]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/socket.c
sctp: fix sctp_setsockopt_autoclose compile warning
[mirror_ubuntu-bionic-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90
91 #include <asm/uaccess.h>
92 #include <asm/unistd.h>
93
94 #include <net/compat.h>
95 #include <net/wext.h>
96
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/sockios.h>
104 #include <linux/atalk.h>
105
106 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
107 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
108 unsigned long nr_segs, loff_t pos);
109 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
112
113 static int sock_close(struct inode *inode, struct file *file);
114 static unsigned int sock_poll(struct file *file,
115 struct poll_table_struct *wait);
116 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
117 #ifdef CONFIG_COMPAT
118 static long compat_sock_ioctl(struct file *file,
119 unsigned int cmd, unsigned long arg);
120 #endif
121 static int sock_fasync(int fd, struct file *filp, int on);
122 static ssize_t sock_sendpage(struct file *file, struct page *page,
123 int offset, size_t size, loff_t *ppos, int more);
124 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
125 struct pipe_inode_info *pipe, size_t len,
126 unsigned int flags);
127
128 /*
129 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
130 * in the operation structures but are done directly via the socketcall() multiplexor.
131 */
132
133 static const struct file_operations socket_file_ops = {
134 .owner = THIS_MODULE,
135 .llseek = no_llseek,
136 .aio_read = sock_aio_read,
137 .aio_write = sock_aio_write,
138 .poll = sock_poll,
139 .unlocked_ioctl = sock_ioctl,
140 #ifdef CONFIG_COMPAT
141 .compat_ioctl = compat_sock_ioctl,
142 #endif
143 .mmap = sock_mmap,
144 .open = sock_no_open, /* special open code to disallow open via /proc */
145 .release = sock_close,
146 .fasync = sock_fasync,
147 .sendpage = sock_sendpage,
148 .splice_write = generic_splice_sendpage,
149 .splice_read = sock_splice_read,
150 };
151
152 /*
153 * The protocol list. Each protocol is registered in here.
154 */
155
156 static DEFINE_SPINLOCK(net_family_lock);
157 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
158
159 /*
160 * Statistics counters of the socket lists
161 */
162
163 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
164
165 /*
166 * Support routines.
167 * Move socket addresses back and forth across the kernel/user
168 * divide and look after the messy bits.
169 */
170
171 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
172 16 for IP, 16 for IPX,
173 24 for IPv6,
174 about 80 for AX.25
175 must be at least one bigger than
176 the AF_UNIX size (see net/unix/af_unix.c
177 :unix_mkname()).
178 */
179
180 /**
181 * move_addr_to_kernel - copy a socket address into kernel space
182 * @uaddr: Address in user space
183 * @kaddr: Address in kernel space
184 * @ulen: Length in user space
185 *
186 * The address is copied into kernel space. If the provided address is
187 * too long an error code of -EINVAL is returned. If the copy gives
188 * invalid addresses -EFAULT is returned. On a success 0 is returned.
189 */
190
191 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
192 {
193 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
194 return -EINVAL;
195 if (ulen == 0)
196 return 0;
197 if (copy_from_user(kaddr, uaddr, ulen))
198 return -EFAULT;
199 return audit_sockaddr(ulen, kaddr);
200 }
201
202 /**
203 * move_addr_to_user - copy an address to user space
204 * @kaddr: kernel space address
205 * @klen: length of address in kernel
206 * @uaddr: user space address
207 * @ulen: pointer to user length field
208 *
209 * The value pointed to by ulen on entry is the buffer length available.
210 * This is overwritten with the buffer space used. -EINVAL is returned
211 * if an overlong buffer is specified or a negative buffer size. -EFAULT
212 * is returned if either the buffer or the length field are not
213 * accessible.
214 * After copying the data up to the limit the user specifies, the true
215 * length of the data is written over the length limit the user
216 * specified. Zero is returned for a success.
217 */
218
219 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
220 int __user *ulen)
221 {
222 int err;
223 int len;
224
225 err = get_user(len, ulen);
226 if (err)
227 return err;
228 if (len > klen)
229 len = klen;
230 if (len < 0 || len > sizeof(struct sockaddr_storage))
231 return -EINVAL;
232 if (len) {
233 if (audit_sockaddr(klen, kaddr))
234 return -ENOMEM;
235 if (copy_to_user(uaddr, kaddr, len))
236 return -EFAULT;
237 }
238 /*
239 * "fromlen shall refer to the value before truncation.."
240 * 1003.1g
241 */
242 return __put_user(klen, ulen);
243 }
244
245 static struct kmem_cache *sock_inode_cachep __read_mostly;
246
247 static struct inode *sock_alloc_inode(struct super_block *sb)
248 {
249 struct socket_alloc *ei;
250
251 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
252 if (!ei)
253 return NULL;
254 init_waitqueue_head(&ei->socket.wait);
255
256 ei->socket.fasync_list = NULL;
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
262
263 return &ei->vfs_inode;
264 }
265
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 kmem_cache_free(sock_inode_cachep,
269 container_of(inode, struct socket_alloc, vfs_inode));
270 }
271
272 static void init_once(void *foo)
273 {
274 struct socket_alloc *ei = (struct socket_alloc *)foo;
275
276 inode_init_once(&ei->vfs_inode);
277 }
278
279 static int init_inodecache(void)
280 {
281 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
282 sizeof(struct socket_alloc),
283 0,
284 (SLAB_HWCACHE_ALIGN |
285 SLAB_RECLAIM_ACCOUNT |
286 SLAB_MEM_SPREAD),
287 init_once);
288 if (sock_inode_cachep == NULL)
289 return -ENOMEM;
290 return 0;
291 }
292
293 static const struct super_operations sockfs_ops = {
294 .alloc_inode = sock_alloc_inode,
295 .destroy_inode =sock_destroy_inode,
296 .statfs = simple_statfs,
297 };
298
299 static int sockfs_get_sb(struct file_system_type *fs_type,
300 int flags, const char *dev_name, void *data,
301 struct vfsmount *mnt)
302 {
303 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
304 mnt);
305 }
306
307 static struct vfsmount *sock_mnt __read_mostly;
308
309 static struct file_system_type sock_fs_type = {
310 .name = "sockfs",
311 .get_sb = sockfs_get_sb,
312 .kill_sb = kill_anon_super,
313 };
314
315 static int sockfs_delete_dentry(struct dentry *dentry)
316 {
317 /*
318 * At creation time, we pretended this dentry was hashed
319 * (by clearing DCACHE_UNHASHED bit in d_flags)
320 * At delete time, we restore the truth : not hashed.
321 * (so that dput() can proceed correctly)
322 */
323 dentry->d_flags |= DCACHE_UNHASHED;
324 return 0;
325 }
326
327 /*
328 * sockfs_dname() is called from d_path().
329 */
330 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
331 {
332 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
333 dentry->d_inode->i_ino);
334 }
335
336 static const struct dentry_operations sockfs_dentry_operations = {
337 .d_delete = sockfs_delete_dentry,
338 .d_dname = sockfs_dname,
339 };
340
341 /*
342 * Obtains the first available file descriptor and sets it up for use.
343 *
344 * These functions create file structures and maps them to fd space
345 * of the current process. On success it returns file descriptor
346 * and file struct implicitly stored in sock->file.
347 * Note that another thread may close file descriptor before we return
348 * from this function. We use the fact that now we do not refer
349 * to socket after mapping. If one day we will need it, this
350 * function will increment ref. count on file by 1.
351 *
352 * In any case returned fd MAY BE not valid!
353 * This race condition is unavoidable
354 * with shared fd spaces, we cannot solve it inside kernel,
355 * but we take care of internal coherence yet.
356 */
357
358 static int sock_alloc_fd(struct file **filep, int flags)
359 {
360 int fd;
361
362 fd = get_unused_fd_flags(flags);
363 if (likely(fd >= 0)) {
364 struct file *file = get_empty_filp();
365
366 *filep = file;
367 if (unlikely(!file)) {
368 put_unused_fd(fd);
369 return -ENFILE;
370 }
371 } else
372 *filep = NULL;
373 return fd;
374 }
375
376 static int sock_attach_fd(struct socket *sock, struct file *file, int flags)
377 {
378 struct dentry *dentry;
379 struct qstr name = { .name = "" };
380
381 dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
382 if (unlikely(!dentry))
383 return -ENOMEM;
384
385 dentry->d_op = &sockfs_dentry_operations;
386 /*
387 * We dont want to push this dentry into global dentry hash table.
388 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
389 * This permits a working /proc/$pid/fd/XXX on sockets
390 */
391 dentry->d_flags &= ~DCACHE_UNHASHED;
392 d_instantiate(dentry, SOCK_INODE(sock));
393
394 sock->file = file;
395 init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
396 &socket_file_ops);
397 SOCK_INODE(sock)->i_fop = &socket_file_ops;
398 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
399 file->f_pos = 0;
400 file->private_data = sock;
401
402 return 0;
403 }
404
405 int sock_map_fd(struct socket *sock, int flags)
406 {
407 struct file *newfile;
408 int fd = sock_alloc_fd(&newfile, flags);
409
410 if (likely(fd >= 0)) {
411 int err = sock_attach_fd(sock, newfile, flags);
412
413 if (unlikely(err < 0)) {
414 put_filp(newfile);
415 put_unused_fd(fd);
416 return err;
417 }
418 fd_install(fd, newfile);
419 }
420 return fd;
421 }
422
423 static struct socket *sock_from_file(struct file *file, int *err)
424 {
425 if (file->f_op == &socket_file_ops)
426 return file->private_data; /* set in sock_map_fd */
427
428 *err = -ENOTSOCK;
429 return NULL;
430 }
431
432 /**
433 * sockfd_lookup - Go from a file number to its socket slot
434 * @fd: file handle
435 * @err: pointer to an error code return
436 *
437 * The file handle passed in is locked and the socket it is bound
438 * too is returned. If an error occurs the err pointer is overwritten
439 * with a negative errno code and NULL is returned. The function checks
440 * for both invalid handles and passing a handle which is not a socket.
441 *
442 * On a success the socket object pointer is returned.
443 */
444
445 struct socket *sockfd_lookup(int fd, int *err)
446 {
447 struct file *file;
448 struct socket *sock;
449
450 file = fget(fd);
451 if (!file) {
452 *err = -EBADF;
453 return NULL;
454 }
455
456 sock = sock_from_file(file, err);
457 if (!sock)
458 fput(file);
459 return sock;
460 }
461
462 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
463 {
464 struct file *file;
465 struct socket *sock;
466
467 *err = -EBADF;
468 file = fget_light(fd, fput_needed);
469 if (file) {
470 sock = sock_from_file(file, err);
471 if (sock)
472 return sock;
473 fput_light(file, *fput_needed);
474 }
475 return NULL;
476 }
477
478 /**
479 * sock_alloc - allocate a socket
480 *
481 * Allocate a new inode and socket object. The two are bound together
482 * and initialised. The socket is then returned. If we are out of inodes
483 * NULL is returned.
484 */
485
486 static struct socket *sock_alloc(void)
487 {
488 struct inode *inode;
489 struct socket *sock;
490
491 inode = new_inode(sock_mnt->mnt_sb);
492 if (!inode)
493 return NULL;
494
495 sock = SOCKET_I(inode);
496
497 kmemcheck_annotate_bitfield(sock, type);
498 inode->i_mode = S_IFSOCK | S_IRWXUGO;
499 inode->i_uid = current_fsuid();
500 inode->i_gid = current_fsgid();
501
502 percpu_add(sockets_in_use, 1);
503 return sock;
504 }
505
506 /*
507 * In theory you can't get an open on this inode, but /proc provides
508 * a back door. Remember to keep it shut otherwise you'll let the
509 * creepy crawlies in.
510 */
511
512 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
513 {
514 return -ENXIO;
515 }
516
517 const struct file_operations bad_sock_fops = {
518 .owner = THIS_MODULE,
519 .open = sock_no_open,
520 };
521
522 /**
523 * sock_release - close a socket
524 * @sock: socket to close
525 *
526 * The socket is released from the protocol stack if it has a release
527 * callback, and the inode is then released if the socket is bound to
528 * an inode not a file.
529 */
530
531 void sock_release(struct socket *sock)
532 {
533 if (sock->ops) {
534 struct module *owner = sock->ops->owner;
535
536 sock->ops->release(sock);
537 sock->ops = NULL;
538 module_put(owner);
539 }
540
541 if (sock->fasync_list)
542 printk(KERN_ERR "sock_release: fasync list not empty!\n");
543
544 percpu_sub(sockets_in_use, 1);
545 if (!sock->file) {
546 iput(SOCK_INODE(sock));
547 return;
548 }
549 sock->file = NULL;
550 }
551
552 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
553 union skb_shared_tx *shtx)
554 {
555 shtx->flags = 0;
556 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
557 shtx->hardware = 1;
558 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
559 shtx->software = 1;
560 return 0;
561 }
562 EXPORT_SYMBOL(sock_tx_timestamp);
563
564 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
565 struct msghdr *msg, size_t size)
566 {
567 struct sock_iocb *si = kiocb_to_siocb(iocb);
568 int err;
569
570 si->sock = sock;
571 si->scm = NULL;
572 si->msg = msg;
573 si->size = size;
574
575 err = security_socket_sendmsg(sock, msg, size);
576 if (err)
577 return err;
578
579 return sock->ops->sendmsg(iocb, sock, msg, size);
580 }
581
582 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
583 {
584 struct kiocb iocb;
585 struct sock_iocb siocb;
586 int ret;
587
588 init_sync_kiocb(&iocb, NULL);
589 iocb.private = &siocb;
590 ret = __sock_sendmsg(&iocb, sock, msg, size);
591 if (-EIOCBQUEUED == ret)
592 ret = wait_on_sync_kiocb(&iocb);
593 return ret;
594 }
595
596 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
597 struct kvec *vec, size_t num, size_t size)
598 {
599 mm_segment_t oldfs = get_fs();
600 int result;
601
602 set_fs(KERNEL_DS);
603 /*
604 * the following is safe, since for compiler definitions of kvec and
605 * iovec are identical, yielding the same in-core layout and alignment
606 */
607 msg->msg_iov = (struct iovec *)vec;
608 msg->msg_iovlen = num;
609 result = sock_sendmsg(sock, msg, size);
610 set_fs(oldfs);
611 return result;
612 }
613
614 static int ktime2ts(ktime_t kt, struct timespec *ts)
615 {
616 if (kt.tv64) {
617 *ts = ktime_to_timespec(kt);
618 return 1;
619 } else {
620 return 0;
621 }
622 }
623
624 /*
625 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
626 */
627 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
628 struct sk_buff *skb)
629 {
630 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
631 struct timespec ts[3];
632 int empty = 1;
633 struct skb_shared_hwtstamps *shhwtstamps =
634 skb_hwtstamps(skb);
635
636 /* Race occurred between timestamp enabling and packet
637 receiving. Fill in the current time for now. */
638 if (need_software_tstamp && skb->tstamp.tv64 == 0)
639 __net_timestamp(skb);
640
641 if (need_software_tstamp) {
642 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
643 struct timeval tv;
644 skb_get_timestamp(skb, &tv);
645 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
646 sizeof(tv), &tv);
647 } else {
648 struct timespec ts;
649 skb_get_timestampns(skb, &ts);
650 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
651 sizeof(ts), &ts);
652 }
653 }
654
655
656 memset(ts, 0, sizeof(ts));
657 if (skb->tstamp.tv64 &&
658 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
659 skb_get_timestampns(skb, ts + 0);
660 empty = 0;
661 }
662 if (shhwtstamps) {
663 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
664 ktime2ts(shhwtstamps->syststamp, ts + 1))
665 empty = 0;
666 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
667 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
668 empty = 0;
669 }
670 if (!empty)
671 put_cmsg(msg, SOL_SOCKET,
672 SCM_TIMESTAMPING, sizeof(ts), &ts);
673 }
674
675 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
676
677 inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
678 {
679 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
680 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
681 sizeof(__u32), &skb->dropcount);
682 }
683
684 void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
685 struct sk_buff *skb)
686 {
687 sock_recv_timestamp(msg, sk, skb);
688 sock_recv_drops(msg, sk, skb);
689 }
690 EXPORT_SYMBOL_GPL(sock_recv_ts_and_drops);
691
692 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
693 struct msghdr *msg, size_t size, int flags)
694 {
695 struct sock_iocb *si = kiocb_to_siocb(iocb);
696
697 si->sock = sock;
698 si->scm = NULL;
699 si->msg = msg;
700 si->size = size;
701 si->flags = flags;
702
703 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
704 }
705
706 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
707 struct msghdr *msg, size_t size, int flags)
708 {
709 int err = security_socket_recvmsg(sock, msg, size, flags);
710
711 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
712 }
713
714 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
715 size_t size, int flags)
716 {
717 struct kiocb iocb;
718 struct sock_iocb siocb;
719 int ret;
720
721 init_sync_kiocb(&iocb, NULL);
722 iocb.private = &siocb;
723 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
724 if (-EIOCBQUEUED == ret)
725 ret = wait_on_sync_kiocb(&iocb);
726 return ret;
727 }
728
729 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
730 size_t size, int flags)
731 {
732 struct kiocb iocb;
733 struct sock_iocb siocb;
734 int ret;
735
736 init_sync_kiocb(&iocb, NULL);
737 iocb.private = &siocb;
738 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
739 if (-EIOCBQUEUED == ret)
740 ret = wait_on_sync_kiocb(&iocb);
741 return ret;
742 }
743
744 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
745 struct kvec *vec, size_t num, size_t size, int flags)
746 {
747 mm_segment_t oldfs = get_fs();
748 int result;
749
750 set_fs(KERNEL_DS);
751 /*
752 * the following is safe, since for compiler definitions of kvec and
753 * iovec are identical, yielding the same in-core layout and alignment
754 */
755 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
756 result = sock_recvmsg(sock, msg, size, flags);
757 set_fs(oldfs);
758 return result;
759 }
760
761 static void sock_aio_dtor(struct kiocb *iocb)
762 {
763 kfree(iocb->private);
764 }
765
766 static ssize_t sock_sendpage(struct file *file, struct page *page,
767 int offset, size_t size, loff_t *ppos, int more)
768 {
769 struct socket *sock;
770 int flags;
771
772 sock = file->private_data;
773
774 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
775 if (more)
776 flags |= MSG_MORE;
777
778 return kernel_sendpage(sock, page, offset, size, flags);
779 }
780
781 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
782 struct pipe_inode_info *pipe, size_t len,
783 unsigned int flags)
784 {
785 struct socket *sock = file->private_data;
786
787 if (unlikely(!sock->ops->splice_read))
788 return -EINVAL;
789
790 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
791 }
792
793 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
794 struct sock_iocb *siocb)
795 {
796 if (!is_sync_kiocb(iocb)) {
797 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
798 if (!siocb)
799 return NULL;
800 iocb->ki_dtor = sock_aio_dtor;
801 }
802
803 siocb->kiocb = iocb;
804 iocb->private = siocb;
805 return siocb;
806 }
807
808 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
809 struct file *file, const struct iovec *iov,
810 unsigned long nr_segs)
811 {
812 struct socket *sock = file->private_data;
813 size_t size = 0;
814 int i;
815
816 for (i = 0; i < nr_segs; i++)
817 size += iov[i].iov_len;
818
819 msg->msg_name = NULL;
820 msg->msg_namelen = 0;
821 msg->msg_control = NULL;
822 msg->msg_controllen = 0;
823 msg->msg_iov = (struct iovec *)iov;
824 msg->msg_iovlen = nr_segs;
825 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
826
827 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
828 }
829
830 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
831 unsigned long nr_segs, loff_t pos)
832 {
833 struct sock_iocb siocb, *x;
834
835 if (pos != 0)
836 return -ESPIPE;
837
838 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
839 return 0;
840
841
842 x = alloc_sock_iocb(iocb, &siocb);
843 if (!x)
844 return -ENOMEM;
845 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
846 }
847
848 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
849 struct file *file, const struct iovec *iov,
850 unsigned long nr_segs)
851 {
852 struct socket *sock = file->private_data;
853 size_t size = 0;
854 int i;
855
856 for (i = 0; i < nr_segs; i++)
857 size += iov[i].iov_len;
858
859 msg->msg_name = NULL;
860 msg->msg_namelen = 0;
861 msg->msg_control = NULL;
862 msg->msg_controllen = 0;
863 msg->msg_iov = (struct iovec *)iov;
864 msg->msg_iovlen = nr_segs;
865 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
866 if (sock->type == SOCK_SEQPACKET)
867 msg->msg_flags |= MSG_EOR;
868
869 return __sock_sendmsg(iocb, sock, msg, size);
870 }
871
872 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
873 unsigned long nr_segs, loff_t pos)
874 {
875 struct sock_iocb siocb, *x;
876
877 if (pos != 0)
878 return -ESPIPE;
879
880 x = alloc_sock_iocb(iocb, &siocb);
881 if (!x)
882 return -ENOMEM;
883
884 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
885 }
886
887 /*
888 * Atomic setting of ioctl hooks to avoid race
889 * with module unload.
890 */
891
892 static DEFINE_MUTEX(br_ioctl_mutex);
893 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
894
895 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
896 {
897 mutex_lock(&br_ioctl_mutex);
898 br_ioctl_hook = hook;
899 mutex_unlock(&br_ioctl_mutex);
900 }
901
902 EXPORT_SYMBOL(brioctl_set);
903
904 static DEFINE_MUTEX(vlan_ioctl_mutex);
905 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
906
907 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
908 {
909 mutex_lock(&vlan_ioctl_mutex);
910 vlan_ioctl_hook = hook;
911 mutex_unlock(&vlan_ioctl_mutex);
912 }
913
914 EXPORT_SYMBOL(vlan_ioctl_set);
915
916 static DEFINE_MUTEX(dlci_ioctl_mutex);
917 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
918
919 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
920 {
921 mutex_lock(&dlci_ioctl_mutex);
922 dlci_ioctl_hook = hook;
923 mutex_unlock(&dlci_ioctl_mutex);
924 }
925
926 EXPORT_SYMBOL(dlci_ioctl_set);
927
928 static long sock_do_ioctl(struct net *net, struct socket *sock,
929 unsigned int cmd, unsigned long arg)
930 {
931 int err;
932 void __user *argp = (void __user *)arg;
933
934 err = sock->ops->ioctl(sock, cmd, arg);
935
936 /*
937 * If this ioctl is unknown try to hand it down
938 * to the NIC driver.
939 */
940 if (err == -ENOIOCTLCMD)
941 err = dev_ioctl(net, cmd, argp);
942
943 return err;
944 }
945
946 /*
947 * With an ioctl, arg may well be a user mode pointer, but we don't know
948 * what to do with it - that's up to the protocol still.
949 */
950
951 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
952 {
953 struct socket *sock;
954 struct sock *sk;
955 void __user *argp = (void __user *)arg;
956 int pid, err;
957 struct net *net;
958
959 sock = file->private_data;
960 sk = sock->sk;
961 net = sock_net(sk);
962 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
963 err = dev_ioctl(net, cmd, argp);
964 } else
965 #ifdef CONFIG_WEXT_CORE
966 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
967 err = dev_ioctl(net, cmd, argp);
968 } else
969 #endif
970 switch (cmd) {
971 case FIOSETOWN:
972 case SIOCSPGRP:
973 err = -EFAULT;
974 if (get_user(pid, (int __user *)argp))
975 break;
976 err = f_setown(sock->file, pid, 1);
977 break;
978 case FIOGETOWN:
979 case SIOCGPGRP:
980 err = put_user(f_getown(sock->file),
981 (int __user *)argp);
982 break;
983 case SIOCGIFBR:
984 case SIOCSIFBR:
985 case SIOCBRADDBR:
986 case SIOCBRDELBR:
987 err = -ENOPKG;
988 if (!br_ioctl_hook)
989 request_module("bridge");
990
991 mutex_lock(&br_ioctl_mutex);
992 if (br_ioctl_hook)
993 err = br_ioctl_hook(net, cmd, argp);
994 mutex_unlock(&br_ioctl_mutex);
995 break;
996 case SIOCGIFVLAN:
997 case SIOCSIFVLAN:
998 err = -ENOPKG;
999 if (!vlan_ioctl_hook)
1000 request_module("8021q");
1001
1002 mutex_lock(&vlan_ioctl_mutex);
1003 if (vlan_ioctl_hook)
1004 err = vlan_ioctl_hook(net, argp);
1005 mutex_unlock(&vlan_ioctl_mutex);
1006 break;
1007 case SIOCADDDLCI:
1008 case SIOCDELDLCI:
1009 err = -ENOPKG;
1010 if (!dlci_ioctl_hook)
1011 request_module("dlci");
1012
1013 mutex_lock(&dlci_ioctl_mutex);
1014 if (dlci_ioctl_hook)
1015 err = dlci_ioctl_hook(cmd, argp);
1016 mutex_unlock(&dlci_ioctl_mutex);
1017 break;
1018 default:
1019 err = sock_do_ioctl(net, sock, cmd, arg);
1020 break;
1021 }
1022 return err;
1023 }
1024
1025 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1026 {
1027 int err;
1028 struct socket *sock = NULL;
1029
1030 err = security_socket_create(family, type, protocol, 1);
1031 if (err)
1032 goto out;
1033
1034 sock = sock_alloc();
1035 if (!sock) {
1036 err = -ENOMEM;
1037 goto out;
1038 }
1039
1040 sock->type = type;
1041 err = security_socket_post_create(sock, family, type, protocol, 1);
1042 if (err)
1043 goto out_release;
1044
1045 out:
1046 *res = sock;
1047 return err;
1048 out_release:
1049 sock_release(sock);
1050 sock = NULL;
1051 goto out;
1052 }
1053
1054 /* No kernel lock held - perfect */
1055 static unsigned int sock_poll(struct file *file, poll_table *wait)
1056 {
1057 struct socket *sock;
1058
1059 /*
1060 * We can't return errors to poll, so it's either yes or no.
1061 */
1062 sock = file->private_data;
1063 return sock->ops->poll(file, sock, wait);
1064 }
1065
1066 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1067 {
1068 struct socket *sock = file->private_data;
1069
1070 return sock->ops->mmap(file, sock, vma);
1071 }
1072
1073 static int sock_close(struct inode *inode, struct file *filp)
1074 {
1075 /*
1076 * It was possible the inode is NULL we were
1077 * closing an unfinished socket.
1078 */
1079
1080 if (!inode) {
1081 printk(KERN_DEBUG "sock_close: NULL inode\n");
1082 return 0;
1083 }
1084 sock_release(SOCKET_I(inode));
1085 return 0;
1086 }
1087
1088 /*
1089 * Update the socket async list
1090 *
1091 * Fasync_list locking strategy.
1092 *
1093 * 1. fasync_list is modified only under process context socket lock
1094 * i.e. under semaphore.
1095 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1096 * or under socket lock.
1097 * 3. fasync_list can be used from softirq context, so that
1098 * modification under socket lock have to be enhanced with
1099 * write_lock_bh(&sk->sk_callback_lock).
1100 * --ANK (990710)
1101 */
1102
1103 static int sock_fasync(int fd, struct file *filp, int on)
1104 {
1105 struct fasync_struct *fa, *fna = NULL, **prev;
1106 struct socket *sock;
1107 struct sock *sk;
1108
1109 if (on) {
1110 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1111 if (fna == NULL)
1112 return -ENOMEM;
1113 }
1114
1115 sock = filp->private_data;
1116
1117 sk = sock->sk;
1118 if (sk == NULL) {
1119 kfree(fna);
1120 return -EINVAL;
1121 }
1122
1123 lock_sock(sk);
1124
1125 spin_lock(&filp->f_lock);
1126 if (on)
1127 filp->f_flags |= FASYNC;
1128 else
1129 filp->f_flags &= ~FASYNC;
1130 spin_unlock(&filp->f_lock);
1131
1132 prev = &(sock->fasync_list);
1133
1134 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1135 if (fa->fa_file == filp)
1136 break;
1137
1138 if (on) {
1139 if (fa != NULL) {
1140 write_lock_bh(&sk->sk_callback_lock);
1141 fa->fa_fd = fd;
1142 write_unlock_bh(&sk->sk_callback_lock);
1143
1144 kfree(fna);
1145 goto out;
1146 }
1147 fna->fa_file = filp;
1148 fna->fa_fd = fd;
1149 fna->magic = FASYNC_MAGIC;
1150 fna->fa_next = sock->fasync_list;
1151 write_lock_bh(&sk->sk_callback_lock);
1152 sock->fasync_list = fna;
1153 sock_set_flag(sk, SOCK_FASYNC);
1154 write_unlock_bh(&sk->sk_callback_lock);
1155 } else {
1156 if (fa != NULL) {
1157 write_lock_bh(&sk->sk_callback_lock);
1158 *prev = fa->fa_next;
1159 if (!sock->fasync_list)
1160 sock_reset_flag(sk, SOCK_FASYNC);
1161 write_unlock_bh(&sk->sk_callback_lock);
1162 kfree(fa);
1163 }
1164 }
1165
1166 out:
1167 release_sock(sock->sk);
1168 return 0;
1169 }
1170
1171 /* This function may be called only under socket lock or callback_lock */
1172
1173 int sock_wake_async(struct socket *sock, int how, int band)
1174 {
1175 if (!sock || !sock->fasync_list)
1176 return -1;
1177 switch (how) {
1178 case SOCK_WAKE_WAITD:
1179 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1180 break;
1181 goto call_kill;
1182 case SOCK_WAKE_SPACE:
1183 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1184 break;
1185 /* fall through */
1186 case SOCK_WAKE_IO:
1187 call_kill:
1188 __kill_fasync(sock->fasync_list, SIGIO, band);
1189 break;
1190 case SOCK_WAKE_URG:
1191 __kill_fasync(sock->fasync_list, SIGURG, band);
1192 }
1193 return 0;
1194 }
1195
1196 static int __sock_create(struct net *net, int family, int type, int protocol,
1197 struct socket **res, int kern)
1198 {
1199 int err;
1200 struct socket *sock;
1201 const struct net_proto_family *pf;
1202
1203 /*
1204 * Check protocol is in range
1205 */
1206 if (family < 0 || family >= NPROTO)
1207 return -EAFNOSUPPORT;
1208 if (type < 0 || type >= SOCK_MAX)
1209 return -EINVAL;
1210
1211 /* Compatibility.
1212
1213 This uglymoron is moved from INET layer to here to avoid
1214 deadlock in module load.
1215 */
1216 if (family == PF_INET && type == SOCK_PACKET) {
1217 static int warned;
1218 if (!warned) {
1219 warned = 1;
1220 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1221 current->comm);
1222 }
1223 family = PF_PACKET;
1224 }
1225
1226 err = security_socket_create(family, type, protocol, kern);
1227 if (err)
1228 return err;
1229
1230 /*
1231 * Allocate the socket and allow the family to set things up. if
1232 * the protocol is 0, the family is instructed to select an appropriate
1233 * default.
1234 */
1235 sock = sock_alloc();
1236 if (!sock) {
1237 if (net_ratelimit())
1238 printk(KERN_WARNING "socket: no more sockets\n");
1239 return -ENFILE; /* Not exactly a match, but its the
1240 closest posix thing */
1241 }
1242
1243 sock->type = type;
1244
1245 #ifdef CONFIG_MODULES
1246 /* Attempt to load a protocol module if the find failed.
1247 *
1248 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1249 * requested real, full-featured networking support upon configuration.
1250 * Otherwise module support will break!
1251 */
1252 if (net_families[family] == NULL)
1253 request_module("net-pf-%d", family);
1254 #endif
1255
1256 rcu_read_lock();
1257 pf = rcu_dereference(net_families[family]);
1258 err = -EAFNOSUPPORT;
1259 if (!pf)
1260 goto out_release;
1261
1262 /*
1263 * We will call the ->create function, that possibly is in a loadable
1264 * module, so we have to bump that loadable module refcnt first.
1265 */
1266 if (!try_module_get(pf->owner))
1267 goto out_release;
1268
1269 /* Now protected by module ref count */
1270 rcu_read_unlock();
1271
1272 err = pf->create(net, sock, protocol, kern);
1273 if (err < 0)
1274 goto out_module_put;
1275
1276 /*
1277 * Now to bump the refcnt of the [loadable] module that owns this
1278 * socket at sock_release time we decrement its refcnt.
1279 */
1280 if (!try_module_get(sock->ops->owner))
1281 goto out_module_busy;
1282
1283 /*
1284 * Now that we're done with the ->create function, the [loadable]
1285 * module can have its refcnt decremented
1286 */
1287 module_put(pf->owner);
1288 err = security_socket_post_create(sock, family, type, protocol, kern);
1289 if (err)
1290 goto out_sock_release;
1291 *res = sock;
1292
1293 return 0;
1294
1295 out_module_busy:
1296 err = -EAFNOSUPPORT;
1297 out_module_put:
1298 sock->ops = NULL;
1299 module_put(pf->owner);
1300 out_sock_release:
1301 sock_release(sock);
1302 return err;
1303
1304 out_release:
1305 rcu_read_unlock();
1306 goto out_sock_release;
1307 }
1308
1309 int sock_create(int family, int type, int protocol, struct socket **res)
1310 {
1311 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1312 }
1313
1314 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1315 {
1316 return __sock_create(&init_net, family, type, protocol, res, 1);
1317 }
1318
1319 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1320 {
1321 int retval;
1322 struct socket *sock;
1323 int flags;
1324
1325 /* Check the SOCK_* constants for consistency. */
1326 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1327 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1328 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1329 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1330
1331 flags = type & ~SOCK_TYPE_MASK;
1332 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1333 return -EINVAL;
1334 type &= SOCK_TYPE_MASK;
1335
1336 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1337 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1338
1339 retval = sock_create(family, type, protocol, &sock);
1340 if (retval < 0)
1341 goto out;
1342
1343 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1344 if (retval < 0)
1345 goto out_release;
1346
1347 out:
1348 /* It may be already another descriptor 8) Not kernel problem. */
1349 return retval;
1350
1351 out_release:
1352 sock_release(sock);
1353 return retval;
1354 }
1355
1356 /*
1357 * Create a pair of connected sockets.
1358 */
1359
1360 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1361 int __user *, usockvec)
1362 {
1363 struct socket *sock1, *sock2;
1364 int fd1, fd2, err;
1365 struct file *newfile1, *newfile2;
1366 int flags;
1367
1368 flags = type & ~SOCK_TYPE_MASK;
1369 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1370 return -EINVAL;
1371 type &= SOCK_TYPE_MASK;
1372
1373 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1374 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1375
1376 /*
1377 * Obtain the first socket and check if the underlying protocol
1378 * supports the socketpair call.
1379 */
1380
1381 err = sock_create(family, type, protocol, &sock1);
1382 if (err < 0)
1383 goto out;
1384
1385 err = sock_create(family, type, protocol, &sock2);
1386 if (err < 0)
1387 goto out_release_1;
1388
1389 err = sock1->ops->socketpair(sock1, sock2);
1390 if (err < 0)
1391 goto out_release_both;
1392
1393 fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC);
1394 if (unlikely(fd1 < 0)) {
1395 err = fd1;
1396 goto out_release_both;
1397 }
1398
1399 fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC);
1400 if (unlikely(fd2 < 0)) {
1401 err = fd2;
1402 put_filp(newfile1);
1403 put_unused_fd(fd1);
1404 goto out_release_both;
1405 }
1406
1407 err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK);
1408 if (unlikely(err < 0)) {
1409 goto out_fd2;
1410 }
1411
1412 err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK);
1413 if (unlikely(err < 0)) {
1414 fput(newfile1);
1415 goto out_fd1;
1416 }
1417
1418 audit_fd_pair(fd1, fd2);
1419 fd_install(fd1, newfile1);
1420 fd_install(fd2, newfile2);
1421 /* fd1 and fd2 may be already another descriptors.
1422 * Not kernel problem.
1423 */
1424
1425 err = put_user(fd1, &usockvec[0]);
1426 if (!err)
1427 err = put_user(fd2, &usockvec[1]);
1428 if (!err)
1429 return 0;
1430
1431 sys_close(fd2);
1432 sys_close(fd1);
1433 return err;
1434
1435 out_release_both:
1436 sock_release(sock2);
1437 out_release_1:
1438 sock_release(sock1);
1439 out:
1440 return err;
1441
1442 out_fd2:
1443 put_filp(newfile1);
1444 sock_release(sock1);
1445 out_fd1:
1446 put_filp(newfile2);
1447 sock_release(sock2);
1448 put_unused_fd(fd1);
1449 put_unused_fd(fd2);
1450 goto out;
1451 }
1452
1453 /*
1454 * Bind a name to a socket. Nothing much to do here since it's
1455 * the protocol's responsibility to handle the local address.
1456 *
1457 * We move the socket address to kernel space before we call
1458 * the protocol layer (having also checked the address is ok).
1459 */
1460
1461 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1462 {
1463 struct socket *sock;
1464 struct sockaddr_storage address;
1465 int err, fput_needed;
1466
1467 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1468 if (sock) {
1469 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1470 if (err >= 0) {
1471 err = security_socket_bind(sock,
1472 (struct sockaddr *)&address,
1473 addrlen);
1474 if (!err)
1475 err = sock->ops->bind(sock,
1476 (struct sockaddr *)
1477 &address, addrlen);
1478 }
1479 fput_light(sock->file, fput_needed);
1480 }
1481 return err;
1482 }
1483
1484 /*
1485 * Perform a listen. Basically, we allow the protocol to do anything
1486 * necessary for a listen, and if that works, we mark the socket as
1487 * ready for listening.
1488 */
1489
1490 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1491 {
1492 struct socket *sock;
1493 int err, fput_needed;
1494 int somaxconn;
1495
1496 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1497 if (sock) {
1498 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1499 if ((unsigned)backlog > somaxconn)
1500 backlog = somaxconn;
1501
1502 err = security_socket_listen(sock, backlog);
1503 if (!err)
1504 err = sock->ops->listen(sock, backlog);
1505
1506 fput_light(sock->file, fput_needed);
1507 }
1508 return err;
1509 }
1510
1511 /*
1512 * For accept, we attempt to create a new socket, set up the link
1513 * with the client, wake up the client, then return the new
1514 * connected fd. We collect the address of the connector in kernel
1515 * space and move it to user at the very end. This is unclean because
1516 * we open the socket then return an error.
1517 *
1518 * 1003.1g adds the ability to recvmsg() to query connection pending
1519 * status to recvmsg. We need to add that support in a way thats
1520 * clean when we restucture accept also.
1521 */
1522
1523 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1524 int __user *, upeer_addrlen, int, flags)
1525 {
1526 struct socket *sock, *newsock;
1527 struct file *newfile;
1528 int err, len, newfd, fput_needed;
1529 struct sockaddr_storage address;
1530
1531 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1532 return -EINVAL;
1533
1534 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1535 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1536
1537 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1538 if (!sock)
1539 goto out;
1540
1541 err = -ENFILE;
1542 if (!(newsock = sock_alloc()))
1543 goto out_put;
1544
1545 newsock->type = sock->type;
1546 newsock->ops = sock->ops;
1547
1548 /*
1549 * We don't need try_module_get here, as the listening socket (sock)
1550 * has the protocol module (sock->ops->owner) held.
1551 */
1552 __module_get(newsock->ops->owner);
1553
1554 newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC);
1555 if (unlikely(newfd < 0)) {
1556 err = newfd;
1557 sock_release(newsock);
1558 goto out_put;
1559 }
1560
1561 err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK);
1562 if (err < 0)
1563 goto out_fd_simple;
1564
1565 err = security_socket_accept(sock, newsock);
1566 if (err)
1567 goto out_fd;
1568
1569 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1570 if (err < 0)
1571 goto out_fd;
1572
1573 if (upeer_sockaddr) {
1574 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1575 &len, 2) < 0) {
1576 err = -ECONNABORTED;
1577 goto out_fd;
1578 }
1579 err = move_addr_to_user((struct sockaddr *)&address,
1580 len, upeer_sockaddr, upeer_addrlen);
1581 if (err < 0)
1582 goto out_fd;
1583 }
1584
1585 /* File flags are not inherited via accept() unlike another OSes. */
1586
1587 fd_install(newfd, newfile);
1588 err = newfd;
1589
1590 out_put:
1591 fput_light(sock->file, fput_needed);
1592 out:
1593 return err;
1594 out_fd_simple:
1595 sock_release(newsock);
1596 put_filp(newfile);
1597 put_unused_fd(newfd);
1598 goto out_put;
1599 out_fd:
1600 fput(newfile);
1601 put_unused_fd(newfd);
1602 goto out_put;
1603 }
1604
1605 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1606 int __user *, upeer_addrlen)
1607 {
1608 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1609 }
1610
1611 /*
1612 * Attempt to connect to a socket with the server address. The address
1613 * is in user space so we verify it is OK and move it to kernel space.
1614 *
1615 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1616 * break bindings
1617 *
1618 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1619 * other SEQPACKET protocols that take time to connect() as it doesn't
1620 * include the -EINPROGRESS status for such sockets.
1621 */
1622
1623 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1624 int, addrlen)
1625 {
1626 struct socket *sock;
1627 struct sockaddr_storage address;
1628 int err, fput_needed;
1629
1630 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1631 if (!sock)
1632 goto out;
1633 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1634 if (err < 0)
1635 goto out_put;
1636
1637 err =
1638 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1639 if (err)
1640 goto out_put;
1641
1642 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1643 sock->file->f_flags);
1644 out_put:
1645 fput_light(sock->file, fput_needed);
1646 out:
1647 return err;
1648 }
1649
1650 /*
1651 * Get the local address ('name') of a socket object. Move the obtained
1652 * name to user space.
1653 */
1654
1655 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1656 int __user *, usockaddr_len)
1657 {
1658 struct socket *sock;
1659 struct sockaddr_storage address;
1660 int len, err, fput_needed;
1661
1662 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1663 if (!sock)
1664 goto out;
1665
1666 err = security_socket_getsockname(sock);
1667 if (err)
1668 goto out_put;
1669
1670 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1671 if (err)
1672 goto out_put;
1673 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1674
1675 out_put:
1676 fput_light(sock->file, fput_needed);
1677 out:
1678 return err;
1679 }
1680
1681 /*
1682 * Get the remote address ('name') of a socket object. Move the obtained
1683 * name to user space.
1684 */
1685
1686 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1687 int __user *, usockaddr_len)
1688 {
1689 struct socket *sock;
1690 struct sockaddr_storage address;
1691 int len, err, fput_needed;
1692
1693 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1694 if (sock != NULL) {
1695 err = security_socket_getpeername(sock);
1696 if (err) {
1697 fput_light(sock->file, fput_needed);
1698 return err;
1699 }
1700
1701 err =
1702 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1703 1);
1704 if (!err)
1705 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1706 usockaddr_len);
1707 fput_light(sock->file, fput_needed);
1708 }
1709 return err;
1710 }
1711
1712 /*
1713 * Send a datagram to a given address. We move the address into kernel
1714 * space and check the user space data area is readable before invoking
1715 * the protocol.
1716 */
1717
1718 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1719 unsigned, flags, struct sockaddr __user *, addr,
1720 int, addr_len)
1721 {
1722 struct socket *sock;
1723 struct sockaddr_storage address;
1724 int err;
1725 struct msghdr msg;
1726 struct iovec iov;
1727 int fput_needed;
1728
1729 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1730 if (!sock)
1731 goto out;
1732
1733 iov.iov_base = buff;
1734 iov.iov_len = len;
1735 msg.msg_name = NULL;
1736 msg.msg_iov = &iov;
1737 msg.msg_iovlen = 1;
1738 msg.msg_control = NULL;
1739 msg.msg_controllen = 0;
1740 msg.msg_namelen = 0;
1741 if (addr) {
1742 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1743 if (err < 0)
1744 goto out_put;
1745 msg.msg_name = (struct sockaddr *)&address;
1746 msg.msg_namelen = addr_len;
1747 }
1748 if (sock->file->f_flags & O_NONBLOCK)
1749 flags |= MSG_DONTWAIT;
1750 msg.msg_flags = flags;
1751 err = sock_sendmsg(sock, &msg, len);
1752
1753 out_put:
1754 fput_light(sock->file, fput_needed);
1755 out:
1756 return err;
1757 }
1758
1759 /*
1760 * Send a datagram down a socket.
1761 */
1762
1763 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1764 unsigned, flags)
1765 {
1766 return sys_sendto(fd, buff, len, flags, NULL, 0);
1767 }
1768
1769 /*
1770 * Receive a frame from the socket and optionally record the address of the
1771 * sender. We verify the buffers are writable and if needed move the
1772 * sender address from kernel to user space.
1773 */
1774
1775 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1776 unsigned, flags, struct sockaddr __user *, addr,
1777 int __user *, addr_len)
1778 {
1779 struct socket *sock;
1780 struct iovec iov;
1781 struct msghdr msg;
1782 struct sockaddr_storage address;
1783 int err, err2;
1784 int fput_needed;
1785
1786 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1787 if (!sock)
1788 goto out;
1789
1790 msg.msg_control = NULL;
1791 msg.msg_controllen = 0;
1792 msg.msg_iovlen = 1;
1793 msg.msg_iov = &iov;
1794 iov.iov_len = size;
1795 iov.iov_base = ubuf;
1796 msg.msg_name = (struct sockaddr *)&address;
1797 msg.msg_namelen = sizeof(address);
1798 if (sock->file->f_flags & O_NONBLOCK)
1799 flags |= MSG_DONTWAIT;
1800 err = sock_recvmsg(sock, &msg, size, flags);
1801
1802 if (err >= 0 && addr != NULL) {
1803 err2 = move_addr_to_user((struct sockaddr *)&address,
1804 msg.msg_namelen, addr, addr_len);
1805 if (err2 < 0)
1806 err = err2;
1807 }
1808
1809 fput_light(sock->file, fput_needed);
1810 out:
1811 return err;
1812 }
1813
1814 /*
1815 * Receive a datagram from a socket.
1816 */
1817
1818 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1819 unsigned flags)
1820 {
1821 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1822 }
1823
1824 /*
1825 * Set a socket option. Because we don't know the option lengths we have
1826 * to pass the user mode parameter for the protocols to sort out.
1827 */
1828
1829 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1830 char __user *, optval, int, optlen)
1831 {
1832 int err, fput_needed;
1833 struct socket *sock;
1834
1835 if (optlen < 0)
1836 return -EINVAL;
1837
1838 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1839 if (sock != NULL) {
1840 err = security_socket_setsockopt(sock, level, optname);
1841 if (err)
1842 goto out_put;
1843
1844 if (level == SOL_SOCKET)
1845 err =
1846 sock_setsockopt(sock, level, optname, optval,
1847 optlen);
1848 else
1849 err =
1850 sock->ops->setsockopt(sock, level, optname, optval,
1851 optlen);
1852 out_put:
1853 fput_light(sock->file, fput_needed);
1854 }
1855 return err;
1856 }
1857
1858 /*
1859 * Get a socket option. Because we don't know the option lengths we have
1860 * to pass a user mode parameter for the protocols to sort out.
1861 */
1862
1863 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1864 char __user *, optval, int __user *, optlen)
1865 {
1866 int err, fput_needed;
1867 struct socket *sock;
1868
1869 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1870 if (sock != NULL) {
1871 err = security_socket_getsockopt(sock, level, optname);
1872 if (err)
1873 goto out_put;
1874
1875 if (level == SOL_SOCKET)
1876 err =
1877 sock_getsockopt(sock, level, optname, optval,
1878 optlen);
1879 else
1880 err =
1881 sock->ops->getsockopt(sock, level, optname, optval,
1882 optlen);
1883 out_put:
1884 fput_light(sock->file, fput_needed);
1885 }
1886 return err;
1887 }
1888
1889 /*
1890 * Shutdown a socket.
1891 */
1892
1893 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1894 {
1895 int err, fput_needed;
1896 struct socket *sock;
1897
1898 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1899 if (sock != NULL) {
1900 err = security_socket_shutdown(sock, how);
1901 if (!err)
1902 err = sock->ops->shutdown(sock, how);
1903 fput_light(sock->file, fput_needed);
1904 }
1905 return err;
1906 }
1907
1908 /* A couple of helpful macros for getting the address of the 32/64 bit
1909 * fields which are the same type (int / unsigned) on our platforms.
1910 */
1911 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1912 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1913 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1914
1915 /*
1916 * BSD sendmsg interface
1917 */
1918
1919 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1920 {
1921 struct compat_msghdr __user *msg_compat =
1922 (struct compat_msghdr __user *)msg;
1923 struct socket *sock;
1924 struct sockaddr_storage address;
1925 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1926 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1927 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1928 /* 20 is size of ipv6_pktinfo */
1929 unsigned char *ctl_buf = ctl;
1930 struct msghdr msg_sys;
1931 int err, ctl_len, iov_size, total_len;
1932 int fput_needed;
1933
1934 err = -EFAULT;
1935 if (MSG_CMSG_COMPAT & flags) {
1936 if (get_compat_msghdr(&msg_sys, msg_compat))
1937 return -EFAULT;
1938 }
1939 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1940 return -EFAULT;
1941
1942 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1943 if (!sock)
1944 goto out;
1945
1946 /* do not move before msg_sys is valid */
1947 err = -EMSGSIZE;
1948 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1949 goto out_put;
1950
1951 /* Check whether to allocate the iovec area */
1952 err = -ENOMEM;
1953 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1954 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1955 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1956 if (!iov)
1957 goto out_put;
1958 }
1959
1960 /* This will also move the address data into kernel space */
1961 if (MSG_CMSG_COMPAT & flags) {
1962 err = verify_compat_iovec(&msg_sys, iov,
1963 (struct sockaddr *)&address,
1964 VERIFY_READ);
1965 } else
1966 err = verify_iovec(&msg_sys, iov,
1967 (struct sockaddr *)&address,
1968 VERIFY_READ);
1969 if (err < 0)
1970 goto out_freeiov;
1971 total_len = err;
1972
1973 err = -ENOBUFS;
1974
1975 if (msg_sys.msg_controllen > INT_MAX)
1976 goto out_freeiov;
1977 ctl_len = msg_sys.msg_controllen;
1978 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1979 err =
1980 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1981 sizeof(ctl));
1982 if (err)
1983 goto out_freeiov;
1984 ctl_buf = msg_sys.msg_control;
1985 ctl_len = msg_sys.msg_controllen;
1986 } else if (ctl_len) {
1987 if (ctl_len > sizeof(ctl)) {
1988 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1989 if (ctl_buf == NULL)
1990 goto out_freeiov;
1991 }
1992 err = -EFAULT;
1993 /*
1994 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1995 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1996 * checking falls down on this.
1997 */
1998 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1999 ctl_len))
2000 goto out_freectl;
2001 msg_sys.msg_control = ctl_buf;
2002 }
2003 msg_sys.msg_flags = flags;
2004
2005 if (sock->file->f_flags & O_NONBLOCK)
2006 msg_sys.msg_flags |= MSG_DONTWAIT;
2007 err = sock_sendmsg(sock, &msg_sys, total_len);
2008
2009 out_freectl:
2010 if (ctl_buf != ctl)
2011 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2012 out_freeiov:
2013 if (iov != iovstack)
2014 sock_kfree_s(sock->sk, iov, iov_size);
2015 out_put:
2016 fput_light(sock->file, fput_needed);
2017 out:
2018 return err;
2019 }
2020
2021 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2022 struct msghdr *msg_sys, unsigned flags, int nosec)
2023 {
2024 struct compat_msghdr __user *msg_compat =
2025 (struct compat_msghdr __user *)msg;
2026 struct iovec iovstack[UIO_FASTIOV];
2027 struct iovec *iov = iovstack;
2028 unsigned long cmsg_ptr;
2029 int err, iov_size, total_len, len;
2030
2031 /* kernel mode address */
2032 struct sockaddr_storage addr;
2033
2034 /* user mode address pointers */
2035 struct sockaddr __user *uaddr;
2036 int __user *uaddr_len;
2037
2038 if (MSG_CMSG_COMPAT & flags) {
2039 if (get_compat_msghdr(msg_sys, msg_compat))
2040 return -EFAULT;
2041 }
2042 else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2043 return -EFAULT;
2044
2045 err = -EMSGSIZE;
2046 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2047 goto out;
2048
2049 /* Check whether to allocate the iovec area */
2050 err = -ENOMEM;
2051 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
2052 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2053 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2054 if (!iov)
2055 goto out;
2056 }
2057
2058 /*
2059 * Save the user-mode address (verify_iovec will change the
2060 * kernel msghdr to use the kernel address space)
2061 */
2062
2063 uaddr = (__force void __user *)msg_sys->msg_name;
2064 uaddr_len = COMPAT_NAMELEN(msg);
2065 if (MSG_CMSG_COMPAT & flags) {
2066 err = verify_compat_iovec(msg_sys, iov,
2067 (struct sockaddr *)&addr,
2068 VERIFY_WRITE);
2069 } else
2070 err = verify_iovec(msg_sys, iov,
2071 (struct sockaddr *)&addr,
2072 VERIFY_WRITE);
2073 if (err < 0)
2074 goto out_freeiov;
2075 total_len = err;
2076
2077 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2078 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2079
2080 if (sock->file->f_flags & O_NONBLOCK)
2081 flags |= MSG_DONTWAIT;
2082 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2083 total_len, flags);
2084 if (err < 0)
2085 goto out_freeiov;
2086 len = err;
2087
2088 if (uaddr != NULL) {
2089 err = move_addr_to_user((struct sockaddr *)&addr,
2090 msg_sys->msg_namelen, uaddr,
2091 uaddr_len);
2092 if (err < 0)
2093 goto out_freeiov;
2094 }
2095 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2096 COMPAT_FLAGS(msg));
2097 if (err)
2098 goto out_freeiov;
2099 if (MSG_CMSG_COMPAT & flags)
2100 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2101 &msg_compat->msg_controllen);
2102 else
2103 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2104 &msg->msg_controllen);
2105 if (err)
2106 goto out_freeiov;
2107 err = len;
2108
2109 out_freeiov:
2110 if (iov != iovstack)
2111 sock_kfree_s(sock->sk, iov, iov_size);
2112 out:
2113 return err;
2114 }
2115
2116 /*
2117 * BSD recvmsg interface
2118 */
2119
2120 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2121 unsigned int, flags)
2122 {
2123 int fput_needed, err;
2124 struct msghdr msg_sys;
2125 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2126
2127 if (!sock)
2128 goto out;
2129
2130 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2131
2132 fput_light(sock->file, fput_needed);
2133 out:
2134 return err;
2135 }
2136
2137 /*
2138 * Linux recvmmsg interface
2139 */
2140
2141 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2142 unsigned int flags, struct timespec *timeout)
2143 {
2144 int fput_needed, err, datagrams;
2145 struct socket *sock;
2146 struct mmsghdr __user *entry;
2147 struct msghdr msg_sys;
2148 struct timespec end_time;
2149
2150 if (timeout &&
2151 poll_select_set_timeout(&end_time, timeout->tv_sec,
2152 timeout->tv_nsec))
2153 return -EINVAL;
2154
2155 datagrams = 0;
2156
2157 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2158 if (!sock)
2159 return err;
2160
2161 err = sock_error(sock->sk);
2162 if (err)
2163 goto out_put;
2164
2165 entry = mmsg;
2166
2167 while (datagrams < vlen) {
2168 /*
2169 * No need to ask LSM for more than the first datagram.
2170 */
2171 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2172 &msg_sys, flags, datagrams);
2173 if (err < 0)
2174 break;
2175 err = put_user(err, &entry->msg_len);
2176 if (err)
2177 break;
2178 ++entry;
2179 ++datagrams;
2180
2181 if (timeout) {
2182 ktime_get_ts(timeout);
2183 *timeout = timespec_sub(end_time, *timeout);
2184 if (timeout->tv_sec < 0) {
2185 timeout->tv_sec = timeout->tv_nsec = 0;
2186 break;
2187 }
2188
2189 /* Timeout, return less than vlen datagrams */
2190 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2191 break;
2192 }
2193
2194 /* Out of band data, return right away */
2195 if (msg_sys.msg_flags & MSG_OOB)
2196 break;
2197 }
2198
2199 out_put:
2200 fput_light(sock->file, fput_needed);
2201
2202 if (err == 0)
2203 return datagrams;
2204
2205 if (datagrams != 0) {
2206 /*
2207 * We may return less entries than requested (vlen) if the
2208 * sock is non block and there aren't enough datagrams...
2209 */
2210 if (err != -EAGAIN) {
2211 /*
2212 * ... or if recvmsg returns an error after we
2213 * received some datagrams, where we record the
2214 * error to return on the next call or if the
2215 * app asks about it using getsockopt(SO_ERROR).
2216 */
2217 sock->sk->sk_err = -err;
2218 }
2219
2220 return datagrams;
2221 }
2222
2223 return err;
2224 }
2225
2226 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2227 unsigned int, vlen, unsigned int, flags,
2228 struct timespec __user *, timeout)
2229 {
2230 int datagrams;
2231 struct timespec timeout_sys;
2232
2233 if (!timeout)
2234 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2235
2236 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2237 return -EFAULT;
2238
2239 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2240
2241 if (datagrams > 0 &&
2242 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2243 datagrams = -EFAULT;
2244
2245 return datagrams;
2246 }
2247
2248 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2249 /* Argument list sizes for sys_socketcall */
2250 #define AL(x) ((x) * sizeof(unsigned long))
2251 static const unsigned char nargs[20] = {
2252 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2253 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2254 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2255 AL(4),AL(5)
2256 };
2257
2258 #undef AL
2259
2260 /*
2261 * System call vectors.
2262 *
2263 * Argument checking cleaned up. Saved 20% in size.
2264 * This function doesn't need to set the kernel lock because
2265 * it is set by the callees.
2266 */
2267
2268 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2269 {
2270 unsigned long a[6];
2271 unsigned long a0, a1;
2272 int err;
2273 unsigned int len;
2274
2275 if (call < 1 || call > SYS_RECVMMSG)
2276 return -EINVAL;
2277
2278 len = nargs[call];
2279 if (len > sizeof(a))
2280 return -EINVAL;
2281
2282 /* copy_from_user should be SMP safe. */
2283 if (copy_from_user(a, args, len))
2284 return -EFAULT;
2285
2286 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2287
2288 a0 = a[0];
2289 a1 = a[1];
2290
2291 switch (call) {
2292 case SYS_SOCKET:
2293 err = sys_socket(a0, a1, a[2]);
2294 break;
2295 case SYS_BIND:
2296 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2297 break;
2298 case SYS_CONNECT:
2299 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2300 break;
2301 case SYS_LISTEN:
2302 err = sys_listen(a0, a1);
2303 break;
2304 case SYS_ACCEPT:
2305 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2306 (int __user *)a[2], 0);
2307 break;
2308 case SYS_GETSOCKNAME:
2309 err =
2310 sys_getsockname(a0, (struct sockaddr __user *)a1,
2311 (int __user *)a[2]);
2312 break;
2313 case SYS_GETPEERNAME:
2314 err =
2315 sys_getpeername(a0, (struct sockaddr __user *)a1,
2316 (int __user *)a[2]);
2317 break;
2318 case SYS_SOCKETPAIR:
2319 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2320 break;
2321 case SYS_SEND:
2322 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2323 break;
2324 case SYS_SENDTO:
2325 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2326 (struct sockaddr __user *)a[4], a[5]);
2327 break;
2328 case SYS_RECV:
2329 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2330 break;
2331 case SYS_RECVFROM:
2332 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2333 (struct sockaddr __user *)a[4],
2334 (int __user *)a[5]);
2335 break;
2336 case SYS_SHUTDOWN:
2337 err = sys_shutdown(a0, a1);
2338 break;
2339 case SYS_SETSOCKOPT:
2340 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2341 break;
2342 case SYS_GETSOCKOPT:
2343 err =
2344 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2345 (int __user *)a[4]);
2346 break;
2347 case SYS_SENDMSG:
2348 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2349 break;
2350 case SYS_RECVMSG:
2351 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2352 break;
2353 case SYS_RECVMMSG:
2354 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2355 (struct timespec __user *)a[4]);
2356 break;
2357 case SYS_ACCEPT4:
2358 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2359 (int __user *)a[2], a[3]);
2360 break;
2361 default:
2362 err = -EINVAL;
2363 break;
2364 }
2365 return err;
2366 }
2367
2368 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2369
2370 /**
2371 * sock_register - add a socket protocol handler
2372 * @ops: description of protocol
2373 *
2374 * This function is called by a protocol handler that wants to
2375 * advertise its address family, and have it linked into the
2376 * socket interface. The value ops->family coresponds to the
2377 * socket system call protocol family.
2378 */
2379 int sock_register(const struct net_proto_family *ops)
2380 {
2381 int err;
2382
2383 if (ops->family >= NPROTO) {
2384 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2385 NPROTO);
2386 return -ENOBUFS;
2387 }
2388
2389 spin_lock(&net_family_lock);
2390 if (net_families[ops->family])
2391 err = -EEXIST;
2392 else {
2393 net_families[ops->family] = ops;
2394 err = 0;
2395 }
2396 spin_unlock(&net_family_lock);
2397
2398 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2399 return err;
2400 }
2401
2402 /**
2403 * sock_unregister - remove a protocol handler
2404 * @family: protocol family to remove
2405 *
2406 * This function is called by a protocol handler that wants to
2407 * remove its address family, and have it unlinked from the
2408 * new socket creation.
2409 *
2410 * If protocol handler is a module, then it can use module reference
2411 * counts to protect against new references. If protocol handler is not
2412 * a module then it needs to provide its own protection in
2413 * the ops->create routine.
2414 */
2415 void sock_unregister(int family)
2416 {
2417 BUG_ON(family < 0 || family >= NPROTO);
2418
2419 spin_lock(&net_family_lock);
2420 net_families[family] = NULL;
2421 spin_unlock(&net_family_lock);
2422
2423 synchronize_rcu();
2424
2425 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2426 }
2427
2428 static int __init sock_init(void)
2429 {
2430 /*
2431 * Initialize sock SLAB cache.
2432 */
2433
2434 sk_init();
2435
2436 /*
2437 * Initialize skbuff SLAB cache
2438 */
2439 skb_init();
2440
2441 /*
2442 * Initialize the protocols module.
2443 */
2444
2445 init_inodecache();
2446 register_filesystem(&sock_fs_type);
2447 sock_mnt = kern_mount(&sock_fs_type);
2448
2449 /* The real protocol initialization is performed in later initcalls.
2450 */
2451
2452 #ifdef CONFIG_NETFILTER
2453 netfilter_init();
2454 #endif
2455
2456 return 0;
2457 }
2458
2459 core_initcall(sock_init); /* early initcall */
2460
2461 #ifdef CONFIG_PROC_FS
2462 void socket_seq_show(struct seq_file *seq)
2463 {
2464 int cpu;
2465 int counter = 0;
2466
2467 for_each_possible_cpu(cpu)
2468 counter += per_cpu(sockets_in_use, cpu);
2469
2470 /* It can be negative, by the way. 8) */
2471 if (counter < 0)
2472 counter = 0;
2473
2474 seq_printf(seq, "sockets: used %d\n", counter);
2475 }
2476 #endif /* CONFIG_PROC_FS */
2477
2478 #ifdef CONFIG_COMPAT
2479 static int do_siocgstamp(struct net *net, struct socket *sock,
2480 unsigned int cmd, struct compat_timeval __user *up)
2481 {
2482 mm_segment_t old_fs = get_fs();
2483 struct timeval ktv;
2484 int err;
2485
2486 set_fs(KERNEL_DS);
2487 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2488 set_fs(old_fs);
2489 if (!err) {
2490 err = put_user(ktv.tv_sec, &up->tv_sec);
2491 err |= __put_user(ktv.tv_usec, &up->tv_usec);
2492 }
2493 return err;
2494 }
2495
2496 static int do_siocgstampns(struct net *net, struct socket *sock,
2497 unsigned int cmd, struct compat_timespec __user *up)
2498 {
2499 mm_segment_t old_fs = get_fs();
2500 struct timespec kts;
2501 int err;
2502
2503 set_fs(KERNEL_DS);
2504 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2505 set_fs(old_fs);
2506 if (!err) {
2507 err = put_user(kts.tv_sec, &up->tv_sec);
2508 err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2509 }
2510 return err;
2511 }
2512
2513 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2514 {
2515 struct ifreq __user *uifr;
2516 int err;
2517
2518 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2519 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2520 return -EFAULT;
2521
2522 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2523 if (err)
2524 return err;
2525
2526 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2527 return -EFAULT;
2528
2529 return 0;
2530 }
2531
2532 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2533 {
2534 struct compat_ifconf ifc32;
2535 struct ifconf ifc;
2536 struct ifconf __user *uifc;
2537 struct compat_ifreq __user *ifr32;
2538 struct ifreq __user *ifr;
2539 unsigned int i, j;
2540 int err;
2541
2542 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2543 return -EFAULT;
2544
2545 if (ifc32.ifcbuf == 0) {
2546 ifc32.ifc_len = 0;
2547 ifc.ifc_len = 0;
2548 ifc.ifc_req = NULL;
2549 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2550 } else {
2551 size_t len =((ifc32.ifc_len / sizeof (struct compat_ifreq)) + 1) *
2552 sizeof (struct ifreq);
2553 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2554 ifc.ifc_len = len;
2555 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2556 ifr32 = compat_ptr(ifc32.ifcbuf);
2557 for (i = 0; i < ifc32.ifc_len; i += sizeof (struct compat_ifreq)) {
2558 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2559 return -EFAULT;
2560 ifr++;
2561 ifr32++;
2562 }
2563 }
2564 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2565 return -EFAULT;
2566
2567 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2568 if (err)
2569 return err;
2570
2571 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2572 return -EFAULT;
2573
2574 ifr = ifc.ifc_req;
2575 ifr32 = compat_ptr(ifc32.ifcbuf);
2576 for (i = 0, j = 0;
2577 i + sizeof (struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2578 i += sizeof (struct compat_ifreq), j += sizeof (struct ifreq)) {
2579 if (copy_in_user(ifr32, ifr, sizeof (struct compat_ifreq)))
2580 return -EFAULT;
2581 ifr32++;
2582 ifr++;
2583 }
2584
2585 if (ifc32.ifcbuf == 0) {
2586 /* Translate from 64-bit structure multiple to
2587 * a 32-bit one.
2588 */
2589 i = ifc.ifc_len;
2590 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2591 ifc32.ifc_len = i;
2592 } else {
2593 ifc32.ifc_len = i;
2594 }
2595 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2596 return -EFAULT;
2597
2598 return 0;
2599 }
2600
2601 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2602 {
2603 struct ifreq __user *ifr;
2604 u32 data;
2605 void __user *datap;
2606
2607 ifr = compat_alloc_user_space(sizeof(*ifr));
2608
2609 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2610 return -EFAULT;
2611
2612 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2613 return -EFAULT;
2614
2615 datap = compat_ptr(data);
2616 if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2617 return -EFAULT;
2618
2619 return dev_ioctl(net, SIOCETHTOOL, ifr);
2620 }
2621
2622 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2623 {
2624 void __user *uptr;
2625 compat_uptr_t uptr32;
2626 struct ifreq __user *uifr;
2627
2628 uifr = compat_alloc_user_space(sizeof (*uifr));
2629 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2630 return -EFAULT;
2631
2632 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2633 return -EFAULT;
2634
2635 uptr = compat_ptr(uptr32);
2636
2637 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2638 return -EFAULT;
2639
2640 return dev_ioctl(net, SIOCWANDEV, uifr);
2641 }
2642
2643 static int bond_ioctl(struct net *net, unsigned int cmd,
2644 struct compat_ifreq __user *ifr32)
2645 {
2646 struct ifreq kifr;
2647 struct ifreq __user *uifr;
2648 mm_segment_t old_fs;
2649 int err;
2650 u32 data;
2651 void __user *datap;
2652
2653 switch (cmd) {
2654 case SIOCBONDENSLAVE:
2655 case SIOCBONDRELEASE:
2656 case SIOCBONDSETHWADDR:
2657 case SIOCBONDCHANGEACTIVE:
2658 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2659 return -EFAULT;
2660
2661 old_fs = get_fs();
2662 set_fs (KERNEL_DS);
2663 err = dev_ioctl(net, cmd, &kifr);
2664 set_fs (old_fs);
2665
2666 return err;
2667 case SIOCBONDSLAVEINFOQUERY:
2668 case SIOCBONDINFOQUERY:
2669 uifr = compat_alloc_user_space(sizeof(*uifr));
2670 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2671 return -EFAULT;
2672
2673 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2674 return -EFAULT;
2675
2676 datap = compat_ptr(data);
2677 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2678 return -EFAULT;
2679
2680 return dev_ioctl(net, cmd, uifr);
2681 default:
2682 return -EINVAL;
2683 };
2684 }
2685
2686 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2687 struct compat_ifreq __user *u_ifreq32)
2688 {
2689 struct ifreq __user *u_ifreq64;
2690 char tmp_buf[IFNAMSIZ];
2691 void __user *data64;
2692 u32 data32;
2693
2694 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2695 IFNAMSIZ))
2696 return -EFAULT;
2697 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2698 return -EFAULT;
2699 data64 = compat_ptr(data32);
2700
2701 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2702
2703 /* Don't check these user accesses, just let that get trapped
2704 * in the ioctl handler instead.
2705 */
2706 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2707 IFNAMSIZ))
2708 return -EFAULT;
2709 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2710 return -EFAULT;
2711
2712 return dev_ioctl(net, cmd, u_ifreq64);
2713 }
2714
2715 static int dev_ifsioc(struct net *net, struct socket *sock,
2716 unsigned int cmd, struct compat_ifreq __user *uifr32)
2717 {
2718 struct ifreq __user *uifr;
2719 int err;
2720
2721 uifr = compat_alloc_user_space(sizeof(*uifr));
2722 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2723 return -EFAULT;
2724
2725 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2726
2727 if (!err) {
2728 switch (cmd) {
2729 case SIOCGIFFLAGS:
2730 case SIOCGIFMETRIC:
2731 case SIOCGIFMTU:
2732 case SIOCGIFMEM:
2733 case SIOCGIFHWADDR:
2734 case SIOCGIFINDEX:
2735 case SIOCGIFADDR:
2736 case SIOCGIFBRDADDR:
2737 case SIOCGIFDSTADDR:
2738 case SIOCGIFNETMASK:
2739 case SIOCGIFPFLAGS:
2740 case SIOCGIFTXQLEN:
2741 case SIOCGMIIPHY:
2742 case SIOCGMIIREG:
2743 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2744 err = -EFAULT;
2745 break;
2746 }
2747 }
2748 return err;
2749 }
2750
2751 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2752 struct compat_ifreq __user *uifr32)
2753 {
2754 struct ifreq ifr;
2755 struct compat_ifmap __user *uifmap32;
2756 mm_segment_t old_fs;
2757 int err;
2758
2759 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2760 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2761 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2762 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2763 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2764 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2765 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2766 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2767 if (err)
2768 return -EFAULT;
2769
2770 old_fs = get_fs();
2771 set_fs (KERNEL_DS);
2772 err = dev_ioctl(net, cmd, (void __user *)&ifr);
2773 set_fs (old_fs);
2774
2775 if (cmd == SIOCGIFMAP && !err) {
2776 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2777 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2778 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2779 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2780 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2781 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2782 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2783 if (err)
2784 err = -EFAULT;
2785 }
2786 return err;
2787 }
2788
2789 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2790 {
2791 void __user *uptr;
2792 compat_uptr_t uptr32;
2793 struct ifreq __user *uifr;
2794
2795 uifr = compat_alloc_user_space(sizeof (*uifr));
2796 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2797 return -EFAULT;
2798
2799 if (get_user(uptr32, &uifr32->ifr_data))
2800 return -EFAULT;
2801
2802 uptr = compat_ptr(uptr32);
2803
2804 if (put_user(uptr, &uifr->ifr_data))
2805 return -EFAULT;
2806
2807 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2808 }
2809
2810 struct rtentry32 {
2811 u32 rt_pad1;
2812 struct sockaddr rt_dst; /* target address */
2813 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2814 struct sockaddr rt_genmask; /* target network mask (IP) */
2815 unsigned short rt_flags;
2816 short rt_pad2;
2817 u32 rt_pad3;
2818 unsigned char rt_tos;
2819 unsigned char rt_class;
2820 short rt_pad4;
2821 short rt_metric; /* +1 for binary compatibility! */
2822 /* char * */ u32 rt_dev; /* forcing the device at add */
2823 u32 rt_mtu; /* per route MTU/Window */
2824 u32 rt_window; /* Window clamping */
2825 unsigned short rt_irtt; /* Initial RTT */
2826 };
2827
2828 struct in6_rtmsg32 {
2829 struct in6_addr rtmsg_dst;
2830 struct in6_addr rtmsg_src;
2831 struct in6_addr rtmsg_gateway;
2832 u32 rtmsg_type;
2833 u16 rtmsg_dst_len;
2834 u16 rtmsg_src_len;
2835 u32 rtmsg_metric;
2836 u32 rtmsg_info;
2837 u32 rtmsg_flags;
2838 s32 rtmsg_ifindex;
2839 };
2840
2841 static int routing_ioctl(struct net *net, struct socket *sock,
2842 unsigned int cmd, void __user *argp)
2843 {
2844 int ret;
2845 void *r = NULL;
2846 struct in6_rtmsg r6;
2847 struct rtentry r4;
2848 char devname[16];
2849 u32 rtdev;
2850 mm_segment_t old_fs = get_fs();
2851
2852 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2853 struct in6_rtmsg32 __user *ur6 = argp;
2854 ret = copy_from_user (&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2855 3 * sizeof(struct in6_addr));
2856 ret |= __get_user (r6.rtmsg_type, &(ur6->rtmsg_type));
2857 ret |= __get_user (r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2858 ret |= __get_user (r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2859 ret |= __get_user (r6.rtmsg_metric, &(ur6->rtmsg_metric));
2860 ret |= __get_user (r6.rtmsg_info, &(ur6->rtmsg_info));
2861 ret |= __get_user (r6.rtmsg_flags, &(ur6->rtmsg_flags));
2862 ret |= __get_user (r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2863
2864 r = (void *) &r6;
2865 } else { /* ipv4 */
2866 struct rtentry32 __user *ur4 = argp;
2867 ret = copy_from_user (&r4.rt_dst, &(ur4->rt_dst),
2868 3 * sizeof(struct sockaddr));
2869 ret |= __get_user (r4.rt_flags, &(ur4->rt_flags));
2870 ret |= __get_user (r4.rt_metric, &(ur4->rt_metric));
2871 ret |= __get_user (r4.rt_mtu, &(ur4->rt_mtu));
2872 ret |= __get_user (r4.rt_window, &(ur4->rt_window));
2873 ret |= __get_user (r4.rt_irtt, &(ur4->rt_irtt));
2874 ret |= __get_user (rtdev, &(ur4->rt_dev));
2875 if (rtdev) {
2876 ret |= copy_from_user (devname, compat_ptr(rtdev), 15);
2877 r4.rt_dev = devname; devname[15] = 0;
2878 } else
2879 r4.rt_dev = NULL;
2880
2881 r = (void *) &r4;
2882 }
2883
2884 if (ret) {
2885 ret = -EFAULT;
2886 goto out;
2887 }
2888
2889 set_fs (KERNEL_DS);
2890 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2891 set_fs (old_fs);
2892
2893 out:
2894 return ret;
2895 }
2896
2897 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2898 * for some operations; this forces use of the newer bridge-utils that
2899 * use compatiable ioctls
2900 */
2901 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2902 {
2903 compat_ulong_t tmp;
2904
2905 if (get_user(tmp, argp))
2906 return -EFAULT;
2907 if (tmp == BRCTL_GET_VERSION)
2908 return BRCTL_VERSION + 1;
2909 return -EINVAL;
2910 }
2911
2912 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2913 unsigned int cmd, unsigned long arg)
2914 {
2915 void __user *argp = compat_ptr(arg);
2916 struct sock *sk = sock->sk;
2917 struct net *net = sock_net(sk);
2918
2919 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2920 return siocdevprivate_ioctl(net, cmd, argp);
2921
2922 switch (cmd) {
2923 case SIOCSIFBR:
2924 case SIOCGIFBR:
2925 return old_bridge_ioctl(argp);
2926 case SIOCGIFNAME:
2927 return dev_ifname32(net, argp);
2928 case SIOCGIFCONF:
2929 return dev_ifconf(net, argp);
2930 case SIOCETHTOOL:
2931 return ethtool_ioctl(net, argp);
2932 case SIOCWANDEV:
2933 return compat_siocwandev(net, argp);
2934 case SIOCGIFMAP:
2935 case SIOCSIFMAP:
2936 return compat_sioc_ifmap(net, cmd, argp);
2937 case SIOCBONDENSLAVE:
2938 case SIOCBONDRELEASE:
2939 case SIOCBONDSETHWADDR:
2940 case SIOCBONDSLAVEINFOQUERY:
2941 case SIOCBONDINFOQUERY:
2942 case SIOCBONDCHANGEACTIVE:
2943 return bond_ioctl(net, cmd, argp);
2944 case SIOCADDRT:
2945 case SIOCDELRT:
2946 return routing_ioctl(net, sock, cmd, argp);
2947 case SIOCGSTAMP:
2948 return do_siocgstamp(net, sock, cmd, argp);
2949 case SIOCGSTAMPNS:
2950 return do_siocgstampns(net, sock, cmd, argp);
2951 case SIOCSHWTSTAMP:
2952 return compat_siocshwtstamp(net, argp);
2953
2954 case FIOSETOWN:
2955 case SIOCSPGRP:
2956 case FIOGETOWN:
2957 case SIOCGPGRP:
2958 case SIOCBRADDBR:
2959 case SIOCBRDELBR:
2960 case SIOCGIFVLAN:
2961 case SIOCSIFVLAN:
2962 case SIOCADDDLCI:
2963 case SIOCDELDLCI:
2964 return sock_ioctl(file, cmd, arg);
2965
2966 case SIOCGIFFLAGS:
2967 case SIOCSIFFLAGS:
2968 case SIOCGIFMETRIC:
2969 case SIOCSIFMETRIC:
2970 case SIOCGIFMTU:
2971 case SIOCSIFMTU:
2972 case SIOCGIFMEM:
2973 case SIOCSIFMEM:
2974 case SIOCGIFHWADDR:
2975 case SIOCSIFHWADDR:
2976 case SIOCADDMULTI:
2977 case SIOCDELMULTI:
2978 case SIOCGIFINDEX:
2979 case SIOCGIFADDR:
2980 case SIOCSIFADDR:
2981 case SIOCSIFHWBROADCAST:
2982 case SIOCDIFADDR:
2983 case SIOCGIFBRDADDR:
2984 case SIOCSIFBRDADDR:
2985 case SIOCGIFDSTADDR:
2986 case SIOCSIFDSTADDR:
2987 case SIOCGIFNETMASK:
2988 case SIOCSIFNETMASK:
2989 case SIOCSIFPFLAGS:
2990 case SIOCGIFPFLAGS:
2991 case SIOCGIFTXQLEN:
2992 case SIOCSIFTXQLEN:
2993 case SIOCBRADDIF:
2994 case SIOCBRDELIF:
2995 case SIOCSIFNAME:
2996 case SIOCGMIIPHY:
2997 case SIOCGMIIREG:
2998 case SIOCSMIIREG:
2999 return dev_ifsioc(net, sock, cmd, argp);
3000
3001 case SIOCSARP:
3002 case SIOCGARP:
3003 case SIOCDARP:
3004 case SIOCATMARK:
3005 return sock_do_ioctl(net, sock, cmd, arg);
3006 }
3007
3008 /* Prevent warning from compat_sys_ioctl, these always
3009 * result in -EINVAL in the native case anyway. */
3010 switch (cmd) {
3011 case SIOCRTMSG:
3012 case SIOCGIFCOUNT:
3013 case SIOCSRARP:
3014 case SIOCGRARP:
3015 case SIOCDRARP:
3016 case SIOCSIFLINK:
3017 case SIOCGIFSLAVE:
3018 case SIOCSIFSLAVE:
3019 return -EINVAL;
3020 }
3021
3022 return -ENOIOCTLCMD;
3023 }
3024
3025 static long compat_sock_ioctl(struct file *file, unsigned cmd,
3026 unsigned long arg)
3027 {
3028 struct socket *sock = file->private_data;
3029 int ret = -ENOIOCTLCMD;
3030 struct sock *sk;
3031 struct net *net;
3032
3033 sk = sock->sk;
3034 net = sock_net(sk);
3035
3036 if (sock->ops->compat_ioctl)
3037 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3038
3039 if (ret == -ENOIOCTLCMD &&
3040 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3041 ret = compat_wext_handle_ioctl(net, cmd, arg);
3042
3043 if (ret == -ENOIOCTLCMD)
3044 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3045
3046 return ret;
3047 }
3048 #endif
3049
3050 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3051 {
3052 return sock->ops->bind(sock, addr, addrlen);
3053 }
3054
3055 int kernel_listen(struct socket *sock, int backlog)
3056 {
3057 return sock->ops->listen(sock, backlog);
3058 }
3059
3060 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3061 {
3062 struct sock *sk = sock->sk;
3063 int err;
3064
3065 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3066 newsock);
3067 if (err < 0)
3068 goto done;
3069
3070 err = sock->ops->accept(sock, *newsock, flags);
3071 if (err < 0) {
3072 sock_release(*newsock);
3073 *newsock = NULL;
3074 goto done;
3075 }
3076
3077 (*newsock)->ops = sock->ops;
3078 __module_get((*newsock)->ops->owner);
3079
3080 done:
3081 return err;
3082 }
3083
3084 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3085 int flags)
3086 {
3087 return sock->ops->connect(sock, addr, addrlen, flags);
3088 }
3089
3090 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3091 int *addrlen)
3092 {
3093 return sock->ops->getname(sock, addr, addrlen, 0);
3094 }
3095
3096 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3097 int *addrlen)
3098 {
3099 return sock->ops->getname(sock, addr, addrlen, 1);
3100 }
3101
3102 int kernel_getsockopt(struct socket *sock, int level, int optname,
3103 char *optval, int *optlen)
3104 {
3105 mm_segment_t oldfs = get_fs();
3106 int err;
3107
3108 set_fs(KERNEL_DS);
3109 if (level == SOL_SOCKET)
3110 err = sock_getsockopt(sock, level, optname, optval, optlen);
3111 else
3112 err = sock->ops->getsockopt(sock, level, optname, optval,
3113 optlen);
3114 set_fs(oldfs);
3115 return err;
3116 }
3117
3118 int kernel_setsockopt(struct socket *sock, int level, int optname,
3119 char *optval, unsigned int optlen)
3120 {
3121 mm_segment_t oldfs = get_fs();
3122 int err;
3123
3124 set_fs(KERNEL_DS);
3125 if (level == SOL_SOCKET)
3126 err = sock_setsockopt(sock, level, optname, optval, optlen);
3127 else
3128 err = sock->ops->setsockopt(sock, level, optname, optval,
3129 optlen);
3130 set_fs(oldfs);
3131 return err;
3132 }
3133
3134 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3135 size_t size, int flags)
3136 {
3137 if (sock->ops->sendpage)
3138 return sock->ops->sendpage(sock, page, offset, size, flags);
3139
3140 return sock_no_sendpage(sock, page, offset, size, flags);
3141 }
3142
3143 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3144 {
3145 mm_segment_t oldfs = get_fs();
3146 int err;
3147
3148 set_fs(KERNEL_DS);
3149 err = sock->ops->ioctl(sock, cmd, arg);
3150 set_fs(oldfs);
3151
3152 return err;
3153 }
3154
3155 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3156 {
3157 return sock->ops->shutdown(sock, how);
3158 }
3159
3160 EXPORT_SYMBOL(sock_create);
3161 EXPORT_SYMBOL(sock_create_kern);
3162 EXPORT_SYMBOL(sock_create_lite);
3163 EXPORT_SYMBOL(sock_map_fd);
3164 EXPORT_SYMBOL(sock_recvmsg);
3165 EXPORT_SYMBOL(sock_register);
3166 EXPORT_SYMBOL(sock_release);
3167 EXPORT_SYMBOL(sock_sendmsg);
3168 EXPORT_SYMBOL(sock_unregister);
3169 EXPORT_SYMBOL(sock_wake_async);
3170 EXPORT_SYMBOL(sockfd_lookup);
3171 EXPORT_SYMBOL(kernel_sendmsg);
3172 EXPORT_SYMBOL(kernel_recvmsg);
3173 EXPORT_SYMBOL(kernel_bind);
3174 EXPORT_SYMBOL(kernel_listen);
3175 EXPORT_SYMBOL(kernel_accept);
3176 EXPORT_SYMBOL(kernel_connect);
3177 EXPORT_SYMBOL(kernel_getsockname);
3178 EXPORT_SYMBOL(kernel_getpeername);
3179 EXPORT_SYMBOL(kernel_getsockopt);
3180 EXPORT_SYMBOL(kernel_setsockopt);
3181 EXPORT_SYMBOL(kernel_sendpage);
3182 EXPORT_SYMBOL(kernel_sock_ioctl);
3183 EXPORT_SYMBOL(kernel_sock_shutdown);