]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/socket.c
net: socket: set sock->sk to NULL after calling proto_ops::release()
[mirror_ubuntu-bionic-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156 };
157
158 /*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165 /*
166 * Statistics counters of the socket lists
167 */
168
169 static DEFINE_PER_CPU(int, sockets_in_use);
170
171 /*
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
175 */
176
177 /**
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
182 *
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
186 */
187
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
197 }
198
199 /**
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
205 *
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
214 */
215
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
218 {
219 int err;
220 int len;
221
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
235 }
236 /*
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
239 */
240 return __put_user(klen, ulen);
241 }
242
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
249
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
257 }
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 wq->flags = 0;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
262
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
268
269 return &ei->vfs_inode;
270 }
271
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
276
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
281 }
282
283 static void init_once(void *foo)
284 {
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
286
287 inode_init_once(&ei->vfs_inode);
288 }
289
290 static void init_inodecache(void)
291 {
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
294 0,
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 init_once);
299 BUG_ON(sock_inode_cachep == NULL);
300 }
301
302 static const struct super_operations sockfs_ops = {
303 .alloc_inode = sock_alloc_inode,
304 .destroy_inode = sock_destroy_inode,
305 .statfs = simple_statfs,
306 };
307
308 /*
309 * sockfs_dname() is called from d_path().
310 */
311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
312 {
313 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
314 d_inode(dentry)->i_ino);
315 }
316
317 static const struct dentry_operations sockfs_dentry_operations = {
318 .d_dname = sockfs_dname,
319 };
320
321 static int sockfs_xattr_get(const struct xattr_handler *handler,
322 struct dentry *dentry, struct inode *inode,
323 const char *suffix, void *value, size_t size)
324 {
325 if (value) {
326 if (dentry->d_name.len + 1 > size)
327 return -ERANGE;
328 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
329 }
330 return dentry->d_name.len + 1;
331 }
332
333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
336
337 static const struct xattr_handler sockfs_xattr_handler = {
338 .name = XATTR_NAME_SOCKPROTONAME,
339 .get = sockfs_xattr_get,
340 };
341
342 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
343 struct dentry *dentry, struct inode *inode,
344 const char *suffix, const void *value,
345 size_t size, int flags)
346 {
347 /* Handled by LSM. */
348 return -EAGAIN;
349 }
350
351 static const struct xattr_handler sockfs_security_xattr_handler = {
352 .prefix = XATTR_SECURITY_PREFIX,
353 .set = sockfs_security_xattr_set,
354 };
355
356 static const struct xattr_handler *sockfs_xattr_handlers[] = {
357 &sockfs_xattr_handler,
358 &sockfs_security_xattr_handler,
359 NULL
360 };
361
362 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
363 int flags, const char *dev_name, void *data)
364 {
365 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
366 sockfs_xattr_handlers,
367 &sockfs_dentry_operations, SOCKFS_MAGIC);
368 }
369
370 static struct vfsmount *sock_mnt __read_mostly;
371
372 static struct file_system_type sock_fs_type = {
373 .name = "sockfs",
374 .mount = sockfs_mount,
375 .kill_sb = kill_anon_super,
376 };
377
378 /*
379 * Obtains the first available file descriptor and sets it up for use.
380 *
381 * These functions create file structures and maps them to fd space
382 * of the current process. On success it returns file descriptor
383 * and file struct implicitly stored in sock->file.
384 * Note that another thread may close file descriptor before we return
385 * from this function. We use the fact that now we do not refer
386 * to socket after mapping. If one day we will need it, this
387 * function will increment ref. count on file by 1.
388 *
389 * In any case returned fd MAY BE not valid!
390 * This race condition is unavoidable
391 * with shared fd spaces, we cannot solve it inside kernel,
392 * but we take care of internal coherence yet.
393 */
394
395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
396 {
397 struct qstr name = { .name = "" };
398 struct path path;
399 struct file *file;
400
401 if (dname) {
402 name.name = dname;
403 name.len = strlen(name.name);
404 } else if (sock->sk) {
405 name.name = sock->sk->sk_prot_creator->name;
406 name.len = strlen(name.name);
407 }
408 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
409 if (unlikely(!path.dentry)) {
410 sock_release(sock);
411 return ERR_PTR(-ENOMEM);
412 }
413 path.mnt = mntget(sock_mnt);
414
415 d_instantiate(path.dentry, SOCK_INODE(sock));
416
417 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
418 &socket_file_ops);
419 if (IS_ERR(file)) {
420 /* drop dentry, keep inode for a bit */
421 ihold(d_inode(path.dentry));
422 path_put(&path);
423 /* ... and now kill it properly */
424 sock_release(sock);
425 return file;
426 }
427
428 sock->file = file;
429 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
430 file->private_data = sock;
431 return file;
432 }
433 EXPORT_SYMBOL(sock_alloc_file);
434
435 static int sock_map_fd(struct socket *sock, int flags)
436 {
437 struct file *newfile;
438 int fd = get_unused_fd_flags(flags);
439 if (unlikely(fd < 0)) {
440 sock_release(sock);
441 return fd;
442 }
443
444 newfile = sock_alloc_file(sock, flags, NULL);
445 if (likely(!IS_ERR(newfile))) {
446 fd_install(fd, newfile);
447 return fd;
448 }
449
450 put_unused_fd(fd);
451 return PTR_ERR(newfile);
452 }
453
454 struct socket *sock_from_file(struct file *file, int *err)
455 {
456 if (file->f_op == &socket_file_ops)
457 return file->private_data; /* set in sock_map_fd */
458
459 *err = -ENOTSOCK;
460 return NULL;
461 }
462 EXPORT_SYMBOL(sock_from_file);
463
464 /**
465 * sockfd_lookup - Go from a file number to its socket slot
466 * @fd: file handle
467 * @err: pointer to an error code return
468 *
469 * The file handle passed in is locked and the socket it is bound
470 * to is returned. If an error occurs the err pointer is overwritten
471 * with a negative errno code and NULL is returned. The function checks
472 * for both invalid handles and passing a handle which is not a socket.
473 *
474 * On a success the socket object pointer is returned.
475 */
476
477 struct socket *sockfd_lookup(int fd, int *err)
478 {
479 struct file *file;
480 struct socket *sock;
481
482 file = fget(fd);
483 if (!file) {
484 *err = -EBADF;
485 return NULL;
486 }
487
488 sock = sock_from_file(file, err);
489 if (!sock)
490 fput(file);
491 return sock;
492 }
493 EXPORT_SYMBOL(sockfd_lookup);
494
495 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
496 {
497 struct fd f = fdget(fd);
498 struct socket *sock;
499
500 *err = -EBADF;
501 if (f.file) {
502 sock = sock_from_file(f.file, err);
503 if (likely(sock)) {
504 *fput_needed = f.flags;
505 return sock;
506 }
507 fdput(f);
508 }
509 return NULL;
510 }
511
512 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
513 size_t size)
514 {
515 ssize_t len;
516 ssize_t used = 0;
517
518 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
519 if (len < 0)
520 return len;
521 used += len;
522 if (buffer) {
523 if (size < used)
524 return -ERANGE;
525 buffer += len;
526 }
527
528 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
529 used += len;
530 if (buffer) {
531 if (size < used)
532 return -ERANGE;
533 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
534 buffer += len;
535 }
536
537 return used;
538 }
539
540 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
541 {
542 int err = simple_setattr(dentry, iattr);
543
544 if (!err && (iattr->ia_valid & ATTR_UID)) {
545 struct socket *sock = SOCKET_I(d_inode(dentry));
546
547 if (sock->sk)
548 sock->sk->sk_uid = iattr->ia_uid;
549 else
550 err = -ENOENT;
551 }
552
553 return err;
554 }
555
556 static const struct inode_operations sockfs_inode_ops = {
557 .listxattr = sockfs_listxattr,
558 .setattr = sockfs_setattr,
559 };
560
561 /**
562 * sock_alloc - allocate a socket
563 *
564 * Allocate a new inode and socket object. The two are bound together
565 * and initialised. The socket is then returned. If we are out of inodes
566 * NULL is returned.
567 */
568
569 struct socket *sock_alloc(void)
570 {
571 struct inode *inode;
572 struct socket *sock;
573
574 inode = new_inode_pseudo(sock_mnt->mnt_sb);
575 if (!inode)
576 return NULL;
577
578 sock = SOCKET_I(inode);
579
580 inode->i_ino = get_next_ino();
581 inode->i_mode = S_IFSOCK | S_IRWXUGO;
582 inode->i_uid = current_fsuid();
583 inode->i_gid = current_fsgid();
584 inode->i_op = &sockfs_inode_ops;
585
586 this_cpu_add(sockets_in_use, 1);
587 return sock;
588 }
589 EXPORT_SYMBOL(sock_alloc);
590
591 /**
592 * sock_release - close a socket
593 * @sock: socket to close
594 *
595 * The socket is released from the protocol stack if it has a release
596 * callback, and the inode is then released if the socket is bound to
597 * an inode not a file.
598 */
599
600 static void __sock_release(struct socket *sock, struct inode *inode)
601 {
602 if (sock->ops) {
603 struct module *owner = sock->ops->owner;
604
605 if (inode)
606 inode_lock(inode);
607 sock->ops->release(sock);
608 sock->sk = NULL;
609 if (inode)
610 inode_unlock(inode);
611 sock->ops = NULL;
612 module_put(owner);
613 }
614
615 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
616 pr_err("%s: fasync list not empty!\n", __func__);
617
618 this_cpu_sub(sockets_in_use, 1);
619 if (!sock->file) {
620 iput(SOCK_INODE(sock));
621 return;
622 }
623 sock->file = NULL;
624 }
625
626 void sock_release(struct socket *sock)
627 {
628 __sock_release(sock, NULL);
629 }
630 EXPORT_SYMBOL(sock_release);
631
632 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
633 {
634 u8 flags = *tx_flags;
635
636 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
637 flags |= SKBTX_HW_TSTAMP;
638
639 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
640 flags |= SKBTX_SW_TSTAMP;
641
642 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
643 flags |= SKBTX_SCHED_TSTAMP;
644
645 *tx_flags = flags;
646 }
647 EXPORT_SYMBOL(__sock_tx_timestamp);
648
649 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
650 {
651 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
652 BUG_ON(ret == -EIOCBQUEUED);
653 return ret;
654 }
655
656 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
657 {
658 int err = security_socket_sendmsg(sock, msg,
659 msg_data_left(msg));
660
661 return err ?: sock_sendmsg_nosec(sock, msg);
662 }
663 EXPORT_SYMBOL(sock_sendmsg);
664
665 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
666 struct kvec *vec, size_t num, size_t size)
667 {
668 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
669 return sock_sendmsg(sock, msg);
670 }
671 EXPORT_SYMBOL(kernel_sendmsg);
672
673 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
674 struct kvec *vec, size_t num, size_t size)
675 {
676 struct socket *sock = sk->sk_socket;
677
678 if (!sock->ops->sendmsg_locked)
679 return sock_no_sendmsg_locked(sk, msg, size);
680
681 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
682
683 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
684 }
685 EXPORT_SYMBOL(kernel_sendmsg_locked);
686
687 static bool skb_is_err_queue(const struct sk_buff *skb)
688 {
689 /* pkt_type of skbs enqueued on the error queue are set to
690 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
691 * in recvmsg, since skbs received on a local socket will never
692 * have a pkt_type of PACKET_OUTGOING.
693 */
694 return skb->pkt_type == PACKET_OUTGOING;
695 }
696
697 /* On transmit, software and hardware timestamps are returned independently.
698 * As the two skb clones share the hardware timestamp, which may be updated
699 * before the software timestamp is received, a hardware TX timestamp may be
700 * returned only if there is no software TX timestamp. Ignore false software
701 * timestamps, which may be made in the __sock_recv_timestamp() call when the
702 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
703 * hardware timestamp.
704 */
705 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
706 {
707 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
708 }
709
710 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
711 {
712 struct scm_ts_pktinfo ts_pktinfo;
713 struct net_device *orig_dev;
714
715 if (!skb_mac_header_was_set(skb))
716 return;
717
718 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
719
720 rcu_read_lock();
721 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
722 if (orig_dev)
723 ts_pktinfo.if_index = orig_dev->ifindex;
724 rcu_read_unlock();
725
726 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
727 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
728 sizeof(ts_pktinfo), &ts_pktinfo);
729 }
730
731 /*
732 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
733 */
734 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
735 struct sk_buff *skb)
736 {
737 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
738 struct scm_timestamping tss;
739 int empty = 1, false_tstamp = 0;
740 struct skb_shared_hwtstamps *shhwtstamps =
741 skb_hwtstamps(skb);
742
743 /* Race occurred between timestamp enabling and packet
744 receiving. Fill in the current time for now. */
745 if (need_software_tstamp && skb->tstamp == 0) {
746 __net_timestamp(skb);
747 false_tstamp = 1;
748 }
749
750 if (need_software_tstamp) {
751 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
752 struct timeval tv;
753 skb_get_timestamp(skb, &tv);
754 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
755 sizeof(tv), &tv);
756 } else {
757 struct timespec ts;
758 skb_get_timestampns(skb, &ts);
759 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
760 sizeof(ts), &ts);
761 }
762 }
763
764 memset(&tss, 0, sizeof(tss));
765 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
766 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
767 empty = 0;
768 if (shhwtstamps &&
769 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
770 !skb_is_swtx_tstamp(skb, false_tstamp) &&
771 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
772 empty = 0;
773 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
774 !skb_is_err_queue(skb))
775 put_ts_pktinfo(msg, skb);
776 }
777 if (!empty) {
778 put_cmsg(msg, SOL_SOCKET,
779 SCM_TIMESTAMPING, sizeof(tss), &tss);
780
781 if (skb_is_err_queue(skb) && skb->len &&
782 SKB_EXT_ERR(skb)->opt_stats)
783 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
784 skb->len, skb->data);
785 }
786 }
787 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
788
789 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
790 struct sk_buff *skb)
791 {
792 int ack;
793
794 if (!sock_flag(sk, SOCK_WIFI_STATUS))
795 return;
796 if (!skb->wifi_acked_valid)
797 return;
798
799 ack = skb->wifi_acked;
800
801 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
802 }
803 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
804
805 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
806 struct sk_buff *skb)
807 {
808 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
809 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
810 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
811 }
812
813 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
814 struct sk_buff *skb)
815 {
816 sock_recv_timestamp(msg, sk, skb);
817 sock_recv_drops(msg, sk, skb);
818 }
819 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
820
821 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
822 int flags)
823 {
824 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
825 }
826
827 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
828 {
829 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
830
831 return err ?: sock_recvmsg_nosec(sock, msg, flags);
832 }
833 EXPORT_SYMBOL(sock_recvmsg);
834
835 /**
836 * kernel_recvmsg - Receive a message from a socket (kernel space)
837 * @sock: The socket to receive the message from
838 * @msg: Received message
839 * @vec: Input s/g array for message data
840 * @num: Size of input s/g array
841 * @size: Number of bytes to read
842 * @flags: Message flags (MSG_DONTWAIT, etc...)
843 *
844 * On return the msg structure contains the scatter/gather array passed in the
845 * vec argument. The array is modified so that it consists of the unfilled
846 * portion of the original array.
847 *
848 * The returned value is the total number of bytes received, or an error.
849 */
850 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
851 struct kvec *vec, size_t num, size_t size, int flags)
852 {
853 mm_segment_t oldfs = get_fs();
854 int result;
855
856 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
857 set_fs(KERNEL_DS);
858 result = sock_recvmsg(sock, msg, flags);
859 set_fs(oldfs);
860 return result;
861 }
862 EXPORT_SYMBOL(kernel_recvmsg);
863
864 static ssize_t sock_sendpage(struct file *file, struct page *page,
865 int offset, size_t size, loff_t *ppos, int more)
866 {
867 struct socket *sock;
868 int flags;
869
870 sock = file->private_data;
871
872 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
873 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
874 flags |= more;
875
876 return kernel_sendpage(sock, page, offset, size, flags);
877 }
878
879 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
880 struct pipe_inode_info *pipe, size_t len,
881 unsigned int flags)
882 {
883 struct socket *sock = file->private_data;
884
885 if (unlikely(!sock->ops->splice_read))
886 return -EINVAL;
887
888 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
889 }
890
891 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
892 {
893 struct file *file = iocb->ki_filp;
894 struct socket *sock = file->private_data;
895 struct msghdr msg = {.msg_iter = *to,
896 .msg_iocb = iocb};
897 ssize_t res;
898
899 if (file->f_flags & O_NONBLOCK)
900 msg.msg_flags = MSG_DONTWAIT;
901
902 if (iocb->ki_pos != 0)
903 return -ESPIPE;
904
905 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
906 return 0;
907
908 res = sock_recvmsg(sock, &msg, msg.msg_flags);
909 *to = msg.msg_iter;
910 return res;
911 }
912
913 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
914 {
915 struct file *file = iocb->ki_filp;
916 struct socket *sock = file->private_data;
917 struct msghdr msg = {.msg_iter = *from,
918 .msg_iocb = iocb};
919 ssize_t res;
920
921 if (iocb->ki_pos != 0)
922 return -ESPIPE;
923
924 if (file->f_flags & O_NONBLOCK)
925 msg.msg_flags = MSG_DONTWAIT;
926
927 if (sock->type == SOCK_SEQPACKET)
928 msg.msg_flags |= MSG_EOR;
929
930 res = sock_sendmsg(sock, &msg);
931 *from = msg.msg_iter;
932 return res;
933 }
934
935 /*
936 * Atomic setting of ioctl hooks to avoid race
937 * with module unload.
938 */
939
940 static DEFINE_MUTEX(br_ioctl_mutex);
941 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
942
943 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
944 {
945 mutex_lock(&br_ioctl_mutex);
946 br_ioctl_hook = hook;
947 mutex_unlock(&br_ioctl_mutex);
948 }
949 EXPORT_SYMBOL(brioctl_set);
950
951 static DEFINE_MUTEX(vlan_ioctl_mutex);
952 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
953
954 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
955 {
956 mutex_lock(&vlan_ioctl_mutex);
957 vlan_ioctl_hook = hook;
958 mutex_unlock(&vlan_ioctl_mutex);
959 }
960 EXPORT_SYMBOL(vlan_ioctl_set);
961
962 static DEFINE_MUTEX(dlci_ioctl_mutex);
963 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
964
965 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
966 {
967 mutex_lock(&dlci_ioctl_mutex);
968 dlci_ioctl_hook = hook;
969 mutex_unlock(&dlci_ioctl_mutex);
970 }
971 EXPORT_SYMBOL(dlci_ioctl_set);
972
973 static long sock_do_ioctl(struct net *net, struct socket *sock,
974 unsigned int cmd, unsigned long arg)
975 {
976 int err;
977 void __user *argp = (void __user *)arg;
978
979 err = sock->ops->ioctl(sock, cmd, arg);
980
981 /*
982 * If this ioctl is unknown try to hand it down
983 * to the NIC driver.
984 */
985 if (err == -ENOIOCTLCMD)
986 err = dev_ioctl(net, cmd, argp);
987
988 return err;
989 }
990
991 /*
992 * With an ioctl, arg may well be a user mode pointer, but we don't know
993 * what to do with it - that's up to the protocol still.
994 */
995
996 static struct ns_common *get_net_ns(struct ns_common *ns)
997 {
998 return &get_net(container_of(ns, struct net, ns))->ns;
999 }
1000
1001 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1002 {
1003 struct socket *sock;
1004 struct sock *sk;
1005 void __user *argp = (void __user *)arg;
1006 int pid, err;
1007 struct net *net;
1008
1009 sock = file->private_data;
1010 sk = sock->sk;
1011 net = sock_net(sk);
1012 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1013 err = dev_ioctl(net, cmd, argp);
1014 } else
1015 #ifdef CONFIG_WEXT_CORE
1016 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1017 err = dev_ioctl(net, cmd, argp);
1018 } else
1019 #endif
1020 switch (cmd) {
1021 case FIOSETOWN:
1022 case SIOCSPGRP:
1023 err = -EFAULT;
1024 if (get_user(pid, (int __user *)argp))
1025 break;
1026 err = f_setown(sock->file, pid, 1);
1027 break;
1028 case FIOGETOWN:
1029 case SIOCGPGRP:
1030 err = put_user(f_getown(sock->file),
1031 (int __user *)argp);
1032 break;
1033 case SIOCGIFBR:
1034 case SIOCSIFBR:
1035 case SIOCBRADDBR:
1036 case SIOCBRDELBR:
1037 err = -ENOPKG;
1038 if (!br_ioctl_hook)
1039 request_module("bridge");
1040
1041 mutex_lock(&br_ioctl_mutex);
1042 if (br_ioctl_hook)
1043 err = br_ioctl_hook(net, cmd, argp);
1044 mutex_unlock(&br_ioctl_mutex);
1045 break;
1046 case SIOCGIFVLAN:
1047 case SIOCSIFVLAN:
1048 err = -ENOPKG;
1049 if (!vlan_ioctl_hook)
1050 request_module("8021q");
1051
1052 mutex_lock(&vlan_ioctl_mutex);
1053 if (vlan_ioctl_hook)
1054 err = vlan_ioctl_hook(net, argp);
1055 mutex_unlock(&vlan_ioctl_mutex);
1056 break;
1057 case SIOCADDDLCI:
1058 case SIOCDELDLCI:
1059 err = -ENOPKG;
1060 if (!dlci_ioctl_hook)
1061 request_module("dlci");
1062
1063 mutex_lock(&dlci_ioctl_mutex);
1064 if (dlci_ioctl_hook)
1065 err = dlci_ioctl_hook(cmd, argp);
1066 mutex_unlock(&dlci_ioctl_mutex);
1067 break;
1068 case SIOCGSKNS:
1069 err = -EPERM;
1070 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1071 break;
1072
1073 err = open_related_ns(&net->ns, get_net_ns);
1074 break;
1075 default:
1076 err = sock_do_ioctl(net, sock, cmd, arg);
1077 break;
1078 }
1079 return err;
1080 }
1081
1082 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1083 {
1084 int err;
1085 struct socket *sock = NULL;
1086
1087 err = security_socket_create(family, type, protocol, 1);
1088 if (err)
1089 goto out;
1090
1091 sock = sock_alloc();
1092 if (!sock) {
1093 err = -ENOMEM;
1094 goto out;
1095 }
1096
1097 sock->type = type;
1098 err = security_socket_post_create(sock, family, type, protocol, 1);
1099 if (err)
1100 goto out_release;
1101
1102 out:
1103 *res = sock;
1104 return err;
1105 out_release:
1106 sock_release(sock);
1107 sock = NULL;
1108 goto out;
1109 }
1110 EXPORT_SYMBOL(sock_create_lite);
1111
1112 /* No kernel lock held - perfect */
1113 static unsigned int sock_poll(struct file *file, poll_table *wait)
1114 {
1115 unsigned int busy_flag = 0;
1116 struct socket *sock;
1117
1118 /*
1119 * We can't return errors to poll, so it's either yes or no.
1120 */
1121 sock = file->private_data;
1122
1123 if (sk_can_busy_loop(sock->sk)) {
1124 /* this socket can poll_ll so tell the system call */
1125 busy_flag = POLL_BUSY_LOOP;
1126
1127 /* once, only if requested by syscall */
1128 if (wait && (wait->_key & POLL_BUSY_LOOP))
1129 sk_busy_loop(sock->sk, 1);
1130 }
1131
1132 return busy_flag | sock->ops->poll(file, sock, wait);
1133 }
1134
1135 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1136 {
1137 struct socket *sock = file->private_data;
1138
1139 return sock->ops->mmap(file, sock, vma);
1140 }
1141
1142 static int sock_close(struct inode *inode, struct file *filp)
1143 {
1144 __sock_release(SOCKET_I(inode), inode);
1145 return 0;
1146 }
1147
1148 /*
1149 * Update the socket async list
1150 *
1151 * Fasync_list locking strategy.
1152 *
1153 * 1. fasync_list is modified only under process context socket lock
1154 * i.e. under semaphore.
1155 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1156 * or under socket lock
1157 */
1158
1159 static int sock_fasync(int fd, struct file *filp, int on)
1160 {
1161 struct socket *sock = filp->private_data;
1162 struct sock *sk = sock->sk;
1163 struct socket_wq *wq;
1164
1165 if (sk == NULL)
1166 return -EINVAL;
1167
1168 lock_sock(sk);
1169 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1170 fasync_helper(fd, filp, on, &wq->fasync_list);
1171
1172 if (!wq->fasync_list)
1173 sock_reset_flag(sk, SOCK_FASYNC);
1174 else
1175 sock_set_flag(sk, SOCK_FASYNC);
1176
1177 release_sock(sk);
1178 return 0;
1179 }
1180
1181 /* This function may be called only under rcu_lock */
1182
1183 int sock_wake_async(struct socket_wq *wq, int how, int band)
1184 {
1185 if (!wq || !wq->fasync_list)
1186 return -1;
1187
1188 switch (how) {
1189 case SOCK_WAKE_WAITD:
1190 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1191 break;
1192 goto call_kill;
1193 case SOCK_WAKE_SPACE:
1194 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1195 break;
1196 /* fall through */
1197 case SOCK_WAKE_IO:
1198 call_kill:
1199 kill_fasync(&wq->fasync_list, SIGIO, band);
1200 break;
1201 case SOCK_WAKE_URG:
1202 kill_fasync(&wq->fasync_list, SIGURG, band);
1203 }
1204
1205 return 0;
1206 }
1207 EXPORT_SYMBOL(sock_wake_async);
1208
1209 int __sock_create(struct net *net, int family, int type, int protocol,
1210 struct socket **res, int kern)
1211 {
1212 int err;
1213 struct socket *sock;
1214 const struct net_proto_family *pf;
1215
1216 /*
1217 * Check protocol is in range
1218 */
1219 if (family < 0 || family >= NPROTO)
1220 return -EAFNOSUPPORT;
1221 if (type < 0 || type >= SOCK_MAX)
1222 return -EINVAL;
1223
1224 /* Compatibility.
1225
1226 This uglymoron is moved from INET layer to here to avoid
1227 deadlock in module load.
1228 */
1229 if (family == PF_INET && type == SOCK_PACKET) {
1230 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1231 current->comm);
1232 family = PF_PACKET;
1233 }
1234
1235 err = security_socket_create(family, type, protocol, kern);
1236 if (err)
1237 return err;
1238
1239 /*
1240 * Allocate the socket and allow the family to set things up. if
1241 * the protocol is 0, the family is instructed to select an appropriate
1242 * default.
1243 */
1244 sock = sock_alloc();
1245 if (!sock) {
1246 net_warn_ratelimited("socket: no more sockets\n");
1247 return -ENFILE; /* Not exactly a match, but its the
1248 closest posix thing */
1249 }
1250
1251 sock->type = type;
1252
1253 #ifdef CONFIG_MODULES
1254 /* Attempt to load a protocol module if the find failed.
1255 *
1256 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1257 * requested real, full-featured networking support upon configuration.
1258 * Otherwise module support will break!
1259 */
1260 if (rcu_access_pointer(net_families[family]) == NULL)
1261 request_module("net-pf-%d", family);
1262 #endif
1263
1264 rcu_read_lock();
1265 pf = rcu_dereference(net_families[family]);
1266 err = -EAFNOSUPPORT;
1267 if (!pf)
1268 goto out_release;
1269
1270 /*
1271 * We will call the ->create function, that possibly is in a loadable
1272 * module, so we have to bump that loadable module refcnt first.
1273 */
1274 if (!try_module_get(pf->owner))
1275 goto out_release;
1276
1277 /* Now protected by module ref count */
1278 rcu_read_unlock();
1279
1280 err = pf->create(net, sock, protocol, kern);
1281 if (err < 0)
1282 goto out_module_put;
1283
1284 /*
1285 * Now to bump the refcnt of the [loadable] module that owns this
1286 * socket at sock_release time we decrement its refcnt.
1287 */
1288 if (!try_module_get(sock->ops->owner))
1289 goto out_module_busy;
1290
1291 /*
1292 * Now that we're done with the ->create function, the [loadable]
1293 * module can have its refcnt decremented
1294 */
1295 module_put(pf->owner);
1296 err = security_socket_post_create(sock, family, type, protocol, kern);
1297 if (err)
1298 goto out_sock_release;
1299 *res = sock;
1300
1301 return 0;
1302
1303 out_module_busy:
1304 err = -EAFNOSUPPORT;
1305 out_module_put:
1306 sock->ops = NULL;
1307 module_put(pf->owner);
1308 out_sock_release:
1309 sock_release(sock);
1310 return err;
1311
1312 out_release:
1313 rcu_read_unlock();
1314 goto out_sock_release;
1315 }
1316 EXPORT_SYMBOL(__sock_create);
1317
1318 int sock_create(int family, int type, int protocol, struct socket **res)
1319 {
1320 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1321 }
1322 EXPORT_SYMBOL(sock_create);
1323
1324 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1325 {
1326 return __sock_create(net, family, type, protocol, res, 1);
1327 }
1328 EXPORT_SYMBOL(sock_create_kern);
1329
1330 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1331 {
1332 int retval;
1333 struct socket *sock;
1334 int flags;
1335
1336 /* Check the SOCK_* constants for consistency. */
1337 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1338 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1339 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1340 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1341
1342 flags = type & ~SOCK_TYPE_MASK;
1343 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1344 return -EINVAL;
1345 type &= SOCK_TYPE_MASK;
1346
1347 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1348 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1349
1350 retval = sock_create(family, type, protocol, &sock);
1351 if (retval < 0)
1352 return retval;
1353
1354 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1355 }
1356
1357 /*
1358 * Create a pair of connected sockets.
1359 */
1360
1361 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1362 int __user *, usockvec)
1363 {
1364 struct socket *sock1, *sock2;
1365 int fd1, fd2, err;
1366 struct file *newfile1, *newfile2;
1367 int flags;
1368
1369 flags = type & ~SOCK_TYPE_MASK;
1370 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1371 return -EINVAL;
1372 type &= SOCK_TYPE_MASK;
1373
1374 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1375 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1376
1377 /*
1378 * reserve descriptors and make sure we won't fail
1379 * to return them to userland.
1380 */
1381 fd1 = get_unused_fd_flags(flags);
1382 if (unlikely(fd1 < 0))
1383 return fd1;
1384
1385 fd2 = get_unused_fd_flags(flags);
1386 if (unlikely(fd2 < 0)) {
1387 put_unused_fd(fd1);
1388 return fd2;
1389 }
1390
1391 err = put_user(fd1, &usockvec[0]);
1392 if (err)
1393 goto out;
1394
1395 err = put_user(fd2, &usockvec[1]);
1396 if (err)
1397 goto out;
1398
1399 /*
1400 * Obtain the first socket and check if the underlying protocol
1401 * supports the socketpair call.
1402 */
1403
1404 err = sock_create(family, type, protocol, &sock1);
1405 if (unlikely(err < 0))
1406 goto out;
1407
1408 err = sock_create(family, type, protocol, &sock2);
1409 if (unlikely(err < 0)) {
1410 sock_release(sock1);
1411 goto out;
1412 }
1413
1414 err = sock1->ops->socketpair(sock1, sock2);
1415 if (unlikely(err < 0)) {
1416 sock_release(sock2);
1417 sock_release(sock1);
1418 goto out;
1419 }
1420
1421 newfile1 = sock_alloc_file(sock1, flags, NULL);
1422 if (IS_ERR(newfile1)) {
1423 err = PTR_ERR(newfile1);
1424 sock_release(sock2);
1425 goto out;
1426 }
1427
1428 newfile2 = sock_alloc_file(sock2, flags, NULL);
1429 if (IS_ERR(newfile2)) {
1430 err = PTR_ERR(newfile2);
1431 fput(newfile1);
1432 goto out;
1433 }
1434
1435 audit_fd_pair(fd1, fd2);
1436
1437 fd_install(fd1, newfile1);
1438 fd_install(fd2, newfile2);
1439 return 0;
1440
1441 out:
1442 put_unused_fd(fd2);
1443 put_unused_fd(fd1);
1444 return err;
1445 }
1446
1447 /*
1448 * Bind a name to a socket. Nothing much to do here since it's
1449 * the protocol's responsibility to handle the local address.
1450 *
1451 * We move the socket address to kernel space before we call
1452 * the protocol layer (having also checked the address is ok).
1453 */
1454
1455 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1456 {
1457 struct socket *sock;
1458 struct sockaddr_storage address;
1459 int err, fput_needed;
1460
1461 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1462 if (sock) {
1463 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1464 if (err >= 0) {
1465 err = security_socket_bind(sock,
1466 (struct sockaddr *)&address,
1467 addrlen);
1468 if (!err)
1469 err = sock->ops->bind(sock,
1470 (struct sockaddr *)
1471 &address, addrlen);
1472 }
1473 fput_light(sock->file, fput_needed);
1474 }
1475 return err;
1476 }
1477
1478 /*
1479 * Perform a listen. Basically, we allow the protocol to do anything
1480 * necessary for a listen, and if that works, we mark the socket as
1481 * ready for listening.
1482 */
1483
1484 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1485 {
1486 struct socket *sock;
1487 int err, fput_needed;
1488 int somaxconn;
1489
1490 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1491 if (sock) {
1492 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1493 if ((unsigned int)backlog > somaxconn)
1494 backlog = somaxconn;
1495
1496 err = security_socket_listen(sock, backlog);
1497 if (!err)
1498 err = sock->ops->listen(sock, backlog);
1499
1500 fput_light(sock->file, fput_needed);
1501 }
1502 return err;
1503 }
1504
1505 /*
1506 * For accept, we attempt to create a new socket, set up the link
1507 * with the client, wake up the client, then return the new
1508 * connected fd. We collect the address of the connector in kernel
1509 * space and move it to user at the very end. This is unclean because
1510 * we open the socket then return an error.
1511 *
1512 * 1003.1g adds the ability to recvmsg() to query connection pending
1513 * status to recvmsg. We need to add that support in a way thats
1514 * clean when we restucture accept also.
1515 */
1516
1517 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1518 int __user *, upeer_addrlen, int, flags)
1519 {
1520 struct socket *sock, *newsock;
1521 struct file *newfile;
1522 int err, len, newfd, fput_needed;
1523 struct sockaddr_storage address;
1524
1525 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1526 return -EINVAL;
1527
1528 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1529 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1530
1531 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1532 if (!sock)
1533 goto out;
1534
1535 err = -ENFILE;
1536 newsock = sock_alloc();
1537 if (!newsock)
1538 goto out_put;
1539
1540 newsock->type = sock->type;
1541 newsock->ops = sock->ops;
1542
1543 /*
1544 * We don't need try_module_get here, as the listening socket (sock)
1545 * has the protocol module (sock->ops->owner) held.
1546 */
1547 __module_get(newsock->ops->owner);
1548
1549 newfd = get_unused_fd_flags(flags);
1550 if (unlikely(newfd < 0)) {
1551 err = newfd;
1552 sock_release(newsock);
1553 goto out_put;
1554 }
1555 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1556 if (IS_ERR(newfile)) {
1557 err = PTR_ERR(newfile);
1558 put_unused_fd(newfd);
1559 goto out_put;
1560 }
1561
1562 err = security_socket_accept(sock, newsock);
1563 if (err)
1564 goto out_fd;
1565
1566 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1567 if (err < 0)
1568 goto out_fd;
1569
1570 if (upeer_sockaddr) {
1571 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1572 &len, 2) < 0) {
1573 err = -ECONNABORTED;
1574 goto out_fd;
1575 }
1576 err = move_addr_to_user(&address,
1577 len, upeer_sockaddr, upeer_addrlen);
1578 if (err < 0)
1579 goto out_fd;
1580 }
1581
1582 /* File flags are not inherited via accept() unlike another OSes. */
1583
1584 fd_install(newfd, newfile);
1585 err = newfd;
1586
1587 out_put:
1588 fput_light(sock->file, fput_needed);
1589 out:
1590 return err;
1591 out_fd:
1592 fput(newfile);
1593 put_unused_fd(newfd);
1594 goto out_put;
1595 }
1596
1597 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1598 int __user *, upeer_addrlen)
1599 {
1600 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1601 }
1602
1603 /*
1604 * Attempt to connect to a socket with the server address. The address
1605 * is in user space so we verify it is OK and move it to kernel space.
1606 *
1607 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1608 * break bindings
1609 *
1610 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1611 * other SEQPACKET protocols that take time to connect() as it doesn't
1612 * include the -EINPROGRESS status for such sockets.
1613 */
1614
1615 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1616 int, addrlen)
1617 {
1618 struct socket *sock;
1619 struct sockaddr_storage address;
1620 int err, fput_needed;
1621
1622 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1623 if (!sock)
1624 goto out;
1625 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1626 if (err < 0)
1627 goto out_put;
1628
1629 err =
1630 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1631 if (err)
1632 goto out_put;
1633
1634 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1635 sock->file->f_flags);
1636 out_put:
1637 fput_light(sock->file, fput_needed);
1638 out:
1639 return err;
1640 }
1641
1642 /*
1643 * Get the local address ('name') of a socket object. Move the obtained
1644 * name to user space.
1645 */
1646
1647 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1648 int __user *, usockaddr_len)
1649 {
1650 struct socket *sock;
1651 struct sockaddr_storage address;
1652 int len, err, fput_needed;
1653
1654 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1655 if (!sock)
1656 goto out;
1657
1658 err = security_socket_getsockname(sock);
1659 if (err)
1660 goto out_put;
1661
1662 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1663 if (err)
1664 goto out_put;
1665 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1666
1667 out_put:
1668 fput_light(sock->file, fput_needed);
1669 out:
1670 return err;
1671 }
1672
1673 /*
1674 * Get the remote address ('name') of a socket object. Move the obtained
1675 * name to user space.
1676 */
1677
1678 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1679 int __user *, usockaddr_len)
1680 {
1681 struct socket *sock;
1682 struct sockaddr_storage address;
1683 int len, err, fput_needed;
1684
1685 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1686 if (sock != NULL) {
1687 err = security_socket_getpeername(sock);
1688 if (err) {
1689 fput_light(sock->file, fput_needed);
1690 return err;
1691 }
1692
1693 err =
1694 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1695 1);
1696 if (!err)
1697 err = move_addr_to_user(&address, len, usockaddr,
1698 usockaddr_len);
1699 fput_light(sock->file, fput_needed);
1700 }
1701 return err;
1702 }
1703
1704 /*
1705 * Send a datagram to a given address. We move the address into kernel
1706 * space and check the user space data area is readable before invoking
1707 * the protocol.
1708 */
1709
1710 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1711 unsigned int, flags, struct sockaddr __user *, addr,
1712 int, addr_len)
1713 {
1714 struct socket *sock;
1715 struct sockaddr_storage address;
1716 int err;
1717 struct msghdr msg;
1718 struct iovec iov;
1719 int fput_needed;
1720
1721 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1722 if (unlikely(err))
1723 return err;
1724 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1725 if (!sock)
1726 goto out;
1727
1728 msg.msg_name = NULL;
1729 msg.msg_control = NULL;
1730 msg.msg_controllen = 0;
1731 msg.msg_namelen = 0;
1732 if (addr) {
1733 err = move_addr_to_kernel(addr, addr_len, &address);
1734 if (err < 0)
1735 goto out_put;
1736 msg.msg_name = (struct sockaddr *)&address;
1737 msg.msg_namelen = addr_len;
1738 }
1739 if (sock->file->f_flags & O_NONBLOCK)
1740 flags |= MSG_DONTWAIT;
1741 msg.msg_flags = flags;
1742 err = sock_sendmsg(sock, &msg);
1743
1744 out_put:
1745 fput_light(sock->file, fput_needed);
1746 out:
1747 return err;
1748 }
1749
1750 /*
1751 * Send a datagram down a socket.
1752 */
1753
1754 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1755 unsigned int, flags)
1756 {
1757 return sys_sendto(fd, buff, len, flags, NULL, 0);
1758 }
1759
1760 /*
1761 * Receive a frame from the socket and optionally record the address of the
1762 * sender. We verify the buffers are writable and if needed move the
1763 * sender address from kernel to user space.
1764 */
1765
1766 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1767 unsigned int, flags, struct sockaddr __user *, addr,
1768 int __user *, addr_len)
1769 {
1770 struct socket *sock;
1771 struct iovec iov;
1772 struct msghdr msg;
1773 struct sockaddr_storage address;
1774 int err, err2;
1775 int fput_needed;
1776
1777 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1778 if (unlikely(err))
1779 return err;
1780 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1781 if (!sock)
1782 goto out;
1783
1784 msg.msg_control = NULL;
1785 msg.msg_controllen = 0;
1786 /* Save some cycles and don't copy the address if not needed */
1787 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1788 /* We assume all kernel code knows the size of sockaddr_storage */
1789 msg.msg_namelen = 0;
1790 msg.msg_iocb = NULL;
1791 msg.msg_flags = 0;
1792 if (sock->file->f_flags & O_NONBLOCK)
1793 flags |= MSG_DONTWAIT;
1794 err = sock_recvmsg(sock, &msg, flags);
1795
1796 if (err >= 0 && addr != NULL) {
1797 err2 = move_addr_to_user(&address,
1798 msg.msg_namelen, addr, addr_len);
1799 if (err2 < 0)
1800 err = err2;
1801 }
1802
1803 fput_light(sock->file, fput_needed);
1804 out:
1805 return err;
1806 }
1807
1808 /*
1809 * Receive a datagram from a socket.
1810 */
1811
1812 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1813 unsigned int, flags)
1814 {
1815 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1816 }
1817
1818 /*
1819 * Set a socket option. Because we don't know the option lengths we have
1820 * to pass the user mode parameter for the protocols to sort out.
1821 */
1822
1823 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1824 char __user *, optval, int, optlen)
1825 {
1826 int err, fput_needed;
1827 struct socket *sock;
1828
1829 if (optlen < 0)
1830 return -EINVAL;
1831
1832 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1833 if (sock != NULL) {
1834 err = security_socket_setsockopt(sock, level, optname);
1835 if (err)
1836 goto out_put;
1837
1838 if (level == SOL_SOCKET)
1839 err =
1840 sock_setsockopt(sock, level, optname, optval,
1841 optlen);
1842 else
1843 err =
1844 sock->ops->setsockopt(sock, level, optname, optval,
1845 optlen);
1846 out_put:
1847 fput_light(sock->file, fput_needed);
1848 }
1849 return err;
1850 }
1851
1852 /*
1853 * Get a socket option. Because we don't know the option lengths we have
1854 * to pass a user mode parameter for the protocols to sort out.
1855 */
1856
1857 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1858 char __user *, optval, int __user *, optlen)
1859 {
1860 int err, fput_needed;
1861 struct socket *sock;
1862
1863 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1864 if (sock != NULL) {
1865 err = security_socket_getsockopt(sock, level, optname);
1866 if (err)
1867 goto out_put;
1868
1869 if (level == SOL_SOCKET)
1870 err =
1871 sock_getsockopt(sock, level, optname, optval,
1872 optlen);
1873 else
1874 err =
1875 sock->ops->getsockopt(sock, level, optname, optval,
1876 optlen);
1877 out_put:
1878 fput_light(sock->file, fput_needed);
1879 }
1880 return err;
1881 }
1882
1883 /*
1884 * Shutdown a socket.
1885 */
1886
1887 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1888 {
1889 int err, fput_needed;
1890 struct socket *sock;
1891
1892 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1893 if (sock != NULL) {
1894 err = security_socket_shutdown(sock, how);
1895 if (!err)
1896 err = sock->ops->shutdown(sock, how);
1897 fput_light(sock->file, fput_needed);
1898 }
1899 return err;
1900 }
1901
1902 /* A couple of helpful macros for getting the address of the 32/64 bit
1903 * fields which are the same type (int / unsigned) on our platforms.
1904 */
1905 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1906 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1907 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1908
1909 struct used_address {
1910 struct sockaddr_storage name;
1911 unsigned int name_len;
1912 };
1913
1914 static int copy_msghdr_from_user(struct msghdr *kmsg,
1915 struct user_msghdr __user *umsg,
1916 struct sockaddr __user **save_addr,
1917 struct iovec **iov)
1918 {
1919 struct user_msghdr msg;
1920 ssize_t err;
1921
1922 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1923 return -EFAULT;
1924
1925 kmsg->msg_control = (void __force *)msg.msg_control;
1926 kmsg->msg_controllen = msg.msg_controllen;
1927 kmsg->msg_flags = msg.msg_flags;
1928
1929 kmsg->msg_namelen = msg.msg_namelen;
1930 if (!msg.msg_name)
1931 kmsg->msg_namelen = 0;
1932
1933 if (kmsg->msg_namelen < 0)
1934 return -EINVAL;
1935
1936 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1937 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1938
1939 if (save_addr)
1940 *save_addr = msg.msg_name;
1941
1942 if (msg.msg_name && kmsg->msg_namelen) {
1943 if (!save_addr) {
1944 err = move_addr_to_kernel(msg.msg_name,
1945 kmsg->msg_namelen,
1946 kmsg->msg_name);
1947 if (err < 0)
1948 return err;
1949 }
1950 } else {
1951 kmsg->msg_name = NULL;
1952 kmsg->msg_namelen = 0;
1953 }
1954
1955 if (msg.msg_iovlen > UIO_MAXIOV)
1956 return -EMSGSIZE;
1957
1958 kmsg->msg_iocb = NULL;
1959
1960 return import_iovec(save_addr ? READ : WRITE,
1961 msg.msg_iov, msg.msg_iovlen,
1962 UIO_FASTIOV, iov, &kmsg->msg_iter);
1963 }
1964
1965 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1966 struct msghdr *msg_sys, unsigned int flags,
1967 struct used_address *used_address,
1968 unsigned int allowed_msghdr_flags)
1969 {
1970 struct compat_msghdr __user *msg_compat =
1971 (struct compat_msghdr __user *)msg;
1972 struct sockaddr_storage address;
1973 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1974 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1975 __aligned(sizeof(__kernel_size_t));
1976 /* 20 is size of ipv6_pktinfo */
1977 unsigned char *ctl_buf = ctl;
1978 int ctl_len;
1979 ssize_t err;
1980
1981 msg_sys->msg_name = &address;
1982
1983 if (MSG_CMSG_COMPAT & flags)
1984 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1985 else
1986 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1987 if (err < 0)
1988 return err;
1989
1990 err = -ENOBUFS;
1991
1992 if (msg_sys->msg_controllen > INT_MAX)
1993 goto out_freeiov;
1994 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1995 ctl_len = msg_sys->msg_controllen;
1996 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1997 err =
1998 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1999 sizeof(ctl));
2000 if (err)
2001 goto out_freeiov;
2002 ctl_buf = msg_sys->msg_control;
2003 ctl_len = msg_sys->msg_controllen;
2004 } else if (ctl_len) {
2005 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2006 CMSG_ALIGN(sizeof(struct cmsghdr)));
2007 if (ctl_len > sizeof(ctl)) {
2008 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2009 if (ctl_buf == NULL)
2010 goto out_freeiov;
2011 }
2012 err = -EFAULT;
2013 /*
2014 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2015 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2016 * checking falls down on this.
2017 */
2018 if (copy_from_user(ctl_buf,
2019 (void __user __force *)msg_sys->msg_control,
2020 ctl_len))
2021 goto out_freectl;
2022 msg_sys->msg_control = ctl_buf;
2023 }
2024 msg_sys->msg_flags = flags;
2025
2026 if (sock->file->f_flags & O_NONBLOCK)
2027 msg_sys->msg_flags |= MSG_DONTWAIT;
2028 /*
2029 * If this is sendmmsg() and current destination address is same as
2030 * previously succeeded address, omit asking LSM's decision.
2031 * used_address->name_len is initialized to UINT_MAX so that the first
2032 * destination address never matches.
2033 */
2034 if (used_address && msg_sys->msg_name &&
2035 used_address->name_len == msg_sys->msg_namelen &&
2036 !memcmp(&used_address->name, msg_sys->msg_name,
2037 used_address->name_len)) {
2038 err = sock_sendmsg_nosec(sock, msg_sys);
2039 goto out_freectl;
2040 }
2041 err = sock_sendmsg(sock, msg_sys);
2042 /*
2043 * If this is sendmmsg() and sending to current destination address was
2044 * successful, remember it.
2045 */
2046 if (used_address && err >= 0) {
2047 used_address->name_len = msg_sys->msg_namelen;
2048 if (msg_sys->msg_name)
2049 memcpy(&used_address->name, msg_sys->msg_name,
2050 used_address->name_len);
2051 }
2052
2053 out_freectl:
2054 if (ctl_buf != ctl)
2055 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2056 out_freeiov:
2057 kfree(iov);
2058 return err;
2059 }
2060
2061 /*
2062 * BSD sendmsg interface
2063 */
2064
2065 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2066 {
2067 int fput_needed, err;
2068 struct msghdr msg_sys;
2069 struct socket *sock;
2070
2071 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2072 if (!sock)
2073 goto out;
2074
2075 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2076
2077 fput_light(sock->file, fput_needed);
2078 out:
2079 return err;
2080 }
2081
2082 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2083 {
2084 if (flags & MSG_CMSG_COMPAT)
2085 return -EINVAL;
2086 return __sys_sendmsg(fd, msg, flags);
2087 }
2088
2089 /*
2090 * Linux sendmmsg interface
2091 */
2092
2093 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2094 unsigned int flags)
2095 {
2096 int fput_needed, err, datagrams;
2097 struct socket *sock;
2098 struct mmsghdr __user *entry;
2099 struct compat_mmsghdr __user *compat_entry;
2100 struct msghdr msg_sys;
2101 struct used_address used_address;
2102 unsigned int oflags = flags;
2103
2104 if (vlen > UIO_MAXIOV)
2105 vlen = UIO_MAXIOV;
2106
2107 datagrams = 0;
2108
2109 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2110 if (!sock)
2111 return err;
2112
2113 used_address.name_len = UINT_MAX;
2114 entry = mmsg;
2115 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2116 err = 0;
2117 flags |= MSG_BATCH;
2118
2119 while (datagrams < vlen) {
2120 if (datagrams == vlen - 1)
2121 flags = oflags;
2122
2123 if (MSG_CMSG_COMPAT & flags) {
2124 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2125 &msg_sys, flags, &used_address, MSG_EOR);
2126 if (err < 0)
2127 break;
2128 err = __put_user(err, &compat_entry->msg_len);
2129 ++compat_entry;
2130 } else {
2131 err = ___sys_sendmsg(sock,
2132 (struct user_msghdr __user *)entry,
2133 &msg_sys, flags, &used_address, MSG_EOR);
2134 if (err < 0)
2135 break;
2136 err = put_user(err, &entry->msg_len);
2137 ++entry;
2138 }
2139
2140 if (err)
2141 break;
2142 ++datagrams;
2143 if (msg_data_left(&msg_sys))
2144 break;
2145 cond_resched();
2146 }
2147
2148 fput_light(sock->file, fput_needed);
2149
2150 /* We only return an error if no datagrams were able to be sent */
2151 if (datagrams != 0)
2152 return datagrams;
2153
2154 return err;
2155 }
2156
2157 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2158 unsigned int, vlen, unsigned int, flags)
2159 {
2160 if (flags & MSG_CMSG_COMPAT)
2161 return -EINVAL;
2162 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2163 }
2164
2165 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2166 struct msghdr *msg_sys, unsigned int flags, int nosec)
2167 {
2168 struct compat_msghdr __user *msg_compat =
2169 (struct compat_msghdr __user *)msg;
2170 struct iovec iovstack[UIO_FASTIOV];
2171 struct iovec *iov = iovstack;
2172 unsigned long cmsg_ptr;
2173 int len;
2174 ssize_t err;
2175
2176 /* kernel mode address */
2177 struct sockaddr_storage addr;
2178
2179 /* user mode address pointers */
2180 struct sockaddr __user *uaddr;
2181 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2182
2183 msg_sys->msg_name = &addr;
2184
2185 if (MSG_CMSG_COMPAT & flags)
2186 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2187 else
2188 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2189 if (err < 0)
2190 return err;
2191
2192 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2193 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2194
2195 /* We assume all kernel code knows the size of sockaddr_storage */
2196 msg_sys->msg_namelen = 0;
2197
2198 if (sock->file->f_flags & O_NONBLOCK)
2199 flags |= MSG_DONTWAIT;
2200 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2201 if (err < 0)
2202 goto out_freeiov;
2203 len = err;
2204
2205 if (uaddr != NULL) {
2206 err = move_addr_to_user(&addr,
2207 msg_sys->msg_namelen, uaddr,
2208 uaddr_len);
2209 if (err < 0)
2210 goto out_freeiov;
2211 }
2212 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2213 COMPAT_FLAGS(msg));
2214 if (err)
2215 goto out_freeiov;
2216 if (MSG_CMSG_COMPAT & flags)
2217 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2218 &msg_compat->msg_controllen);
2219 else
2220 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2221 &msg->msg_controllen);
2222 if (err)
2223 goto out_freeiov;
2224 err = len;
2225
2226 out_freeiov:
2227 kfree(iov);
2228 return err;
2229 }
2230
2231 /*
2232 * BSD recvmsg interface
2233 */
2234
2235 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2236 {
2237 int fput_needed, err;
2238 struct msghdr msg_sys;
2239 struct socket *sock;
2240
2241 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2242 if (!sock)
2243 goto out;
2244
2245 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2246
2247 fput_light(sock->file, fput_needed);
2248 out:
2249 return err;
2250 }
2251
2252 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2253 unsigned int, flags)
2254 {
2255 if (flags & MSG_CMSG_COMPAT)
2256 return -EINVAL;
2257 return __sys_recvmsg(fd, msg, flags);
2258 }
2259
2260 /*
2261 * Linux recvmmsg interface
2262 */
2263
2264 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2265 unsigned int flags, struct timespec *timeout)
2266 {
2267 int fput_needed, err, datagrams;
2268 struct socket *sock;
2269 struct mmsghdr __user *entry;
2270 struct compat_mmsghdr __user *compat_entry;
2271 struct msghdr msg_sys;
2272 struct timespec64 end_time;
2273 struct timespec64 timeout64;
2274
2275 if (timeout &&
2276 poll_select_set_timeout(&end_time, timeout->tv_sec,
2277 timeout->tv_nsec))
2278 return -EINVAL;
2279
2280 datagrams = 0;
2281
2282 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2283 if (!sock)
2284 return err;
2285
2286 err = sock_error(sock->sk);
2287 if (err) {
2288 datagrams = err;
2289 goto out_put;
2290 }
2291
2292 entry = mmsg;
2293 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2294
2295 while (datagrams < vlen) {
2296 /*
2297 * No need to ask LSM for more than the first datagram.
2298 */
2299 if (MSG_CMSG_COMPAT & flags) {
2300 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2301 &msg_sys, flags & ~MSG_WAITFORONE,
2302 datagrams);
2303 if (err < 0)
2304 break;
2305 err = __put_user(err, &compat_entry->msg_len);
2306 ++compat_entry;
2307 } else {
2308 err = ___sys_recvmsg(sock,
2309 (struct user_msghdr __user *)entry,
2310 &msg_sys, flags & ~MSG_WAITFORONE,
2311 datagrams);
2312 if (err < 0)
2313 break;
2314 err = put_user(err, &entry->msg_len);
2315 ++entry;
2316 }
2317
2318 if (err)
2319 break;
2320 ++datagrams;
2321
2322 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2323 if (flags & MSG_WAITFORONE)
2324 flags |= MSG_DONTWAIT;
2325
2326 if (timeout) {
2327 ktime_get_ts64(&timeout64);
2328 *timeout = timespec64_to_timespec(
2329 timespec64_sub(end_time, timeout64));
2330 if (timeout->tv_sec < 0) {
2331 timeout->tv_sec = timeout->tv_nsec = 0;
2332 break;
2333 }
2334
2335 /* Timeout, return less than vlen datagrams */
2336 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2337 break;
2338 }
2339
2340 /* Out of band data, return right away */
2341 if (msg_sys.msg_flags & MSG_OOB)
2342 break;
2343 cond_resched();
2344 }
2345
2346 if (err == 0)
2347 goto out_put;
2348
2349 if (datagrams == 0) {
2350 datagrams = err;
2351 goto out_put;
2352 }
2353
2354 /*
2355 * We may return less entries than requested (vlen) if the
2356 * sock is non block and there aren't enough datagrams...
2357 */
2358 if (err != -EAGAIN) {
2359 /*
2360 * ... or if recvmsg returns an error after we
2361 * received some datagrams, where we record the
2362 * error to return on the next call or if the
2363 * app asks about it using getsockopt(SO_ERROR).
2364 */
2365 sock->sk->sk_err = -err;
2366 }
2367 out_put:
2368 fput_light(sock->file, fput_needed);
2369
2370 return datagrams;
2371 }
2372
2373 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2374 unsigned int, vlen, unsigned int, flags,
2375 struct timespec __user *, timeout)
2376 {
2377 int datagrams;
2378 struct timespec timeout_sys;
2379
2380 if (flags & MSG_CMSG_COMPAT)
2381 return -EINVAL;
2382
2383 if (!timeout)
2384 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2385
2386 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2387 return -EFAULT;
2388
2389 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2390
2391 if (datagrams > 0 &&
2392 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2393 datagrams = -EFAULT;
2394
2395 return datagrams;
2396 }
2397
2398 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2399 /* Argument list sizes for sys_socketcall */
2400 #define AL(x) ((x) * sizeof(unsigned long))
2401 static const unsigned char nargs[21] = {
2402 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2403 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2404 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2405 AL(4), AL(5), AL(4)
2406 };
2407
2408 #undef AL
2409
2410 /*
2411 * System call vectors.
2412 *
2413 * Argument checking cleaned up. Saved 20% in size.
2414 * This function doesn't need to set the kernel lock because
2415 * it is set by the callees.
2416 */
2417
2418 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2419 {
2420 unsigned long a[AUDITSC_ARGS];
2421 unsigned long a0, a1;
2422 int err;
2423 unsigned int len;
2424
2425 if (call < 1 || call > SYS_SENDMMSG)
2426 return -EINVAL;
2427
2428 len = nargs[call];
2429 if (len > sizeof(a))
2430 return -EINVAL;
2431
2432 /* copy_from_user should be SMP safe. */
2433 if (copy_from_user(a, args, len))
2434 return -EFAULT;
2435
2436 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2437 if (err)
2438 return err;
2439
2440 a0 = a[0];
2441 a1 = a[1];
2442
2443 switch (call) {
2444 case SYS_SOCKET:
2445 err = sys_socket(a0, a1, a[2]);
2446 break;
2447 case SYS_BIND:
2448 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2449 break;
2450 case SYS_CONNECT:
2451 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2452 break;
2453 case SYS_LISTEN:
2454 err = sys_listen(a0, a1);
2455 break;
2456 case SYS_ACCEPT:
2457 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2458 (int __user *)a[2], 0);
2459 break;
2460 case SYS_GETSOCKNAME:
2461 err =
2462 sys_getsockname(a0, (struct sockaddr __user *)a1,
2463 (int __user *)a[2]);
2464 break;
2465 case SYS_GETPEERNAME:
2466 err =
2467 sys_getpeername(a0, (struct sockaddr __user *)a1,
2468 (int __user *)a[2]);
2469 break;
2470 case SYS_SOCKETPAIR:
2471 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2472 break;
2473 case SYS_SEND:
2474 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2475 break;
2476 case SYS_SENDTO:
2477 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2478 (struct sockaddr __user *)a[4], a[5]);
2479 break;
2480 case SYS_RECV:
2481 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2482 break;
2483 case SYS_RECVFROM:
2484 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2485 (struct sockaddr __user *)a[4],
2486 (int __user *)a[5]);
2487 break;
2488 case SYS_SHUTDOWN:
2489 err = sys_shutdown(a0, a1);
2490 break;
2491 case SYS_SETSOCKOPT:
2492 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2493 break;
2494 case SYS_GETSOCKOPT:
2495 err =
2496 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2497 (int __user *)a[4]);
2498 break;
2499 case SYS_SENDMSG:
2500 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2501 break;
2502 case SYS_SENDMMSG:
2503 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2504 break;
2505 case SYS_RECVMSG:
2506 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2507 break;
2508 case SYS_RECVMMSG:
2509 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2510 (struct timespec __user *)a[4]);
2511 break;
2512 case SYS_ACCEPT4:
2513 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2514 (int __user *)a[2], a[3]);
2515 break;
2516 default:
2517 err = -EINVAL;
2518 break;
2519 }
2520 return err;
2521 }
2522
2523 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2524
2525 /**
2526 * sock_register - add a socket protocol handler
2527 * @ops: description of protocol
2528 *
2529 * This function is called by a protocol handler that wants to
2530 * advertise its address family, and have it linked into the
2531 * socket interface. The value ops->family corresponds to the
2532 * socket system call protocol family.
2533 */
2534 int sock_register(const struct net_proto_family *ops)
2535 {
2536 int err;
2537
2538 if (ops->family >= NPROTO) {
2539 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2540 return -ENOBUFS;
2541 }
2542
2543 spin_lock(&net_family_lock);
2544 if (rcu_dereference_protected(net_families[ops->family],
2545 lockdep_is_held(&net_family_lock)))
2546 err = -EEXIST;
2547 else {
2548 rcu_assign_pointer(net_families[ops->family], ops);
2549 err = 0;
2550 }
2551 spin_unlock(&net_family_lock);
2552
2553 pr_info("NET: Registered protocol family %d\n", ops->family);
2554 return err;
2555 }
2556 EXPORT_SYMBOL(sock_register);
2557
2558 /**
2559 * sock_unregister - remove a protocol handler
2560 * @family: protocol family to remove
2561 *
2562 * This function is called by a protocol handler that wants to
2563 * remove its address family, and have it unlinked from the
2564 * new socket creation.
2565 *
2566 * If protocol handler is a module, then it can use module reference
2567 * counts to protect against new references. If protocol handler is not
2568 * a module then it needs to provide its own protection in
2569 * the ops->create routine.
2570 */
2571 void sock_unregister(int family)
2572 {
2573 BUG_ON(family < 0 || family >= NPROTO);
2574
2575 spin_lock(&net_family_lock);
2576 RCU_INIT_POINTER(net_families[family], NULL);
2577 spin_unlock(&net_family_lock);
2578
2579 synchronize_rcu();
2580
2581 pr_info("NET: Unregistered protocol family %d\n", family);
2582 }
2583 EXPORT_SYMBOL(sock_unregister);
2584
2585 static int __init sock_init(void)
2586 {
2587 int err;
2588 /*
2589 * Initialize the network sysctl infrastructure.
2590 */
2591 err = net_sysctl_init();
2592 if (err)
2593 goto out;
2594
2595 /*
2596 * Initialize skbuff SLAB cache
2597 */
2598 skb_init();
2599
2600 /*
2601 * Initialize the protocols module.
2602 */
2603
2604 init_inodecache();
2605
2606 err = register_filesystem(&sock_fs_type);
2607 if (err)
2608 goto out_fs;
2609 sock_mnt = kern_mount(&sock_fs_type);
2610 if (IS_ERR(sock_mnt)) {
2611 err = PTR_ERR(sock_mnt);
2612 goto out_mount;
2613 }
2614
2615 /* The real protocol initialization is performed in later initcalls.
2616 */
2617
2618 #ifdef CONFIG_NETFILTER
2619 err = netfilter_init();
2620 if (err)
2621 goto out;
2622 #endif
2623
2624 ptp_classifier_init();
2625
2626 out:
2627 return err;
2628
2629 out_mount:
2630 unregister_filesystem(&sock_fs_type);
2631 out_fs:
2632 goto out;
2633 }
2634
2635 core_initcall(sock_init); /* early initcall */
2636
2637 static int __init jit_init(void)
2638 {
2639 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
2640 bpf_jit_enable = 1;
2641 #endif
2642 return 0;
2643 }
2644 pure_initcall(jit_init);
2645
2646 #ifdef CONFIG_PROC_FS
2647 void socket_seq_show(struct seq_file *seq)
2648 {
2649 int cpu;
2650 int counter = 0;
2651
2652 for_each_possible_cpu(cpu)
2653 counter += per_cpu(sockets_in_use, cpu);
2654
2655 /* It can be negative, by the way. 8) */
2656 if (counter < 0)
2657 counter = 0;
2658
2659 seq_printf(seq, "sockets: used %d\n", counter);
2660 }
2661 #endif /* CONFIG_PROC_FS */
2662
2663 #ifdef CONFIG_COMPAT
2664 static int do_siocgstamp(struct net *net, struct socket *sock,
2665 unsigned int cmd, void __user *up)
2666 {
2667 mm_segment_t old_fs = get_fs();
2668 struct timeval ktv;
2669 int err;
2670
2671 set_fs(KERNEL_DS);
2672 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2673 set_fs(old_fs);
2674 if (!err)
2675 err = compat_put_timeval(&ktv, up);
2676
2677 return err;
2678 }
2679
2680 static int do_siocgstampns(struct net *net, struct socket *sock,
2681 unsigned int cmd, void __user *up)
2682 {
2683 mm_segment_t old_fs = get_fs();
2684 struct timespec kts;
2685 int err;
2686
2687 set_fs(KERNEL_DS);
2688 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2689 set_fs(old_fs);
2690 if (!err)
2691 err = compat_put_timespec(&kts, up);
2692
2693 return err;
2694 }
2695
2696 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2697 {
2698 struct ifreq __user *uifr;
2699 int err;
2700
2701 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2702 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2703 return -EFAULT;
2704
2705 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2706 if (err)
2707 return err;
2708
2709 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2710 return -EFAULT;
2711
2712 return 0;
2713 }
2714
2715 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2716 {
2717 struct compat_ifconf ifc32;
2718 struct ifconf ifc;
2719 struct ifconf __user *uifc;
2720 struct compat_ifreq __user *ifr32;
2721 struct ifreq __user *ifr;
2722 unsigned int i, j;
2723 int err;
2724
2725 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2726 return -EFAULT;
2727
2728 memset(&ifc, 0, sizeof(ifc));
2729 if (ifc32.ifcbuf == 0) {
2730 ifc32.ifc_len = 0;
2731 ifc.ifc_len = 0;
2732 ifc.ifc_req = NULL;
2733 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2734 } else {
2735 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2736 sizeof(struct ifreq);
2737 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2738 ifc.ifc_len = len;
2739 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2740 ifr32 = compat_ptr(ifc32.ifcbuf);
2741 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2742 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2743 return -EFAULT;
2744 ifr++;
2745 ifr32++;
2746 }
2747 }
2748 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2749 return -EFAULT;
2750
2751 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2752 if (err)
2753 return err;
2754
2755 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2756 return -EFAULT;
2757
2758 ifr = ifc.ifc_req;
2759 ifr32 = compat_ptr(ifc32.ifcbuf);
2760 for (i = 0, j = 0;
2761 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2762 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2763 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2764 return -EFAULT;
2765 ifr32++;
2766 ifr++;
2767 }
2768
2769 if (ifc32.ifcbuf == 0) {
2770 /* Translate from 64-bit structure multiple to
2771 * a 32-bit one.
2772 */
2773 i = ifc.ifc_len;
2774 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2775 ifc32.ifc_len = i;
2776 } else {
2777 ifc32.ifc_len = i;
2778 }
2779 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2780 return -EFAULT;
2781
2782 return 0;
2783 }
2784
2785 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2786 {
2787 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2788 bool convert_in = false, convert_out = false;
2789 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2790 struct ethtool_rxnfc __user *rxnfc;
2791 struct ifreq __user *ifr;
2792 u32 rule_cnt = 0, actual_rule_cnt;
2793 u32 ethcmd;
2794 u32 data;
2795 int ret;
2796
2797 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2798 return -EFAULT;
2799
2800 compat_rxnfc = compat_ptr(data);
2801
2802 if (get_user(ethcmd, &compat_rxnfc->cmd))
2803 return -EFAULT;
2804
2805 /* Most ethtool structures are defined without padding.
2806 * Unfortunately struct ethtool_rxnfc is an exception.
2807 */
2808 switch (ethcmd) {
2809 default:
2810 break;
2811 case ETHTOOL_GRXCLSRLALL:
2812 /* Buffer size is variable */
2813 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2814 return -EFAULT;
2815 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2816 return -ENOMEM;
2817 buf_size += rule_cnt * sizeof(u32);
2818 /* fall through */
2819 case ETHTOOL_GRXRINGS:
2820 case ETHTOOL_GRXCLSRLCNT:
2821 case ETHTOOL_GRXCLSRULE:
2822 case ETHTOOL_SRXCLSRLINS:
2823 convert_out = true;
2824 /* fall through */
2825 case ETHTOOL_SRXCLSRLDEL:
2826 buf_size += sizeof(struct ethtool_rxnfc);
2827 convert_in = true;
2828 break;
2829 }
2830
2831 ifr = compat_alloc_user_space(buf_size);
2832 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2833
2834 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2835 return -EFAULT;
2836
2837 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2838 &ifr->ifr_ifru.ifru_data))
2839 return -EFAULT;
2840
2841 if (convert_in) {
2842 /* We expect there to be holes between fs.m_ext and
2843 * fs.ring_cookie and at the end of fs, but nowhere else.
2844 */
2845 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2846 sizeof(compat_rxnfc->fs.m_ext) !=
2847 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2848 sizeof(rxnfc->fs.m_ext));
2849 BUILD_BUG_ON(
2850 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2851 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2852 offsetof(struct ethtool_rxnfc, fs.location) -
2853 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2854
2855 if (copy_in_user(rxnfc, compat_rxnfc,
2856 (void __user *)(&rxnfc->fs.m_ext + 1) -
2857 (void __user *)rxnfc) ||
2858 copy_in_user(&rxnfc->fs.ring_cookie,
2859 &compat_rxnfc->fs.ring_cookie,
2860 (void __user *)(&rxnfc->fs.location + 1) -
2861 (void __user *)&rxnfc->fs.ring_cookie) ||
2862 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2863 sizeof(rxnfc->rule_cnt)))
2864 return -EFAULT;
2865 }
2866
2867 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2868 if (ret)
2869 return ret;
2870
2871 if (convert_out) {
2872 if (copy_in_user(compat_rxnfc, rxnfc,
2873 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2874 (const void __user *)rxnfc) ||
2875 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2876 &rxnfc->fs.ring_cookie,
2877 (const void __user *)(&rxnfc->fs.location + 1) -
2878 (const void __user *)&rxnfc->fs.ring_cookie) ||
2879 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2880 sizeof(rxnfc->rule_cnt)))
2881 return -EFAULT;
2882
2883 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2884 /* As an optimisation, we only copy the actual
2885 * number of rules that the underlying
2886 * function returned. Since Mallory might
2887 * change the rule count in user memory, we
2888 * check that it is less than the rule count
2889 * originally given (as the user buffer size),
2890 * which has been range-checked.
2891 */
2892 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2893 return -EFAULT;
2894 if (actual_rule_cnt < rule_cnt)
2895 rule_cnt = actual_rule_cnt;
2896 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2897 &rxnfc->rule_locs[0],
2898 rule_cnt * sizeof(u32)))
2899 return -EFAULT;
2900 }
2901 }
2902
2903 return 0;
2904 }
2905
2906 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2907 {
2908 void __user *uptr;
2909 compat_uptr_t uptr32;
2910 struct ifreq __user *uifr;
2911
2912 uifr = compat_alloc_user_space(sizeof(*uifr));
2913 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2914 return -EFAULT;
2915
2916 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2917 return -EFAULT;
2918
2919 uptr = compat_ptr(uptr32);
2920
2921 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2922 return -EFAULT;
2923
2924 return dev_ioctl(net, SIOCWANDEV, uifr);
2925 }
2926
2927 static int bond_ioctl(struct net *net, unsigned int cmd,
2928 struct compat_ifreq __user *ifr32)
2929 {
2930 struct ifreq kifr;
2931 mm_segment_t old_fs;
2932 int err;
2933
2934 switch (cmd) {
2935 case SIOCBONDENSLAVE:
2936 case SIOCBONDRELEASE:
2937 case SIOCBONDSETHWADDR:
2938 case SIOCBONDCHANGEACTIVE:
2939 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2940 return -EFAULT;
2941
2942 old_fs = get_fs();
2943 set_fs(KERNEL_DS);
2944 err = dev_ioctl(net, cmd,
2945 (struct ifreq __user __force *) &kifr);
2946 set_fs(old_fs);
2947
2948 return err;
2949 default:
2950 return -ENOIOCTLCMD;
2951 }
2952 }
2953
2954 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2955 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2956 struct compat_ifreq __user *u_ifreq32)
2957 {
2958 struct ifreq __user *u_ifreq64;
2959 char tmp_buf[IFNAMSIZ];
2960 void __user *data64;
2961 u32 data32;
2962
2963 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2964 IFNAMSIZ))
2965 return -EFAULT;
2966 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2967 return -EFAULT;
2968 data64 = compat_ptr(data32);
2969
2970 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2971
2972 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2973 IFNAMSIZ))
2974 return -EFAULT;
2975 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2976 return -EFAULT;
2977
2978 return dev_ioctl(net, cmd, u_ifreq64);
2979 }
2980
2981 static int dev_ifsioc(struct net *net, struct socket *sock,
2982 unsigned int cmd, struct compat_ifreq __user *uifr32)
2983 {
2984 struct ifreq __user *uifr;
2985 int err;
2986
2987 uifr = compat_alloc_user_space(sizeof(*uifr));
2988 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2989 return -EFAULT;
2990
2991 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2992
2993 if (!err) {
2994 switch (cmd) {
2995 case SIOCGIFFLAGS:
2996 case SIOCGIFMETRIC:
2997 case SIOCGIFMTU:
2998 case SIOCGIFMEM:
2999 case SIOCGIFHWADDR:
3000 case SIOCGIFINDEX:
3001 case SIOCGIFADDR:
3002 case SIOCGIFBRDADDR:
3003 case SIOCGIFDSTADDR:
3004 case SIOCGIFNETMASK:
3005 case SIOCGIFPFLAGS:
3006 case SIOCGIFTXQLEN:
3007 case SIOCGMIIPHY:
3008 case SIOCGMIIREG:
3009 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3010 err = -EFAULT;
3011 break;
3012 }
3013 }
3014 return err;
3015 }
3016
3017 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3018 struct compat_ifreq __user *uifr32)
3019 {
3020 struct ifreq ifr;
3021 struct compat_ifmap __user *uifmap32;
3022 mm_segment_t old_fs;
3023 int err;
3024
3025 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3026 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3027 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3028 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3029 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3030 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3031 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3032 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3033 if (err)
3034 return -EFAULT;
3035
3036 old_fs = get_fs();
3037 set_fs(KERNEL_DS);
3038 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3039 set_fs(old_fs);
3040
3041 if (cmd == SIOCGIFMAP && !err) {
3042 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3043 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3044 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3045 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3046 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3047 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3048 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3049 if (err)
3050 err = -EFAULT;
3051 }
3052 return err;
3053 }
3054
3055 struct rtentry32 {
3056 u32 rt_pad1;
3057 struct sockaddr rt_dst; /* target address */
3058 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3059 struct sockaddr rt_genmask; /* target network mask (IP) */
3060 unsigned short rt_flags;
3061 short rt_pad2;
3062 u32 rt_pad3;
3063 unsigned char rt_tos;
3064 unsigned char rt_class;
3065 short rt_pad4;
3066 short rt_metric; /* +1 for binary compatibility! */
3067 /* char * */ u32 rt_dev; /* forcing the device at add */
3068 u32 rt_mtu; /* per route MTU/Window */
3069 u32 rt_window; /* Window clamping */
3070 unsigned short rt_irtt; /* Initial RTT */
3071 };
3072
3073 struct in6_rtmsg32 {
3074 struct in6_addr rtmsg_dst;
3075 struct in6_addr rtmsg_src;
3076 struct in6_addr rtmsg_gateway;
3077 u32 rtmsg_type;
3078 u16 rtmsg_dst_len;
3079 u16 rtmsg_src_len;
3080 u32 rtmsg_metric;
3081 u32 rtmsg_info;
3082 u32 rtmsg_flags;
3083 s32 rtmsg_ifindex;
3084 };
3085
3086 static int routing_ioctl(struct net *net, struct socket *sock,
3087 unsigned int cmd, void __user *argp)
3088 {
3089 int ret;
3090 void *r = NULL;
3091 struct in6_rtmsg r6;
3092 struct rtentry r4;
3093 char devname[16];
3094 u32 rtdev;
3095 mm_segment_t old_fs = get_fs();
3096
3097 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3098 struct in6_rtmsg32 __user *ur6 = argp;
3099 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3100 3 * sizeof(struct in6_addr));
3101 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3102 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3103 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3104 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3105 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3106 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3107 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3108
3109 r = (void *) &r6;
3110 } else { /* ipv4 */
3111 struct rtentry32 __user *ur4 = argp;
3112 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3113 3 * sizeof(struct sockaddr));
3114 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3115 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3116 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3117 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3118 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3119 ret |= get_user(rtdev, &(ur4->rt_dev));
3120 if (rtdev) {
3121 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3122 r4.rt_dev = (char __user __force *)devname;
3123 devname[15] = 0;
3124 } else
3125 r4.rt_dev = NULL;
3126
3127 r = (void *) &r4;
3128 }
3129
3130 if (ret) {
3131 ret = -EFAULT;
3132 goto out;
3133 }
3134
3135 set_fs(KERNEL_DS);
3136 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3137 set_fs(old_fs);
3138
3139 out:
3140 return ret;
3141 }
3142
3143 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3144 * for some operations; this forces use of the newer bridge-utils that
3145 * use compatible ioctls
3146 */
3147 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3148 {
3149 compat_ulong_t tmp;
3150
3151 if (get_user(tmp, argp))
3152 return -EFAULT;
3153 if (tmp == BRCTL_GET_VERSION)
3154 return BRCTL_VERSION + 1;
3155 return -EINVAL;
3156 }
3157
3158 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3159 unsigned int cmd, unsigned long arg)
3160 {
3161 void __user *argp = compat_ptr(arg);
3162 struct sock *sk = sock->sk;
3163 struct net *net = sock_net(sk);
3164
3165 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3166 return compat_ifr_data_ioctl(net, cmd, argp);
3167
3168 switch (cmd) {
3169 case SIOCSIFBR:
3170 case SIOCGIFBR:
3171 return old_bridge_ioctl(argp);
3172 case SIOCGIFNAME:
3173 return dev_ifname32(net, argp);
3174 case SIOCGIFCONF:
3175 return dev_ifconf(net, argp);
3176 case SIOCETHTOOL:
3177 return ethtool_ioctl(net, argp);
3178 case SIOCWANDEV:
3179 return compat_siocwandev(net, argp);
3180 case SIOCGIFMAP:
3181 case SIOCSIFMAP:
3182 return compat_sioc_ifmap(net, cmd, argp);
3183 case SIOCBONDENSLAVE:
3184 case SIOCBONDRELEASE:
3185 case SIOCBONDSETHWADDR:
3186 case SIOCBONDCHANGEACTIVE:
3187 return bond_ioctl(net, cmd, argp);
3188 case SIOCADDRT:
3189 case SIOCDELRT:
3190 return routing_ioctl(net, sock, cmd, argp);
3191 case SIOCGSTAMP:
3192 return do_siocgstamp(net, sock, cmd, argp);
3193 case SIOCGSTAMPNS:
3194 return do_siocgstampns(net, sock, cmd, argp);
3195 case SIOCBONDSLAVEINFOQUERY:
3196 case SIOCBONDINFOQUERY:
3197 case SIOCSHWTSTAMP:
3198 case SIOCGHWTSTAMP:
3199 return compat_ifr_data_ioctl(net, cmd, argp);
3200
3201 case FIOSETOWN:
3202 case SIOCSPGRP:
3203 case FIOGETOWN:
3204 case SIOCGPGRP:
3205 case SIOCBRADDBR:
3206 case SIOCBRDELBR:
3207 case SIOCGIFVLAN:
3208 case SIOCSIFVLAN:
3209 case SIOCADDDLCI:
3210 case SIOCDELDLCI:
3211 case SIOCGSKNS:
3212 return sock_ioctl(file, cmd, arg);
3213
3214 case SIOCGIFFLAGS:
3215 case SIOCSIFFLAGS:
3216 case SIOCGIFMETRIC:
3217 case SIOCSIFMETRIC:
3218 case SIOCGIFMTU:
3219 case SIOCSIFMTU:
3220 case SIOCGIFMEM:
3221 case SIOCSIFMEM:
3222 case SIOCGIFHWADDR:
3223 case SIOCSIFHWADDR:
3224 case SIOCADDMULTI:
3225 case SIOCDELMULTI:
3226 case SIOCGIFINDEX:
3227 case SIOCGIFADDR:
3228 case SIOCSIFADDR:
3229 case SIOCSIFHWBROADCAST:
3230 case SIOCDIFADDR:
3231 case SIOCGIFBRDADDR:
3232 case SIOCSIFBRDADDR:
3233 case SIOCGIFDSTADDR:
3234 case SIOCSIFDSTADDR:
3235 case SIOCGIFNETMASK:
3236 case SIOCSIFNETMASK:
3237 case SIOCSIFPFLAGS:
3238 case SIOCGIFPFLAGS:
3239 case SIOCGIFTXQLEN:
3240 case SIOCSIFTXQLEN:
3241 case SIOCBRADDIF:
3242 case SIOCBRDELIF:
3243 case SIOCSIFNAME:
3244 case SIOCGMIIPHY:
3245 case SIOCGMIIREG:
3246 case SIOCSMIIREG:
3247 return dev_ifsioc(net, sock, cmd, argp);
3248
3249 case SIOCSARP:
3250 case SIOCGARP:
3251 case SIOCDARP:
3252 case SIOCATMARK:
3253 return sock_do_ioctl(net, sock, cmd, arg);
3254 }
3255
3256 return -ENOIOCTLCMD;
3257 }
3258
3259 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3260 unsigned long arg)
3261 {
3262 struct socket *sock = file->private_data;
3263 int ret = -ENOIOCTLCMD;
3264 struct sock *sk;
3265 struct net *net;
3266
3267 sk = sock->sk;
3268 net = sock_net(sk);
3269
3270 if (sock->ops->compat_ioctl)
3271 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3272
3273 if (ret == -ENOIOCTLCMD &&
3274 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3275 ret = compat_wext_handle_ioctl(net, cmd, arg);
3276
3277 if (ret == -ENOIOCTLCMD)
3278 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3279
3280 return ret;
3281 }
3282 #endif
3283
3284 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3285 {
3286 return sock->ops->bind(sock, addr, addrlen);
3287 }
3288 EXPORT_SYMBOL(kernel_bind);
3289
3290 int kernel_listen(struct socket *sock, int backlog)
3291 {
3292 return sock->ops->listen(sock, backlog);
3293 }
3294 EXPORT_SYMBOL(kernel_listen);
3295
3296 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3297 {
3298 struct sock *sk = sock->sk;
3299 int err;
3300
3301 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3302 newsock);
3303 if (err < 0)
3304 goto done;
3305
3306 err = sock->ops->accept(sock, *newsock, flags, true);
3307 if (err < 0) {
3308 sock_release(*newsock);
3309 *newsock = NULL;
3310 goto done;
3311 }
3312
3313 (*newsock)->ops = sock->ops;
3314 __module_get((*newsock)->ops->owner);
3315
3316 done:
3317 return err;
3318 }
3319 EXPORT_SYMBOL(kernel_accept);
3320
3321 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3322 int flags)
3323 {
3324 return sock->ops->connect(sock, addr, addrlen, flags);
3325 }
3326 EXPORT_SYMBOL(kernel_connect);
3327
3328 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3329 int *addrlen)
3330 {
3331 return sock->ops->getname(sock, addr, addrlen, 0);
3332 }
3333 EXPORT_SYMBOL(kernel_getsockname);
3334
3335 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3336 int *addrlen)
3337 {
3338 return sock->ops->getname(sock, addr, addrlen, 1);
3339 }
3340 EXPORT_SYMBOL(kernel_getpeername);
3341
3342 int kernel_getsockopt(struct socket *sock, int level, int optname,
3343 char *optval, int *optlen)
3344 {
3345 mm_segment_t oldfs = get_fs();
3346 char __user *uoptval;
3347 int __user *uoptlen;
3348 int err;
3349
3350 uoptval = (char __user __force *) optval;
3351 uoptlen = (int __user __force *) optlen;
3352
3353 set_fs(KERNEL_DS);
3354 if (level == SOL_SOCKET)
3355 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3356 else
3357 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3358 uoptlen);
3359 set_fs(oldfs);
3360 return err;
3361 }
3362 EXPORT_SYMBOL(kernel_getsockopt);
3363
3364 int kernel_setsockopt(struct socket *sock, int level, int optname,
3365 char *optval, unsigned int optlen)
3366 {
3367 mm_segment_t oldfs = get_fs();
3368 char __user *uoptval;
3369 int err;
3370
3371 uoptval = (char __user __force *) optval;
3372
3373 set_fs(KERNEL_DS);
3374 if (level == SOL_SOCKET)
3375 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3376 else
3377 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3378 optlen);
3379 set_fs(oldfs);
3380 return err;
3381 }
3382 EXPORT_SYMBOL(kernel_setsockopt);
3383
3384 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3385 size_t size, int flags)
3386 {
3387 if (sock->ops->sendpage)
3388 return sock->ops->sendpage(sock, page, offset, size, flags);
3389
3390 return sock_no_sendpage(sock, page, offset, size, flags);
3391 }
3392 EXPORT_SYMBOL(kernel_sendpage);
3393
3394 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3395 size_t size, int flags)
3396 {
3397 struct socket *sock = sk->sk_socket;
3398
3399 if (sock->ops->sendpage_locked)
3400 return sock->ops->sendpage_locked(sk, page, offset, size,
3401 flags);
3402
3403 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3404 }
3405 EXPORT_SYMBOL(kernel_sendpage_locked);
3406
3407 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3408 {
3409 mm_segment_t oldfs = get_fs();
3410 int err;
3411
3412 set_fs(KERNEL_DS);
3413 err = sock->ops->ioctl(sock, cmd, arg);
3414 set_fs(oldfs);
3415
3416 return err;
3417 }
3418 EXPORT_SYMBOL(kernel_sock_ioctl);
3419
3420 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3421 {
3422 return sock->ops->shutdown(sock, how);
3423 }
3424 EXPORT_SYMBOL(kernel_sock_shutdown);
3425
3426 /* This routine returns the IP overhead imposed by a socket i.e.
3427 * the length of the underlying IP header, depending on whether
3428 * this is an IPv4 or IPv6 socket and the length from IP options turned
3429 * on at the socket. Assumes that the caller has a lock on the socket.
3430 */
3431 u32 kernel_sock_ip_overhead(struct sock *sk)
3432 {
3433 struct inet_sock *inet;
3434 struct ip_options_rcu *opt;
3435 u32 overhead = 0;
3436 #if IS_ENABLED(CONFIG_IPV6)
3437 struct ipv6_pinfo *np;
3438 struct ipv6_txoptions *optv6 = NULL;
3439 #endif /* IS_ENABLED(CONFIG_IPV6) */
3440
3441 if (!sk)
3442 return overhead;
3443
3444 switch (sk->sk_family) {
3445 case AF_INET:
3446 inet = inet_sk(sk);
3447 overhead += sizeof(struct iphdr);
3448 opt = rcu_dereference_protected(inet->inet_opt,
3449 sock_owned_by_user(sk));
3450 if (opt)
3451 overhead += opt->opt.optlen;
3452 return overhead;
3453 #if IS_ENABLED(CONFIG_IPV6)
3454 case AF_INET6:
3455 np = inet6_sk(sk);
3456 overhead += sizeof(struct ipv6hdr);
3457 if (np)
3458 optv6 = rcu_dereference_protected(np->opt,
3459 sock_owned_by_user(sk));
3460 if (optv6)
3461 overhead += (optv6->opt_flen + optv6->opt_nflen);
3462 return overhead;
3463 #endif /* IS_ENABLED(CONFIG_IPV6) */
3464 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3465 return overhead;
3466 }
3467 }
3468 EXPORT_SYMBOL(kernel_sock_ip_overhead);