]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/socket.c
Merge tag 'gvt-fixes-2021-07-15' of https://github.com/intel/gvt-linux into drm-intel...
[mirror_ubuntu-jammy-kernel.git] / net / socket.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/ethtool.h>
56 #include <linux/mm.h>
57 #include <linux/socket.h>
58 #include <linux/file.h>
59 #include <linux/net.h>
60 #include <linux/interrupt.h>
61 #include <linux/thread_info.h>
62 #include <linux/rcupdate.h>
63 #include <linux/netdevice.h>
64 #include <linux/proc_fs.h>
65 #include <linux/seq_file.h>
66 #include <linux/mutex.h>
67 #include <linux/if_bridge.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107 #include <linux/ptp_clock_kernel.h>
108
109 #ifdef CONFIG_NET_RX_BUSY_POLL
110 unsigned int sysctl_net_busy_read __read_mostly;
111 unsigned int sysctl_net_busy_poll __read_mostly;
112 #endif
113
114 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
115 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
116 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
117
118 static int sock_close(struct inode *inode, struct file *file);
119 static __poll_t sock_poll(struct file *file,
120 struct poll_table_struct *wait);
121 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
122 #ifdef CONFIG_COMPAT
123 static long compat_sock_ioctl(struct file *file,
124 unsigned int cmd, unsigned long arg);
125 #endif
126 static int sock_fasync(int fd, struct file *filp, int on);
127 static ssize_t sock_sendpage(struct file *file, struct page *page,
128 int offset, size_t size, loff_t *ppos, int more);
129 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
130 struct pipe_inode_info *pipe, size_t len,
131 unsigned int flags);
132
133 #ifdef CONFIG_PROC_FS
134 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
135 {
136 struct socket *sock = f->private_data;
137
138 if (sock->ops->show_fdinfo)
139 sock->ops->show_fdinfo(m, sock);
140 }
141 #else
142 #define sock_show_fdinfo NULL
143 #endif
144
145 /*
146 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
147 * in the operation structures but are done directly via the socketcall() multiplexor.
148 */
149
150 static const struct file_operations socket_file_ops = {
151 .owner = THIS_MODULE,
152 .llseek = no_llseek,
153 .read_iter = sock_read_iter,
154 .write_iter = sock_write_iter,
155 .poll = sock_poll,
156 .unlocked_ioctl = sock_ioctl,
157 #ifdef CONFIG_COMPAT
158 .compat_ioctl = compat_sock_ioctl,
159 #endif
160 .mmap = sock_mmap,
161 .release = sock_close,
162 .fasync = sock_fasync,
163 .sendpage = sock_sendpage,
164 .splice_write = generic_splice_sendpage,
165 .splice_read = sock_splice_read,
166 .show_fdinfo = sock_show_fdinfo,
167 };
168
169 static const char * const pf_family_names[] = {
170 [PF_UNSPEC] = "PF_UNSPEC",
171 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
172 [PF_INET] = "PF_INET",
173 [PF_AX25] = "PF_AX25",
174 [PF_IPX] = "PF_IPX",
175 [PF_APPLETALK] = "PF_APPLETALK",
176 [PF_NETROM] = "PF_NETROM",
177 [PF_BRIDGE] = "PF_BRIDGE",
178 [PF_ATMPVC] = "PF_ATMPVC",
179 [PF_X25] = "PF_X25",
180 [PF_INET6] = "PF_INET6",
181 [PF_ROSE] = "PF_ROSE",
182 [PF_DECnet] = "PF_DECnet",
183 [PF_NETBEUI] = "PF_NETBEUI",
184 [PF_SECURITY] = "PF_SECURITY",
185 [PF_KEY] = "PF_KEY",
186 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
187 [PF_PACKET] = "PF_PACKET",
188 [PF_ASH] = "PF_ASH",
189 [PF_ECONET] = "PF_ECONET",
190 [PF_ATMSVC] = "PF_ATMSVC",
191 [PF_RDS] = "PF_RDS",
192 [PF_SNA] = "PF_SNA",
193 [PF_IRDA] = "PF_IRDA",
194 [PF_PPPOX] = "PF_PPPOX",
195 [PF_WANPIPE] = "PF_WANPIPE",
196 [PF_LLC] = "PF_LLC",
197 [PF_IB] = "PF_IB",
198 [PF_MPLS] = "PF_MPLS",
199 [PF_CAN] = "PF_CAN",
200 [PF_TIPC] = "PF_TIPC",
201 [PF_BLUETOOTH] = "PF_BLUETOOTH",
202 [PF_IUCV] = "PF_IUCV",
203 [PF_RXRPC] = "PF_RXRPC",
204 [PF_ISDN] = "PF_ISDN",
205 [PF_PHONET] = "PF_PHONET",
206 [PF_IEEE802154] = "PF_IEEE802154",
207 [PF_CAIF] = "PF_CAIF",
208 [PF_ALG] = "PF_ALG",
209 [PF_NFC] = "PF_NFC",
210 [PF_VSOCK] = "PF_VSOCK",
211 [PF_KCM] = "PF_KCM",
212 [PF_QIPCRTR] = "PF_QIPCRTR",
213 [PF_SMC] = "PF_SMC",
214 [PF_XDP] = "PF_XDP",
215 };
216
217 /*
218 * The protocol list. Each protocol is registered in here.
219 */
220
221 static DEFINE_SPINLOCK(net_family_lock);
222 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
223
224 /*
225 * Support routines.
226 * Move socket addresses back and forth across the kernel/user
227 * divide and look after the messy bits.
228 */
229
230 /**
231 * move_addr_to_kernel - copy a socket address into kernel space
232 * @uaddr: Address in user space
233 * @kaddr: Address in kernel space
234 * @ulen: Length in user space
235 *
236 * The address is copied into kernel space. If the provided address is
237 * too long an error code of -EINVAL is returned. If the copy gives
238 * invalid addresses -EFAULT is returned. On a success 0 is returned.
239 */
240
241 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
242 {
243 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
244 return -EINVAL;
245 if (ulen == 0)
246 return 0;
247 if (copy_from_user(kaddr, uaddr, ulen))
248 return -EFAULT;
249 return audit_sockaddr(ulen, kaddr);
250 }
251
252 /**
253 * move_addr_to_user - copy an address to user space
254 * @kaddr: kernel space address
255 * @klen: length of address in kernel
256 * @uaddr: user space address
257 * @ulen: pointer to user length field
258 *
259 * The value pointed to by ulen on entry is the buffer length available.
260 * This is overwritten with the buffer space used. -EINVAL is returned
261 * if an overlong buffer is specified or a negative buffer size. -EFAULT
262 * is returned if either the buffer or the length field are not
263 * accessible.
264 * After copying the data up to the limit the user specifies, the true
265 * length of the data is written over the length limit the user
266 * specified. Zero is returned for a success.
267 */
268
269 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
270 void __user *uaddr, int __user *ulen)
271 {
272 int err;
273 int len;
274
275 BUG_ON(klen > sizeof(struct sockaddr_storage));
276 err = get_user(len, ulen);
277 if (err)
278 return err;
279 if (len > klen)
280 len = klen;
281 if (len < 0)
282 return -EINVAL;
283 if (len) {
284 if (audit_sockaddr(klen, kaddr))
285 return -ENOMEM;
286 if (copy_to_user(uaddr, kaddr, len))
287 return -EFAULT;
288 }
289 /*
290 * "fromlen shall refer to the value before truncation.."
291 * 1003.1g
292 */
293 return __put_user(klen, ulen);
294 }
295
296 static struct kmem_cache *sock_inode_cachep __ro_after_init;
297
298 static struct inode *sock_alloc_inode(struct super_block *sb)
299 {
300 struct socket_alloc *ei;
301
302 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
303 if (!ei)
304 return NULL;
305 init_waitqueue_head(&ei->socket.wq.wait);
306 ei->socket.wq.fasync_list = NULL;
307 ei->socket.wq.flags = 0;
308
309 ei->socket.state = SS_UNCONNECTED;
310 ei->socket.flags = 0;
311 ei->socket.ops = NULL;
312 ei->socket.sk = NULL;
313 ei->socket.file = NULL;
314
315 return &ei->vfs_inode;
316 }
317
318 static void sock_free_inode(struct inode *inode)
319 {
320 struct socket_alloc *ei;
321
322 ei = container_of(inode, struct socket_alloc, vfs_inode);
323 kmem_cache_free(sock_inode_cachep, ei);
324 }
325
326 static void init_once(void *foo)
327 {
328 struct socket_alloc *ei = (struct socket_alloc *)foo;
329
330 inode_init_once(&ei->vfs_inode);
331 }
332
333 static void init_inodecache(void)
334 {
335 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
336 sizeof(struct socket_alloc),
337 0,
338 (SLAB_HWCACHE_ALIGN |
339 SLAB_RECLAIM_ACCOUNT |
340 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
341 init_once);
342 BUG_ON(sock_inode_cachep == NULL);
343 }
344
345 static const struct super_operations sockfs_ops = {
346 .alloc_inode = sock_alloc_inode,
347 .free_inode = sock_free_inode,
348 .statfs = simple_statfs,
349 };
350
351 /*
352 * sockfs_dname() is called from d_path().
353 */
354 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
355 {
356 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
357 d_inode(dentry)->i_ino);
358 }
359
360 static const struct dentry_operations sockfs_dentry_operations = {
361 .d_dname = sockfs_dname,
362 };
363
364 static int sockfs_xattr_get(const struct xattr_handler *handler,
365 struct dentry *dentry, struct inode *inode,
366 const char *suffix, void *value, size_t size)
367 {
368 if (value) {
369 if (dentry->d_name.len + 1 > size)
370 return -ERANGE;
371 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
372 }
373 return dentry->d_name.len + 1;
374 }
375
376 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
377 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
378 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
379
380 static const struct xattr_handler sockfs_xattr_handler = {
381 .name = XATTR_NAME_SOCKPROTONAME,
382 .get = sockfs_xattr_get,
383 };
384
385 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
386 struct user_namespace *mnt_userns,
387 struct dentry *dentry, struct inode *inode,
388 const char *suffix, const void *value,
389 size_t size, int flags)
390 {
391 /* Handled by LSM. */
392 return -EAGAIN;
393 }
394
395 static const struct xattr_handler sockfs_security_xattr_handler = {
396 .prefix = XATTR_SECURITY_PREFIX,
397 .set = sockfs_security_xattr_set,
398 };
399
400 static const struct xattr_handler *sockfs_xattr_handlers[] = {
401 &sockfs_xattr_handler,
402 &sockfs_security_xattr_handler,
403 NULL
404 };
405
406 static int sockfs_init_fs_context(struct fs_context *fc)
407 {
408 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
409 if (!ctx)
410 return -ENOMEM;
411 ctx->ops = &sockfs_ops;
412 ctx->dops = &sockfs_dentry_operations;
413 ctx->xattr = sockfs_xattr_handlers;
414 return 0;
415 }
416
417 static struct vfsmount *sock_mnt __read_mostly;
418
419 static struct file_system_type sock_fs_type = {
420 .name = "sockfs",
421 .init_fs_context = sockfs_init_fs_context,
422 .kill_sb = kill_anon_super,
423 };
424
425 /*
426 * Obtains the first available file descriptor and sets it up for use.
427 *
428 * These functions create file structures and maps them to fd space
429 * of the current process. On success it returns file descriptor
430 * and file struct implicitly stored in sock->file.
431 * Note that another thread may close file descriptor before we return
432 * from this function. We use the fact that now we do not refer
433 * to socket after mapping. If one day we will need it, this
434 * function will increment ref. count on file by 1.
435 *
436 * In any case returned fd MAY BE not valid!
437 * This race condition is unavoidable
438 * with shared fd spaces, we cannot solve it inside kernel,
439 * but we take care of internal coherence yet.
440 */
441
442 /**
443 * sock_alloc_file - Bind a &socket to a &file
444 * @sock: socket
445 * @flags: file status flags
446 * @dname: protocol name
447 *
448 * Returns the &file bound with @sock, implicitly storing it
449 * in sock->file. If dname is %NULL, sets to "".
450 * On failure the return is a ERR pointer (see linux/err.h).
451 * This function uses GFP_KERNEL internally.
452 */
453
454 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
455 {
456 struct file *file;
457
458 if (!dname)
459 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
460
461 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
462 O_RDWR | (flags & O_NONBLOCK),
463 &socket_file_ops);
464 if (IS_ERR(file)) {
465 sock_release(sock);
466 return file;
467 }
468
469 sock->file = file;
470 file->private_data = sock;
471 stream_open(SOCK_INODE(sock), file);
472 return file;
473 }
474 EXPORT_SYMBOL(sock_alloc_file);
475
476 static int sock_map_fd(struct socket *sock, int flags)
477 {
478 struct file *newfile;
479 int fd = get_unused_fd_flags(flags);
480 if (unlikely(fd < 0)) {
481 sock_release(sock);
482 return fd;
483 }
484
485 newfile = sock_alloc_file(sock, flags, NULL);
486 if (!IS_ERR(newfile)) {
487 fd_install(fd, newfile);
488 return fd;
489 }
490
491 put_unused_fd(fd);
492 return PTR_ERR(newfile);
493 }
494
495 /**
496 * sock_from_file - Return the &socket bounded to @file.
497 * @file: file
498 *
499 * On failure returns %NULL.
500 */
501
502 struct socket *sock_from_file(struct file *file)
503 {
504 if (file->f_op == &socket_file_ops)
505 return file->private_data; /* set in sock_map_fd */
506
507 return NULL;
508 }
509 EXPORT_SYMBOL(sock_from_file);
510
511 /**
512 * sockfd_lookup - Go from a file number to its socket slot
513 * @fd: file handle
514 * @err: pointer to an error code return
515 *
516 * The file handle passed in is locked and the socket it is bound
517 * to is returned. If an error occurs the err pointer is overwritten
518 * with a negative errno code and NULL is returned. The function checks
519 * for both invalid handles and passing a handle which is not a socket.
520 *
521 * On a success the socket object pointer is returned.
522 */
523
524 struct socket *sockfd_lookup(int fd, int *err)
525 {
526 struct file *file;
527 struct socket *sock;
528
529 file = fget(fd);
530 if (!file) {
531 *err = -EBADF;
532 return NULL;
533 }
534
535 sock = sock_from_file(file);
536 if (!sock) {
537 *err = -ENOTSOCK;
538 fput(file);
539 }
540 return sock;
541 }
542 EXPORT_SYMBOL(sockfd_lookup);
543
544 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
545 {
546 struct fd f = fdget(fd);
547 struct socket *sock;
548
549 *err = -EBADF;
550 if (f.file) {
551 sock = sock_from_file(f.file);
552 if (likely(sock)) {
553 *fput_needed = f.flags & FDPUT_FPUT;
554 return sock;
555 }
556 *err = -ENOTSOCK;
557 fdput(f);
558 }
559 return NULL;
560 }
561
562 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
563 size_t size)
564 {
565 ssize_t len;
566 ssize_t used = 0;
567
568 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
569 if (len < 0)
570 return len;
571 used += len;
572 if (buffer) {
573 if (size < used)
574 return -ERANGE;
575 buffer += len;
576 }
577
578 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
579 used += len;
580 if (buffer) {
581 if (size < used)
582 return -ERANGE;
583 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
584 buffer += len;
585 }
586
587 return used;
588 }
589
590 static int sockfs_setattr(struct user_namespace *mnt_userns,
591 struct dentry *dentry, struct iattr *iattr)
592 {
593 int err = simple_setattr(&init_user_ns, dentry, iattr);
594
595 if (!err && (iattr->ia_valid & ATTR_UID)) {
596 struct socket *sock = SOCKET_I(d_inode(dentry));
597
598 if (sock->sk)
599 sock->sk->sk_uid = iattr->ia_uid;
600 else
601 err = -ENOENT;
602 }
603
604 return err;
605 }
606
607 static const struct inode_operations sockfs_inode_ops = {
608 .listxattr = sockfs_listxattr,
609 .setattr = sockfs_setattr,
610 };
611
612 /**
613 * sock_alloc - allocate a socket
614 *
615 * Allocate a new inode and socket object. The two are bound together
616 * and initialised. The socket is then returned. If we are out of inodes
617 * NULL is returned. This functions uses GFP_KERNEL internally.
618 */
619
620 struct socket *sock_alloc(void)
621 {
622 struct inode *inode;
623 struct socket *sock;
624
625 inode = new_inode_pseudo(sock_mnt->mnt_sb);
626 if (!inode)
627 return NULL;
628
629 sock = SOCKET_I(inode);
630
631 inode->i_ino = get_next_ino();
632 inode->i_mode = S_IFSOCK | S_IRWXUGO;
633 inode->i_uid = current_fsuid();
634 inode->i_gid = current_fsgid();
635 inode->i_op = &sockfs_inode_ops;
636
637 return sock;
638 }
639 EXPORT_SYMBOL(sock_alloc);
640
641 static void __sock_release(struct socket *sock, struct inode *inode)
642 {
643 if (sock->ops) {
644 struct module *owner = sock->ops->owner;
645
646 if (inode)
647 inode_lock(inode);
648 sock->ops->release(sock);
649 sock->sk = NULL;
650 if (inode)
651 inode_unlock(inode);
652 sock->ops = NULL;
653 module_put(owner);
654 }
655
656 if (sock->wq.fasync_list)
657 pr_err("%s: fasync list not empty!\n", __func__);
658
659 if (!sock->file) {
660 iput(SOCK_INODE(sock));
661 return;
662 }
663 sock->file = NULL;
664 }
665
666 /**
667 * sock_release - close a socket
668 * @sock: socket to close
669 *
670 * The socket is released from the protocol stack if it has a release
671 * callback, and the inode is then released if the socket is bound to
672 * an inode not a file.
673 */
674 void sock_release(struct socket *sock)
675 {
676 __sock_release(sock, NULL);
677 }
678 EXPORT_SYMBOL(sock_release);
679
680 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
681 {
682 u8 flags = *tx_flags;
683
684 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
685 flags |= SKBTX_HW_TSTAMP;
686
687 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
688 flags |= SKBTX_SW_TSTAMP;
689
690 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
691 flags |= SKBTX_SCHED_TSTAMP;
692
693 *tx_flags = flags;
694 }
695 EXPORT_SYMBOL(__sock_tx_timestamp);
696
697 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
698 size_t));
699 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
700 size_t));
701 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
702 {
703 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
704 inet_sendmsg, sock, msg,
705 msg_data_left(msg));
706 BUG_ON(ret == -EIOCBQUEUED);
707 return ret;
708 }
709
710 /**
711 * sock_sendmsg - send a message through @sock
712 * @sock: socket
713 * @msg: message to send
714 *
715 * Sends @msg through @sock, passing through LSM.
716 * Returns the number of bytes sent, or an error code.
717 */
718 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
719 {
720 int err = security_socket_sendmsg(sock, msg,
721 msg_data_left(msg));
722
723 return err ?: sock_sendmsg_nosec(sock, msg);
724 }
725 EXPORT_SYMBOL(sock_sendmsg);
726
727 /**
728 * kernel_sendmsg - send a message through @sock (kernel-space)
729 * @sock: socket
730 * @msg: message header
731 * @vec: kernel vec
732 * @num: vec array length
733 * @size: total message data size
734 *
735 * Builds the message data with @vec and sends it through @sock.
736 * Returns the number of bytes sent, or an error code.
737 */
738
739 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
740 struct kvec *vec, size_t num, size_t size)
741 {
742 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
743 return sock_sendmsg(sock, msg);
744 }
745 EXPORT_SYMBOL(kernel_sendmsg);
746
747 /**
748 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
749 * @sk: sock
750 * @msg: message header
751 * @vec: output s/g array
752 * @num: output s/g array length
753 * @size: total message data size
754 *
755 * Builds the message data with @vec and sends it through @sock.
756 * Returns the number of bytes sent, or an error code.
757 * Caller must hold @sk.
758 */
759
760 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
761 struct kvec *vec, size_t num, size_t size)
762 {
763 struct socket *sock = sk->sk_socket;
764
765 if (!sock->ops->sendmsg_locked)
766 return sock_no_sendmsg_locked(sk, msg, size);
767
768 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
769
770 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
771 }
772 EXPORT_SYMBOL(kernel_sendmsg_locked);
773
774 static bool skb_is_err_queue(const struct sk_buff *skb)
775 {
776 /* pkt_type of skbs enqueued on the error queue are set to
777 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
778 * in recvmsg, since skbs received on a local socket will never
779 * have a pkt_type of PACKET_OUTGOING.
780 */
781 return skb->pkt_type == PACKET_OUTGOING;
782 }
783
784 /* On transmit, software and hardware timestamps are returned independently.
785 * As the two skb clones share the hardware timestamp, which may be updated
786 * before the software timestamp is received, a hardware TX timestamp may be
787 * returned only if there is no software TX timestamp. Ignore false software
788 * timestamps, which may be made in the __sock_recv_timestamp() call when the
789 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
790 * hardware timestamp.
791 */
792 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
793 {
794 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
795 }
796
797 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
798 {
799 struct scm_ts_pktinfo ts_pktinfo;
800 struct net_device *orig_dev;
801
802 if (!skb_mac_header_was_set(skb))
803 return;
804
805 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
806
807 rcu_read_lock();
808 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
809 if (orig_dev)
810 ts_pktinfo.if_index = orig_dev->ifindex;
811 rcu_read_unlock();
812
813 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
814 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
815 sizeof(ts_pktinfo), &ts_pktinfo);
816 }
817
818 /*
819 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
820 */
821 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
822 struct sk_buff *skb)
823 {
824 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
825 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
826 struct scm_timestamping_internal tss;
827
828 int empty = 1, false_tstamp = 0;
829 struct skb_shared_hwtstamps *shhwtstamps =
830 skb_hwtstamps(skb);
831
832 /* Race occurred between timestamp enabling and packet
833 receiving. Fill in the current time for now. */
834 if (need_software_tstamp && skb->tstamp == 0) {
835 __net_timestamp(skb);
836 false_tstamp = 1;
837 }
838
839 if (need_software_tstamp) {
840 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
841 if (new_tstamp) {
842 struct __kernel_sock_timeval tv;
843
844 skb_get_new_timestamp(skb, &tv);
845 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
846 sizeof(tv), &tv);
847 } else {
848 struct __kernel_old_timeval tv;
849
850 skb_get_timestamp(skb, &tv);
851 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
852 sizeof(tv), &tv);
853 }
854 } else {
855 if (new_tstamp) {
856 struct __kernel_timespec ts;
857
858 skb_get_new_timestampns(skb, &ts);
859 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
860 sizeof(ts), &ts);
861 } else {
862 struct __kernel_old_timespec ts;
863
864 skb_get_timestampns(skb, &ts);
865 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
866 sizeof(ts), &ts);
867 }
868 }
869 }
870
871 memset(&tss, 0, sizeof(tss));
872 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
873 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
874 empty = 0;
875 if (shhwtstamps &&
876 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
877 !skb_is_swtx_tstamp(skb, false_tstamp)) {
878 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
879 ptp_convert_timestamp(shhwtstamps, sk->sk_bind_phc);
880
881 if (ktime_to_timespec64_cond(shhwtstamps->hwtstamp,
882 tss.ts + 2)) {
883 empty = 0;
884
885 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
886 !skb_is_err_queue(skb))
887 put_ts_pktinfo(msg, skb);
888 }
889 }
890 if (!empty) {
891 if (sock_flag(sk, SOCK_TSTAMP_NEW))
892 put_cmsg_scm_timestamping64(msg, &tss);
893 else
894 put_cmsg_scm_timestamping(msg, &tss);
895
896 if (skb_is_err_queue(skb) && skb->len &&
897 SKB_EXT_ERR(skb)->opt_stats)
898 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
899 skb->len, skb->data);
900 }
901 }
902 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
903
904 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
905 struct sk_buff *skb)
906 {
907 int ack;
908
909 if (!sock_flag(sk, SOCK_WIFI_STATUS))
910 return;
911 if (!skb->wifi_acked_valid)
912 return;
913
914 ack = skb->wifi_acked;
915
916 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
917 }
918 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
919
920 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
921 struct sk_buff *skb)
922 {
923 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
924 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
925 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
926 }
927
928 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
929 struct sk_buff *skb)
930 {
931 sock_recv_timestamp(msg, sk, skb);
932 sock_recv_drops(msg, sk, skb);
933 }
934 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
935
936 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
937 size_t, int));
938 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
939 size_t, int));
940 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
941 int flags)
942 {
943 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
944 inet_recvmsg, sock, msg, msg_data_left(msg),
945 flags);
946 }
947
948 /**
949 * sock_recvmsg - receive a message from @sock
950 * @sock: socket
951 * @msg: message to receive
952 * @flags: message flags
953 *
954 * Receives @msg from @sock, passing through LSM. Returns the total number
955 * of bytes received, or an error.
956 */
957 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
958 {
959 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
960
961 return err ?: sock_recvmsg_nosec(sock, msg, flags);
962 }
963 EXPORT_SYMBOL(sock_recvmsg);
964
965 /**
966 * kernel_recvmsg - Receive a message from a socket (kernel space)
967 * @sock: The socket to receive the message from
968 * @msg: Received message
969 * @vec: Input s/g array for message data
970 * @num: Size of input s/g array
971 * @size: Number of bytes to read
972 * @flags: Message flags (MSG_DONTWAIT, etc...)
973 *
974 * On return the msg structure contains the scatter/gather array passed in the
975 * vec argument. The array is modified so that it consists of the unfilled
976 * portion of the original array.
977 *
978 * The returned value is the total number of bytes received, or an error.
979 */
980
981 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
982 struct kvec *vec, size_t num, size_t size, int flags)
983 {
984 msg->msg_control_is_user = false;
985 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
986 return sock_recvmsg(sock, msg, flags);
987 }
988 EXPORT_SYMBOL(kernel_recvmsg);
989
990 static ssize_t sock_sendpage(struct file *file, struct page *page,
991 int offset, size_t size, loff_t *ppos, int more)
992 {
993 struct socket *sock;
994 int flags;
995
996 sock = file->private_data;
997
998 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
999 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1000 flags |= more;
1001
1002 return kernel_sendpage(sock, page, offset, size, flags);
1003 }
1004
1005 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1006 struct pipe_inode_info *pipe, size_t len,
1007 unsigned int flags)
1008 {
1009 struct socket *sock = file->private_data;
1010
1011 if (unlikely(!sock->ops->splice_read))
1012 return generic_file_splice_read(file, ppos, pipe, len, flags);
1013
1014 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1015 }
1016
1017 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1018 {
1019 struct file *file = iocb->ki_filp;
1020 struct socket *sock = file->private_data;
1021 struct msghdr msg = {.msg_iter = *to,
1022 .msg_iocb = iocb};
1023 ssize_t res;
1024
1025 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1026 msg.msg_flags = MSG_DONTWAIT;
1027
1028 if (iocb->ki_pos != 0)
1029 return -ESPIPE;
1030
1031 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1032 return 0;
1033
1034 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1035 *to = msg.msg_iter;
1036 return res;
1037 }
1038
1039 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1040 {
1041 struct file *file = iocb->ki_filp;
1042 struct socket *sock = file->private_data;
1043 struct msghdr msg = {.msg_iter = *from,
1044 .msg_iocb = iocb};
1045 ssize_t res;
1046
1047 if (iocb->ki_pos != 0)
1048 return -ESPIPE;
1049
1050 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1051 msg.msg_flags = MSG_DONTWAIT;
1052
1053 if (sock->type == SOCK_SEQPACKET)
1054 msg.msg_flags |= MSG_EOR;
1055
1056 res = sock_sendmsg(sock, &msg);
1057 *from = msg.msg_iter;
1058 return res;
1059 }
1060
1061 /*
1062 * Atomic setting of ioctl hooks to avoid race
1063 * with module unload.
1064 */
1065
1066 static DEFINE_MUTEX(br_ioctl_mutex);
1067 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1068
1069 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1070 {
1071 mutex_lock(&br_ioctl_mutex);
1072 br_ioctl_hook = hook;
1073 mutex_unlock(&br_ioctl_mutex);
1074 }
1075 EXPORT_SYMBOL(brioctl_set);
1076
1077 static DEFINE_MUTEX(vlan_ioctl_mutex);
1078 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1079
1080 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1081 {
1082 mutex_lock(&vlan_ioctl_mutex);
1083 vlan_ioctl_hook = hook;
1084 mutex_unlock(&vlan_ioctl_mutex);
1085 }
1086 EXPORT_SYMBOL(vlan_ioctl_set);
1087
1088 static long sock_do_ioctl(struct net *net, struct socket *sock,
1089 unsigned int cmd, unsigned long arg)
1090 {
1091 int err;
1092 void __user *argp = (void __user *)arg;
1093
1094 err = sock->ops->ioctl(sock, cmd, arg);
1095
1096 /*
1097 * If this ioctl is unknown try to hand it down
1098 * to the NIC driver.
1099 */
1100 if (err != -ENOIOCTLCMD)
1101 return err;
1102
1103 if (cmd == SIOCGIFCONF) {
1104 struct ifconf ifc;
1105 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1106 return -EFAULT;
1107 rtnl_lock();
1108 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1109 rtnl_unlock();
1110 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1111 err = -EFAULT;
1112 } else {
1113 struct ifreq ifr;
1114 bool need_copyout;
1115 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1116 return -EFAULT;
1117 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1118 if (!err && need_copyout)
1119 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1120 return -EFAULT;
1121 }
1122 return err;
1123 }
1124
1125 /*
1126 * With an ioctl, arg may well be a user mode pointer, but we don't know
1127 * what to do with it - that's up to the protocol still.
1128 */
1129
1130 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1131 {
1132 struct socket *sock;
1133 struct sock *sk;
1134 void __user *argp = (void __user *)arg;
1135 int pid, err;
1136 struct net *net;
1137
1138 sock = file->private_data;
1139 sk = sock->sk;
1140 net = sock_net(sk);
1141 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1142 struct ifreq ifr;
1143 bool need_copyout;
1144 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1145 return -EFAULT;
1146 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1147 if (!err && need_copyout)
1148 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1149 return -EFAULT;
1150 } else
1151 #ifdef CONFIG_WEXT_CORE
1152 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1153 err = wext_handle_ioctl(net, cmd, argp);
1154 } else
1155 #endif
1156 switch (cmd) {
1157 case FIOSETOWN:
1158 case SIOCSPGRP:
1159 err = -EFAULT;
1160 if (get_user(pid, (int __user *)argp))
1161 break;
1162 err = f_setown(sock->file, pid, 1);
1163 break;
1164 case FIOGETOWN:
1165 case SIOCGPGRP:
1166 err = put_user(f_getown(sock->file),
1167 (int __user *)argp);
1168 break;
1169 case SIOCGIFBR:
1170 case SIOCSIFBR:
1171 case SIOCBRADDBR:
1172 case SIOCBRDELBR:
1173 err = -ENOPKG;
1174 if (!br_ioctl_hook)
1175 request_module("bridge");
1176
1177 mutex_lock(&br_ioctl_mutex);
1178 if (br_ioctl_hook)
1179 err = br_ioctl_hook(net, cmd, argp);
1180 mutex_unlock(&br_ioctl_mutex);
1181 break;
1182 case SIOCGIFVLAN:
1183 case SIOCSIFVLAN:
1184 err = -ENOPKG;
1185 if (!vlan_ioctl_hook)
1186 request_module("8021q");
1187
1188 mutex_lock(&vlan_ioctl_mutex);
1189 if (vlan_ioctl_hook)
1190 err = vlan_ioctl_hook(net, argp);
1191 mutex_unlock(&vlan_ioctl_mutex);
1192 break;
1193 case SIOCGSKNS:
1194 err = -EPERM;
1195 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1196 break;
1197
1198 err = open_related_ns(&net->ns, get_net_ns);
1199 break;
1200 case SIOCGSTAMP_OLD:
1201 case SIOCGSTAMPNS_OLD:
1202 if (!sock->ops->gettstamp) {
1203 err = -ENOIOCTLCMD;
1204 break;
1205 }
1206 err = sock->ops->gettstamp(sock, argp,
1207 cmd == SIOCGSTAMP_OLD,
1208 !IS_ENABLED(CONFIG_64BIT));
1209 break;
1210 case SIOCGSTAMP_NEW:
1211 case SIOCGSTAMPNS_NEW:
1212 if (!sock->ops->gettstamp) {
1213 err = -ENOIOCTLCMD;
1214 break;
1215 }
1216 err = sock->ops->gettstamp(sock, argp,
1217 cmd == SIOCGSTAMP_NEW,
1218 false);
1219 break;
1220 default:
1221 err = sock_do_ioctl(net, sock, cmd, arg);
1222 break;
1223 }
1224 return err;
1225 }
1226
1227 /**
1228 * sock_create_lite - creates a socket
1229 * @family: protocol family (AF_INET, ...)
1230 * @type: communication type (SOCK_STREAM, ...)
1231 * @protocol: protocol (0, ...)
1232 * @res: new socket
1233 *
1234 * Creates a new socket and assigns it to @res, passing through LSM.
1235 * The new socket initialization is not complete, see kernel_accept().
1236 * Returns 0 or an error. On failure @res is set to %NULL.
1237 * This function internally uses GFP_KERNEL.
1238 */
1239
1240 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1241 {
1242 int err;
1243 struct socket *sock = NULL;
1244
1245 err = security_socket_create(family, type, protocol, 1);
1246 if (err)
1247 goto out;
1248
1249 sock = sock_alloc();
1250 if (!sock) {
1251 err = -ENOMEM;
1252 goto out;
1253 }
1254
1255 sock->type = type;
1256 err = security_socket_post_create(sock, family, type, protocol, 1);
1257 if (err)
1258 goto out_release;
1259
1260 out:
1261 *res = sock;
1262 return err;
1263 out_release:
1264 sock_release(sock);
1265 sock = NULL;
1266 goto out;
1267 }
1268 EXPORT_SYMBOL(sock_create_lite);
1269
1270 /* No kernel lock held - perfect */
1271 static __poll_t sock_poll(struct file *file, poll_table *wait)
1272 {
1273 struct socket *sock = file->private_data;
1274 __poll_t events = poll_requested_events(wait), flag = 0;
1275
1276 if (!sock->ops->poll)
1277 return 0;
1278
1279 if (sk_can_busy_loop(sock->sk)) {
1280 /* poll once if requested by the syscall */
1281 if (events & POLL_BUSY_LOOP)
1282 sk_busy_loop(sock->sk, 1);
1283
1284 /* if this socket can poll_ll, tell the system call */
1285 flag = POLL_BUSY_LOOP;
1286 }
1287
1288 return sock->ops->poll(file, sock, wait) | flag;
1289 }
1290
1291 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1292 {
1293 struct socket *sock = file->private_data;
1294
1295 return sock->ops->mmap(file, sock, vma);
1296 }
1297
1298 static int sock_close(struct inode *inode, struct file *filp)
1299 {
1300 __sock_release(SOCKET_I(inode), inode);
1301 return 0;
1302 }
1303
1304 /*
1305 * Update the socket async list
1306 *
1307 * Fasync_list locking strategy.
1308 *
1309 * 1. fasync_list is modified only under process context socket lock
1310 * i.e. under semaphore.
1311 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1312 * or under socket lock
1313 */
1314
1315 static int sock_fasync(int fd, struct file *filp, int on)
1316 {
1317 struct socket *sock = filp->private_data;
1318 struct sock *sk = sock->sk;
1319 struct socket_wq *wq = &sock->wq;
1320
1321 if (sk == NULL)
1322 return -EINVAL;
1323
1324 lock_sock(sk);
1325 fasync_helper(fd, filp, on, &wq->fasync_list);
1326
1327 if (!wq->fasync_list)
1328 sock_reset_flag(sk, SOCK_FASYNC);
1329 else
1330 sock_set_flag(sk, SOCK_FASYNC);
1331
1332 release_sock(sk);
1333 return 0;
1334 }
1335
1336 /* This function may be called only under rcu_lock */
1337
1338 int sock_wake_async(struct socket_wq *wq, int how, int band)
1339 {
1340 if (!wq || !wq->fasync_list)
1341 return -1;
1342
1343 switch (how) {
1344 case SOCK_WAKE_WAITD:
1345 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1346 break;
1347 goto call_kill;
1348 case SOCK_WAKE_SPACE:
1349 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1350 break;
1351 fallthrough;
1352 case SOCK_WAKE_IO:
1353 call_kill:
1354 kill_fasync(&wq->fasync_list, SIGIO, band);
1355 break;
1356 case SOCK_WAKE_URG:
1357 kill_fasync(&wq->fasync_list, SIGURG, band);
1358 }
1359
1360 return 0;
1361 }
1362 EXPORT_SYMBOL(sock_wake_async);
1363
1364 /**
1365 * __sock_create - creates a socket
1366 * @net: net namespace
1367 * @family: protocol family (AF_INET, ...)
1368 * @type: communication type (SOCK_STREAM, ...)
1369 * @protocol: protocol (0, ...)
1370 * @res: new socket
1371 * @kern: boolean for kernel space sockets
1372 *
1373 * Creates a new socket and assigns it to @res, passing through LSM.
1374 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1375 * be set to true if the socket resides in kernel space.
1376 * This function internally uses GFP_KERNEL.
1377 */
1378
1379 int __sock_create(struct net *net, int family, int type, int protocol,
1380 struct socket **res, int kern)
1381 {
1382 int err;
1383 struct socket *sock;
1384 const struct net_proto_family *pf;
1385
1386 /*
1387 * Check protocol is in range
1388 */
1389 if (family < 0 || family >= NPROTO)
1390 return -EAFNOSUPPORT;
1391 if (type < 0 || type >= SOCK_MAX)
1392 return -EINVAL;
1393
1394 /* Compatibility.
1395
1396 This uglymoron is moved from INET layer to here to avoid
1397 deadlock in module load.
1398 */
1399 if (family == PF_INET && type == SOCK_PACKET) {
1400 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1401 current->comm);
1402 family = PF_PACKET;
1403 }
1404
1405 err = security_socket_create(family, type, protocol, kern);
1406 if (err)
1407 return err;
1408
1409 /*
1410 * Allocate the socket and allow the family to set things up. if
1411 * the protocol is 0, the family is instructed to select an appropriate
1412 * default.
1413 */
1414 sock = sock_alloc();
1415 if (!sock) {
1416 net_warn_ratelimited("socket: no more sockets\n");
1417 return -ENFILE; /* Not exactly a match, but its the
1418 closest posix thing */
1419 }
1420
1421 sock->type = type;
1422
1423 #ifdef CONFIG_MODULES
1424 /* Attempt to load a protocol module if the find failed.
1425 *
1426 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1427 * requested real, full-featured networking support upon configuration.
1428 * Otherwise module support will break!
1429 */
1430 if (rcu_access_pointer(net_families[family]) == NULL)
1431 request_module("net-pf-%d", family);
1432 #endif
1433
1434 rcu_read_lock();
1435 pf = rcu_dereference(net_families[family]);
1436 err = -EAFNOSUPPORT;
1437 if (!pf)
1438 goto out_release;
1439
1440 /*
1441 * We will call the ->create function, that possibly is in a loadable
1442 * module, so we have to bump that loadable module refcnt first.
1443 */
1444 if (!try_module_get(pf->owner))
1445 goto out_release;
1446
1447 /* Now protected by module ref count */
1448 rcu_read_unlock();
1449
1450 err = pf->create(net, sock, protocol, kern);
1451 if (err < 0)
1452 goto out_module_put;
1453
1454 /*
1455 * Now to bump the refcnt of the [loadable] module that owns this
1456 * socket at sock_release time we decrement its refcnt.
1457 */
1458 if (!try_module_get(sock->ops->owner))
1459 goto out_module_busy;
1460
1461 /*
1462 * Now that we're done with the ->create function, the [loadable]
1463 * module can have its refcnt decremented
1464 */
1465 module_put(pf->owner);
1466 err = security_socket_post_create(sock, family, type, protocol, kern);
1467 if (err)
1468 goto out_sock_release;
1469 *res = sock;
1470
1471 return 0;
1472
1473 out_module_busy:
1474 err = -EAFNOSUPPORT;
1475 out_module_put:
1476 sock->ops = NULL;
1477 module_put(pf->owner);
1478 out_sock_release:
1479 sock_release(sock);
1480 return err;
1481
1482 out_release:
1483 rcu_read_unlock();
1484 goto out_sock_release;
1485 }
1486 EXPORT_SYMBOL(__sock_create);
1487
1488 /**
1489 * sock_create - creates a socket
1490 * @family: protocol family (AF_INET, ...)
1491 * @type: communication type (SOCK_STREAM, ...)
1492 * @protocol: protocol (0, ...)
1493 * @res: new socket
1494 *
1495 * A wrapper around __sock_create().
1496 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1497 */
1498
1499 int sock_create(int family, int type, int protocol, struct socket **res)
1500 {
1501 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1502 }
1503 EXPORT_SYMBOL(sock_create);
1504
1505 /**
1506 * sock_create_kern - creates a socket (kernel space)
1507 * @net: net namespace
1508 * @family: protocol family (AF_INET, ...)
1509 * @type: communication type (SOCK_STREAM, ...)
1510 * @protocol: protocol (0, ...)
1511 * @res: new socket
1512 *
1513 * A wrapper around __sock_create().
1514 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1515 */
1516
1517 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1518 {
1519 return __sock_create(net, family, type, protocol, res, 1);
1520 }
1521 EXPORT_SYMBOL(sock_create_kern);
1522
1523 int __sys_socket(int family, int type, int protocol)
1524 {
1525 int retval;
1526 struct socket *sock;
1527 int flags;
1528
1529 /* Check the SOCK_* constants for consistency. */
1530 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1531 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1532 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1533 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1534
1535 flags = type & ~SOCK_TYPE_MASK;
1536 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1537 return -EINVAL;
1538 type &= SOCK_TYPE_MASK;
1539
1540 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1541 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1542
1543 retval = sock_create(family, type, protocol, &sock);
1544 if (retval < 0)
1545 return retval;
1546
1547 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1548 }
1549
1550 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1551 {
1552 return __sys_socket(family, type, protocol);
1553 }
1554
1555 /*
1556 * Create a pair of connected sockets.
1557 */
1558
1559 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1560 {
1561 struct socket *sock1, *sock2;
1562 int fd1, fd2, err;
1563 struct file *newfile1, *newfile2;
1564 int flags;
1565
1566 flags = type & ~SOCK_TYPE_MASK;
1567 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1568 return -EINVAL;
1569 type &= SOCK_TYPE_MASK;
1570
1571 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1572 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1573
1574 /*
1575 * reserve descriptors and make sure we won't fail
1576 * to return them to userland.
1577 */
1578 fd1 = get_unused_fd_flags(flags);
1579 if (unlikely(fd1 < 0))
1580 return fd1;
1581
1582 fd2 = get_unused_fd_flags(flags);
1583 if (unlikely(fd2 < 0)) {
1584 put_unused_fd(fd1);
1585 return fd2;
1586 }
1587
1588 err = put_user(fd1, &usockvec[0]);
1589 if (err)
1590 goto out;
1591
1592 err = put_user(fd2, &usockvec[1]);
1593 if (err)
1594 goto out;
1595
1596 /*
1597 * Obtain the first socket and check if the underlying protocol
1598 * supports the socketpair call.
1599 */
1600
1601 err = sock_create(family, type, protocol, &sock1);
1602 if (unlikely(err < 0))
1603 goto out;
1604
1605 err = sock_create(family, type, protocol, &sock2);
1606 if (unlikely(err < 0)) {
1607 sock_release(sock1);
1608 goto out;
1609 }
1610
1611 err = security_socket_socketpair(sock1, sock2);
1612 if (unlikely(err)) {
1613 sock_release(sock2);
1614 sock_release(sock1);
1615 goto out;
1616 }
1617
1618 err = sock1->ops->socketpair(sock1, sock2);
1619 if (unlikely(err < 0)) {
1620 sock_release(sock2);
1621 sock_release(sock1);
1622 goto out;
1623 }
1624
1625 newfile1 = sock_alloc_file(sock1, flags, NULL);
1626 if (IS_ERR(newfile1)) {
1627 err = PTR_ERR(newfile1);
1628 sock_release(sock2);
1629 goto out;
1630 }
1631
1632 newfile2 = sock_alloc_file(sock2, flags, NULL);
1633 if (IS_ERR(newfile2)) {
1634 err = PTR_ERR(newfile2);
1635 fput(newfile1);
1636 goto out;
1637 }
1638
1639 audit_fd_pair(fd1, fd2);
1640
1641 fd_install(fd1, newfile1);
1642 fd_install(fd2, newfile2);
1643 return 0;
1644
1645 out:
1646 put_unused_fd(fd2);
1647 put_unused_fd(fd1);
1648 return err;
1649 }
1650
1651 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1652 int __user *, usockvec)
1653 {
1654 return __sys_socketpair(family, type, protocol, usockvec);
1655 }
1656
1657 /*
1658 * Bind a name to a socket. Nothing much to do here since it's
1659 * the protocol's responsibility to handle the local address.
1660 *
1661 * We move the socket address to kernel space before we call
1662 * the protocol layer (having also checked the address is ok).
1663 */
1664
1665 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1666 {
1667 struct socket *sock;
1668 struct sockaddr_storage address;
1669 int err, fput_needed;
1670
1671 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1672 if (sock) {
1673 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1674 if (!err) {
1675 err = security_socket_bind(sock,
1676 (struct sockaddr *)&address,
1677 addrlen);
1678 if (!err)
1679 err = sock->ops->bind(sock,
1680 (struct sockaddr *)
1681 &address, addrlen);
1682 }
1683 fput_light(sock->file, fput_needed);
1684 }
1685 return err;
1686 }
1687
1688 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1689 {
1690 return __sys_bind(fd, umyaddr, addrlen);
1691 }
1692
1693 /*
1694 * Perform a listen. Basically, we allow the protocol to do anything
1695 * necessary for a listen, and if that works, we mark the socket as
1696 * ready for listening.
1697 */
1698
1699 int __sys_listen(int fd, int backlog)
1700 {
1701 struct socket *sock;
1702 int err, fput_needed;
1703 int somaxconn;
1704
1705 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1706 if (sock) {
1707 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1708 if ((unsigned int)backlog > somaxconn)
1709 backlog = somaxconn;
1710
1711 err = security_socket_listen(sock, backlog);
1712 if (!err)
1713 err = sock->ops->listen(sock, backlog);
1714
1715 fput_light(sock->file, fput_needed);
1716 }
1717 return err;
1718 }
1719
1720 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1721 {
1722 return __sys_listen(fd, backlog);
1723 }
1724
1725 int __sys_accept4_file(struct file *file, unsigned file_flags,
1726 struct sockaddr __user *upeer_sockaddr,
1727 int __user *upeer_addrlen, int flags,
1728 unsigned long nofile)
1729 {
1730 struct socket *sock, *newsock;
1731 struct file *newfile;
1732 int err, len, newfd;
1733 struct sockaddr_storage address;
1734
1735 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1736 return -EINVAL;
1737
1738 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1739 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1740
1741 sock = sock_from_file(file);
1742 if (!sock) {
1743 err = -ENOTSOCK;
1744 goto out;
1745 }
1746
1747 err = -ENFILE;
1748 newsock = sock_alloc();
1749 if (!newsock)
1750 goto out;
1751
1752 newsock->type = sock->type;
1753 newsock->ops = sock->ops;
1754
1755 /*
1756 * We don't need try_module_get here, as the listening socket (sock)
1757 * has the protocol module (sock->ops->owner) held.
1758 */
1759 __module_get(newsock->ops->owner);
1760
1761 newfd = __get_unused_fd_flags(flags, nofile);
1762 if (unlikely(newfd < 0)) {
1763 err = newfd;
1764 sock_release(newsock);
1765 goto out;
1766 }
1767 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1768 if (IS_ERR(newfile)) {
1769 err = PTR_ERR(newfile);
1770 put_unused_fd(newfd);
1771 goto out;
1772 }
1773
1774 err = security_socket_accept(sock, newsock);
1775 if (err)
1776 goto out_fd;
1777
1778 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1779 false);
1780 if (err < 0)
1781 goto out_fd;
1782
1783 if (upeer_sockaddr) {
1784 len = newsock->ops->getname(newsock,
1785 (struct sockaddr *)&address, 2);
1786 if (len < 0) {
1787 err = -ECONNABORTED;
1788 goto out_fd;
1789 }
1790 err = move_addr_to_user(&address,
1791 len, upeer_sockaddr, upeer_addrlen);
1792 if (err < 0)
1793 goto out_fd;
1794 }
1795
1796 /* File flags are not inherited via accept() unlike another OSes. */
1797
1798 fd_install(newfd, newfile);
1799 err = newfd;
1800 out:
1801 return err;
1802 out_fd:
1803 fput(newfile);
1804 put_unused_fd(newfd);
1805 goto out;
1806
1807 }
1808
1809 /*
1810 * For accept, we attempt to create a new socket, set up the link
1811 * with the client, wake up the client, then return the new
1812 * connected fd. We collect the address of the connector in kernel
1813 * space and move it to user at the very end. This is unclean because
1814 * we open the socket then return an error.
1815 *
1816 * 1003.1g adds the ability to recvmsg() to query connection pending
1817 * status to recvmsg. We need to add that support in a way thats
1818 * clean when we restructure accept also.
1819 */
1820
1821 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1822 int __user *upeer_addrlen, int flags)
1823 {
1824 int ret = -EBADF;
1825 struct fd f;
1826
1827 f = fdget(fd);
1828 if (f.file) {
1829 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1830 upeer_addrlen, flags,
1831 rlimit(RLIMIT_NOFILE));
1832 fdput(f);
1833 }
1834
1835 return ret;
1836 }
1837
1838 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1839 int __user *, upeer_addrlen, int, flags)
1840 {
1841 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1842 }
1843
1844 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1845 int __user *, upeer_addrlen)
1846 {
1847 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1848 }
1849
1850 /*
1851 * Attempt to connect to a socket with the server address. The address
1852 * is in user space so we verify it is OK and move it to kernel space.
1853 *
1854 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1855 * break bindings
1856 *
1857 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1858 * other SEQPACKET protocols that take time to connect() as it doesn't
1859 * include the -EINPROGRESS status for such sockets.
1860 */
1861
1862 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1863 int addrlen, int file_flags)
1864 {
1865 struct socket *sock;
1866 int err;
1867
1868 sock = sock_from_file(file);
1869 if (!sock) {
1870 err = -ENOTSOCK;
1871 goto out;
1872 }
1873
1874 err =
1875 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1876 if (err)
1877 goto out;
1878
1879 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1880 sock->file->f_flags | file_flags);
1881 out:
1882 return err;
1883 }
1884
1885 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1886 {
1887 int ret = -EBADF;
1888 struct fd f;
1889
1890 f = fdget(fd);
1891 if (f.file) {
1892 struct sockaddr_storage address;
1893
1894 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1895 if (!ret)
1896 ret = __sys_connect_file(f.file, &address, addrlen, 0);
1897 fdput(f);
1898 }
1899
1900 return ret;
1901 }
1902
1903 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1904 int, addrlen)
1905 {
1906 return __sys_connect(fd, uservaddr, addrlen);
1907 }
1908
1909 /*
1910 * Get the local address ('name') of a socket object. Move the obtained
1911 * name to user space.
1912 */
1913
1914 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1915 int __user *usockaddr_len)
1916 {
1917 struct socket *sock;
1918 struct sockaddr_storage address;
1919 int err, fput_needed;
1920
1921 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1922 if (!sock)
1923 goto out;
1924
1925 err = security_socket_getsockname(sock);
1926 if (err)
1927 goto out_put;
1928
1929 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1930 if (err < 0)
1931 goto out_put;
1932 /* "err" is actually length in this case */
1933 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1934
1935 out_put:
1936 fput_light(sock->file, fput_needed);
1937 out:
1938 return err;
1939 }
1940
1941 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1942 int __user *, usockaddr_len)
1943 {
1944 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1945 }
1946
1947 /*
1948 * Get the remote address ('name') of a socket object. Move the obtained
1949 * name to user space.
1950 */
1951
1952 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1953 int __user *usockaddr_len)
1954 {
1955 struct socket *sock;
1956 struct sockaddr_storage address;
1957 int err, fput_needed;
1958
1959 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1960 if (sock != NULL) {
1961 err = security_socket_getpeername(sock);
1962 if (err) {
1963 fput_light(sock->file, fput_needed);
1964 return err;
1965 }
1966
1967 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1968 if (err >= 0)
1969 /* "err" is actually length in this case */
1970 err = move_addr_to_user(&address, err, usockaddr,
1971 usockaddr_len);
1972 fput_light(sock->file, fput_needed);
1973 }
1974 return err;
1975 }
1976
1977 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1978 int __user *, usockaddr_len)
1979 {
1980 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1981 }
1982
1983 /*
1984 * Send a datagram to a given address. We move the address into kernel
1985 * space and check the user space data area is readable before invoking
1986 * the protocol.
1987 */
1988 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1989 struct sockaddr __user *addr, int addr_len)
1990 {
1991 struct socket *sock;
1992 struct sockaddr_storage address;
1993 int err;
1994 struct msghdr msg;
1995 struct iovec iov;
1996 int fput_needed;
1997
1998 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1999 if (unlikely(err))
2000 return err;
2001 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2002 if (!sock)
2003 goto out;
2004
2005 msg.msg_name = NULL;
2006 msg.msg_control = NULL;
2007 msg.msg_controllen = 0;
2008 msg.msg_namelen = 0;
2009 if (addr) {
2010 err = move_addr_to_kernel(addr, addr_len, &address);
2011 if (err < 0)
2012 goto out_put;
2013 msg.msg_name = (struct sockaddr *)&address;
2014 msg.msg_namelen = addr_len;
2015 }
2016 if (sock->file->f_flags & O_NONBLOCK)
2017 flags |= MSG_DONTWAIT;
2018 msg.msg_flags = flags;
2019 err = sock_sendmsg(sock, &msg);
2020
2021 out_put:
2022 fput_light(sock->file, fput_needed);
2023 out:
2024 return err;
2025 }
2026
2027 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2028 unsigned int, flags, struct sockaddr __user *, addr,
2029 int, addr_len)
2030 {
2031 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2032 }
2033
2034 /*
2035 * Send a datagram down a socket.
2036 */
2037
2038 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2039 unsigned int, flags)
2040 {
2041 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2042 }
2043
2044 /*
2045 * Receive a frame from the socket and optionally record the address of the
2046 * sender. We verify the buffers are writable and if needed move the
2047 * sender address from kernel to user space.
2048 */
2049 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2050 struct sockaddr __user *addr, int __user *addr_len)
2051 {
2052 struct socket *sock;
2053 struct iovec iov;
2054 struct msghdr msg;
2055 struct sockaddr_storage address;
2056 int err, err2;
2057 int fput_needed;
2058
2059 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2060 if (unlikely(err))
2061 return err;
2062 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2063 if (!sock)
2064 goto out;
2065
2066 msg.msg_control = NULL;
2067 msg.msg_controllen = 0;
2068 /* Save some cycles and don't copy the address if not needed */
2069 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2070 /* We assume all kernel code knows the size of sockaddr_storage */
2071 msg.msg_namelen = 0;
2072 msg.msg_iocb = NULL;
2073 msg.msg_flags = 0;
2074 if (sock->file->f_flags & O_NONBLOCK)
2075 flags |= MSG_DONTWAIT;
2076 err = sock_recvmsg(sock, &msg, flags);
2077
2078 if (err >= 0 && addr != NULL) {
2079 err2 = move_addr_to_user(&address,
2080 msg.msg_namelen, addr, addr_len);
2081 if (err2 < 0)
2082 err = err2;
2083 }
2084
2085 fput_light(sock->file, fput_needed);
2086 out:
2087 return err;
2088 }
2089
2090 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2091 unsigned int, flags, struct sockaddr __user *, addr,
2092 int __user *, addr_len)
2093 {
2094 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2095 }
2096
2097 /*
2098 * Receive a datagram from a socket.
2099 */
2100
2101 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2102 unsigned int, flags)
2103 {
2104 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2105 }
2106
2107 static bool sock_use_custom_sol_socket(const struct socket *sock)
2108 {
2109 const struct sock *sk = sock->sk;
2110
2111 /* Use sock->ops->setsockopt() for MPTCP */
2112 return IS_ENABLED(CONFIG_MPTCP) &&
2113 sk->sk_protocol == IPPROTO_MPTCP &&
2114 sk->sk_type == SOCK_STREAM &&
2115 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2116 }
2117
2118 /*
2119 * Set a socket option. Because we don't know the option lengths we have
2120 * to pass the user mode parameter for the protocols to sort out.
2121 */
2122 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2123 int optlen)
2124 {
2125 sockptr_t optval = USER_SOCKPTR(user_optval);
2126 char *kernel_optval = NULL;
2127 int err, fput_needed;
2128 struct socket *sock;
2129
2130 if (optlen < 0)
2131 return -EINVAL;
2132
2133 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2134 if (!sock)
2135 return err;
2136
2137 err = security_socket_setsockopt(sock, level, optname);
2138 if (err)
2139 goto out_put;
2140
2141 if (!in_compat_syscall())
2142 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2143 user_optval, &optlen,
2144 &kernel_optval);
2145 if (err < 0)
2146 goto out_put;
2147 if (err > 0) {
2148 err = 0;
2149 goto out_put;
2150 }
2151
2152 if (kernel_optval)
2153 optval = KERNEL_SOCKPTR(kernel_optval);
2154 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2155 err = sock_setsockopt(sock, level, optname, optval, optlen);
2156 else if (unlikely(!sock->ops->setsockopt))
2157 err = -EOPNOTSUPP;
2158 else
2159 err = sock->ops->setsockopt(sock, level, optname, optval,
2160 optlen);
2161 kfree(kernel_optval);
2162 out_put:
2163 fput_light(sock->file, fput_needed);
2164 return err;
2165 }
2166
2167 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2168 char __user *, optval, int, optlen)
2169 {
2170 return __sys_setsockopt(fd, level, optname, optval, optlen);
2171 }
2172
2173 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2174 int optname));
2175
2176 /*
2177 * Get a socket option. Because we don't know the option lengths we have
2178 * to pass a user mode parameter for the protocols to sort out.
2179 */
2180 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2181 int __user *optlen)
2182 {
2183 int err, fput_needed;
2184 struct socket *sock;
2185 int max_optlen;
2186
2187 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2188 if (!sock)
2189 return err;
2190
2191 err = security_socket_getsockopt(sock, level, optname);
2192 if (err)
2193 goto out_put;
2194
2195 if (!in_compat_syscall())
2196 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2197
2198 if (level == SOL_SOCKET)
2199 err = sock_getsockopt(sock, level, optname, optval, optlen);
2200 else if (unlikely(!sock->ops->getsockopt))
2201 err = -EOPNOTSUPP;
2202 else
2203 err = sock->ops->getsockopt(sock, level, optname, optval,
2204 optlen);
2205
2206 if (!in_compat_syscall())
2207 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2208 optval, optlen, max_optlen,
2209 err);
2210 out_put:
2211 fput_light(sock->file, fput_needed);
2212 return err;
2213 }
2214
2215 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2216 char __user *, optval, int __user *, optlen)
2217 {
2218 return __sys_getsockopt(fd, level, optname, optval, optlen);
2219 }
2220
2221 /*
2222 * Shutdown a socket.
2223 */
2224
2225 int __sys_shutdown_sock(struct socket *sock, int how)
2226 {
2227 int err;
2228
2229 err = security_socket_shutdown(sock, how);
2230 if (!err)
2231 err = sock->ops->shutdown(sock, how);
2232
2233 return err;
2234 }
2235
2236 int __sys_shutdown(int fd, int how)
2237 {
2238 int err, fput_needed;
2239 struct socket *sock;
2240
2241 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2242 if (sock != NULL) {
2243 err = __sys_shutdown_sock(sock, how);
2244 fput_light(sock->file, fput_needed);
2245 }
2246 return err;
2247 }
2248
2249 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2250 {
2251 return __sys_shutdown(fd, how);
2252 }
2253
2254 /* A couple of helpful macros for getting the address of the 32/64 bit
2255 * fields which are the same type (int / unsigned) on our platforms.
2256 */
2257 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2258 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2259 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2260
2261 struct used_address {
2262 struct sockaddr_storage name;
2263 unsigned int name_len;
2264 };
2265
2266 int __copy_msghdr_from_user(struct msghdr *kmsg,
2267 struct user_msghdr __user *umsg,
2268 struct sockaddr __user **save_addr,
2269 struct iovec __user **uiov, size_t *nsegs)
2270 {
2271 struct user_msghdr msg;
2272 ssize_t err;
2273
2274 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2275 return -EFAULT;
2276
2277 kmsg->msg_control_is_user = true;
2278 kmsg->msg_control_user = msg.msg_control;
2279 kmsg->msg_controllen = msg.msg_controllen;
2280 kmsg->msg_flags = msg.msg_flags;
2281
2282 kmsg->msg_namelen = msg.msg_namelen;
2283 if (!msg.msg_name)
2284 kmsg->msg_namelen = 0;
2285
2286 if (kmsg->msg_namelen < 0)
2287 return -EINVAL;
2288
2289 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2290 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2291
2292 if (save_addr)
2293 *save_addr = msg.msg_name;
2294
2295 if (msg.msg_name && kmsg->msg_namelen) {
2296 if (!save_addr) {
2297 err = move_addr_to_kernel(msg.msg_name,
2298 kmsg->msg_namelen,
2299 kmsg->msg_name);
2300 if (err < 0)
2301 return err;
2302 }
2303 } else {
2304 kmsg->msg_name = NULL;
2305 kmsg->msg_namelen = 0;
2306 }
2307
2308 if (msg.msg_iovlen > UIO_MAXIOV)
2309 return -EMSGSIZE;
2310
2311 kmsg->msg_iocb = NULL;
2312 *uiov = msg.msg_iov;
2313 *nsegs = msg.msg_iovlen;
2314 return 0;
2315 }
2316
2317 static int copy_msghdr_from_user(struct msghdr *kmsg,
2318 struct user_msghdr __user *umsg,
2319 struct sockaddr __user **save_addr,
2320 struct iovec **iov)
2321 {
2322 struct user_msghdr msg;
2323 ssize_t err;
2324
2325 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2326 &msg.msg_iovlen);
2327 if (err)
2328 return err;
2329
2330 err = import_iovec(save_addr ? READ : WRITE,
2331 msg.msg_iov, msg.msg_iovlen,
2332 UIO_FASTIOV, iov, &kmsg->msg_iter);
2333 return err < 0 ? err : 0;
2334 }
2335
2336 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2337 unsigned int flags, struct used_address *used_address,
2338 unsigned int allowed_msghdr_flags)
2339 {
2340 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2341 __aligned(sizeof(__kernel_size_t));
2342 /* 20 is size of ipv6_pktinfo */
2343 unsigned char *ctl_buf = ctl;
2344 int ctl_len;
2345 ssize_t err;
2346
2347 err = -ENOBUFS;
2348
2349 if (msg_sys->msg_controllen > INT_MAX)
2350 goto out;
2351 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2352 ctl_len = msg_sys->msg_controllen;
2353 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2354 err =
2355 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2356 sizeof(ctl));
2357 if (err)
2358 goto out;
2359 ctl_buf = msg_sys->msg_control;
2360 ctl_len = msg_sys->msg_controllen;
2361 } else if (ctl_len) {
2362 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2363 CMSG_ALIGN(sizeof(struct cmsghdr)));
2364 if (ctl_len > sizeof(ctl)) {
2365 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2366 if (ctl_buf == NULL)
2367 goto out;
2368 }
2369 err = -EFAULT;
2370 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2371 goto out_freectl;
2372 msg_sys->msg_control = ctl_buf;
2373 msg_sys->msg_control_is_user = false;
2374 }
2375 msg_sys->msg_flags = flags;
2376
2377 if (sock->file->f_flags & O_NONBLOCK)
2378 msg_sys->msg_flags |= MSG_DONTWAIT;
2379 /*
2380 * If this is sendmmsg() and current destination address is same as
2381 * previously succeeded address, omit asking LSM's decision.
2382 * used_address->name_len is initialized to UINT_MAX so that the first
2383 * destination address never matches.
2384 */
2385 if (used_address && msg_sys->msg_name &&
2386 used_address->name_len == msg_sys->msg_namelen &&
2387 !memcmp(&used_address->name, msg_sys->msg_name,
2388 used_address->name_len)) {
2389 err = sock_sendmsg_nosec(sock, msg_sys);
2390 goto out_freectl;
2391 }
2392 err = sock_sendmsg(sock, msg_sys);
2393 /*
2394 * If this is sendmmsg() and sending to current destination address was
2395 * successful, remember it.
2396 */
2397 if (used_address && err >= 0) {
2398 used_address->name_len = msg_sys->msg_namelen;
2399 if (msg_sys->msg_name)
2400 memcpy(&used_address->name, msg_sys->msg_name,
2401 used_address->name_len);
2402 }
2403
2404 out_freectl:
2405 if (ctl_buf != ctl)
2406 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2407 out:
2408 return err;
2409 }
2410
2411 int sendmsg_copy_msghdr(struct msghdr *msg,
2412 struct user_msghdr __user *umsg, unsigned flags,
2413 struct iovec **iov)
2414 {
2415 int err;
2416
2417 if (flags & MSG_CMSG_COMPAT) {
2418 struct compat_msghdr __user *msg_compat;
2419
2420 msg_compat = (struct compat_msghdr __user *) umsg;
2421 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2422 } else {
2423 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2424 }
2425 if (err < 0)
2426 return err;
2427
2428 return 0;
2429 }
2430
2431 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2432 struct msghdr *msg_sys, unsigned int flags,
2433 struct used_address *used_address,
2434 unsigned int allowed_msghdr_flags)
2435 {
2436 struct sockaddr_storage address;
2437 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2438 ssize_t err;
2439
2440 msg_sys->msg_name = &address;
2441
2442 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2443 if (err < 0)
2444 return err;
2445
2446 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2447 allowed_msghdr_flags);
2448 kfree(iov);
2449 return err;
2450 }
2451
2452 /*
2453 * BSD sendmsg interface
2454 */
2455 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2456 unsigned int flags)
2457 {
2458 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2459 }
2460
2461 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2462 bool forbid_cmsg_compat)
2463 {
2464 int fput_needed, err;
2465 struct msghdr msg_sys;
2466 struct socket *sock;
2467
2468 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2469 return -EINVAL;
2470
2471 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2472 if (!sock)
2473 goto out;
2474
2475 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2476
2477 fput_light(sock->file, fput_needed);
2478 out:
2479 return err;
2480 }
2481
2482 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2483 {
2484 return __sys_sendmsg(fd, msg, flags, true);
2485 }
2486
2487 /*
2488 * Linux sendmmsg interface
2489 */
2490
2491 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2492 unsigned int flags, bool forbid_cmsg_compat)
2493 {
2494 int fput_needed, err, datagrams;
2495 struct socket *sock;
2496 struct mmsghdr __user *entry;
2497 struct compat_mmsghdr __user *compat_entry;
2498 struct msghdr msg_sys;
2499 struct used_address used_address;
2500 unsigned int oflags = flags;
2501
2502 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2503 return -EINVAL;
2504
2505 if (vlen > UIO_MAXIOV)
2506 vlen = UIO_MAXIOV;
2507
2508 datagrams = 0;
2509
2510 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2511 if (!sock)
2512 return err;
2513
2514 used_address.name_len = UINT_MAX;
2515 entry = mmsg;
2516 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2517 err = 0;
2518 flags |= MSG_BATCH;
2519
2520 while (datagrams < vlen) {
2521 if (datagrams == vlen - 1)
2522 flags = oflags;
2523
2524 if (MSG_CMSG_COMPAT & flags) {
2525 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2526 &msg_sys, flags, &used_address, MSG_EOR);
2527 if (err < 0)
2528 break;
2529 err = __put_user(err, &compat_entry->msg_len);
2530 ++compat_entry;
2531 } else {
2532 err = ___sys_sendmsg(sock,
2533 (struct user_msghdr __user *)entry,
2534 &msg_sys, flags, &used_address, MSG_EOR);
2535 if (err < 0)
2536 break;
2537 err = put_user(err, &entry->msg_len);
2538 ++entry;
2539 }
2540
2541 if (err)
2542 break;
2543 ++datagrams;
2544 if (msg_data_left(&msg_sys))
2545 break;
2546 cond_resched();
2547 }
2548
2549 fput_light(sock->file, fput_needed);
2550
2551 /* We only return an error if no datagrams were able to be sent */
2552 if (datagrams != 0)
2553 return datagrams;
2554
2555 return err;
2556 }
2557
2558 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2559 unsigned int, vlen, unsigned int, flags)
2560 {
2561 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2562 }
2563
2564 int recvmsg_copy_msghdr(struct msghdr *msg,
2565 struct user_msghdr __user *umsg, unsigned flags,
2566 struct sockaddr __user **uaddr,
2567 struct iovec **iov)
2568 {
2569 ssize_t err;
2570
2571 if (MSG_CMSG_COMPAT & flags) {
2572 struct compat_msghdr __user *msg_compat;
2573
2574 msg_compat = (struct compat_msghdr __user *) umsg;
2575 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2576 } else {
2577 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2578 }
2579 if (err < 0)
2580 return err;
2581
2582 return 0;
2583 }
2584
2585 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2586 struct user_msghdr __user *msg,
2587 struct sockaddr __user *uaddr,
2588 unsigned int flags, int nosec)
2589 {
2590 struct compat_msghdr __user *msg_compat =
2591 (struct compat_msghdr __user *) msg;
2592 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2593 struct sockaddr_storage addr;
2594 unsigned long cmsg_ptr;
2595 int len;
2596 ssize_t err;
2597
2598 msg_sys->msg_name = &addr;
2599 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2600 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2601
2602 /* We assume all kernel code knows the size of sockaddr_storage */
2603 msg_sys->msg_namelen = 0;
2604
2605 if (sock->file->f_flags & O_NONBLOCK)
2606 flags |= MSG_DONTWAIT;
2607
2608 if (unlikely(nosec))
2609 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2610 else
2611 err = sock_recvmsg(sock, msg_sys, flags);
2612
2613 if (err < 0)
2614 goto out;
2615 len = err;
2616
2617 if (uaddr != NULL) {
2618 err = move_addr_to_user(&addr,
2619 msg_sys->msg_namelen, uaddr,
2620 uaddr_len);
2621 if (err < 0)
2622 goto out;
2623 }
2624 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2625 COMPAT_FLAGS(msg));
2626 if (err)
2627 goto out;
2628 if (MSG_CMSG_COMPAT & flags)
2629 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2630 &msg_compat->msg_controllen);
2631 else
2632 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2633 &msg->msg_controllen);
2634 if (err)
2635 goto out;
2636 err = len;
2637 out:
2638 return err;
2639 }
2640
2641 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2642 struct msghdr *msg_sys, unsigned int flags, int nosec)
2643 {
2644 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2645 /* user mode address pointers */
2646 struct sockaddr __user *uaddr;
2647 ssize_t err;
2648
2649 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2650 if (err < 0)
2651 return err;
2652
2653 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2654 kfree(iov);
2655 return err;
2656 }
2657
2658 /*
2659 * BSD recvmsg interface
2660 */
2661
2662 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2663 struct user_msghdr __user *umsg,
2664 struct sockaddr __user *uaddr, unsigned int flags)
2665 {
2666 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2667 }
2668
2669 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2670 bool forbid_cmsg_compat)
2671 {
2672 int fput_needed, err;
2673 struct msghdr msg_sys;
2674 struct socket *sock;
2675
2676 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2677 return -EINVAL;
2678
2679 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2680 if (!sock)
2681 goto out;
2682
2683 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2684
2685 fput_light(sock->file, fput_needed);
2686 out:
2687 return err;
2688 }
2689
2690 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2691 unsigned int, flags)
2692 {
2693 return __sys_recvmsg(fd, msg, flags, true);
2694 }
2695
2696 /*
2697 * Linux recvmmsg interface
2698 */
2699
2700 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2701 unsigned int vlen, unsigned int flags,
2702 struct timespec64 *timeout)
2703 {
2704 int fput_needed, err, datagrams;
2705 struct socket *sock;
2706 struct mmsghdr __user *entry;
2707 struct compat_mmsghdr __user *compat_entry;
2708 struct msghdr msg_sys;
2709 struct timespec64 end_time;
2710 struct timespec64 timeout64;
2711
2712 if (timeout &&
2713 poll_select_set_timeout(&end_time, timeout->tv_sec,
2714 timeout->tv_nsec))
2715 return -EINVAL;
2716
2717 datagrams = 0;
2718
2719 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2720 if (!sock)
2721 return err;
2722
2723 if (likely(!(flags & MSG_ERRQUEUE))) {
2724 err = sock_error(sock->sk);
2725 if (err) {
2726 datagrams = err;
2727 goto out_put;
2728 }
2729 }
2730
2731 entry = mmsg;
2732 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2733
2734 while (datagrams < vlen) {
2735 /*
2736 * No need to ask LSM for more than the first datagram.
2737 */
2738 if (MSG_CMSG_COMPAT & flags) {
2739 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2740 &msg_sys, flags & ~MSG_WAITFORONE,
2741 datagrams);
2742 if (err < 0)
2743 break;
2744 err = __put_user(err, &compat_entry->msg_len);
2745 ++compat_entry;
2746 } else {
2747 err = ___sys_recvmsg(sock,
2748 (struct user_msghdr __user *)entry,
2749 &msg_sys, flags & ~MSG_WAITFORONE,
2750 datagrams);
2751 if (err < 0)
2752 break;
2753 err = put_user(err, &entry->msg_len);
2754 ++entry;
2755 }
2756
2757 if (err)
2758 break;
2759 ++datagrams;
2760
2761 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2762 if (flags & MSG_WAITFORONE)
2763 flags |= MSG_DONTWAIT;
2764
2765 if (timeout) {
2766 ktime_get_ts64(&timeout64);
2767 *timeout = timespec64_sub(end_time, timeout64);
2768 if (timeout->tv_sec < 0) {
2769 timeout->tv_sec = timeout->tv_nsec = 0;
2770 break;
2771 }
2772
2773 /* Timeout, return less than vlen datagrams */
2774 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2775 break;
2776 }
2777
2778 /* Out of band data, return right away */
2779 if (msg_sys.msg_flags & MSG_OOB)
2780 break;
2781 cond_resched();
2782 }
2783
2784 if (err == 0)
2785 goto out_put;
2786
2787 if (datagrams == 0) {
2788 datagrams = err;
2789 goto out_put;
2790 }
2791
2792 /*
2793 * We may return less entries than requested (vlen) if the
2794 * sock is non block and there aren't enough datagrams...
2795 */
2796 if (err != -EAGAIN) {
2797 /*
2798 * ... or if recvmsg returns an error after we
2799 * received some datagrams, where we record the
2800 * error to return on the next call or if the
2801 * app asks about it using getsockopt(SO_ERROR).
2802 */
2803 sock->sk->sk_err = -err;
2804 }
2805 out_put:
2806 fput_light(sock->file, fput_needed);
2807
2808 return datagrams;
2809 }
2810
2811 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2812 unsigned int vlen, unsigned int flags,
2813 struct __kernel_timespec __user *timeout,
2814 struct old_timespec32 __user *timeout32)
2815 {
2816 int datagrams;
2817 struct timespec64 timeout_sys;
2818
2819 if (timeout && get_timespec64(&timeout_sys, timeout))
2820 return -EFAULT;
2821
2822 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2823 return -EFAULT;
2824
2825 if (!timeout && !timeout32)
2826 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2827
2828 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2829
2830 if (datagrams <= 0)
2831 return datagrams;
2832
2833 if (timeout && put_timespec64(&timeout_sys, timeout))
2834 datagrams = -EFAULT;
2835
2836 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2837 datagrams = -EFAULT;
2838
2839 return datagrams;
2840 }
2841
2842 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2843 unsigned int, vlen, unsigned int, flags,
2844 struct __kernel_timespec __user *, timeout)
2845 {
2846 if (flags & MSG_CMSG_COMPAT)
2847 return -EINVAL;
2848
2849 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2850 }
2851
2852 #ifdef CONFIG_COMPAT_32BIT_TIME
2853 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2854 unsigned int, vlen, unsigned int, flags,
2855 struct old_timespec32 __user *, timeout)
2856 {
2857 if (flags & MSG_CMSG_COMPAT)
2858 return -EINVAL;
2859
2860 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2861 }
2862 #endif
2863
2864 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2865 /* Argument list sizes for sys_socketcall */
2866 #define AL(x) ((x) * sizeof(unsigned long))
2867 static const unsigned char nargs[21] = {
2868 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2869 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2870 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2871 AL(4), AL(5), AL(4)
2872 };
2873
2874 #undef AL
2875
2876 /*
2877 * System call vectors.
2878 *
2879 * Argument checking cleaned up. Saved 20% in size.
2880 * This function doesn't need to set the kernel lock because
2881 * it is set by the callees.
2882 */
2883
2884 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2885 {
2886 unsigned long a[AUDITSC_ARGS];
2887 unsigned long a0, a1;
2888 int err;
2889 unsigned int len;
2890
2891 if (call < 1 || call > SYS_SENDMMSG)
2892 return -EINVAL;
2893 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2894
2895 len = nargs[call];
2896 if (len > sizeof(a))
2897 return -EINVAL;
2898
2899 /* copy_from_user should be SMP safe. */
2900 if (copy_from_user(a, args, len))
2901 return -EFAULT;
2902
2903 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2904 if (err)
2905 return err;
2906
2907 a0 = a[0];
2908 a1 = a[1];
2909
2910 switch (call) {
2911 case SYS_SOCKET:
2912 err = __sys_socket(a0, a1, a[2]);
2913 break;
2914 case SYS_BIND:
2915 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2916 break;
2917 case SYS_CONNECT:
2918 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2919 break;
2920 case SYS_LISTEN:
2921 err = __sys_listen(a0, a1);
2922 break;
2923 case SYS_ACCEPT:
2924 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2925 (int __user *)a[2], 0);
2926 break;
2927 case SYS_GETSOCKNAME:
2928 err =
2929 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2930 (int __user *)a[2]);
2931 break;
2932 case SYS_GETPEERNAME:
2933 err =
2934 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2935 (int __user *)a[2]);
2936 break;
2937 case SYS_SOCKETPAIR:
2938 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2939 break;
2940 case SYS_SEND:
2941 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2942 NULL, 0);
2943 break;
2944 case SYS_SENDTO:
2945 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2946 (struct sockaddr __user *)a[4], a[5]);
2947 break;
2948 case SYS_RECV:
2949 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2950 NULL, NULL);
2951 break;
2952 case SYS_RECVFROM:
2953 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2954 (struct sockaddr __user *)a[4],
2955 (int __user *)a[5]);
2956 break;
2957 case SYS_SHUTDOWN:
2958 err = __sys_shutdown(a0, a1);
2959 break;
2960 case SYS_SETSOCKOPT:
2961 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2962 a[4]);
2963 break;
2964 case SYS_GETSOCKOPT:
2965 err =
2966 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2967 (int __user *)a[4]);
2968 break;
2969 case SYS_SENDMSG:
2970 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2971 a[2], true);
2972 break;
2973 case SYS_SENDMMSG:
2974 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2975 a[3], true);
2976 break;
2977 case SYS_RECVMSG:
2978 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2979 a[2], true);
2980 break;
2981 case SYS_RECVMMSG:
2982 if (IS_ENABLED(CONFIG_64BIT))
2983 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2984 a[2], a[3],
2985 (struct __kernel_timespec __user *)a[4],
2986 NULL);
2987 else
2988 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2989 a[2], a[3], NULL,
2990 (struct old_timespec32 __user *)a[4]);
2991 break;
2992 case SYS_ACCEPT4:
2993 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2994 (int __user *)a[2], a[3]);
2995 break;
2996 default:
2997 err = -EINVAL;
2998 break;
2999 }
3000 return err;
3001 }
3002
3003 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3004
3005 /**
3006 * sock_register - add a socket protocol handler
3007 * @ops: description of protocol
3008 *
3009 * This function is called by a protocol handler that wants to
3010 * advertise its address family, and have it linked into the
3011 * socket interface. The value ops->family corresponds to the
3012 * socket system call protocol family.
3013 */
3014 int sock_register(const struct net_proto_family *ops)
3015 {
3016 int err;
3017
3018 if (ops->family >= NPROTO) {
3019 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3020 return -ENOBUFS;
3021 }
3022
3023 spin_lock(&net_family_lock);
3024 if (rcu_dereference_protected(net_families[ops->family],
3025 lockdep_is_held(&net_family_lock)))
3026 err = -EEXIST;
3027 else {
3028 rcu_assign_pointer(net_families[ops->family], ops);
3029 err = 0;
3030 }
3031 spin_unlock(&net_family_lock);
3032
3033 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3034 return err;
3035 }
3036 EXPORT_SYMBOL(sock_register);
3037
3038 /**
3039 * sock_unregister - remove a protocol handler
3040 * @family: protocol family to remove
3041 *
3042 * This function is called by a protocol handler that wants to
3043 * remove its address family, and have it unlinked from the
3044 * new socket creation.
3045 *
3046 * If protocol handler is a module, then it can use module reference
3047 * counts to protect against new references. If protocol handler is not
3048 * a module then it needs to provide its own protection in
3049 * the ops->create routine.
3050 */
3051 void sock_unregister(int family)
3052 {
3053 BUG_ON(family < 0 || family >= NPROTO);
3054
3055 spin_lock(&net_family_lock);
3056 RCU_INIT_POINTER(net_families[family], NULL);
3057 spin_unlock(&net_family_lock);
3058
3059 synchronize_rcu();
3060
3061 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3062 }
3063 EXPORT_SYMBOL(sock_unregister);
3064
3065 bool sock_is_registered(int family)
3066 {
3067 return family < NPROTO && rcu_access_pointer(net_families[family]);
3068 }
3069
3070 static int __init sock_init(void)
3071 {
3072 int err;
3073 /*
3074 * Initialize the network sysctl infrastructure.
3075 */
3076 err = net_sysctl_init();
3077 if (err)
3078 goto out;
3079
3080 /*
3081 * Initialize skbuff SLAB cache
3082 */
3083 skb_init();
3084
3085 /*
3086 * Initialize the protocols module.
3087 */
3088
3089 init_inodecache();
3090
3091 err = register_filesystem(&sock_fs_type);
3092 if (err)
3093 goto out;
3094 sock_mnt = kern_mount(&sock_fs_type);
3095 if (IS_ERR(sock_mnt)) {
3096 err = PTR_ERR(sock_mnt);
3097 goto out_mount;
3098 }
3099
3100 /* The real protocol initialization is performed in later initcalls.
3101 */
3102
3103 #ifdef CONFIG_NETFILTER
3104 err = netfilter_init();
3105 if (err)
3106 goto out;
3107 #endif
3108
3109 ptp_classifier_init();
3110
3111 out:
3112 return err;
3113
3114 out_mount:
3115 unregister_filesystem(&sock_fs_type);
3116 goto out;
3117 }
3118
3119 core_initcall(sock_init); /* early initcall */
3120
3121 #ifdef CONFIG_PROC_FS
3122 void socket_seq_show(struct seq_file *seq)
3123 {
3124 seq_printf(seq, "sockets: used %d\n",
3125 sock_inuse_get(seq->private));
3126 }
3127 #endif /* CONFIG_PROC_FS */
3128
3129 #ifdef CONFIG_COMPAT
3130 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3131 {
3132 struct compat_ifconf ifc32;
3133 struct ifconf ifc;
3134 int err;
3135
3136 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3137 return -EFAULT;
3138
3139 ifc.ifc_len = ifc32.ifc_len;
3140 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3141
3142 rtnl_lock();
3143 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3144 rtnl_unlock();
3145 if (err)
3146 return err;
3147
3148 ifc32.ifc_len = ifc.ifc_len;
3149 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3150 return -EFAULT;
3151
3152 return 0;
3153 }
3154
3155 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3156 {
3157 struct compat_ethtool_rxnfc __user *compat_rxnfc;
3158 bool convert_in = false, convert_out = false;
3159 size_t buf_size = 0;
3160 struct ethtool_rxnfc __user *rxnfc = NULL;
3161 struct ifreq ifr;
3162 u32 rule_cnt = 0, actual_rule_cnt;
3163 u32 ethcmd;
3164 u32 data;
3165 int ret;
3166
3167 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3168 return -EFAULT;
3169
3170 compat_rxnfc = compat_ptr(data);
3171
3172 if (get_user(ethcmd, &compat_rxnfc->cmd))
3173 return -EFAULT;
3174
3175 /* Most ethtool structures are defined without padding.
3176 * Unfortunately struct ethtool_rxnfc is an exception.
3177 */
3178 switch (ethcmd) {
3179 default:
3180 break;
3181 case ETHTOOL_GRXCLSRLALL:
3182 /* Buffer size is variable */
3183 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3184 return -EFAULT;
3185 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3186 return -ENOMEM;
3187 buf_size += rule_cnt * sizeof(u32);
3188 fallthrough;
3189 case ETHTOOL_GRXRINGS:
3190 case ETHTOOL_GRXCLSRLCNT:
3191 case ETHTOOL_GRXCLSRULE:
3192 case ETHTOOL_SRXCLSRLINS:
3193 convert_out = true;
3194 fallthrough;
3195 case ETHTOOL_SRXCLSRLDEL:
3196 buf_size += sizeof(struct ethtool_rxnfc);
3197 convert_in = true;
3198 rxnfc = compat_alloc_user_space(buf_size);
3199 break;
3200 }
3201
3202 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3203 return -EFAULT;
3204
3205 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3206
3207 if (convert_in) {
3208 /* We expect there to be holes between fs.m_ext and
3209 * fs.ring_cookie and at the end of fs, but nowhere else.
3210 */
3211 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3212 sizeof(compat_rxnfc->fs.m_ext) !=
3213 offsetof(struct ethtool_rxnfc, fs.m_ext) +
3214 sizeof(rxnfc->fs.m_ext));
3215 BUILD_BUG_ON(
3216 offsetof(struct compat_ethtool_rxnfc, fs.location) -
3217 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3218 offsetof(struct ethtool_rxnfc, fs.location) -
3219 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3220
3221 if (copy_in_user(rxnfc, compat_rxnfc,
3222 (void __user *)(&rxnfc->fs.m_ext + 1) -
3223 (void __user *)rxnfc) ||
3224 copy_in_user(&rxnfc->fs.ring_cookie,
3225 &compat_rxnfc->fs.ring_cookie,
3226 (void __user *)(&rxnfc->fs.location + 1) -
3227 (void __user *)&rxnfc->fs.ring_cookie))
3228 return -EFAULT;
3229 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3230 if (put_user(rule_cnt, &rxnfc->rule_cnt))
3231 return -EFAULT;
3232 } else if (copy_in_user(&rxnfc->rule_cnt,
3233 &compat_rxnfc->rule_cnt,
3234 sizeof(rxnfc->rule_cnt)))
3235 return -EFAULT;
3236 }
3237
3238 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3239 if (ret)
3240 return ret;
3241
3242 if (convert_out) {
3243 if (copy_in_user(compat_rxnfc, rxnfc,
3244 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3245 (const void __user *)rxnfc) ||
3246 copy_in_user(&compat_rxnfc->fs.ring_cookie,
3247 &rxnfc->fs.ring_cookie,
3248 (const void __user *)(&rxnfc->fs.location + 1) -
3249 (const void __user *)&rxnfc->fs.ring_cookie) ||
3250 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3251 sizeof(rxnfc->rule_cnt)))
3252 return -EFAULT;
3253
3254 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3255 /* As an optimisation, we only copy the actual
3256 * number of rules that the underlying
3257 * function returned. Since Mallory might
3258 * change the rule count in user memory, we
3259 * check that it is less than the rule count
3260 * originally given (as the user buffer size),
3261 * which has been range-checked.
3262 */
3263 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3264 return -EFAULT;
3265 if (actual_rule_cnt < rule_cnt)
3266 rule_cnt = actual_rule_cnt;
3267 if (copy_in_user(&compat_rxnfc->rule_locs[0],
3268 &rxnfc->rule_locs[0],
3269 rule_cnt * sizeof(u32)))
3270 return -EFAULT;
3271 }
3272 }
3273
3274 return 0;
3275 }
3276
3277 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3278 {
3279 compat_uptr_t uptr32;
3280 struct ifreq ifr;
3281 void __user *saved;
3282 int err;
3283
3284 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3285 return -EFAULT;
3286
3287 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3288 return -EFAULT;
3289
3290 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3291 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3292
3293 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3294 if (!err) {
3295 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3296 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3297 err = -EFAULT;
3298 }
3299 return err;
3300 }
3301
3302 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3303 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3304 struct compat_ifreq __user *u_ifreq32)
3305 {
3306 struct ifreq ifreq;
3307 u32 data32;
3308
3309 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3310 return -EFAULT;
3311 if (get_user(data32, &u_ifreq32->ifr_data))
3312 return -EFAULT;
3313 ifreq.ifr_data = compat_ptr(data32);
3314
3315 return dev_ioctl(net, cmd, &ifreq, NULL);
3316 }
3317
3318 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3319 unsigned int cmd,
3320 struct compat_ifreq __user *uifr32)
3321 {
3322 struct ifreq __user *uifr;
3323 int err;
3324
3325 /* Handle the fact that while struct ifreq has the same *layout* on
3326 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3327 * which are handled elsewhere, it still has different *size* due to
3328 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3329 * resulting in struct ifreq being 32 and 40 bytes respectively).
3330 * As a result, if the struct happens to be at the end of a page and
3331 * the next page isn't readable/writable, we get a fault. To prevent
3332 * that, copy back and forth to the full size.
3333 */
3334
3335 uifr = compat_alloc_user_space(sizeof(*uifr));
3336 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3337 return -EFAULT;
3338
3339 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3340
3341 if (!err) {
3342 switch (cmd) {
3343 case SIOCGIFFLAGS:
3344 case SIOCGIFMETRIC:
3345 case SIOCGIFMTU:
3346 case SIOCGIFMEM:
3347 case SIOCGIFHWADDR:
3348 case SIOCGIFINDEX:
3349 case SIOCGIFADDR:
3350 case SIOCGIFBRDADDR:
3351 case SIOCGIFDSTADDR:
3352 case SIOCGIFNETMASK:
3353 case SIOCGIFPFLAGS:
3354 case SIOCGIFTXQLEN:
3355 case SIOCGMIIPHY:
3356 case SIOCGMIIREG:
3357 case SIOCGIFNAME:
3358 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3359 err = -EFAULT;
3360 break;
3361 }
3362 }
3363 return err;
3364 }
3365
3366 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3367 struct compat_ifreq __user *uifr32)
3368 {
3369 struct ifreq ifr;
3370 struct compat_ifmap __user *uifmap32;
3371 int err;
3372
3373 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3374 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3375 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3376 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3377 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3378 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3379 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3380 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3381 if (err)
3382 return -EFAULT;
3383
3384 err = dev_ioctl(net, cmd, &ifr, NULL);
3385
3386 if (cmd == SIOCGIFMAP && !err) {
3387 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3388 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3389 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3390 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3391 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3392 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3393 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3394 if (err)
3395 err = -EFAULT;
3396 }
3397 return err;
3398 }
3399
3400 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3401 * for some operations; this forces use of the newer bridge-utils that
3402 * use compatible ioctls
3403 */
3404 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3405 {
3406 compat_ulong_t tmp;
3407
3408 if (get_user(tmp, argp))
3409 return -EFAULT;
3410 if (tmp == BRCTL_GET_VERSION)
3411 return BRCTL_VERSION + 1;
3412 return -EINVAL;
3413 }
3414
3415 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3416 unsigned int cmd, unsigned long arg)
3417 {
3418 void __user *argp = compat_ptr(arg);
3419 struct sock *sk = sock->sk;
3420 struct net *net = sock_net(sk);
3421
3422 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3423 return compat_ifr_data_ioctl(net, cmd, argp);
3424
3425 switch (cmd) {
3426 case SIOCSIFBR:
3427 case SIOCGIFBR:
3428 return old_bridge_ioctl(argp);
3429 case SIOCGIFCONF:
3430 return compat_dev_ifconf(net, argp);
3431 case SIOCETHTOOL:
3432 return ethtool_ioctl(net, argp);
3433 case SIOCWANDEV:
3434 return compat_siocwandev(net, argp);
3435 case SIOCGIFMAP:
3436 case SIOCSIFMAP:
3437 return compat_sioc_ifmap(net, cmd, argp);
3438 case SIOCGSTAMP_OLD:
3439 case SIOCGSTAMPNS_OLD:
3440 if (!sock->ops->gettstamp)
3441 return -ENOIOCTLCMD;
3442 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3443 !COMPAT_USE_64BIT_TIME);
3444
3445 case SIOCBONDSLAVEINFOQUERY:
3446 case SIOCBONDINFOQUERY:
3447 case SIOCSHWTSTAMP:
3448 case SIOCGHWTSTAMP:
3449 return compat_ifr_data_ioctl(net, cmd, argp);
3450
3451 case FIOSETOWN:
3452 case SIOCSPGRP:
3453 case FIOGETOWN:
3454 case SIOCGPGRP:
3455 case SIOCBRADDBR:
3456 case SIOCBRDELBR:
3457 case SIOCGIFVLAN:
3458 case SIOCSIFVLAN:
3459 case SIOCGSKNS:
3460 case SIOCGSTAMP_NEW:
3461 case SIOCGSTAMPNS_NEW:
3462 return sock_ioctl(file, cmd, arg);
3463
3464 case SIOCGIFFLAGS:
3465 case SIOCSIFFLAGS:
3466 case SIOCGIFMETRIC:
3467 case SIOCSIFMETRIC:
3468 case SIOCGIFMTU:
3469 case SIOCSIFMTU:
3470 case SIOCGIFMEM:
3471 case SIOCSIFMEM:
3472 case SIOCGIFHWADDR:
3473 case SIOCSIFHWADDR:
3474 case SIOCADDMULTI:
3475 case SIOCDELMULTI:
3476 case SIOCGIFINDEX:
3477 case SIOCGIFADDR:
3478 case SIOCSIFADDR:
3479 case SIOCSIFHWBROADCAST:
3480 case SIOCDIFADDR:
3481 case SIOCGIFBRDADDR:
3482 case SIOCSIFBRDADDR:
3483 case SIOCGIFDSTADDR:
3484 case SIOCSIFDSTADDR:
3485 case SIOCGIFNETMASK:
3486 case SIOCSIFNETMASK:
3487 case SIOCSIFPFLAGS:
3488 case SIOCGIFPFLAGS:
3489 case SIOCGIFTXQLEN:
3490 case SIOCSIFTXQLEN:
3491 case SIOCBRADDIF:
3492 case SIOCBRDELIF:
3493 case SIOCGIFNAME:
3494 case SIOCSIFNAME:
3495 case SIOCGMIIPHY:
3496 case SIOCGMIIREG:
3497 case SIOCSMIIREG:
3498 case SIOCBONDENSLAVE:
3499 case SIOCBONDRELEASE:
3500 case SIOCBONDSETHWADDR:
3501 case SIOCBONDCHANGEACTIVE:
3502 return compat_ifreq_ioctl(net, sock, cmd, argp);
3503
3504 case SIOCSARP:
3505 case SIOCGARP:
3506 case SIOCDARP:
3507 case SIOCOUTQ:
3508 case SIOCOUTQNSD:
3509 case SIOCATMARK:
3510 return sock_do_ioctl(net, sock, cmd, arg);
3511 }
3512
3513 return -ENOIOCTLCMD;
3514 }
3515
3516 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3517 unsigned long arg)
3518 {
3519 struct socket *sock = file->private_data;
3520 int ret = -ENOIOCTLCMD;
3521 struct sock *sk;
3522 struct net *net;
3523
3524 sk = sock->sk;
3525 net = sock_net(sk);
3526
3527 if (sock->ops->compat_ioctl)
3528 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3529
3530 if (ret == -ENOIOCTLCMD &&
3531 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3532 ret = compat_wext_handle_ioctl(net, cmd, arg);
3533
3534 if (ret == -ENOIOCTLCMD)
3535 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3536
3537 return ret;
3538 }
3539 #endif
3540
3541 /**
3542 * kernel_bind - bind an address to a socket (kernel space)
3543 * @sock: socket
3544 * @addr: address
3545 * @addrlen: length of address
3546 *
3547 * Returns 0 or an error.
3548 */
3549
3550 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3551 {
3552 return sock->ops->bind(sock, addr, addrlen);
3553 }
3554 EXPORT_SYMBOL(kernel_bind);
3555
3556 /**
3557 * kernel_listen - move socket to listening state (kernel space)
3558 * @sock: socket
3559 * @backlog: pending connections queue size
3560 *
3561 * Returns 0 or an error.
3562 */
3563
3564 int kernel_listen(struct socket *sock, int backlog)
3565 {
3566 return sock->ops->listen(sock, backlog);
3567 }
3568 EXPORT_SYMBOL(kernel_listen);
3569
3570 /**
3571 * kernel_accept - accept a connection (kernel space)
3572 * @sock: listening socket
3573 * @newsock: new connected socket
3574 * @flags: flags
3575 *
3576 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3577 * If it fails, @newsock is guaranteed to be %NULL.
3578 * Returns 0 or an error.
3579 */
3580
3581 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3582 {
3583 struct sock *sk = sock->sk;
3584 int err;
3585
3586 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3587 newsock);
3588 if (err < 0)
3589 goto done;
3590
3591 err = sock->ops->accept(sock, *newsock, flags, true);
3592 if (err < 0) {
3593 sock_release(*newsock);
3594 *newsock = NULL;
3595 goto done;
3596 }
3597
3598 (*newsock)->ops = sock->ops;
3599 __module_get((*newsock)->ops->owner);
3600
3601 done:
3602 return err;
3603 }
3604 EXPORT_SYMBOL(kernel_accept);
3605
3606 /**
3607 * kernel_connect - connect a socket (kernel space)
3608 * @sock: socket
3609 * @addr: address
3610 * @addrlen: address length
3611 * @flags: flags (O_NONBLOCK, ...)
3612 *
3613 * For datagram sockets, @addr is the address to which datagrams are sent
3614 * by default, and the only address from which datagrams are received.
3615 * For stream sockets, attempts to connect to @addr.
3616 * Returns 0 or an error code.
3617 */
3618
3619 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3620 int flags)
3621 {
3622 return sock->ops->connect(sock, addr, addrlen, flags);
3623 }
3624 EXPORT_SYMBOL(kernel_connect);
3625
3626 /**
3627 * kernel_getsockname - get the address which the socket is bound (kernel space)
3628 * @sock: socket
3629 * @addr: address holder
3630 *
3631 * Fills the @addr pointer with the address which the socket is bound.
3632 * Returns 0 or an error code.
3633 */
3634
3635 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3636 {
3637 return sock->ops->getname(sock, addr, 0);
3638 }
3639 EXPORT_SYMBOL(kernel_getsockname);
3640
3641 /**
3642 * kernel_getpeername - get the address which the socket is connected (kernel space)
3643 * @sock: socket
3644 * @addr: address holder
3645 *
3646 * Fills the @addr pointer with the address which the socket is connected.
3647 * Returns 0 or an error code.
3648 */
3649
3650 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3651 {
3652 return sock->ops->getname(sock, addr, 1);
3653 }
3654 EXPORT_SYMBOL(kernel_getpeername);
3655
3656 /**
3657 * kernel_sendpage - send a &page through a socket (kernel space)
3658 * @sock: socket
3659 * @page: page
3660 * @offset: page offset
3661 * @size: total size in bytes
3662 * @flags: flags (MSG_DONTWAIT, ...)
3663 *
3664 * Returns the total amount sent in bytes or an error.
3665 */
3666
3667 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3668 size_t size, int flags)
3669 {
3670 if (sock->ops->sendpage) {
3671 /* Warn in case the improper page to zero-copy send */
3672 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3673 return sock->ops->sendpage(sock, page, offset, size, flags);
3674 }
3675 return sock_no_sendpage(sock, page, offset, size, flags);
3676 }
3677 EXPORT_SYMBOL(kernel_sendpage);
3678
3679 /**
3680 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3681 * @sk: sock
3682 * @page: page
3683 * @offset: page offset
3684 * @size: total size in bytes
3685 * @flags: flags (MSG_DONTWAIT, ...)
3686 *
3687 * Returns the total amount sent in bytes or an error.
3688 * Caller must hold @sk.
3689 */
3690
3691 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3692 size_t size, int flags)
3693 {
3694 struct socket *sock = sk->sk_socket;
3695
3696 if (sock->ops->sendpage_locked)
3697 return sock->ops->sendpage_locked(sk, page, offset, size,
3698 flags);
3699
3700 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3701 }
3702 EXPORT_SYMBOL(kernel_sendpage_locked);
3703
3704 /**
3705 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3706 * @sock: socket
3707 * @how: connection part
3708 *
3709 * Returns 0 or an error.
3710 */
3711
3712 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3713 {
3714 return sock->ops->shutdown(sock, how);
3715 }
3716 EXPORT_SYMBOL(kernel_sock_shutdown);
3717
3718 /**
3719 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3720 * @sk: socket
3721 *
3722 * This routine returns the IP overhead imposed by a socket i.e.
3723 * the length of the underlying IP header, depending on whether
3724 * this is an IPv4 or IPv6 socket and the length from IP options turned
3725 * on at the socket. Assumes that the caller has a lock on the socket.
3726 */
3727
3728 u32 kernel_sock_ip_overhead(struct sock *sk)
3729 {
3730 struct inet_sock *inet;
3731 struct ip_options_rcu *opt;
3732 u32 overhead = 0;
3733 #if IS_ENABLED(CONFIG_IPV6)
3734 struct ipv6_pinfo *np;
3735 struct ipv6_txoptions *optv6 = NULL;
3736 #endif /* IS_ENABLED(CONFIG_IPV6) */
3737
3738 if (!sk)
3739 return overhead;
3740
3741 switch (sk->sk_family) {
3742 case AF_INET:
3743 inet = inet_sk(sk);
3744 overhead += sizeof(struct iphdr);
3745 opt = rcu_dereference_protected(inet->inet_opt,
3746 sock_owned_by_user(sk));
3747 if (opt)
3748 overhead += opt->opt.optlen;
3749 return overhead;
3750 #if IS_ENABLED(CONFIG_IPV6)
3751 case AF_INET6:
3752 np = inet6_sk(sk);
3753 overhead += sizeof(struct ipv6hdr);
3754 if (np)
3755 optv6 = rcu_dereference_protected(np->opt,
3756 sock_owned_by_user(sk));
3757 if (optv6)
3758 overhead += (optv6->opt_flen + optv6->opt_nflen);
3759 return overhead;
3760 #endif /* IS_ENABLED(CONFIG_IPV6) */
3761 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3762 return overhead;
3763 }
3764 }
3765 EXPORT_SYMBOL(kernel_sock_ip_overhead);