is overwritten
455 * with a negative errno code and NULL is returned. The function checks
456 * for both invalid handles and passing a handle which is not a socket.
457 *
458 * On a success the socket object pointer is returned.
459 */
460
461 struct socket *sockfd_lookup(int fd, int *err)
462 {
463 struct file *file;
464 struct socket *sock;
465
466 file = fget(fd);
467 if (!file) {
468 *err = -EBADF;
469 return NULL;
470 }
471
472 sock = sock_from_file(file, err);
473 if (!sock)
474 fput(file);
475 return sock;
476 }
477 EXPORT_SYMBOL(sockfd_lookup);
478
479 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
480 {
481 struct fd f = fdget(fd);
482 struct socket *sock;
483
484 *err = -EBADF;
485 if (f.file) {
486 sock = sock_from_file(f.file, err);
487 if (likely(sock)) {
488 *fput_needed = f.flags;
489 return sock;
490 }
491 fdput(f);
492 }
493 return NULL;
494 }
495
496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
497 size_t size)
498 {
499 ssize_t len;
500 ssize_t used = 0;
501
502 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
503 if (len < 0)
504 return len;
505 used += len;
506 if (buffer) {
507 if (size < used)
508 return -ERANGE;
509 buffer += len;
510 }
511
512 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
513 used += len;
514 if (buffer) {
515 if (size < used)
516 return -ERANGE;
517 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
518 buffer += len;
519 }
520
521 return used;
522 }
523
524 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
525 {
526 int err = simple_setattr(dentry, iattr);
527
528 if (!err && (iattr->ia_valid & ATTR_UID)) {
529 struct socket *sock = SOCKET_I(d_inode(dentry));
530
531 if (sock->sk)
532 sock->sk->sk_uid = iattr->ia_uid;
533 else
534 err = -ENOENT;
535 }
536
537 return err;
538 }
539
540 static const struct inode_operations sockfs_inode_ops = {
541 .listxattr = sockfs_listxattr,
542 .setattr = sockfs_setattr,
543 };
544
545 /**
546 * sock_alloc - allocate a socket
547 *
548 * Allocate a new inode and socket object. The two are bound together
549 * and initialised. The socket is then returned. If we are out of inodes
550 * NULL is returned. This functions uses GFP_KERNEL internally.
551 */
552
553 struct socket *sock_alloc(void)
554 {
555 struct inode *inode;
556 struct socket *sock;
557
558 inode = new_inode_pseudo(sock_mnt->mnt_sb);
559 if (!inode)
560 return NULL;
561
562 sock = SOCKET_I(inode);
563
564 inode->i_ino = get_next_ino();
565 inode->i_mode = S_IFSOCK | S_IRWXUGO;
566 inode->i_uid = current_fsuid();
567 inode->i_gid = current_fsgid();
568 inode->i_op = &sockfs_inode_ops;
569
570 return sock;
571 }
572 EXPORT_SYMBOL(sock_alloc);
573
574 /**
575 * sock_release - close a socket
576 * @sock: socket to close
577 *
578 * The socket is released from the protocol stack if it has a release
579 * callback, and the inode is then released if the socket is bound to
580 * an inode not a file.
581 */
582
583 static void __sock_release(struct socket *sock, struct inode *inode)
584 {
585 if (sock->ops) {
586 struct module *owner = sock->ops->owner;
587
588 if (inode)
589 inode_lock(inode);
590 sock->ops->release(sock);
591 sock->sk = NULL;
592 if (inode)
593 inode_unlock(inode);
594 sock->ops = NULL;
595 module_put(owner);
596 }
597
598 if (sock->wq.fasync_list)
599 pr_err("%s: fasync list not empty!\n", __func__);
600
601 if (!sock->file) {
602 iput(SOCK_INODE(sock));
603 return;
604 }
605 sock->file = NULL;
606 }
607
608 void sock_release(struct socket *sock)
609 {
610 __sock_release(sock, NULL);
611 }
612 EXPORT_SYMBOL(sock_release);
613
614 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
615 {
616 u8 flags = *tx_flags;
617
618 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
619 flags |= SKBTX_HW_TSTAMP;
620
621 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
622 flags |= SKBTX_SW_TSTAMP;
623
624 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
625 flags |= SKBTX_SCHED_TSTAMP;
626
627 *tx_flags = flags;
628 }
629 EXPORT_SYMBOL(__sock_tx_timestamp);
630
631 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
632 size_t));
633 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
634 size_t));
635 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
636 {
637 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
638 inet_sendmsg, sock, msg,
639 msg_data_left(msg));
640 BUG_ON(ret == -EIOCBQUEUED);
641 return ret;
642 }
643
644 /**
645 * sock_sendmsg - send a message through @sock
646 * @sock: socket
647 * @msg: message to send
648 *
649 * Sends @msg through @sock, passing through LSM.
650 * Returns the number of bytes sent, or an error code.
651 */
652 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
653 {
654 int err = security_socket_sendmsg(sock, msg,
655 msg_data_left(msg));
656
657 return err ?: sock_sendmsg_nosec(sock, msg);
658 }
659 EXPORT_SYMBOL(sock_sendmsg);
660
661 /**
662 * kernel_sendmsg - send a message through @sock (kernel-space)
663 * @sock: socket
664 * @msg: message header
665 * @vec: kernel vec
666 * @num: vec array length
667 * @size: total message data size
668 *
669 * Builds the message data with @vec and sends it through @sock.
670 * Returns the number of bytes sent, or an error code.
671 */
672
673 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
674 struct kvec *vec, size_t num, size_t size)
675 {
676 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
677 return sock_sendmsg(sock, msg);
678 }
679 EXPORT_SYMBOL(kernel_sendmsg);
680
681 /**
682 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
683 * @sk: sock
684 * @msg: message header
685 * @vec: output s/g array
686 * @num: output s/g array length
687 * @size: total message data size
688 *
689 * Builds the message data with @vec and sends it through @sock.
690 * Returns the number of bytes sent, or an error code.
691 * Caller must hold @sk.
692 */
693
694 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
695 struct kvec *vec, size_t num, size_t size)
696 {
697 struct socket *sock = sk->sk_socket;
698
699 if (!sock->ops->sendmsg_locked)
700 return sock_no_sendmsg_locked(sk, msg, size);
701
702 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
703
704 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
705 }
706 EXPORT_SYMBOL(kernel_sendmsg_locked);
707
708 static bool skb_is_err_queue(const struct sk_buff *skb)
709 {
710 /* pkt_type of skbs enqueued on the error queue are set to
711 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
712 * in recvmsg, since skbs received on a local socket will never
713 * have a pkt_type of PACKET_OUTGOING.
714 */
715 return skb->pkt_type == PACKET_OUTGOING;
716 }
717
718 /* On transmit, software and hardware timestamps are returned independently.
719 * As the two skb clones share the hardware timestamp, which may be updated
720 * before the software timestamp is received, a hardware TX timestamp may be
721 * returned only if there is no software TX timestamp. Ignore false software
722 * timestamps, which may be made in the __sock_recv_timestamp() call when the
723 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
724 * hardware timestamp.
725 */
726 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
727 {
728 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
729 }
730
731 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
732 {
733 struct scm_ts_pktinfo ts_pktinfo;
734 struct net_device *orig_dev;
735
736 if (!skb_mac_header_was_set(skb))
737 return;
738
739 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
740
741 rcu_read_lock();
742 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
743 if (orig_dev)
744 ts_pktinfo.if_index = orig_dev->ifindex;
745 rcu_read_unlock();
746
747 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
748 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
749 sizeof(ts_pktinfo), &ts_pktinfo);
750 }
751
752 /*
753 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
754 */
755 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
756 struct sk_buff *skb)
757 {
758 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
759 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
760 struct scm_timestamping_internal tss;
761
762 int empty = 1, false_tstamp = 0;
763 struct skb_shared_hwtstamps *shhwtstamps =
764 skb_hwtstamps(skb);
765
766 /* Race occurred between timestamp enabling and packet
767 receiving. Fill in the current time for now. */
768 if (need_software_tstamp && skb->tstamp == 0) {
769 __net_timestamp(skb);
770 false_tstamp = 1;
771 }
772
773 if (need_software_tstamp) {
774 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
775 if (new_tstamp) {
776 struct __kernel_sock_timeval tv;
777
778 skb_get_new_timestamp(skb, &tv);
779 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
780 sizeof(tv), &tv);
781 } else {
782 struct __kernel_old_timeval tv;
783
784 skb_get_timestamp(skb, &tv);
785 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
786 sizeof(tv), &tv);
787 }
788 } else {
789 if (new_tstamp) {
790 struct __kernel_timespec ts;
791
792 skb_get_new_timestampns(skb, &ts);
793 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
794 sizeof(ts), &ts);
795 } else {
796 struct timespec ts;
797
798 skb_get_timestampns(skb, &ts);
799 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
800 sizeof(ts), &ts);
801 }
802 }
803 }
804
805 memset(&tss, 0, sizeof(tss));
806 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
807 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
808 empty = 0;
809 if (shhwtstamps &&
810 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
811 !skb_is_swtx_tstamp(skb, false_tstamp) &&
812 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
813 empty = 0;
814 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
815 !skb_is_err_queue(skb))
816 put_ts_pktinfo(msg, skb);
817 }
818 if (!empty) {
819 if (sock_flag(sk, SOCK_TSTAMP_NEW))
820 put_cmsg_scm_timestamping64(msg, &tss);
821 else
822 put_cmsg_scm_timestamping(msg, &tss);
823
824 if (skb_is_err_queue(skb) && skb->len &&
825 SKB_EXT_ERR(skb)->opt_stats)
826 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
827 skb->len, skb->data);
828 }
829 }
830 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
831
832 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
833 struct sk_buff *skb)
834 {
835 int ack;
836
837 if (!sock_flag(sk, SOCK_WIFI_STATUS))
838 return;
839 if (!skb->wifi_acked_valid)
840 return;
841
842 ack = skb->wifi_acked;
843
844 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
845 }
846 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
847
848 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
849 struct sk_buff *skb)
850 {
851 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
852 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
853 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
854 }
855
856 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
857 struct sk_buff *skb)
858 {
859 sock_recv_timestamp(msg, sk, skb);
860 sock_recv_drops(msg, sk, skb);
861 }
862 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
863
864 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
865 size_t, int));
866 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
867 size_t, int));
868 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
869 int flags)
870 {
871 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
872 inet_recvmsg, sock, msg, msg_data_left(msg),
873 flags);
874 }
875
876 /**
877 * sock_recvmsg - receive a message from @sock
878 * @sock: socket
879 * @msg: message to receive
880 * @flags: message flags
881 *
882 * Receives @msg from @sock, passing through LSM. Returns the total number
883 * of bytes received, or an error.
884 */
885 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
886 {
887 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
888
889 return err ?: sock_recvmsg_nosec(sock, msg, flags);
890 }
891 EXPORT_SYMBOL(sock_recvmsg);
892
893 /**
894 * kernel_recvmsg - Receive a message from a socket (kernel space)
895 * @sock: The socket to receive the message from
896 * @msg: Received message
897 * @vec: Input s/g array for message data
898 * @num: Size of input s/g array
899 * @size: Number of bytes to read
900 * @flags: Message flags (MSG_DONTWAIT, etc...)
901 *
902 * On return the msg structure contains the scatter/gather array passed in the
903 * vec argument. The array is modified so that it consists of the unfilled
904 * portion of the original array.
905 *
906 * The returned value is the total number of bytes received, or an error.
907 */
908
909 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
910 struct kvec *vec, size_t num, size_t size, int flags)
911 {
912 mm_segment_t oldfs = get_fs();
913 int result;
914
915 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
916 set_fs(KERNEL_DS);
917 result = sock_recvmsg(sock, msg, flags);
918 set_fs(oldfs);
919 return result;
920 }
921 EXPORT_SYMBOL(kernel_recvmsg);
922
923 static ssize_t sock_sendpage(struct file *file, struct page *page,
924 int offset, size_t size, loff_t *ppos, int more)
925 {
926 struct socket *sock;
927 int flags;
928
929 sock = file->private_data;
930
931 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
932 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
933 flags |= more;
934
935 return kernel_sendpage(sock, page, offset, size, flags);
936 }
937
938 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
939 struct pipe_inode_info *pipe, size_t len,
940 unsigned int flags)
941 {
942 struct socket *sock = file->private_data;
943
944 if (unlikely(!sock->ops->splice_read))
945 return generic_file_splice_read(file, ppos, pipe, len, flags);
946
947 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
948 }
949
950 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
951 {
952 struct file *file = iocb->ki_filp;
953 struct socket *sock = file->private_data;
954 struct msghdr msg = {.msg_iter = *to,
955 .msg_iocb = iocb};
956 ssize_t res;
957
958 if (file->f_flags & O_NONBLOCK)
959 msg.msg_flags = MSG_DONTWAIT;
960
961 if (iocb->ki_pos != 0)
962 return -ESPIPE;
963
964 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
965 return 0;
966
967 res = sock_recvmsg(sock, &msg, msg.msg_flags);
968 *to = msg.msg_iter;
969 return res;
970 }
971
972 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
973 {
974 struct file *file = iocb->ki_filp;
975 struct socket *sock = file->private_data;
976 struct msghdr msg = {.msg_iter = *from,
977 .msg_iocb = iocb};
978 ssize_t res;
979
980 if (iocb->ki_pos != 0)
981 return -ESPIPE;
982
983 if (file->f_flags & O_NONBLOCK)
984 msg.msg_flags = MSG_DONTWAIT;
985
986 if (sock->type == SOCK_SEQPACKET)
987 msg.msg_flags |= MSG_EOR;
988
989 res = sock_sendmsg(sock, &msg);
990 *from = msg.msg_iter;
991 return res;
992 }
993
994 /*
995 * Atomic setting of ioctl hooks to avoid race
996 * with module unload.
997 */
998
999 static DEFINE_MUTEX(br_ioctl_mutex);
1000 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1001
1002 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1003 {
1004 mutex_lock(&br_ioctl_mutex);
1005 br_ioctl_hook = hook;
1006 mutex_unlock(&br_ioctl_mutex);
1007 }
1008 EXPORT_SYMBOL(brioctl_set);
1009
1010 static DEFINE_MUTEX(vlan_ioctl_mutex);
1011 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1012
1013 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1014 {
1015 mutex_lock(&vlan_ioctl_mutex);
1016 vlan_ioctl_hook = hook;
1017 mutex_unlock(&vlan_ioctl_mutex);
1018 }
1019 EXPORT_SYMBOL(vlan_ioctl_set);
1020
1021 static DEFINE_MUTEX(dlci_ioctl_mutex);
1022 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1023
1024 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1025 {
1026 mutex_lock(&dlci_ioctl_mutex);
1027 dlci_ioctl_hook = hook;
1028 mutex_unlock(&dlci_ioctl_mutex);
1029 }
1030 EXPORT_SYMBOL(dlci_ioctl_set);
1031
1032 static long sock_do_ioctl(struct net *net, struct socket *sock,
1033 unsigned int cmd, unsigned long arg)
1034 {
1035 int err;
1036 void __user *argp = (void __user *)arg;
1037
1038 err = sock->ops->ioctl(sock, cmd, arg);
1039
1040 /*
1041 * If this ioctl is unknown try to hand it down
1042 * to the NIC driver.
1043 */
1044 if (err != -ENOIOCTLCMD)
1045 return err;
1046
1047 if (cmd == SIOCGIFCONF) {
1048 struct ifconf ifc;
1049 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1050 return -EFAULT;
1051 rtnl_lock();
1052 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1053 rtnl_unlock();
1054 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1055 err = -EFAULT;
1056 } else {
1057 struct ifreq ifr;
1058 bool need_copyout;
1059 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1060 return -EFAULT;
1061 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1062 if (!err && need_copyout)
1063 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1064 return -EFAULT;
1065 }
1066 return err;
1067 }
1068
1069 /*
1070 * With an ioctl, arg may well be a user mode pointer, but we don't know
1071 * what to do with it - that's up to the protocol still.
1072 */
1073
1074 /**
1075 * get_net_ns - increment the refcount of the network namespace
1076 * @ns: common namespace (net)
1077 *
1078 * Returns the net's common namespace.
1079 */
1080
1081 struct ns_common *get_net_ns(struct ns_common *ns)
1082 {
1083 return &get_net(container_of(ns, struct net, ns))->ns;
1084 }
1085 EXPORT_SYMBOL_GPL(get_net_ns);
1086
1087 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1088 {
1089 struct socket *sock;
1090 struct sock *sk;
1091 void __user *argp = (void __user *)arg;
1092 int pid, err;
1093 struct net *net;
1094
1095 sock = file->private_data;
1096 sk = sock->sk;
1097 net = sock_net(sk);
1098 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1099 struct ifreq ifr;
1100 bool need_copyout;
1101 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1102 return -EFAULT;
1103 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1104 if (!err && need_copyout)
1105 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1106 return -EFAULT;
1107 } else
1108 #ifdef CONFIG_WEXT_CORE
1109 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1110 err = wext_handle_ioctl(net, cmd, argp);
1111 } else
1112 #endif
1113 switch (cmd) {
1114 case FIOSETOWN:
1115 case SIOCSPGRP:
1116 err = -EFAULT;
1117 if (get_user(pid, (int __user *)argp))
1118 break;
1119 err = f_setown(sock->file, pid, 1);
1120 break;
1121 case FIOGETOWN:
1122 case SIOCGPGRP:
1123 err = put_user(f_getown(sock->file),
1124 (int __user *)argp);
1125 break;
1126 case SIOCGIFBR:
1127 case SIOCSIFBR:
1128 case SIOCBRADDBR:
1129 case SIOCBRDELBR:
1130 err = -ENOPKG;
1131 if (!br_ioctl_hook)
1132 request_module("bridge");
1133
1134 mutex_lock(&br_ioctl_mutex);
1135 if (br_ioctl_hook)
1136 err = br_ioctl_hook(net, cmd, argp);
1137 mutex_unlock(&br_ioctl_mutex);
1138 break;
1139 case SIOCGIFVLAN:
1140 case SIOCSIFVLAN:
1141 err = -ENOPKG;
1142 if (!vlan_ioctl_hook)
1143 request_module("8021q");
1144
1145 mutex_lock(&vlan_ioctl_mutex);
1146 if (vlan_ioctl_hook)
1147 err = vlan_ioctl_hook(net, argp);
1148 mutex_unlock(&vlan_ioctl_mutex);
1149 break;
1150 case SIOCADDDLCI:
1151 case SIOCDELDLCI:
1152 err = -ENOPKG;
1153 if (!dlci_ioctl_hook)
1154 request_module("dlci");
1155
1156 mutex_lock(&dlci_ioctl_mutex);
1157 if (dlci_ioctl_hook)
1158 err = dlci_ioctl_hook(cmd, argp);
1159 mutex_unlock(&dlci_ioctl_mutex);
1160 break;
1161 case SIOCGSKNS:
1162 err = -EPERM;
1163 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1164 break;
1165
1166 err = open_related_ns(&net->ns, get_net_ns);
1167 break;
1168 case SIOCGSTAMP_OLD:
1169 case SIOCGSTAMPNS_OLD:
1170 if (!sock->ops->gettstamp) {
1171 err = -ENOIOCTLCMD;
1172 break;
1173 }
1174 err = sock->ops->gettstamp(sock, argp,
1175 cmd == SIOCGSTAMP_OLD,
1176 !IS_ENABLED(CONFIG_64BIT));
1177 break;
1178 case SIOCGSTAMP_NEW:
1179 case SIOCGSTAMPNS_NEW:
1180 if (!sock->ops->gettstamp) {
1181 err = -ENOIOCTLCMD;
1182 break;
1183 }
1184 err = sock->ops->gettstamp(sock, argp,
1185 cmd == SIOCGSTAMP_NEW,
1186 false);
1187 break;
1188 default:
1189 err = sock_do_ioctl(net, sock, cmd, arg);
1190 break;
1191 }
1192 return err;
1193 }
1194
1195 /**
1196 * sock_create_lite - creates a socket
1197 * @family: protocol family (AF_INET, ...)
1198 * @type: communication type (SOCK_STREAM, ...)
1199 * @protocol: protocol (0, ...)
1200 * @res: new socket
1201 *
1202 * Creates a new socket and assigns it to @res, passing through LSM.
1203 * The new socket initialization is not complete, see kernel_accept().
1204 * Returns 0 or an error. On failure @res is set to %NULL.
1205 * This function internally uses GFP_KERNEL.
1206 */
1207
1208 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1209 {
1210 int err;
1211 struct socket *sock = NULL;
1212
1213 err = security_socket_create(family, type, protocol, 1);
1214 if (err)
1215 goto out;
1216
1217 sock = sock_alloc();
1218 if (!sock) {
1219 err = -ENOMEM;
1220 goto out;
1221 }
1222
1223 sock->type = type;
1224 err = security_socket_post_create(sock, family, type, protocol, 1);
1225 if (err)
1226 goto out_release;
1227
1228 out:
1229 *res = sock;
1230 return err;
1231 out_release:
1232 sock_release(sock);
1233 sock = NULL;
1234 goto out;
1235 }
1236 EXPORT_SYMBOL(sock_create_lite);
1237
1238 /* No kernel lock held - perfect */
1239 static __poll_t sock_poll(struct file *file, poll_table *wait)
1240 {
1241 struct socket *sock = file->private_data;
1242 __poll_t events = poll_requested_events(wait), flag = 0;
1243
1244 if (!sock->ops->poll)
1245 return 0;
1246
1247 if (sk_can_busy_loop(sock->sk)) {
1248 /* poll once if requested by the syscall */
1249 if (events & POLL_BUSY_LOOP)
1250 sk_busy_loop(sock->sk, 1);
1251
1252 /* if this socket can poll_ll, tell the system call */
1253 flag = POLL_BUSY_LOOP;
1254 }
1255
1256 return sock->ops->poll(file, sock, wait) | flag;
1257 }
1258
1259 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1260 {
1261 struct socket *sock = file->private_data;
1262
1263 return sock->ops->mmap(file, sock, vma);
1264 }
1265
1266 static int sock_close(struct inode *inode, struct file *filp)
1267 {
1268 __sock_release(SOCKET_I(inode), inode);
1269 return 0;
1270 }
1271
1272 /*
1273 * Update the socket async list
1274 *
1275 * Fasync_list locking strategy.
1276 *
1277 * 1. fasync_list is modified only under process context socket lock
1278 * i.e. under semaphore.
1279 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1280 * or under socket lock
1281 */
1282
1283 static int sock_fasync(int fd, struct file *filp, int on)
1284 {
1285 struct socket *sock = filp->private_data;
1286 struct sock *sk = sock->sk;
1287 struct socket_wq *wq = &sock->wq;
1288
1289 if (sk == NULL)
1290 return -EINVAL;
1291
1292 lock_sock(sk);
1293 fasync_helper(fd, filp, on, &wq->fasync_list);
1294
1295 if (!wq->fasync_list)
1296 sock_reset_flag(sk, SOCK_FASYNC);
1297 else
1298 sock_set_flag(sk, SOCK_FASYNC);
1299
1300 release_sock(sk);
1301 return 0;
1302 }
1303
1304 /* This function may be called only under rcu_lock */
1305
1306 int sock_wake_async(struct socket_wq *wq, int how, int band)
1307 {
1308 if (!wq || !wq->fasync_list)
1309 return -1;
1310
1311 switch (how) {
1312 case SOCK_WAKE_WAITD:
1313 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1314 break;
1315 goto call_kill;
1316 case SOCK_WAKE_SPACE:
1317 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1318 break;
1319 /* fall through */
1320 case SOCK_WAKE_IO:
1321 call_kill:
1322 kill_fasync(&wq->fasync_list, SIGIO, band);
1323 break;
1324 case SOCK_WAKE_URG:
1325 kill_fasync(&wq->fasync_list, SIGURG, band);
1326 }
1327
1328 return 0;
1329 }
1330 EXPORT_SYMBOL(sock_wake_async);
1331
1332 /**
1333 * __sock_create - creates a socket
1334 * @net: net namespace
1335 * @family: protocol family (AF_INET, ...)
1336 * @type: communication type (SOCK_STREAM, ...)
1337 * @protocol: protocol (0, ...)
1338 * @res: new socket
1339 * @kern: boolean for kernel space sockets
1340 *
1341 * Creates a new socket and assigns it to @res, passing through LSM.
1342 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1343 * be set to true if the socket resides in kernel space.
1344 * This function internally uses GFP_KERNEL.
1345 */
1346
1347 int __sock_create(struct net *net, int family, int type, int protocol,
1348 struct socket **res, int kern)
1349 {
1350 int err;
1351 struct socket *sock;
1352 const struct net_proto_family *pf;
1353
1354 /*
1355 * Check protocol is in range
1356 */
1357 if (family < 0 || family >= NPROTO)
1358 return -EAFNOSUPPORT;
1359 if (type < 0 || type >= SOCK_MAX)
1360 return -EINVAL;
1361
1362 /* Compatibility.
1363
1364 This uglymoron is moved from INET layer to here to avoid
1365 deadlock in module load.
1366 */
1367 if (family == PF_INET && type == SOCK_PACKET) {
1368 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1369 current->comm);
1370 family = PF_PACKET;
1371 }
1372
1373 err = security_socket_create(family, type, protocol, kern);
1374 if (err)
1375 return err;
1376
1377 /*
1378 * Allocate the socket and allow the family to set things up. if
1379 * the protocol is 0, the family is instructed to select an appropriate
1380 * default.
1381 */
1382 sock = sock_alloc();
1383 if (!sock) {
1384 net_warn_ratelimited("socket: no more sockets\n");
1385 return -ENFILE; /* Not exactly a match, but its the
1386 closest posix thing */
1387 }
1388
1389 sock->type = type;
1390
1391 #ifdef CONFIG_MODULES
1392 /* Attempt to load a protocol module if the find failed.
1393 *
1394 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1395 * requested real, full-featured networking support upon configuration.
1396 * Otherwise module support will break!
1397 */
1398 if (rcu_access_pointer(net_families[family]) == NULL)
1399 request_module("net-pf-%d", family);
1400 #endif
1401
1402 rcu_read_lock();
1403 pf = rcu_dereference(net_families[family]);
1404 err = -EAFNOSUPPORT;
1405 if (!pf)
1406 goto out_release;
1407
1408 /*
1409 * We will call the ->create function, that possibly is in a loadable
1410 * module, so we have to bump that loadable module refcnt first.
1411 */
1412 if (!try_module_get(pf->owner))
1413 goto out_release;
1414
1415 /* Now protected by module ref count */
1416 rcu_read_unlock();
1417
1418 err = pf->create(net, sock, protocol, kern);
1419 if (err < 0)
1420 goto out_module_put;
1421
1422 /*
1423 * Now to bump the refcnt of the [loadable] module that owns this
1424 * socket at sock_release time we decrement its refcnt.
1425 */
1426 if (!try_module_get(sock->ops->owner))
1427 goto out_module_busy;
1428
1429 /*
1430 * Now that we're done with the ->create function, the [loadable]
1431 * module can have its refcnt decremented
1432 */
1433 module_put(pf->owner);
1434 err = security_socket_post_create(sock, family, type, protocol, kern);
1435 if (err)
1436 goto out_sock_release;
1437 *res = sock;
1438
1439 return 0;
1440
1441 out_module_busy:
1442 err = -EAFNOSUPPORT;
1443 out_module_put:
1444 sock->ops = NULL;
1445 module_put(pf->owner);
1446 out_sock_release:
1447 sock_release(sock);
1448 return err;
1449
1450 out_release:
1451 rcu_read_unlock();
1452 goto out_sock_release;
1453 }
1454 EXPORT_SYMBOL(__sock_create);
1455
1456 /**
1457 * sock_create - creates a socket
1458 * @family: protocol family (AF_INET, ...)
1459 * @type: communication type (SOCK_STREAM, ...)
1460 * @protocol: protocol (0, ...)
1461 * @res: new socket
1462 *
1463 * A wrapper around __sock_create().
1464 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1465 */
1466
1467 int sock_create(int family, int type, int protocol, struct socket **res)
1468 {
1469 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1470 }
1471 EXPORT_SYMBOL(sock_create);
1472
1473 /**
1474 * sock_create_kern - creates a socket (kernel space)
1475 * @net: net namespace
1476 * @family: protocol family (AF_INET, ...)
1477 * @type: communication type (SOCK_STREAM, ...)
1478 * @protocol: protocol (0, ...)
1479 * @res: new socket
1480 *
1481 * A wrapper around __sock_create().
1482 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1483 */
1484
1485 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1486 {
1487 return __sock_create(net, family, type, protocol, res, 1);
1488 }
1489 EXPORT_SYMBOL(sock_create_kern);
1490
1491 int __sys_socket(int family, int type, int protocol)
1492 {
1493 int retval;
1494 struct socket *sock;
1495 int flags;
1496
1497 /* Check the SOCK_* constants for consistency. */
1498 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1499 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1500 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1501 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1502
1503 flags = type & ~SOCK_TYPE_MASK;
1504 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1505 return -EINVAL;
1506 type &= SOCK_TYPE_MASK;
1507
1508 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1509 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1510
1511 retval = sock_create(family, type, protocol, &sock);
1512 if (retval < 0)
1513 return retval;
1514
1515 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1516 }
1517
1518 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1519 {
1520 return __sys_socket(family, type, protocol);
1521 }
1522
1523 /*
1524 * Create a pair of connected sockets.
1525 */
1526
1527 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1528 {
1529 struct socket *sock1, *sock2;
1530 int fd1, fd2, err;
1531 struct file *newfile1, *newfile2;
1532 int flags;
1533
1534 flags = type & ~SOCK_TYPE_MASK;
1535 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1536 return -EINVAL;
1537 type &= SOCK_TYPE_MASK;
1538
1539 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1540 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1541
1542 /*
1543 * reserve descriptors and make sure we won't fail
1544 * to return them to userland.
1545 */
1546 fd1 = get_unused_fd_flags(flags);
1547 if (unlikely(fd1 < 0))
1548 return fd1;
1549
1550 fd2 = get_unused_fd_flags(flags);
1551 if (unlikely(fd2 < 0)) {
1552 put_unused_fd(fd1);
1553 return fd2;
1554 }
1555
1556 err = put_user(fd1, &usockvec[0]);
1557 if (err)
1558 goto out;
1559
1560 err = put_user(fd2, &usockvec[1]);
1561 if (err)
1562 goto out;
1563
1564 /*
1565 * Obtain the first socket and check if the underlying protocol
1566 * supports the socketpair call.
1567 */
1568
1569 err = sock_create(family, type, protocol, &sock1);
1570 if (unlikely(err < 0))
1571 goto out;
1572
1573 err = sock_create(family, type, protocol, &sock2);
1574 if (unlikely(err < 0)) {
1575 sock_release(sock1);
1576 goto out;
1577 }
1578
1579 err = security_socket_socketpair(sock1, sock2);
1580 if (unlikely(err)) {
1581 sock_release(sock2);
1582 sock_release(sock1);
1583 goto out;
1584 }
1585
1586 err = sock1->ops->socketpair(sock1, sock2);
1587 if (unlikely(err < 0)) {
1588 sock_release(sock2);
1589 sock_release(sock1);
1590 goto out;
1591 }
1592
1593 newfile1 = sock_alloc_file(sock1, flags, NULL);
1594 if (IS_ERR(newfile1)) {
1595 err = PTR_ERR(newfile1);
1596 sock_release(sock2);
1597 goto out;
1598 }
1599
1600 newfile2 = sock_alloc_file(sock2, flags, NULL);
1601 if (IS_ERR(newfile2)) {
1602 err = PTR_ERR(newfile2);
1603 fput(newfile1);
1604 goto out;
1605 }
1606
1607 audit_fd_pair(fd1, fd2);
1608
1609 fd_install(fd1, newfile1);
1610 fd_install(fd2, newfile2);
1611 return 0;
1612
1613 out:
1614 put_unused_fd(fd2);
1615 put_unused_fd(fd1);
1616 return err;
1617 }
1618
1619 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1620 int __user *, usockvec)
1621 {
1622 return __sys_socketpair(family, type, protocol, usockvec);
1623 }
1624
1625 /*
1626 * Bind a name to a socket. Nothing much to do here since it's
1627 * the protocol's responsibility to handle the local address.
1628 *
1629 * We move the socket address to kernel space before we call
1630 * the protocol layer (having also checked the address is ok).
1631 */
1632
1633 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1634 {
1635 struct socket *sock;
1636 struct sockaddr_storage address;
1637 int err, fput_needed;
1638
1639 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1640 if (sock) {
1641 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1642 if (!err) {
1643 err = security_socket_bind(sock,
1644 (struct sockaddr *)&address,
1645 addrlen);
1646 if (!err)
1647 err = sock->ops->bind(sock,
1648 (struct sockaddr *)
1649 &address, addrlen);
1650 }
1651 fput_light(sock->file, fput_needed);
1652 }
1653 return err;
1654 }
1655
1656 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1657 {
1658 return __sys_bind(fd, umyaddr, addrlen);
1659 }
1660
1661 /*
1662 * Perform a listen. Basically, we allow the protocol to do anything
1663 * necessary for a listen, and if that works, we mark the socket as
1664 * ready for listening.
1665 */
1666
1667 int __sys_listen(int fd, int backlog)
1668 {
1669 struct socket *sock;
1670 int err, fput_needed;
1671 int somaxconn;
1672
1673 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1674 if (sock) {
1675 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1676 if ((unsigned int)backlog > somaxconn)
1677 backlog = somaxconn;
1678
1679 err = security_socket_listen(sock, backlog);
1680 if (!err)
1681 err = sock->ops->listen(sock, backlog);
1682
1683 fput_light(sock->file, fput_needed);
1684 }
1685 return err;
1686 }
1687
1688 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1689 {
1690 return __sys_listen(fd, backlog);
1691 }
1692
1693 /*
1694 * For accept, we attempt to create a new socket, set up the link
1695 * with the client, wake up the client, then return the new
1696 * connected fd. We collect the address of the connector in kernel
1697 * space and move it to user at the very end. This is unclean because
1698 * we open the socket then return an error.
1699 *
1700 * 1003.1g adds the ability to recvmsg() to query connection pending
1701 * status to recvmsg. We need to add that support in a way thats
1702 * clean when we restructure accept also.
1703 */
1704
1705 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1706 int __user *upeer_addrlen, int flags)
1707 {
1708 struct socket *sock, *newsock;
1709 struct file *newfile;
1710 int err, len, newfd, fput_needed;
1711 struct sockaddr_storage address;
1712
1713 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1714 return -EINVAL;
1715
1716 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1717 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1718
1719 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1720 if (!sock)
1721 goto out;
1722
1723 err = -ENFILE;
1724 newsock = sock_alloc();
1725 if (!newsock)
1726 goto out_put;
1727
1728 newsock->type = sock->type;
1729 newsock->ops = sock->ops;
1730
1731 /*
1732 * We don't need try_module_get here, as the listening socket (sock)
1733 * has the protocol module (sock->ops->owner) held.
1734 */
1735 __module_get(newsock->ops->owner);
1736
1737 newfd = get_unused_fd_flags(flags);
1738 if (unlikely(newfd < 0)) {
1739 err = newfd;
1740 sock_release(newsock);
1741 goto out_put;
1742 }
1743 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1744 if (IS_ERR(newfile)) {
1745 err = PTR_ERR(newfile);
1746 put_unused_fd(newfd);
1747 goto out_put;
1748 }
1749
1750 err = security_socket_accept(sock, newsock);
1751 if (err)
1752 goto out_fd;
1753
1754 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1755 if (err < 0)
1756 goto out_fd;
1757
1758 if (upeer_sockaddr) {
1759 len = newsock->ops->getname(newsock,
1760 (struct sockaddr *)&address, 2);
1761 if (len < 0) {
1762 err = -ECONNABORTED;
1763 goto out_fd;
1764 }
1765 err = move_addr_to_user(&address,
1766 len, upeer_sockaddr, upeer_addrlen);
1767 if (err < 0)
1768 goto out_fd;
1769 }
1770
1771 /* File flags are not inherited via accept() unlike another OSes. */
1772
1773 fd_install(newfd, newfile);
1774 err = newfd;
1775
1776 out_put:
1777 fput_light(sock->file, fput_needed);
1778 out:
1779 return err;
1780 out_fd:
1781 fput(newfile);
1782 put_unused_fd(newfd);
1783 goto out_put;
1784 }
1785
1786 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1787 int __user *, upeer_addrlen, int, flags)
1788 {
1789 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1790 }
1791
1792 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1793 int __user *, upeer_addrlen)
1794 {
1795 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1796 }
1797
1798 /*
1799 * Attempt to connect to a socket with the server address. The address
1800 * is in user space so we verify it is OK and move it to kernel space.
1801 *
1802 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1803 * break bindings
1804 *
1805 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1806 * other SEQPACKET protocols that take time to connect() as it doesn't
1807 * include the -EINPROGRESS status for such sockets.
1808 */
1809
1810 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1811 {
1812 struct socket *sock;
1813 struct sockaddr_storage address;
1814 int err, fput_needed;
1815
1816 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1817 if (!sock)
1818 goto out;
1819 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1820 if (err < 0)
1821 goto out_put;
1822
1823 err =
1824 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1825 if (err)
1826 goto out_put;
1827
1828 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1829 sock->file->f_flags);
1830 out_put:
1831 fput_light(sock->file, fput_needed);
1832 out:
1833 return err;
1834 }
1835
1836 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1837 int, addrlen)
1838 {
1839 return __sys_connect(fd, uservaddr, addrlen);
1840 }
1841
1842 /*
1843 * Get the local address ('name') of a socket object. Move the obtained
1844 * name to user space.
1845 */
1846
1847 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1848 int __user *usockaddr_len)
1849 {
1850 struct socket *sock;
1851 struct sockaddr_storage address;
1852 int err, fput_needed;
1853
1854 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1855 if (!sock)
1856 goto out;
1857
1858 err = security_socket_getsockname(sock);
1859 if (err)
1860 goto out_put;
1861
1862 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1863 if (err < 0)
1864 goto out_put;
1865 /* "err" is actually length in this case */
1866 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1867
1868 out_put:
1869 fput_light(sock->file, fput_needed);
1870 out:
1871 return err;
1872 }
1873
1874 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1875 int __user *, usockaddr_len)
1876 {
1877 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1878 }
1879
1880 /*
1881 * Get the remote address ('name') of a socket object. Move the obtained
1882 * name to user space.
1883 */
1884
1885 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1886 int __user *usockaddr_len)
1887 {
1888 struct socket *sock;
1889 struct sockaddr_storage address;
1890 int err, fput_needed;
1891
1892 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1893 if (sock != NULL) {
1894 err = security_socket_getpeername(sock);
1895 if (err) {
1896 fput_light(sock->file, fput_needed);
1897 return err;
1898 }
1899
1900 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1901 if (err >= 0)
1902 /* "err" is actually length in this case */
1903 err = move_addr_to_user(&address, err, usockaddr,
1904 usockaddr_len);
1905 fput_light(sock->file, fput_needed);
1906 }
1907 return err;
1908 }
1909
1910 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1911 int __user *, usockaddr_len)
1912 {
1913 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1914 }
1915
1916 /*
1917 * Send a datagram to a given address. We move the address into kernel
1918 * space and check the user space data area is readable before invoking
1919 * the protocol.
1920 */
1921 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1922 struct sockaddr __user *addr, int addr_len)
1923 {
1924 struct socket *sock;
1925 struct sockaddr_storage address;
1926 int err;
1927 struct msghdr msg;
1928 struct iovec iov;
1929 int fput_needed;
1930
1931 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1932 if (unlikely(err))
1933 return err;
1934 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1935 if (!sock)
1936 goto out;
1937
1938 msg.msg_name = NULL;
1939 msg.msg_control = NULL;
1940 msg.msg_controllen = 0;
1941 msg.msg_namelen = 0;
1942 if (addr) {
1943 err = move_addr_to_kernel(addr, addr_len, &address);
1944 if (err < 0)
1945 goto out_put;
1946 msg.msg_name = (struct sockaddr *)&address;
1947 msg.msg_namelen = addr_len;
1948 }
1949 if (sock->file->f_flags & O_NONBLOCK)
1950 flags |= MSG_DONTWAIT;
1951 msg.msg_flags = flags;
1952 err = sock_sendmsg(sock, &msg);
1953
1954 out_put:
1955 fput_light(sock->file, fput_needed);
1956 out:
1957 return err;
1958 }
1959
1960 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1961 unsigned int, flags, struct sockaddr __user *, addr,
1962 int, addr_len)
1963 {
1964 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1965 }
1966
1967 /*
1968 * Send a datagram down a socket.
1969 */
1970
1971 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1972 unsigned int, flags)
1973 {
1974 return __sys_sendto(fd, buff, len, flags, NULL, 0);
1975 }
1976
1977 /*
1978 * Receive a frame from the socket and optionally record the address of the
1979 * sender. We verify the buffers are writable and if needed move the
1980 * sender address from kernel to user space.
1981 */
1982 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1983 struct sockaddr __user *addr, int __user *addr_len)
1984 {
1985 struct socket *sock;
1986 struct iovec iov;
1987 struct msghdr msg;
1988 struct sockaddr_storage address;
1989 int err, err2;
1990 int fput_needed;
1991
1992 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1993 if (unlikely(err))
1994 return err;
1995 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1996 if (!sock)
1997 goto out;
1998
1999 msg.msg_control = NULL;
2000 msg.msg_controllen = 0;
2001 /* Save some cycles and don't copy the address if not needed */
2002 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2003 /* We assume all kernel code knows the size of sockaddr_storage */
2004 msg.msg_namelen = 0;
2005 msg.msg_iocb = NULL;
2006 msg.msg_flags = 0;
2007 if (sock->file->f_flags & O_NONBLOCK)
2008 flags |= MSG_DONTWAIT;
2009 err = sock_recvmsg(sock, &msg, flags);
2010
2011 if (err >= 0 && addr != NULL) {
2012 err2 = move_addr_to_user(&address,
2013 msg.msg_namelen, addr, addr_len);
2014 if (err2 < 0)
2015 err = err2;
2016 }
2017
2018 fput_light(sock->file, fput_needed);
2019 out:
2020 return err;
2021 }
2022
2023 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2024 unsigned int, flags, struct sockaddr __user *, addr,
2025 int __user *, addr_len)
2026 {
2027 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2028 }
2029
2030 /*
2031 * Receive a datagram from a socket.
2032 */
2033
2034 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2035 unsigned int, flags)
2036 {
2037 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2038 }
2039
2040 /*
2041 * Set a socket option. Because we don't know the option lengths we have
2042 * to pass the user mode parameter for the protocols to sort out.
2043 */
2044
2045 static int __sys_setsockopt(int fd, int level, int optname,
2046 char __user *optval, int optlen)
2047 {
2048 mm_segment_t oldfs = get_fs();
2049 char *kernel_optval = NULL;
2050 int err, fput_needed;
2051 struct socket *sock;
2052
2053 if (optlen < 0)
2054 return -EINVAL;
2055
2056 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2057 if (sock != NULL) {
2058 err = security_socket_setsockopt(sock, level, optname);
2059 if (err)
2060 goto out_put;
2061
2062 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level,
2063 &optname, optval, &optlen,
2064 &kernel_optval);
2065
2066 if (err < 0) {
2067 goto out_put;
2068 } else if (err > 0) {
2069 err = 0;
2070 goto out_put;
2071 }
2072
2073 if (kernel_optval) {
2074 set_fs(KERNEL_DS);
2075 optval = (char __user __force *)kernel_optval;
2076 }
2077
2078 if (level == SOL_SOCKET)
2079 err =
2080 sock_setsockopt(sock, level, optname, optval,
2081 optlen);
2082 else
2083 err =
2084 sock->ops->setsockopt(sock, level, optname, optval,
2085 optlen);
2086
2087 if (kernel_optval) {
2088 set_fs(oldfs);
2089 kfree(kernel_optval);
2090 }
2091 out_put:
2092 fput_light(sock->file, fput_needed);
2093 }
2094 return err;
2095 }
2096
2097 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2098 char __user *, optval, int, optlen)
2099 {
2100 return __sys_setsockopt(fd, level, optname, optval, optlen);
2101 }
2102
2103 /*
2104 * Get a socket option. Because we don't know the option lengths we have
2105 * to pass a user mode parameter for the protocols to sort out.
2106 */
2107
2108 static int __sys_getsockopt(int fd, int level, int optname,
2109 char __user *optval, int __user *optlen)
2110 {
2111 int err, fput_needed;
2112 struct socket *sock;
2113 int max_optlen;
2114
2115 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2116 if (sock != NULL) {
2117 err = security_socket_getsockopt(sock, level, optname);
2118 if (err)
2119 goto out_put;
2120
2121 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2122
2123 if (level == SOL_SOCKET)
2124 err =
2125 sock_getsockopt(sock, level, optname, optval,
2126 optlen);
2127 else
2128 err =
2129 sock->ops->getsockopt(sock, level, optname, optval,
2130 optlen);
2131
2132 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2133 optval, optlen,
2134 max_optlen, err);
2135 out_put:
2136 fput_light(sock->file, fput_needed);
2137 }
2138 return err;
2139 }
2140
2141 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2142 char __user *, optval, int __user *, optlen)
2143 {
2144 return __sys_getsockopt(fd, level, optname, optval, optlen);
2145 }
2146
2147 /*
2148 * Shutdown a socket.
2149 */
2150
2151 int __sys_shutdown(int fd, int how)
2152 {
2153 int err, fput_needed;
2154 struct socket *sock;
2155
2156 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2157 if (sock != NULL) {
2158 err = security_socket_shutdown(sock, how);
2159 if (!err)
2160 err = sock->ops->shutdown(sock, how);
2161 fput_light(sock->file, fput_needed);
2162 }
2163 return err;
2164 }
2165
2166 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2167 {
2168 return __sys_shutdown(fd, how);
2169 }
2170
2171 /* A couple of helpful macros for getting the address of the 32/64 bit
2172 * fields which are the same type (int / unsigned) on our platforms.
2173 */
2174 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2175 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2176 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2177
2178 struct used_address {
2179 struct sockaddr_storage name;
2180 unsigned int name_len;
2181 };
2182
2183 static int copy_msghdr_from_user(struct msghdr *kmsg,
2184 struct user_msghdr __user *umsg,
2185 struct sockaddr __user **save_addr,
2186 struct iovec **iov)
2187 {
2188 struct user_msghdr msg;
2189 ssize_t err;
2190
2191 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2192 return -EFAULT;
2193
2194 kmsg->msg_control = (void __force *)msg.msg_control;
2195 kmsg->msg_controllen = msg.msg_controllen;
2196 kmsg->msg_flags = msg.msg_flags;
2197
2198 kmsg->msg_namelen = msg.msg_namelen;
2199 if (!msg.msg_name)
2200 kmsg->msg_namelen = 0;
2201
2202 if (kmsg->msg_namelen < 0)
2203 return -EINVAL;
2204
2205 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2206 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2207
2208 if (save_addr)
2209 *save_addr = msg.msg_name;
2210
2211 if (msg.msg_name && kmsg->msg_namelen) {
2212 if (!save_addr) {
2213 err = move_addr_to_kernel(msg.msg_name,
2214 kmsg->msg_namelen,
2215 kmsg->msg_name);
2216 if (err < 0)
2217 return err;
2218 }
2219 } else {
2220 kmsg->msg_name = NULL;
2221 kmsg->msg_namelen = 0;
2222 }
2223
2224 if (msg.msg_iovlen > UIO_MAXIOV)
2225 return -EMSGSIZE;
2226
2227 kmsg->msg_iocb = NULL;
2228
2229 err = import_iovec(save_addr ? READ : WRITE,
2230 msg.msg_iov, msg.msg_iovlen,
2231 UIO_FASTIOV, iov, &kmsg->msg_iter);
2232 return err < 0 ? err : 0;
2233 }
2234
2235 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2236 struct msghdr *msg_sys, unsigned int flags,
2237 struct used_address *used_address,
2238 unsigned int allowed_msghdr_flags)
2239 {
2240 struct compat_msghdr __user *msg_compat =
2241 (struct compat_msghdr __user *)msg;
2242 struct sockaddr_storage address;
2243 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2244 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2245 __aligned(sizeof(__kernel_size_t));
2246 /* 20 is size of ipv6_pktinfo */
2247 unsigned char *ctl_buf = ctl;
2248 int ctl_len;
2249 ssize_t err;
2250
2251 msg_sys->msg_name = &address;
2252
2253 if (MSG_CMSG_COMPAT & flags)
2254 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2255 else
2256 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2257 if (err < 0)
2258 return err;
2259
2260 err = -ENOBUFS;
2261
2262 if (msg_sys->msg_controllen > INT_MAX)
2263 goto out_freeiov;
2264 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2265 ctl_len = msg_sys->msg_controllen;
2266 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2267 err =
2268 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2269 sizeof(ctl));
2270 if (err)
2271 goto out_freeiov;
2272 ctl_buf = msg_sys->msg_control;
2273 ctl_len = msg_sys->msg_controllen;
2274 } else if (ctl_len) {
2275 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2276 CMSG_ALIGN(sizeof(struct cmsghdr)));
2277 if (ctl_len > sizeof(ctl)) {
2278 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2279 if (ctl_buf == NULL)
2280 goto out_freeiov;
2281 }
2282 err = -EFAULT;
2283 /*
2284 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2285 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2286 * checking falls down on this.
2287 */
2288 if (copy_from_user(ctl_buf,
2289 (void __user __force *)msg_sys->msg_control,
2290 ctl_len))
2291 goto out_freectl;
2292 msg_sys->msg_control = ctl_buf;
2293 }
2294 msg_sys->msg_flags = flags;
2295
2296 if (sock->file->f_flags & O_NONBLOCK)
2297 msg_sys->msg_flags |= MSG_DONTWAIT;
2298 /*
2299 * If this is sendmmsg() and current destination address is same as
2300 * previously succeeded address, omit asking LSM's decision.
2301 * used_address->name_len is initialized to UINT_MAX so that the first
2302 * destination address never matches.
2303 */
2304 if (used_address && msg_sys->msg_name &&
2305 used_address->name_len == msg_sys->msg_namelen &&
2306 !memcmp(&used_address->name, msg_sys->msg_name,
2307 used_address->name_len)) {
2308 err = sock_sendmsg_nosec(sock, msg_sys);
2309 goto out_freectl;
2310 }
2311 err = sock_sendmsg(sock, msg_sys);
2312 /*
2313 * If this is sendmmsg() and sending to current destination address was
2314 * successful, remember it.
2315 */
2316 if (used_address && err >= 0) {
2317 used_address->name_len = msg_sys->msg_namelen;
2318 if (msg_sys->msg_name)
2319 memcpy(&used_address->name, msg_sys->msg_name,
2320 used_address->name_len);
2321 }
2322
2323 out_freectl:
2324 if (ctl_buf != ctl)
2325 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2326 out_freeiov:
2327 kfree(iov);
2328 return err;
2329 }
2330
2331 /*
2332 * BSD sendmsg interface
2333 */
2334 long __sys_sendmsg_sock(struct socket *sock, struct user_msghdr __user *msg,
2335 unsigned int flags)
2336 {
2337 struct msghdr msg_sys;
2338
2339 return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2340 }
2341
2342 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2343 bool forbid_cmsg_compat)
2344 {
2345 int fput_needed, err;
2346 struct msghdr msg_sys;
2347 struct socket *sock;
2348
2349 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2350 return -EINVAL;
2351
2352 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2353 if (!sock)
2354 goto out;
2355
2356 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2357
2358 fput_light(sock->file, fput_needed);
2359 out:
2360 return err;
2361 }
2362
2363 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2364 {
2365 return __sys_sendmsg(fd, msg, flags, true);
2366 }
2367
2368 /*
2369 * Linux sendmmsg interface
2370 */
2371
2372 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2373 unsigned int flags, bool forbid_cmsg_compat)
2374 {
2375 int fput_needed, err, datagrams;
2376 struct socket *sock;
2377 struct mmsghdr __user *entry;
2378 struct compat_mmsghdr __user *compat_entry;
2379 struct msghdr msg_sys;
2380 struct used_address used_address;
2381 unsigned int oflags = flags;
2382
2383 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2384 return -EINVAL;
2385
2386 if (vlen > UIO_MAXIOV)
2387 vlen = UIO_MAXIOV;
2388
2389 datagrams = 0;
2390
2391 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2392 if (!sock)
2393 return err;
2394
2395 used_address.name_len = UINT_MAX;
2396 entry = mmsg;
2397 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2398 err = 0;
2399 flags |= MSG_BATCH;
2400
2401 while (datagrams < vlen) {
2402 if (datagrams == vlen - 1)
2403 flags = oflags;
2404
2405 if (MSG_CMSG_COMPAT & flags) {
2406 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2407 &msg_sys, flags, &used_address, MSG_EOR);
2408 if (err < 0)
2409 break;
2410 err = __put_user(err, &compat_entry->msg_len);
2411 ++compat_entry;
2412 } else {
2413 err = ___sys_sendmsg(sock,
2414 (struct user_msghdr __user *)entry,
2415 &msg_sys, flags, &used_address, MSG_EOR);
2416 if (err < 0)
2417 break;
2418 err = put_user(err, &entry->msg_len);
2419 ++entry;
2420 }
2421
2422 if (err)
2423 break;
2424 ++datagrams;
2425 if (msg_data_left(&msg_sys))
2426 break;
2427 cond_resched();
2428 }
2429
2430 fput_light(sock->file, fput_needed);
2431
2432 /* We only return an error if no datagrams were able to be sent */
2433 if (datagrams != 0)
2434 return datagrams;
2435
2436 return err;
2437 }
2438
2439 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2440 unsigned int, vlen, unsigned int, flags)
2441 {
2442 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2443 }
2444
2445 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2446 struct msghdr *msg_sys, unsigned int flags, int nosec)
2447 {
2448 struct compat_msghdr __user *msg_compat =
2449 (struct compat_msghdr __user *)msg;
2450 struct iovec iovstack[UIO_FASTIOV];
2451 struct iovec *iov = iovstack;
2452 unsigned long cmsg_ptr;
2453 int len;
2454 ssize_t err;
2455
2456 /* kernel mode address */
2457 struct sockaddr_storage addr;
2458
2459 /* user mode address pointers */
2460 struct sockaddr __user *uaddr;
2461 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2462
2463 msg_sys->msg_name = &addr;
2464
2465 if (MSG_CMSG_COMPAT & flags)
2466 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2467 else
2468 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2469 if (err < 0)
2470 return err;
2471
2472 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2473 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2474
2475 /* We assume all kernel code knows the size of sockaddr_storage */
2476 msg_sys->msg_namelen = 0;
2477
2478 if (sock->file->f_flags & O_NONBLOCK)
2479 flags |= MSG_DONTWAIT;
2480 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2481 if (err < 0)
2482 goto out_freeiov;
2483 len = err;
2484
2485 if (uaddr != NULL) {
2486 err = move_addr_to_user(&addr,
2487 msg_sys->msg_namelen, uaddr,
2488 uaddr_len);
2489 if (err < 0)
2490 goto out_freeiov;
2491 }
2492 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2493 COMPAT_FLAGS(msg));
2494 if (err)
2495 goto out_freeiov;
2496 if (MSG_CMSG_COMPAT & flags)
2497 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2498 &msg_compat->msg_controllen);
2499 else
2500 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2501 &msg->msg_controllen);
2502 if (err)
2503 goto out_freeiov;
2504 err = len;
2505
2506 out_freeiov:
2507 kfree(iov);
2508 return err;
2509 }
2510
2511 /*
2512 * BSD recvmsg interface
2513 */
2514
2515 long __sys_recvmsg_sock(struct socket *sock, struct user_msghdr __user *msg,
2516 unsigned int flags)
2517 {
2518 struct msghdr msg_sys;
2519
2520 return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2521 }
2522
2523 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2524 bool forbid_cmsg_compat)
2525 {
2526 int fput_needed, err;
2527 struct msghdr msg_sys;
2528 struct socket *sock;
2529
2530 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2531 return -EINVAL;
2532
2533 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2534 if (!sock)
2535 goto out;
2536
2537 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2538
2539 fput_light(sock->file, fput_needed);
2540 out:
2541 return err;
2542 }
2543
2544 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2545 unsigned int, flags)
2546 {
2547 return __sys_recvmsg(fd, msg, flags, true);
2548 }
2549
2550 /*
2551 * Linux recvmmsg interface
2552 */
2553
2554 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2555 unsigned int vlen, unsigned int flags,
2556 struct timespec64 *timeout)
2557 {
2558 int fput_needed, err, datagrams;
2559 struct socket *sock;
2560 struct mmsghdr __user *entry;
2561 struct compat_mmsghdr __user *compat_entry;
2562 struct msghdr msg_sys;
2563 struct timespec64 end_time;
2564 struct timespec64 timeout64;
2565
2566 if (timeout &&
2567 poll_select_set_timeout(&end_time, timeout->tv_sec,
2568 timeout->tv_nsec))
2569 return -EINVAL;
2570
2571 datagrams = 0;
2572
2573 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2574 if (!sock)
2575 return err;
2576
2577 if (likely(!(flags & MSG_ERRQUEUE))) {
2578 err = sock_error(sock->sk);
2579 if (err) {
2580 datagrams = err;
2581 goto out_put;
2582 }
2583 }
2584
2585 entry = mmsg;
2586 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2587
2588 while (datagrams < vlen) {
2589 /*
2590 * No need to ask LSM for more than the first datagram.
2591 */
2592 if (MSG_CMSG_COMPAT & flags) {
2593 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2594 &msg_sys, flags & ~MSG_WAITFORONE,
2595 datagrams);
2596 if (err < 0)
2597 break;
2598 err = __put_user(err, &compat_entry->msg_len);
2599 ++compat_entry;
2600 } else {
2601 err = ___sys_recvmsg(sock,
2602 (struct user_msghdr __user *)entry,
2603 &msg_sys, flags & ~MSG_WAITFORONE,
2604 datagrams);
2605 if (err < 0)
2606 break;
2607 err = put_user(err, &entry->msg_len);
2608 ++entry;
2609 }
2610
2611 if (err)
2612 break;
2613 ++datagrams;
2614
2615 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2616 if (flags & MSG_WAITFORONE)
2617 flags |= MSG_DONTWAIT;
2618
2619 if (timeout) {
2620 ktime_get_ts64(&timeout64);
2621 *timeout = timespec64_sub(end_time, timeout64);
2622 if (timeout->tv_sec < 0) {
2623 timeout->tv_sec = timeout->tv_nsec = 0;
2624 break;
2625 }
2626
2627 /* Timeout, return less than vlen datagrams */
2628 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2629 break;
2630 }
2631
2632 /* Out of band data, return right away */
2633 if (msg_sys.msg_flags & MSG_OOB)
2634 break;
2635 cond_resched();
2636 }
2637
2638 if (err == 0)
2639 goto out_put;
2640
2641 if (datagrams == 0) {
2642 datagrams = err;
2643 goto out_put;
2644 }
2645
2646 /*
2647 * We may return less entries than requested (vlen) if the
2648 * sock is non block and there aren't enough datagrams...
2649 */
2650 if (err != -EAGAIN) {
2651 /*
2652 * ... or if recvmsg returns an error after we
2653 * received some datagrams, where we record the
2654 * error to return on the next call or if the
2655 * app asks about it using getsockopt(SO_ERROR).
2656 */
2657 sock->sk->sk_err = -err;
2658 }
2659 out_put:
2660 fput_light(sock->file, fput_needed);
2661
2662 return datagrams;
2663 }
2664
2665 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2666 unsigned int vlen, unsigned int flags,
2667 struct __kernel_timespec __user *timeout,
2668 struct old_timespec32 __user *timeout32)
2669 {
2670 int datagrams;
2671 struct timespec64 timeout_sys;
2672
2673 if (timeout && get_timespec64(&timeout_sys, timeout))
2674 return -EFAULT;
2675
2676 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2677 return -EFAULT;
2678
2679 if (!timeout && !timeout32)
2680 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2681
2682 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2683
2684 if (datagrams <= 0)
2685 return datagrams;
2686
2687 if (timeout && put_timespec64(&timeout_sys, timeout))
2688 datagrams = -EFAULT;
2689
2690 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2691 datagrams = -EFAULT;
2692
2693 return datagrams;
2694 }
2695
2696 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2697 unsigned int, vlen, unsigned int, flags,
2698 struct __kernel_timespec __user *, timeout)
2699 {
2700 if (flags & MSG_CMSG_COMPAT)
2701 return -EINVAL;
2702
2703 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2704 }
2705
2706 #ifdef CONFIG_COMPAT_32BIT_TIME
2707 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2708 unsigned int, vlen, unsigned int, flags,
2709 struct old_timespec32 __user *, timeout)
2710 {
2711 if (flags & MSG_CMSG_COMPAT)
2712 return -EINVAL;
2713
2714 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2715 }
2716 #endif
2717
2718 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2719 /* Argument list sizes for sys_socketcall */
2720 #define AL(x) ((x) * sizeof(unsigned long))
2721 static const unsigned char nargs[21] = {
2722 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2723 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2724 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2725 AL(4), AL(5), AL(4)
2726 };
2727
2728 #undef AL
2729
2730 /*
2731 * System call vectors.
2732 *
2733 * Argument checking cleaned up. Saved 20% in size.
2734 * This function doesn't need to set the kernel lock because
2735 * it is set by the callees.
2736 */
2737
2738 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2739 {
2740 unsigned long a[AUDITSC_ARGS];
2741 unsigned long a0, a1;
2742 int err;
2743 unsigned int len;
2744
2745 if (call < 1 || call > SYS_SENDMMSG)
2746 return -EINVAL;
2747 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2748
2749 len = nargs[call];
2750 if (len > sizeof(a))
2751 return -EINVAL;
2752
2753 /* copy_from_user should be SMP safe. */
2754 if (copy_from_user(a, args, len))
2755 return -EFAULT;
2756
2757 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2758 if (err)
2759 return err;
2760
2761 a0 = a[0];
2762 a1 = a[1];
2763
2764 switch (call) {
2765 case SYS_SOCKET:
2766 err = __sys_socket(a0, a1, a[2]);
2767 break;
2768 case SYS_BIND:
2769 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2770 break;
2771 case SYS_CONNECT:
2772 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2773 break;
2774 case SYS_LISTEN:
2775 err = __sys_listen(a0, a1);
2776 break;
2777 case SYS_ACCEPT:
2778 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2779 (int __user *)a[2], 0);
2780 break;
2781 case SYS_GETSOCKNAME:
2782 err =
2783 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2784 (int __user *)a[2]);
2785 break;
2786 case SYS_GETPEERNAME:
2787 err =
2788 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2789 (int __user *)a[2]);
2790 break;
2791 case SYS_SOCKETPAIR:
2792 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2793 break;
2794 case SYS_SEND:
2795 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2796 NULL, 0);
2797 break;
2798 case SYS_SENDTO:
2799 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2800 (struct sockaddr __user *)a[4], a[5]);
2801 break;
2802 case SYS_RECV:
2803 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2804 NULL, NULL);
2805 break;
2806 case SYS_RECVFROM:
2807 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2808 (struct sockaddr __user *)a[4],
2809 (int __user *)a[5]);
2810 break;
2811 case SYS_SHUTDOWN:
2812 err = __sys_shutdown(a0, a1);
2813 break;
2814 case SYS_SETSOCKOPT:
2815 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2816 a[4]);
2817 break;
2818 case SYS_GETSOCKOPT:
2819 err =
2820 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2821 (int __user *)a[4]);
2822 break;
2823 case SYS_SENDMSG:
2824 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2825 a[2], true);
2826 break;
2827 case SYS_SENDMMSG:
2828 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2829 a[3], true);
2830 break;
2831 case SYS_RECVMSG:
2832 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2833 a[2], true);
2834 break;
2835 case SYS_RECVMMSG:
2836 if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME))
2837 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2838 a[2], a[3],
2839 (struct __kernel_timespec __user *)a[4],
2840 NULL);
2841 else
2842 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2843 a[2], a[3], NULL,
2844 (struct old_timespec32 __user *)a[4]);
2845 break;
2846 case SYS_ACCEPT4:
2847 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2848 (int __user *)a[2], a[3]);
2849 break;
2850 default:
2851 err = -EINVAL;
2852 break;
2853 }
2854 return err;
2855 }
2856
2857 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2858
2859 /**
2860 * sock_register - add a socket protocol handler
2861 * @ops: description of protocol
2862 *
2863 * This function is called by a protocol handler that wants to
2864 * advertise its address family, and have it linked into the
2865 * socket interface. The value ops->family corresponds to the
2866 * socket system call protocol family.
2867 */
2868 int sock_register(const struct net_proto_family *ops)
2869 {
2870 int err;
2871
2872 if (ops->family >= NPROTO) {
2873 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2874 return -ENOBUFS;
2875 }
2876
2877 spin_lock(&net_family_lock);
2878 if (rcu_dereference_protected(net_families[ops->family],
2879 lockdep_is_held(&net_family_lock)))
2880 err = -EEXIST;
2881 else {
2882 rcu_assign_pointer(net_families[ops->family], ops);
2883 err = 0;
2884 }
2885 spin_unlock(&net_family_lock);
2886
2887 pr_info("NET: Registered protocol family %d\n", ops->family);
2888 return err;
2889 }
2890 EXPORT_SYMBOL(sock_register);
2891
2892 /**
2893 * sock_unregister - remove a protocol handler
2894 * @family: protocol family to remove
2895 *
2896 * This function is called by a protocol handler that wants to
2897 * remove its address family, and have it unlinked from the
2898 * new socket creation.
2899 *
2900 * If protocol handler is a module, then it can use module reference
2901 * counts to protect against new references. If protocol handler is not
2902 * a module then it needs to provide its own protection in
2903 * the ops->create routine.
2904 */
2905 void sock_unregister(int family)
2906 {
2907 BUG_ON(family < 0 || family >= NPROTO);
2908
2909 spin_lock(&net_family_lock);
2910 RCU_INIT_POINTER(net_families[family], NULL);
2911 spin_unlock(&net_family_lock);
2912
2913 synchronize_rcu();
2914
2915 pr_info("NET: Unregistered protocol family %d\n", family);
2916 }
2917 EXPORT_SYMBOL(sock_unregister);
2918
2919 bool sock_is_registered(int family)
2920 {
2921 return family < NPROTO && rcu_access_pointer(net_families[family]);
2922 }
2923
2924 static int __init sock_init(void)
2925 {
2926 int err;
2927 /*
2928 * Initialize the network sysctl infrastructure.
2929 */
2930 err = net_sysctl_init();
2931 if (err)
2932 goto out;
2933
2934 /*
2935 * Initialize skbuff SLAB cache
2936 */
2937 skb_init();
2938
2939 /*
2940 * Initialize the protocols module.
2941 */
2942
2943 init_inodecache();
2944
2945 err = register_filesystem(&sock_fs_type);
2946 if (err)
2947 goto out_fs;
2948 sock_mnt = kern_mount(&sock_fs_type);
2949 if (IS_ERR(sock_mnt)) {
2950 err = PTR_ERR(sock_mnt);
2951 goto out_mount;
2952 }
2953
2954 /* The real protocol initialization is performed in later initcalls.
2955 */
2956
2957 #ifdef CONFIG_NETFILTER
2958 err = netfilter_init();
2959 if (err)
2960 goto out;
2961 #endif
2962
2963 ptp_classifier_init();
2964
2965 out:
2966 return err;
2967
2968 out_mount:
2969 unregister_filesystem(&sock_fs_type);
2970 out_fs:
2971 goto out;
2972 }
2973
2974 core_initcall(sock_init); /* early initcall */
2975
2976 #ifdef CONFIG_PROC_FS
2977 void socket_seq_show(struct seq_file *seq)
2978 {
2979 seq_printf(seq, "sockets: used %d\n",
2980 sock_inuse_get(seq->private));
2981 }
2982 #endif /* CONFIG_PROC_FS */
2983
2984 #ifdef CONFIG_COMPAT
2985 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2986 {
2987 struct compat_ifconf ifc32;
2988 struct ifconf ifc;
2989 int err;
2990
2991 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2992 return -EFAULT;
2993
2994 ifc.ifc_len = ifc32.ifc_len;
2995 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2996
2997 rtnl_lock();
2998 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2999 rtnl_unlock();
3000 if (err)
3001 return err;
3002
3003 ifc32.ifc_len = ifc.ifc_len;
3004 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3005 return -EFAULT;
3006
3007 return 0;
3008 }
3009
3010 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3011 {
3012 struct compat_ethtool_rxnfc __user *compat_rxnfc;
3013 bool convert_in = false, convert_out = false;
3014 size_t buf_size = 0;
3015 struct ethtool_rxnfc __user *rxnfc = NULL;
3016 struct ifreq ifr;
3017 u32 rule_cnt = 0, actual_rule_cnt;
3018 u32 ethcmd;
3019 u32 data;
3020 int ret;
3021
3022 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3023 return -EFAULT;
3024
3025 compat_rxnfc = compat_ptr(data);
3026
3027 if (get_user(ethcmd, &compat_rxnfc->cmd))
3028 return -EFAULT;
3029
3030 /* Most ethtool structures are defined without padding.
3031 * Unfortunately struct ethtool_rxnfc is an exception.
3032 */
3033 switch (ethcmd) {
3034 default:
3035 break;
3036 case ETHTOOL_GRXCLSRLALL:
3037 /* Buffer size is variable */
3038 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3039 return -EFAULT;
3040 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3041 return -ENOMEM;
3042 buf_size += rule_cnt * sizeof(u32);
3043 /* fall through */
3044 case ETHTOOL_GRXRINGS:
3045 case ETHTOOL_GRXCLSRLCNT:
3046 case ETHTOOL_GRXCLSRULE:
3047 case ETHTOOL_SRXCLSRLINS:
3048 convert_out = true;
3049 /* fall through */
3050 case ETHTOOL_SRXCLSRLDEL:
3051 buf_size += sizeof(struct ethtool_rxnfc);
3052 convert_in = true;
3053 rxnfc = compat_alloc_user_space(buf_size);
3054 break;
3055 }
3056
3057 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3058 return -EFAULT;
3059
3060 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3061
3062 if (convert_in) {
3063 /* We expect there to be holes between fs.m_ext and
3064 * fs.ring_cookie and at the end of fs, but nowhere else.
3065 */
3066 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3067 sizeof(compat_rxnfc->fs.m_ext) !=
3068 offsetof(struct ethtool_rxnfc, fs.m_ext) +
3069 sizeof(rxnfc->fs.m_ext));
3070 BUILD_BUG_ON(
3071 offsetof(struct compat_ethtool_rxnfc, fs.location) -
3072 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3073 offsetof(struct ethtool_rxnfc, fs.location) -
3074 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3075
3076 if (copy_in_user(rxnfc, compat_rxnfc,
3077 (void __user *)(&rxnfc->fs.m_ext + 1) -
3078 (void __user *)rxnfc) ||
3079 copy_in_user(&rxnfc->fs.ring_cookie,
3080 &compat_rxnfc->fs.ring_cookie,
3081 (void __user *)(&rxnfc->fs.location + 1) -
3082 (void __user *)&rxnfc->fs.ring_cookie))
3083 return -EFAULT;
3084 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3085 if (put_user(rule_cnt, &rxnfc->rule_cnt))
3086 return -EFAULT;
3087 } else if (copy_in_user(&rxnfc->rule_cnt,
3088 &compat_rxnfc->rule_cnt,
3089 sizeof(rxnfc->rule_cnt)))
3090 return -EFAULT;
3091 }
3092
3093 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3094 if (ret)
3095 return ret;
3096
3097 if (convert_out) {
3098 if (copy_in_user(compat_rxnfc, rxnfc,
3099 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3100 (const void __user *)rxnfc) ||
3101 copy_in_user(&compat_rxnfc->fs.ring_cookie,
3102 &rxnfc->fs.ring_cookie,
3103 (const void __user *)(&rxnfc->fs.location + 1) -
3104 (const void __user *)&rxnfc->fs.ring_cookie) ||
3105 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3106 sizeof(rxnfc->rule_cnt)))
3107 return -EFAULT;
3108
3109 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3110 /* As an optimisation, we only copy the actual
3111 * number of rules that the underlying
3112 * function returned. Since Mallory might
3113 * change the rule count in user memory, we
3114 * check that it is less than the rule count
3115 * originally given (as the user buffer size),
3116 * which has been range-checked.
3117 */
3118 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3119 return -EFAULT;
3120 if (actual_rule_cnt < rule_cnt)
3121 rule_cnt = actual_rule_cnt;
3122 if (copy_in_user(&compat_rxnfc->rule_locs[0],
3123 &rxnfc->rule_locs[0],
3124 rule_cnt * sizeof(u32)))
3125 return -EFAULT;
3126 }
3127 }
3128
3129 return 0;
3130 }
3131
3132 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3133 {
3134 compat_uptr_t uptr32;
3135 struct ifreq ifr;
3136 void __user *saved;
3137 int err;
3138
3139 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3140 return -EFAULT;
3141
3142 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3143 return -EFAULT;
3144
3145 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3146 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3147
3148 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3149 if (!err) {
3150 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3151 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3152 err = -EFAULT;
3153 }
3154 return err;
3155 }
3156
3157 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3158 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3159 struct compat_ifreq __user *u_ifreq32)
3160 {
3161 struct ifreq ifreq;
3162 u32 data32;
3163
3164 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3165 return -EFAULT;
3166 if (get_user(data32, &u_ifreq32->ifr_data))
3167 return -EFAULT;
3168 ifreq.ifr_data = compat_ptr(data32);
3169
3170 return dev_ioctl(net, cmd, &ifreq, NULL);
3171 }
3172
3173 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3174 unsigned int cmd,
3175 struct compat_ifreq __user *uifr32)
3176 {
3177 struct ifreq __user *uifr;
3178 int err;
3179
3180 /* Handle the fact that while struct ifreq has the same *layout* on
3181 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3182 * which are handled elsewhere, it still has different *size* due to
3183 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3184 * resulting in struct ifreq being 32 and 40 bytes respectively).
3185 * As a result, if the struct happens to be at the end of a page and
3186 * the next page isn't readable/writable, we get a fault. To prevent
3187 * that, copy back and forth to the full size.
3188 */
3189
3190 uifr = compat_alloc_user_space(sizeof(*uifr));
3191 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3192 return -EFAULT;
3193
3194 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3195
3196 if (!err) {
3197 switch (cmd) {
3198 case SIOCGIFFLAGS:
3199 case SIOCGIFMETRIC:
3200 case SIOCGIFMTU:
3201 case SIOCGIFMEM:
3202 case SIOCGIFHWADDR:
3203 case SIOCGIFINDEX:
3204 case SIOCGIFADDR:
3205 case SIOCGIFBRDADDR:
3206 case SIOCGIFDSTADDR:
3207 case SIOCGIFNETMASK:
3208 case SIOCGIFPFLAGS:
3209 case SIOCGIFTXQLEN:
3210 case SIOCGMIIPHY:
3211 case SIOCGMIIREG:
3212 case SIOCGIFNAME:
3213 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3214 err = -EFAULT;
3215 break;
3216 }
3217 }
3218 return err;
3219 }
3220
3221 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3222 struct compat_ifreq __user *uifr32)
3223 {
3224 struct ifreq ifr;
3225 struct compat_ifmap __user *uifmap32;
3226 int err;
3227
3228 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3229 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3230 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3231 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3232 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3233 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3234 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3235 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3236 if (err)
3237 return -EFAULT;
3238
3239 err = dev_ioctl(net, cmd, &ifr, NULL);
3240
3241 if (cmd == SIOCGIFMAP && !err) {
3242 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3243 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3244 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3245 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3246 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3247 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3248 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3249 if (err)
3250 err = -EFAULT;
3251 }
3252 return err;
3253 }
3254
3255 struct rtentry32 {
3256 u32 rt_pad1;
3257 struct sockaddr rt_dst; /* target address */
3258 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3259 struct sockaddr rt_genmask; /* target network mask (IP) */
3260 unsigned short rt_flags;
3261 short rt_pad2;
3262 u32 rt_pad3;
3263 unsigned char rt_tos;
3264 unsigned char rt_class;
3265 short rt_pad4;
3266 short rt_metric; /* +1 for binary compatibility! */
3267 /* char * */ u32 rt_dev; /* forcing the device at add */
3268 u32 rt_mtu; /* per route MTU/Window */
3269 u32 rt_window; /* Window clamping */
3270 unsigned short rt_irtt; /* Initial RTT */
3271 };
3272
3273 struct in6_rtmsg32 {
3274 struct in6_addr rtmsg_dst;
3275 struct in6_addr rtmsg_src;
3276 struct in6_addr rtmsg_gateway;
3277 u32 rtmsg_type;
3278 u16 rtmsg_dst_len;
3279 u16 rtmsg_src_len;
3280 u32 rtmsg_metric;
3281 u32 rtmsg_info;
3282 u32 rtmsg_flags;
3283 s32 rtmsg_ifindex;
3284 };
3285
3286 static int routing_ioctl(struct net *net, struct socket *sock,
3287 unsigned int cmd, void __user *argp)
3288 {
3289 int ret;
3290 void *r = NULL;
3291 struct in6_rtmsg r6;
3292 struct rtentry r4;
3293 char devname[16];
3294 u32 rtdev;
3295 mm_segment_t old_fs = get_fs();
3296
3297 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3298 struct in6_rtmsg32 __user *ur6 = argp;
3299 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3300 3 * sizeof(struct in6_addr));
3301 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3302 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3303 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3304 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3305 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3306 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3307 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3308
3309 r = (void *) &r6;
3310 } else { /* ipv4 */
3311 struct rtentry32 __user *ur4 = argp;
3312 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3313 3 * sizeof(struct sockaddr));
3314 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3315 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3316 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3317 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3318 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3319 ret |= get_user(rtdev, &(ur4->rt_dev));
3320 if (rtdev) {
3321 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3322 r4.rt_dev = (char __user __force *)devname;
3323 devname[15] = 0;
3324 } else
3325 r4.rt_dev = NULL;
3326
3327 r = (void *) &r4;
3328 }
3329
3330 if (ret) {
3331 ret = -EFAULT;
3332 goto out;
3333 }
3334
3335 set_fs(KERNEL_DS);
3336 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3337 set_fs(old_fs);
3338
3339 out:
3340 return ret;
3341 }
3342
3343 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3344 * for some operations; this forces use of the newer bridge-utils that
3345 * use compatible ioctls
3346 */
3347 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3348 {
3349 compat_ulong_t tmp;
3350
3351 if (get_user(tmp, argp))
3352 return -EFAULT;
3353 if (tmp == BRCTL_GET_VERSION)
3354 return BRCTL_VERSION + 1;
3355 return -EINVAL;
3356 }
3357
3358 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3359 unsigned int cmd, unsigned long arg)
3360 {
3361 void __user *argp = compat_ptr(arg);
3362 struct sock *sk = sock->sk;
3363 struct net *net = sock_net(sk);
3364
3365 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3366 return compat_ifr_data_ioctl(net, cmd, argp);
3367
3368 switch (cmd) {
3369 case SIOCSIFBR:
3370 case SIOCGIFBR:
3371 return old_bridge_ioctl(argp);
3372 case SIOCGIFCONF:
3373 return compat_dev_ifconf(net, argp);
3374 case SIOCETHTOOL:
3375 return ethtool_ioctl(net, argp);
3376 case SIOCWANDEV:
3377 return compat_siocwandev(net, argp);
3378 case SIOCGIFMAP:
3379 case SIOCSIFMAP:
3380 return compat_sioc_ifmap(net, cmd, argp);
3381 case SIOCADDRT:
3382 case SIOCDELRT:
3383 return routing_ioctl(net, sock, cmd, argp);
3384 case SIOCGSTAMP_OLD:
3385 case SIOCGSTAMPNS_OLD:
3386 if (!sock->ops->gettstamp)
3387 return -ENOIOCTLCMD;
3388 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3389 !COMPAT_USE_64BIT_TIME);
3390
3391 case SIOCBONDSLAVEINFOQUERY:
3392 case SIOCBONDINFOQUERY:
3393 case SIOCSHWTSTAMP:
3394 case SIOCGHWTSTAMP:
3395 return compat_ifr_data_ioctl(net, cmd, argp);
3396
3397 case FIOSETOWN:
3398 case SIOCSPGRP:
3399 case FIOGETOWN:
3400 case SIOCGPGRP:
3401 case SIOCBRADDBR:
3402 case SIOCBRDELBR:
3403 case SIOCGIFVLAN:
3404 case SIOCSIFVLAN:
3405 case SIOCADDDLCI:
3406 case SIOCDELDLCI:
3407 case SIOCGSKNS:
3408 case SIOCGSTAMP_NEW:
3409 case SIOCGSTAMPNS_NEW:
3410 return sock_ioctl(file, cmd, arg);
3411
3412 case SIOCGIFFLAGS:
3413 case SIOCSIFFLAGS:
3414 case SIOCGIFMETRIC:
3415 case SIOCSIFMETRIC:
3416 case SIOCGIFMTU:
3417 case SIOCSIFMTU:
3418 case SIOCGIFMEM:
3419 case SIOCSIFMEM:
3420 case SIOCGIFHWADDR:
3421 case SIOCSIFHWADDR:
3422 case SIOCADDMULTI:
3423 case SIOCDELMULTI:
3424 case SIOCGIFINDEX:
3425 case SIOCGIFADDR:
3426 case SIOCSIFADDR:
3427 case SIOCSIFHWBROADCAST:
3428 case SIOCDIFADDR:
3429 case SIOCGIFBRDADDR:
3430 case SIOCSIFBRDADDR:
3431 case SIOCGIFDSTADDR:
3432 case SIOCSIFDSTADDR:
3433 case SIOCGIFNETMASK:
3434 case SIOCSIFNETMASK:
3435 case SIOCSIFPFLAGS:
3436 case SIOCGIFPFLAGS:
3437 case SIOCGIFTXQLEN:
3438 case SIOCSIFTXQLEN:
3439 case SIOCBRADDIF:
3440 case SIOCBRDELIF:
3441 case SIOCGIFNAME:
3442 case SIOCSIFNAME:
3443 case SIOCGMIIPHY:
3444 case SIOCGMIIREG:
3445 case SIOCSMIIREG:
3446 case SIOCBONDENSLAVE:
3447 case SIOCBONDRELEASE:
3448 case SIOCBONDSETHWADDR:
3449 case SIOCBONDCHANGEACTIVE:
3450 return compat_ifreq_ioctl(net, sock, cmd, argp);
3451
3452 case SIOCSARP:
3453 case SIOCGARP:
3454 case SIOCDARP:
3455 case SIOCATMARK:
3456 return sock_do_ioctl(net, sock, cmd, arg);
3457 }
3458
3459 return -ENOIOCTLCMD;
3460 }
3461
3462 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3463 unsigned long arg)
3464 {
3465 struct socket *sock = file->private_data;
3466 int ret = -ENOIOCTLCMD;
3467 struct sock *sk;
3468 struct net *net;
3469
3470 sk = sock->sk;
3471 net = sock_net(sk);
3472
3473 if (sock->ops->compat_ioctl)
3474 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3475
3476 if (ret == -ENOIOCTLCMD &&
3477 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3478 ret = compat_wext_handle_ioctl(net, cmd, arg);
3479
3480 if (ret == -ENOIOCTLCMD)
3481 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3482
3483 return ret;
3484 }
3485 #endif
3486
3487 /**
3488 * kernel_bind - bind an address to a socket (kernel space)
3489 * @sock: socket
3490 * @addr: address
3491 * @addrlen: length of address
3492 *
3493 * Returns 0 or an error.
3494 */
3495
3496 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3497 {
3498 return sock->ops->bind(sock, addr, addrlen);
3499 }
3500 EXPORT_SYMBOL(kernel_bind);
3501
3502 /**
3503 * kernel_listen - move socket to listening state (kernel space)
3504 * @sock: socket
3505 * @backlog: pending connections queue size
3506 *
3507 * Returns 0 or an error.
3508 */
3509
3510 int kernel_listen(struct socket *sock, int backlog)
3511 {
3512 return sock->ops->listen(sock, backlog);
3513 }
3514 EXPORT_SYMBOL(kernel_listen);
3515
3516 /**
3517 * kernel_accept - accept a connection (kernel space)
3518 * @sock: listening socket
3519 * @newsock: new connected socket
3520 * @flags: flags
3521 *
3522 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3523 * If it fails, @newsock is guaranteed to be %NULL.
3524 * Returns 0 or an error.
3525 */
3526
3527 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3528 {
3529 struct sock *sk = sock->sk;
3530 int err;
3531
3532 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3533 newsock);
3534 if (err < 0)
3535 goto done;
3536
3537 err = sock->ops->accept(sock, *newsock, flags, true);
3538 if (err < 0) {
3539 sock_release(*newsock);
3540 *newsock = NULL;
3541 goto done;
3542 }
3543
3544 (*newsock)->ops = sock->ops;
3545 __module_get((*newsock)->ops->owner);
3546
3547 done:
3548 return err;
3549 }
3550 EXPORT_SYMBOL(kernel_accept);
3551
3552 /**
3553 * kernel_connect - connect a socket (kernel space)
3554 * @sock: socket
3555 * @addr: address
3556 * @addrlen: address length
3557 * @flags: flags (O_NONBLOCK, ...)
3558 *
3559 * For datagram sockets, @addr is the addres to which datagrams are sent
3560 * by default, and the only address from which datagrams are received.
3561 * For stream sockets, attempts to connect to @addr.
3562 * Returns 0 or an error code.
3563 */
3564
3565 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3566 int flags)
3567 {
3568 return sock->ops->connect(sock, addr, addrlen, flags);
3569 }
3570 EXPORT_SYMBOL(kernel_connect);
3571
3572 /**
3573 * kernel_getsockname - get the address which the socket is bound (kernel space)
3574 * @sock: socket
3575 * @addr: address holder
3576 *
3577 * Fills the @addr pointer with the address which the socket is bound.
3578 * Returns 0 or an error code.
3579 */
3580
3581 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3582 {
3583 return sock->ops->getname(sock, addr, 0);
3584 }
3585 EXPORT_SYMBOL(kernel_getsockname);
3586
3587 /**
3588 * kernel_peername - get the address which the socket is connected (kernel space)
3589 * @sock: socket
3590 * @addr: address holder
3591 *
3592 * Fills the @addr pointer with the address which the socket is connected.
3593 * Returns 0 or an error code.
3594 */
3595
3596 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3597 {
3598 return sock->ops->getname(sock, addr, 1);
3599 }
3600 EXPORT_SYMBOL(kernel_getpeername);
3601
3602 /**
3603 * kernel_getsockopt - get a socket option (kernel space)
3604 * @sock: socket
3605 * @level: API level (SOL_SOCKET, ...)
3606 * @optname: option tag
3607 * @optval: option value
3608 * @optlen: option length
3609 *
3610 * Assigns the option length to @optlen.
3611 * Returns 0 or an error.
3612 */
3613
3614 int kernel_getsockopt(struct socket *sock, int level, int optname,
3615 char *optval, int *optlen)
3616 {
3617 mm_segment_t oldfs = get_fs();
3618 char __user *uoptval;
3619 int __user *uoptlen;
3620 int err;
3621
3622 uoptval = (char __user __force *) optval;
3623 uoptlen = (int __user __force *) optlen;
3624
3625 set_fs(KERNEL_DS);
3626 if (level == SOL_SOCKET)
3627 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3628 else
3629 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3630 uoptlen);
3631 set_fs(oldfs);
3632 return err;
3633 }
3634 EXPORT_SYMBOL(kernel_getsockopt);
3635
3636 /**
3637 * kernel_setsockopt - set a socket option (kernel space)
3638 * @sock: socket
3639 * @level: API level (SOL_SOCKET, ...)
3640 * @optname: option tag
3641 * @optval: option value
3642 * @optlen: option length
3643 *
3644 * Returns 0 or an error.
3645 */
3646
3647 int kernel_setsockopt(struct socket *sock, int level, int optname,
3648 char *optval, unsigned int optlen)
3649 {
3650 mm_segment_t oldfs = get_fs();
3651 char __user *uoptval;
3652 int err;
3653
3654 uoptval = (char __user __force *) optval;
3655
3656 set_fs(KERNEL_DS);
3657 if (level == SOL_SOCKET)
3658 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3659 else
3660 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3661 optlen);
3662 set_fs(oldfs);
3663 return err;
3664 }
3665 EXPORT_SYMBOL(kernel_setsockopt);
3666
3667 /**
3668 * kernel_sendpage - send a &page through a socket (kernel space)
3669 * @sock: socket
3670 * @page: page
3671 * @offset: page offset
3672 * @size: total size in bytes
3673 * @flags: flags (MSG_DONTWAIT, ...)
3674 *
3675 * Returns the total amount sent in bytes or an error.
3676 */
3677
3678 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3679 size_t size, int flags)
3680 {
3681 if (sock->ops->sendpage)
3682 return sock->ops->sendpage(sock, page, offset, size, flags);
3683
3684 return sock_no_sendpage(sock, page, offset, size, flags);
3685 }
3686 EXPORT_SYMBOL(kernel_sendpage);
3687
3688 /**
3689 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3690 * @sk: sock
3691 * @page: page
3692 * @offset: page offset
3693 * @size: total size in bytes
3694 * @flags: flags (MSG_DONTWAIT, ...)
3695 *
3696 * Returns the total amount sent in bytes or an error.
3697 * Caller must hold @sk.
3698 */
3699
3700 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3701 size_t size, int flags)
3702 {
3703 struct socket *sock = sk->sk_socket;
3704
3705 if (sock->ops->sendpage_locked)
3706 return sock->ops->sendpage_locked(sk, page, offset, size,
3707 flags);
3708
3709 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3710 }
3711 EXPORT_SYMBOL(kernel_sendpage_locked);
3712
3713 /**
3714 * kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3715 * @sock: socket
3716 * @how: connection part
3717 *
3718 * Returns 0 or an error.
3719 */
3720
3721 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3722 {
3723 return sock->ops->shutdown(sock, how);
3724 }
3725 EXPORT_SYMBOL(kernel_sock_shutdown);
3726
3727 /**
3728 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3729 * @sk: socket
3730 *
3731 * This routine returns the IP overhead imposed by a socket i.e.
3732 * the length of the underlying IP header, depending on whether
3733 * this is an IPv4 or IPv6 socket and the length from IP options turned
3734 * on at the socket. Assumes that the caller has a lock on the socket.
3735 */
3736
3737 u32 kernel_sock_ip_overhead(struct sock *sk)
3738 {
3739 struct inet_sock *inet;
3740 struct ip_options_rcu *opt;
3741 u32 overhead = 0;
3742 #if IS_ENABLED(CONFIG_IPV6)
3743 struct ipv6_pinfo *np;
3744 struct ipv6_txoptions *optv6 = NULL;
3745 #endif /* IS_ENABLED(CONFIG_IPV6) */
3746
3747 if (!sk)
3748 return overhead;
3749
3750 switch (sk->sk_family) {
3751 case AF_INET:
3752 inet = inet_sk(sk);
3753 overhead += sizeof(struct iphdr);
3754 opt = rcu_dereference_protected(inet->inet_opt,
3755 sock_owned_by_user(sk));
3756 if (opt)
3757 overhead += opt->opt.optlen;
3758 return overhead;
3759 #if IS_ENABLED(CONFIG_IPV6)
3760 case AF_INET6:
3761 np = inet6_sk(sk);
3762 overhead += sizeof(struct ipv6hdr);
3763 if (np)
3764 optv6 = rcu_dereference_protected(np->opt,
3765 sock_owned_by_user(sk));
3766 if (optv6)
3767 overhead += (optv6->opt_flen + optv6->opt_nflen);
3768 return overhead;
3769 #endif /* IS_ENABLED(CONFIG_IPV6) */
3770 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3771 return overhead;
3772 }
3773 }
3774 EXPORT_SYMBOL(kernel_sock_ip_overhead);