]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/socket.c
Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[mirror_ubuntu-artful-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read = new_sync_read,
144 .write = new_sync_write,
145 .read_iter = sock_read_iter,
146 .write_iter = sock_write_iter,
147 .poll = sock_poll,
148 .unlocked_ioctl = sock_ioctl,
149 #ifdef CONFIG_COMPAT
150 .compat_ioctl = compat_sock_ioctl,
151 #endif
152 .mmap = sock_mmap,
153 .release = sock_close,
154 .fasync = sock_fasync,
155 .sendpage = sock_sendpage,
156 .splice_write = generic_splice_sendpage,
157 .splice_read = sock_splice_read,
158 };
159
160 /*
161 * The protocol list. Each protocol is registered in here.
162 */
163
164 static DEFINE_SPINLOCK(net_family_lock);
165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166
167 /*
168 * Statistics counters of the socket lists
169 */
170
171 static DEFINE_PER_CPU(int, sockets_in_use);
172
173 /*
174 * Support routines.
175 * Move socket addresses back and forth across the kernel/user
176 * divide and look after the messy bits.
177 */
178
179 /**
180 * move_addr_to_kernel - copy a socket address into kernel space
181 * @uaddr: Address in user space
182 * @kaddr: Address in kernel space
183 * @ulen: Length in user space
184 *
185 * The address is copied into kernel space. If the provided address is
186 * too long an error code of -EINVAL is returned. If the copy gives
187 * invalid addresses -EFAULT is returned. On a success 0 is returned.
188 */
189
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
191 {
192 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 return -EINVAL;
194 if (ulen == 0)
195 return 0;
196 if (copy_from_user(kaddr, uaddr, ulen))
197 return -EFAULT;
198 return audit_sockaddr(ulen, kaddr);
199 }
200
201 /**
202 * move_addr_to_user - copy an address to user space
203 * @kaddr: kernel space address
204 * @klen: length of address in kernel
205 * @uaddr: user space address
206 * @ulen: pointer to user length field
207 *
208 * The value pointed to by ulen on entry is the buffer length available.
209 * This is overwritten with the buffer space used. -EINVAL is returned
210 * if an overlong buffer is specified or a negative buffer size. -EFAULT
211 * is returned if either the buffer or the length field are not
212 * accessible.
213 * After copying the data up to the limit the user specifies, the true
214 * length of the data is written over the length limit the user
215 * specified. Zero is returned for a success.
216 */
217
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 void __user *uaddr, int __user *ulen)
220 {
221 int err;
222 int len;
223
224 BUG_ON(klen > sizeof(struct sockaddr_storage));
225 err = get_user(len, ulen);
226 if (err)
227 return err;
228 if (len > klen)
229 len = klen;
230 if (len < 0)
231 return -EINVAL;
232 if (len) {
233 if (audit_sockaddr(klen, kaddr))
234 return -ENOMEM;
235 if (copy_to_user(uaddr, kaddr, len))
236 return -EFAULT;
237 }
238 /*
239 * "fromlen shall refer to the value before truncation.."
240 * 1003.1g
241 */
242 return __put_user(klen, ulen);
243 }
244
245 static struct kmem_cache *sock_inode_cachep __read_mostly;
246
247 static struct inode *sock_alloc_inode(struct super_block *sb)
248 {
249 struct socket_alloc *ei;
250 struct socket_wq *wq;
251
252 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 if (!ei)
254 return NULL;
255 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
256 if (!wq) {
257 kmem_cache_free(sock_inode_cachep, ei);
258 return NULL;
259 }
260 init_waitqueue_head(&wq->wait);
261 wq->fasync_list = NULL;
262 RCU_INIT_POINTER(ei->socket.wq, wq);
263
264 ei->socket.state = SS_UNCONNECTED;
265 ei->socket.flags = 0;
266 ei->socket.ops = NULL;
267 ei->socket.sk = NULL;
268 ei->socket.file = NULL;
269
270 return &ei->vfs_inode;
271 }
272
273 static void sock_destroy_inode(struct inode *inode)
274 {
275 struct socket_alloc *ei;
276 struct socket_wq *wq;
277
278 ei = container_of(inode, struct socket_alloc, vfs_inode);
279 wq = rcu_dereference_protected(ei->socket.wq, 1);
280 kfree_rcu(wq, rcu);
281 kmem_cache_free(sock_inode_cachep, ei);
282 }
283
284 static void init_once(void *foo)
285 {
286 struct socket_alloc *ei = (struct socket_alloc *)foo;
287
288 inode_init_once(&ei->vfs_inode);
289 }
290
291 static int init_inodecache(void)
292 {
293 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
294 sizeof(struct socket_alloc),
295 0,
296 (SLAB_HWCACHE_ALIGN |
297 SLAB_RECLAIM_ACCOUNT |
298 SLAB_MEM_SPREAD),
299 init_once);
300 if (sock_inode_cachep == NULL)
301 return -ENOMEM;
302 return 0;
303 }
304
305 static const struct super_operations sockfs_ops = {
306 .alloc_inode = sock_alloc_inode,
307 .destroy_inode = sock_destroy_inode,
308 .statfs = simple_statfs,
309 };
310
311 /*
312 * sockfs_dname() is called from d_path().
313 */
314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
315 {
316 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
317 dentry->d_inode->i_ino);
318 }
319
320 static const struct dentry_operations sockfs_dentry_operations = {
321 .d_dname = sockfs_dname,
322 };
323
324 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
325 int flags, const char *dev_name, void *data)
326 {
327 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
328 &sockfs_dentry_operations, SOCKFS_MAGIC);
329 }
330
331 static struct vfsmount *sock_mnt __read_mostly;
332
333 static struct file_system_type sock_fs_type = {
334 .name = "sockfs",
335 .mount = sockfs_mount,
336 .kill_sb = kill_anon_super,
337 };
338
339 /*
340 * Obtains the first available file descriptor and sets it up for use.
341 *
342 * These functions create file structures and maps them to fd space
343 * of the current process. On success it returns file descriptor
344 * and file struct implicitly stored in sock->file.
345 * Note that another thread may close file descriptor before we return
346 * from this function. We use the fact that now we do not refer
347 * to socket after mapping. If one day we will need it, this
348 * function will increment ref. count on file by 1.
349 *
350 * In any case returned fd MAY BE not valid!
351 * This race condition is unavoidable
352 * with shared fd spaces, we cannot solve it inside kernel,
353 * but we take care of internal coherence yet.
354 */
355
356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
357 {
358 struct qstr name = { .name = "" };
359 struct path path;
360 struct file *file;
361
362 if (dname) {
363 name.name = dname;
364 name.len = strlen(name.name);
365 } else if (sock->sk) {
366 name.name = sock->sk->sk_prot_creator->name;
367 name.len = strlen(name.name);
368 }
369 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
370 if (unlikely(!path.dentry))
371 return ERR_PTR(-ENOMEM);
372 path.mnt = mntget(sock_mnt);
373
374 d_instantiate(path.dentry, SOCK_INODE(sock));
375
376 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 &socket_file_ops);
378 if (unlikely(IS_ERR(file))) {
379 /* drop dentry, keep inode */
380 ihold(path.dentry->d_inode);
381 path_put(&path);
382 return file;
383 }
384
385 sock->file = file;
386 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
387 file->private_data = sock;
388 return file;
389 }
390 EXPORT_SYMBOL(sock_alloc_file);
391
392 static int sock_map_fd(struct socket *sock, int flags)
393 {
394 struct file *newfile;
395 int fd = get_unused_fd_flags(flags);
396 if (unlikely(fd < 0))
397 return fd;
398
399 newfile = sock_alloc_file(sock, flags, NULL);
400 if (likely(!IS_ERR(newfile))) {
401 fd_install(fd, newfile);
402 return fd;
403 }
404
405 put_unused_fd(fd);
406 return PTR_ERR(newfile);
407 }
408
409 struct socket *sock_from_file(struct file *file, int *err)
410 {
411 if (file->f_op == &socket_file_ops)
412 return file->private_data; /* set in sock_map_fd */
413
414 *err = -ENOTSOCK;
415 return NULL;
416 }
417 EXPORT_SYMBOL(sock_from_file);
418
419 /**
420 * sockfd_lookup - Go from a file number to its socket slot
421 * @fd: file handle
422 * @err: pointer to an error code return
423 *
424 * The file handle passed in is locked and the socket it is bound
425 * too is returned. If an error occurs the err pointer is overwritten
426 * with a negative errno code and NULL is returned. The function checks
427 * for both invalid handles and passing a handle which is not a socket.
428 *
429 * On a success the socket object pointer is returned.
430 */
431
432 struct socket *sockfd_lookup(int fd, int *err)
433 {
434 struct file *file;
435 struct socket *sock;
436
437 file = fget(fd);
438 if (!file) {
439 *err = -EBADF;
440 return NULL;
441 }
442
443 sock = sock_from_file(file, err);
444 if (!sock)
445 fput(file);
446 return sock;
447 }
448 EXPORT_SYMBOL(sockfd_lookup);
449
450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
451 {
452 struct fd f = fdget(fd);
453 struct socket *sock;
454
455 *err = -EBADF;
456 if (f.file) {
457 sock = sock_from_file(f.file, err);
458 if (likely(sock)) {
459 *fput_needed = f.flags;
460 return sock;
461 }
462 fdput(f);
463 }
464 return NULL;
465 }
466
467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
470 static ssize_t sockfs_getxattr(struct dentry *dentry,
471 const char *name, void *value, size_t size)
472 {
473 const char *proto_name;
474 size_t proto_size;
475 int error;
476
477 error = -ENODATA;
478 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
479 proto_name = dentry->d_name.name;
480 proto_size = strlen(proto_name);
481
482 if (value) {
483 error = -ERANGE;
484 if (proto_size + 1 > size)
485 goto out;
486
487 strncpy(value, proto_name, proto_size + 1);
488 }
489 error = proto_size + 1;
490 }
491
492 out:
493 return error;
494 }
495
496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
497 size_t size)
498 {
499 ssize_t len;
500 ssize_t used = 0;
501
502 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
503 if (len < 0)
504 return len;
505 used += len;
506 if (buffer) {
507 if (size < used)
508 return -ERANGE;
509 buffer += len;
510 }
511
512 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
513 used += len;
514 if (buffer) {
515 if (size < used)
516 return -ERANGE;
517 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
518 buffer += len;
519 }
520
521 return used;
522 }
523
524 static const struct inode_operations sockfs_inode_ops = {
525 .getxattr = sockfs_getxattr,
526 .listxattr = sockfs_listxattr,
527 };
528
529 /**
530 * sock_alloc - allocate a socket
531 *
532 * Allocate a new inode and socket object. The two are bound together
533 * and initialised. The socket is then returned. If we are out of inodes
534 * NULL is returned.
535 */
536
537 static struct socket *sock_alloc(void)
538 {
539 struct inode *inode;
540 struct socket *sock;
541
542 inode = new_inode_pseudo(sock_mnt->mnt_sb);
543 if (!inode)
544 return NULL;
545
546 sock = SOCKET_I(inode);
547
548 kmemcheck_annotate_bitfield(sock, type);
549 inode->i_ino = get_next_ino();
550 inode->i_mode = S_IFSOCK | S_IRWXUGO;
551 inode->i_uid = current_fsuid();
552 inode->i_gid = current_fsgid();
553 inode->i_op = &sockfs_inode_ops;
554
555 this_cpu_add(sockets_in_use, 1);
556 return sock;
557 }
558
559 /**
560 * sock_release - close a socket
561 * @sock: socket to close
562 *
563 * The socket is released from the protocol stack if it has a release
564 * callback, and the inode is then released if the socket is bound to
565 * an inode not a file.
566 */
567
568 void sock_release(struct socket *sock)
569 {
570 if (sock->ops) {
571 struct module *owner = sock->ops->owner;
572
573 sock->ops->release(sock);
574 sock->ops = NULL;
575 module_put(owner);
576 }
577
578 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
579 pr_err("%s: fasync list not empty!\n", __func__);
580
581 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
582 return;
583
584 this_cpu_sub(sockets_in_use, 1);
585 if (!sock->file) {
586 iput(SOCK_INODE(sock));
587 return;
588 }
589 sock->file = NULL;
590 }
591 EXPORT_SYMBOL(sock_release);
592
593 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
594 {
595 u8 flags = *tx_flags;
596
597 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
598 flags |= SKBTX_HW_TSTAMP;
599
600 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
601 flags |= SKBTX_SW_TSTAMP;
602
603 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
604 flags |= SKBTX_SCHED_TSTAMP;
605
606 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
607 flags |= SKBTX_ACK_TSTAMP;
608
609 *tx_flags = flags;
610 }
611 EXPORT_SYMBOL(__sock_tx_timestamp);
612
613 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
614 struct msghdr *msg, size_t size)
615 {
616 return sock->ops->sendmsg(iocb, sock, msg, size);
617 }
618
619 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
620 struct msghdr *msg, size_t size)
621 {
622 int err = security_socket_sendmsg(sock, msg, size);
623
624 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
625 }
626
627 static int do_sock_sendmsg(struct socket *sock, struct msghdr *msg,
628 size_t size, bool nosec)
629 {
630 struct kiocb iocb;
631 int ret;
632
633 init_sync_kiocb(&iocb, NULL);
634 ret = nosec ? __sock_sendmsg_nosec(&iocb, sock, msg, size) :
635 __sock_sendmsg(&iocb, sock, msg, size);
636 if (-EIOCBQUEUED == ret)
637 ret = wait_on_sync_kiocb(&iocb);
638 return ret;
639 }
640
641 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
642 {
643 return do_sock_sendmsg(sock, msg, size, false);
644 }
645 EXPORT_SYMBOL(sock_sendmsg);
646
647 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
648 {
649 return do_sock_sendmsg(sock, msg, size, true);
650 }
651
652 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
653 struct kvec *vec, size_t num, size_t size)
654 {
655 mm_segment_t oldfs = get_fs();
656 int result;
657
658 set_fs(KERNEL_DS);
659 /*
660 * the following is safe, since for compiler definitions of kvec and
661 * iovec are identical, yielding the same in-core layout and alignment
662 */
663 iov_iter_init(&msg->msg_iter, WRITE, (struct iovec *)vec, num, size);
664 result = sock_sendmsg(sock, msg, size);
665 set_fs(oldfs);
666 return result;
667 }
668 EXPORT_SYMBOL(kernel_sendmsg);
669
670 /*
671 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
672 */
673 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
674 struct sk_buff *skb)
675 {
676 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
677 struct scm_timestamping tss;
678 int empty = 1;
679 struct skb_shared_hwtstamps *shhwtstamps =
680 skb_hwtstamps(skb);
681
682 /* Race occurred between timestamp enabling and packet
683 receiving. Fill in the current time for now. */
684 if (need_software_tstamp && skb->tstamp.tv64 == 0)
685 __net_timestamp(skb);
686
687 if (need_software_tstamp) {
688 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
689 struct timeval tv;
690 skb_get_timestamp(skb, &tv);
691 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
692 sizeof(tv), &tv);
693 } else {
694 struct timespec ts;
695 skb_get_timestampns(skb, &ts);
696 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
697 sizeof(ts), &ts);
698 }
699 }
700
701 memset(&tss, 0, sizeof(tss));
702 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
703 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
704 empty = 0;
705 if (shhwtstamps &&
706 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
707 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
708 empty = 0;
709 if (!empty)
710 put_cmsg(msg, SOL_SOCKET,
711 SCM_TIMESTAMPING, sizeof(tss), &tss);
712 }
713 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
714
715 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
716 struct sk_buff *skb)
717 {
718 int ack;
719
720 if (!sock_flag(sk, SOCK_WIFI_STATUS))
721 return;
722 if (!skb->wifi_acked_valid)
723 return;
724
725 ack = skb->wifi_acked;
726
727 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
728 }
729 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
730
731 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
732 struct sk_buff *skb)
733 {
734 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
735 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
736 sizeof(__u32), &skb->dropcount);
737 }
738
739 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
740 struct sk_buff *skb)
741 {
742 sock_recv_timestamp(msg, sk, skb);
743 sock_recv_drops(msg, sk, skb);
744 }
745 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
746
747 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
748 struct msghdr *msg, size_t size, int flags)
749 {
750 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
751 }
752
753 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
754 struct msghdr *msg, size_t size, int flags)
755 {
756 int err = security_socket_recvmsg(sock, msg, size, flags);
757
758 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
759 }
760
761 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
762 size_t size, int flags)
763 {
764 struct kiocb iocb;
765 int ret;
766
767 init_sync_kiocb(&iocb, NULL);
768 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
769 if (-EIOCBQUEUED == ret)
770 ret = wait_on_sync_kiocb(&iocb);
771 return ret;
772 }
773 EXPORT_SYMBOL(sock_recvmsg);
774
775 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
776 size_t size, int flags)
777 {
778 struct kiocb iocb;
779 int ret;
780
781 init_sync_kiocb(&iocb, NULL);
782 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
783 if (-EIOCBQUEUED == ret)
784 ret = wait_on_sync_kiocb(&iocb);
785 return ret;
786 }
787
788 /**
789 * kernel_recvmsg - Receive a message from a socket (kernel space)
790 * @sock: The socket to receive the message from
791 * @msg: Received message
792 * @vec: Input s/g array for message data
793 * @num: Size of input s/g array
794 * @size: Number of bytes to read
795 * @flags: Message flags (MSG_DONTWAIT, etc...)
796 *
797 * On return the msg structure contains the scatter/gather array passed in the
798 * vec argument. The array is modified so that it consists of the unfilled
799 * portion of the original array.
800 *
801 * The returned value is the total number of bytes received, or an error.
802 */
803 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
804 struct kvec *vec, size_t num, size_t size, int flags)
805 {
806 mm_segment_t oldfs = get_fs();
807 int result;
808
809 set_fs(KERNEL_DS);
810 /*
811 * the following is safe, since for compiler definitions of kvec and
812 * iovec are identical, yielding the same in-core layout and alignment
813 */
814 iov_iter_init(&msg->msg_iter, READ, (struct iovec *)vec, num, size);
815 result = sock_recvmsg(sock, msg, size, flags);
816 set_fs(oldfs);
817 return result;
818 }
819 EXPORT_SYMBOL(kernel_recvmsg);
820
821 static ssize_t sock_sendpage(struct file *file, struct page *page,
822 int offset, size_t size, loff_t *ppos, int more)
823 {
824 struct socket *sock;
825 int flags;
826
827 sock = file->private_data;
828
829 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
830 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
831 flags |= more;
832
833 return kernel_sendpage(sock, page, offset, size, flags);
834 }
835
836 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
837 struct pipe_inode_info *pipe, size_t len,
838 unsigned int flags)
839 {
840 struct socket *sock = file->private_data;
841
842 if (unlikely(!sock->ops->splice_read))
843 return -EINVAL;
844
845 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
846 }
847
848 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
849 {
850 struct file *file = iocb->ki_filp;
851 struct socket *sock = file->private_data;
852 struct msghdr msg = {.msg_iter = *to};
853 ssize_t res;
854
855 if (file->f_flags & O_NONBLOCK)
856 msg.msg_flags = MSG_DONTWAIT;
857
858 if (iocb->ki_pos != 0)
859 return -ESPIPE;
860
861 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */
862 return 0;
863
864 res = __sock_recvmsg(iocb, sock, &msg,
865 iocb->ki_nbytes, msg.msg_flags);
866 *to = msg.msg_iter;
867 return res;
868 }
869
870 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
871 {
872 struct file *file = iocb->ki_filp;
873 struct socket *sock = file->private_data;
874 struct msghdr msg = {.msg_iter = *from};
875 ssize_t res;
876
877 if (iocb->ki_pos != 0)
878 return -ESPIPE;
879
880 if (file->f_flags & O_NONBLOCK)
881 msg.msg_flags = MSG_DONTWAIT;
882
883 if (sock->type == SOCK_SEQPACKET)
884 msg.msg_flags |= MSG_EOR;
885
886 res = __sock_sendmsg(iocb, sock, &msg, iocb->ki_nbytes);
887 *from = msg.msg_iter;
888 return res;
889 }
890
891 /*
892 * Atomic setting of ioctl hooks to avoid race
893 * with module unload.
894 */
895
896 static DEFINE_MUTEX(br_ioctl_mutex);
897 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
898
899 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
900 {
901 mutex_lock(&br_ioctl_mutex);
902 br_ioctl_hook = hook;
903 mutex_unlock(&br_ioctl_mutex);
904 }
905 EXPORT_SYMBOL(brioctl_set);
906
907 static DEFINE_MUTEX(vlan_ioctl_mutex);
908 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
909
910 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
911 {
912 mutex_lock(&vlan_ioctl_mutex);
913 vlan_ioctl_hook = hook;
914 mutex_unlock(&vlan_ioctl_mutex);
915 }
916 EXPORT_SYMBOL(vlan_ioctl_set);
917
918 static DEFINE_MUTEX(dlci_ioctl_mutex);
919 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
920
921 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
922 {
923 mutex_lock(&dlci_ioctl_mutex);
924 dlci_ioctl_hook = hook;
925 mutex_unlock(&dlci_ioctl_mutex);
926 }
927 EXPORT_SYMBOL(dlci_ioctl_set);
928
929 static long sock_do_ioctl(struct net *net, struct socket *sock,
930 unsigned int cmd, unsigned long arg)
931 {
932 int err;
933 void __user *argp = (void __user *)arg;
934
935 err = sock->ops->ioctl(sock, cmd, arg);
936
937 /*
938 * If this ioctl is unknown try to hand it down
939 * to the NIC driver.
940 */
941 if (err == -ENOIOCTLCMD)
942 err = dev_ioctl(net, cmd, argp);
943
944 return err;
945 }
946
947 /*
948 * With an ioctl, arg may well be a user mode pointer, but we don't know
949 * what to do with it - that's up to the protocol still.
950 */
951
952 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
953 {
954 struct socket *sock;
955 struct sock *sk;
956 void __user *argp = (void __user *)arg;
957 int pid, err;
958 struct net *net;
959
960 sock = file->private_data;
961 sk = sock->sk;
962 net = sock_net(sk);
963 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
964 err = dev_ioctl(net, cmd, argp);
965 } else
966 #ifdef CONFIG_WEXT_CORE
967 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
968 err = dev_ioctl(net, cmd, argp);
969 } else
970 #endif
971 switch (cmd) {
972 case FIOSETOWN:
973 case SIOCSPGRP:
974 err = -EFAULT;
975 if (get_user(pid, (int __user *)argp))
976 break;
977 f_setown(sock->file, pid, 1);
978 err = 0;
979 break;
980 case FIOGETOWN:
981 case SIOCGPGRP:
982 err = put_user(f_getown(sock->file),
983 (int __user *)argp);
984 break;
985 case SIOCGIFBR:
986 case SIOCSIFBR:
987 case SIOCBRADDBR:
988 case SIOCBRDELBR:
989 err = -ENOPKG;
990 if (!br_ioctl_hook)
991 request_module("bridge");
992
993 mutex_lock(&br_ioctl_mutex);
994 if (br_ioctl_hook)
995 err = br_ioctl_hook(net, cmd, argp);
996 mutex_unlock(&br_ioctl_mutex);
997 break;
998 case SIOCGIFVLAN:
999 case SIOCSIFVLAN:
1000 err = -ENOPKG;
1001 if (!vlan_ioctl_hook)
1002 request_module("8021q");
1003
1004 mutex_lock(&vlan_ioctl_mutex);
1005 if (vlan_ioctl_hook)
1006 err = vlan_ioctl_hook(net, argp);
1007 mutex_unlock(&vlan_ioctl_mutex);
1008 break;
1009 case SIOCADDDLCI:
1010 case SIOCDELDLCI:
1011 err = -ENOPKG;
1012 if (!dlci_ioctl_hook)
1013 request_module("dlci");
1014
1015 mutex_lock(&dlci_ioctl_mutex);
1016 if (dlci_ioctl_hook)
1017 err = dlci_ioctl_hook(cmd, argp);
1018 mutex_unlock(&dlci_ioctl_mutex);
1019 break;
1020 default:
1021 err = sock_do_ioctl(net, sock, cmd, arg);
1022 break;
1023 }
1024 return err;
1025 }
1026
1027 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1028 {
1029 int err;
1030 struct socket *sock = NULL;
1031
1032 err = security_socket_create(family, type, protocol, 1);
1033 if (err)
1034 goto out;
1035
1036 sock = sock_alloc();
1037 if (!sock) {
1038 err = -ENOMEM;
1039 goto out;
1040 }
1041
1042 sock->type = type;
1043 err = security_socket_post_create(sock, family, type, protocol, 1);
1044 if (err)
1045 goto out_release;
1046
1047 out:
1048 *res = sock;
1049 return err;
1050 out_release:
1051 sock_release(sock);
1052 sock = NULL;
1053 goto out;
1054 }
1055 EXPORT_SYMBOL(sock_create_lite);
1056
1057 /* No kernel lock held - perfect */
1058 static unsigned int sock_poll(struct file *file, poll_table *wait)
1059 {
1060 unsigned int busy_flag = 0;
1061 struct socket *sock;
1062
1063 /*
1064 * We can't return errors to poll, so it's either yes or no.
1065 */
1066 sock = file->private_data;
1067
1068 if (sk_can_busy_loop(sock->sk)) {
1069 /* this socket can poll_ll so tell the system call */
1070 busy_flag = POLL_BUSY_LOOP;
1071
1072 /* once, only if requested by syscall */
1073 if (wait && (wait->_key & POLL_BUSY_LOOP))
1074 sk_busy_loop(sock->sk, 1);
1075 }
1076
1077 return busy_flag | sock->ops->poll(file, sock, wait);
1078 }
1079
1080 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1081 {
1082 struct socket *sock = file->private_data;
1083
1084 return sock->ops->mmap(file, sock, vma);
1085 }
1086
1087 static int sock_close(struct inode *inode, struct file *filp)
1088 {
1089 sock_release(SOCKET_I(inode));
1090 return 0;
1091 }
1092
1093 /*
1094 * Update the socket async list
1095 *
1096 * Fasync_list locking strategy.
1097 *
1098 * 1. fasync_list is modified only under process context socket lock
1099 * i.e. under semaphore.
1100 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1101 * or under socket lock
1102 */
1103
1104 static int sock_fasync(int fd, struct file *filp, int on)
1105 {
1106 struct socket *sock = filp->private_data;
1107 struct sock *sk = sock->sk;
1108 struct socket_wq *wq;
1109
1110 if (sk == NULL)
1111 return -EINVAL;
1112
1113 lock_sock(sk);
1114 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1115 fasync_helper(fd, filp, on, &wq->fasync_list);
1116
1117 if (!wq->fasync_list)
1118 sock_reset_flag(sk, SOCK_FASYNC);
1119 else
1120 sock_set_flag(sk, SOCK_FASYNC);
1121
1122 release_sock(sk);
1123 return 0;
1124 }
1125
1126 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1127
1128 int sock_wake_async(struct socket *sock, int how, int band)
1129 {
1130 struct socket_wq *wq;
1131
1132 if (!sock)
1133 return -1;
1134 rcu_read_lock();
1135 wq = rcu_dereference(sock->wq);
1136 if (!wq || !wq->fasync_list) {
1137 rcu_read_unlock();
1138 return -1;
1139 }
1140 switch (how) {
1141 case SOCK_WAKE_WAITD:
1142 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1143 break;
1144 goto call_kill;
1145 case SOCK_WAKE_SPACE:
1146 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1147 break;
1148 /* fall through */
1149 case SOCK_WAKE_IO:
1150 call_kill:
1151 kill_fasync(&wq->fasync_list, SIGIO, band);
1152 break;
1153 case SOCK_WAKE_URG:
1154 kill_fasync(&wq->fasync_list, SIGURG, band);
1155 }
1156 rcu_read_unlock();
1157 return 0;
1158 }
1159 EXPORT_SYMBOL(sock_wake_async);
1160
1161 int __sock_create(struct net *net, int family, int type, int protocol,
1162 struct socket **res, int kern)
1163 {
1164 int err;
1165 struct socket *sock;
1166 const struct net_proto_family *pf;
1167
1168 /*
1169 * Check protocol is in range
1170 */
1171 if (family < 0 || family >= NPROTO)
1172 return -EAFNOSUPPORT;
1173 if (type < 0 || type >= SOCK_MAX)
1174 return -EINVAL;
1175
1176 /* Compatibility.
1177
1178 This uglymoron is moved from INET layer to here to avoid
1179 deadlock in module load.
1180 */
1181 if (family == PF_INET && type == SOCK_PACKET) {
1182 static int warned;
1183 if (!warned) {
1184 warned = 1;
1185 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1186 current->comm);
1187 }
1188 family = PF_PACKET;
1189 }
1190
1191 err = security_socket_create(family, type, protocol, kern);
1192 if (err)
1193 return err;
1194
1195 /*
1196 * Allocate the socket and allow the family to set things up. if
1197 * the protocol is 0, the family is instructed to select an appropriate
1198 * default.
1199 */
1200 sock = sock_alloc();
1201 if (!sock) {
1202 net_warn_ratelimited("socket: no more sockets\n");
1203 return -ENFILE; /* Not exactly a match, but its the
1204 closest posix thing */
1205 }
1206
1207 sock->type = type;
1208
1209 #ifdef CONFIG_MODULES
1210 /* Attempt to load a protocol module if the find failed.
1211 *
1212 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1213 * requested real, full-featured networking support upon configuration.
1214 * Otherwise module support will break!
1215 */
1216 if (rcu_access_pointer(net_families[family]) == NULL)
1217 request_module("net-pf-%d", family);
1218 #endif
1219
1220 rcu_read_lock();
1221 pf = rcu_dereference(net_families[family]);
1222 err = -EAFNOSUPPORT;
1223 if (!pf)
1224 goto out_release;
1225
1226 /*
1227 * We will call the ->create function, that possibly is in a loadable
1228 * module, so we have to bump that loadable module refcnt first.
1229 */
1230 if (!try_module_get(pf->owner))
1231 goto out_release;
1232
1233 /* Now protected by module ref count */
1234 rcu_read_unlock();
1235
1236 err = pf->create(net, sock, protocol, kern);
1237 if (err < 0)
1238 goto out_module_put;
1239
1240 /*
1241 * Now to bump the refcnt of the [loadable] module that owns this
1242 * socket at sock_release time we decrement its refcnt.
1243 */
1244 if (!try_module_get(sock->ops->owner))
1245 goto out_module_busy;
1246
1247 /*
1248 * Now that we're done with the ->create function, the [loadable]
1249 * module can have its refcnt decremented
1250 */
1251 module_put(pf->owner);
1252 err = security_socket_post_create(sock, family, type, protocol, kern);
1253 if (err)
1254 goto out_sock_release;
1255 *res = sock;
1256
1257 return 0;
1258
1259 out_module_busy:
1260 err = -EAFNOSUPPORT;
1261 out_module_put:
1262 sock->ops = NULL;
1263 module_put(pf->owner);
1264 out_sock_release:
1265 sock_release(sock);
1266 return err;
1267
1268 out_release:
1269 rcu_read_unlock();
1270 goto out_sock_release;
1271 }
1272 EXPORT_SYMBOL(__sock_create);
1273
1274 int sock_create(int family, int type, int protocol, struct socket **res)
1275 {
1276 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1277 }
1278 EXPORT_SYMBOL(sock_create);
1279
1280 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1281 {
1282 return __sock_create(&init_net, family, type, protocol, res, 1);
1283 }
1284 EXPORT_SYMBOL(sock_create_kern);
1285
1286 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1287 {
1288 int retval;
1289 struct socket *sock;
1290 int flags;
1291
1292 /* Check the SOCK_* constants for consistency. */
1293 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1294 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1295 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1296 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1297
1298 flags = type & ~SOCK_TYPE_MASK;
1299 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1300 return -EINVAL;
1301 type &= SOCK_TYPE_MASK;
1302
1303 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1304 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1305
1306 retval = sock_create(family, type, protocol, &sock);
1307 if (retval < 0)
1308 goto out;
1309
1310 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1311 if (retval < 0)
1312 goto out_release;
1313
1314 out:
1315 /* It may be already another descriptor 8) Not kernel problem. */
1316 return retval;
1317
1318 out_release:
1319 sock_release(sock);
1320 return retval;
1321 }
1322
1323 /*
1324 * Create a pair of connected sockets.
1325 */
1326
1327 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1328 int __user *, usockvec)
1329 {
1330 struct socket *sock1, *sock2;
1331 int fd1, fd2, err;
1332 struct file *newfile1, *newfile2;
1333 int flags;
1334
1335 flags = type & ~SOCK_TYPE_MASK;
1336 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1337 return -EINVAL;
1338 type &= SOCK_TYPE_MASK;
1339
1340 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1341 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1342
1343 /*
1344 * Obtain the first socket and check if the underlying protocol
1345 * supports the socketpair call.
1346 */
1347
1348 err = sock_create(family, type, protocol, &sock1);
1349 if (err < 0)
1350 goto out;
1351
1352 err = sock_create(family, type, protocol, &sock2);
1353 if (err < 0)
1354 goto out_release_1;
1355
1356 err = sock1->ops->socketpair(sock1, sock2);
1357 if (err < 0)
1358 goto out_release_both;
1359
1360 fd1 = get_unused_fd_flags(flags);
1361 if (unlikely(fd1 < 0)) {
1362 err = fd1;
1363 goto out_release_both;
1364 }
1365
1366 fd2 = get_unused_fd_flags(flags);
1367 if (unlikely(fd2 < 0)) {
1368 err = fd2;
1369 goto out_put_unused_1;
1370 }
1371
1372 newfile1 = sock_alloc_file(sock1, flags, NULL);
1373 if (unlikely(IS_ERR(newfile1))) {
1374 err = PTR_ERR(newfile1);
1375 goto out_put_unused_both;
1376 }
1377
1378 newfile2 = sock_alloc_file(sock2, flags, NULL);
1379 if (IS_ERR(newfile2)) {
1380 err = PTR_ERR(newfile2);
1381 goto out_fput_1;
1382 }
1383
1384 err = put_user(fd1, &usockvec[0]);
1385 if (err)
1386 goto out_fput_both;
1387
1388 err = put_user(fd2, &usockvec[1]);
1389 if (err)
1390 goto out_fput_both;
1391
1392 audit_fd_pair(fd1, fd2);
1393
1394 fd_install(fd1, newfile1);
1395 fd_install(fd2, newfile2);
1396 /* fd1 and fd2 may be already another descriptors.
1397 * Not kernel problem.
1398 */
1399
1400 return 0;
1401
1402 out_fput_both:
1403 fput(newfile2);
1404 fput(newfile1);
1405 put_unused_fd(fd2);
1406 put_unused_fd(fd1);
1407 goto out;
1408
1409 out_fput_1:
1410 fput(newfile1);
1411 put_unused_fd(fd2);
1412 put_unused_fd(fd1);
1413 sock_release(sock2);
1414 goto out;
1415
1416 out_put_unused_both:
1417 put_unused_fd(fd2);
1418 out_put_unused_1:
1419 put_unused_fd(fd1);
1420 out_release_both:
1421 sock_release(sock2);
1422 out_release_1:
1423 sock_release(sock1);
1424 out:
1425 return err;
1426 }
1427
1428 /*
1429 * Bind a name to a socket. Nothing much to do here since it's
1430 * the protocol's responsibility to handle the local address.
1431 *
1432 * We move the socket address to kernel space before we call
1433 * the protocol layer (having also checked the address is ok).
1434 */
1435
1436 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1437 {
1438 struct socket *sock;
1439 struct sockaddr_storage address;
1440 int err, fput_needed;
1441
1442 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1443 if (sock) {
1444 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1445 if (err >= 0) {
1446 err = security_socket_bind(sock,
1447 (struct sockaddr *)&address,
1448 addrlen);
1449 if (!err)
1450 err = sock->ops->bind(sock,
1451 (struct sockaddr *)
1452 &address, addrlen);
1453 }
1454 fput_light(sock->file, fput_needed);
1455 }
1456 return err;
1457 }
1458
1459 /*
1460 * Perform a listen. Basically, we allow the protocol to do anything
1461 * necessary for a listen, and if that works, we mark the socket as
1462 * ready for listening.
1463 */
1464
1465 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1466 {
1467 struct socket *sock;
1468 int err, fput_needed;
1469 int somaxconn;
1470
1471 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1472 if (sock) {
1473 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1474 if ((unsigned int)backlog > somaxconn)
1475 backlog = somaxconn;
1476
1477 err = security_socket_listen(sock, backlog);
1478 if (!err)
1479 err = sock->ops->listen(sock, backlog);
1480
1481 fput_light(sock->file, fput_needed);
1482 }
1483 return err;
1484 }
1485
1486 /*
1487 * For accept, we attempt to create a new socket, set up the link
1488 * with the client, wake up the client, then return the new
1489 * connected fd. We collect the address of the connector in kernel
1490 * space and move it to user at the very end. This is unclean because
1491 * we open the socket then return an error.
1492 *
1493 * 1003.1g adds the ability to recvmsg() to query connection pending
1494 * status to recvmsg. We need to add that support in a way thats
1495 * clean when we restucture accept also.
1496 */
1497
1498 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1499 int __user *, upeer_addrlen, int, flags)
1500 {
1501 struct socket *sock, *newsock;
1502 struct file *newfile;
1503 int err, len, newfd, fput_needed;
1504 struct sockaddr_storage address;
1505
1506 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1507 return -EINVAL;
1508
1509 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1510 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1511
1512 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1513 if (!sock)
1514 goto out;
1515
1516 err = -ENFILE;
1517 newsock = sock_alloc();
1518 if (!newsock)
1519 goto out_put;
1520
1521 newsock->type = sock->type;
1522 newsock->ops = sock->ops;
1523
1524 /*
1525 * We don't need try_module_get here, as the listening socket (sock)
1526 * has the protocol module (sock->ops->owner) held.
1527 */
1528 __module_get(newsock->ops->owner);
1529
1530 newfd = get_unused_fd_flags(flags);
1531 if (unlikely(newfd < 0)) {
1532 err = newfd;
1533 sock_release(newsock);
1534 goto out_put;
1535 }
1536 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1537 if (unlikely(IS_ERR(newfile))) {
1538 err = PTR_ERR(newfile);
1539 put_unused_fd(newfd);
1540 sock_release(newsock);
1541 goto out_put;
1542 }
1543
1544 err = security_socket_accept(sock, newsock);
1545 if (err)
1546 goto out_fd;
1547
1548 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1549 if (err < 0)
1550 goto out_fd;
1551
1552 if (upeer_sockaddr) {
1553 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1554 &len, 2) < 0) {
1555 err = -ECONNABORTED;
1556 goto out_fd;
1557 }
1558 err = move_addr_to_user(&address,
1559 len, upeer_sockaddr, upeer_addrlen);
1560 if (err < 0)
1561 goto out_fd;
1562 }
1563
1564 /* File flags are not inherited via accept() unlike another OSes. */
1565
1566 fd_install(newfd, newfile);
1567 err = newfd;
1568
1569 out_put:
1570 fput_light(sock->file, fput_needed);
1571 out:
1572 return err;
1573 out_fd:
1574 fput(newfile);
1575 put_unused_fd(newfd);
1576 goto out_put;
1577 }
1578
1579 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1580 int __user *, upeer_addrlen)
1581 {
1582 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1583 }
1584
1585 /*
1586 * Attempt to connect to a socket with the server address. The address
1587 * is in user space so we verify it is OK and move it to kernel space.
1588 *
1589 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1590 * break bindings
1591 *
1592 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1593 * other SEQPACKET protocols that take time to connect() as it doesn't
1594 * include the -EINPROGRESS status for such sockets.
1595 */
1596
1597 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1598 int, addrlen)
1599 {
1600 struct socket *sock;
1601 struct sockaddr_storage address;
1602 int err, fput_needed;
1603
1604 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1605 if (!sock)
1606 goto out;
1607 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1608 if (err < 0)
1609 goto out_put;
1610
1611 err =
1612 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1613 if (err)
1614 goto out_put;
1615
1616 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1617 sock->file->f_flags);
1618 out_put:
1619 fput_light(sock->file, fput_needed);
1620 out:
1621 return err;
1622 }
1623
1624 /*
1625 * Get the local address ('name') of a socket object. Move the obtained
1626 * name to user space.
1627 */
1628
1629 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1630 int __user *, usockaddr_len)
1631 {
1632 struct socket *sock;
1633 struct sockaddr_storage address;
1634 int len, err, fput_needed;
1635
1636 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1637 if (!sock)
1638 goto out;
1639
1640 err = security_socket_getsockname(sock);
1641 if (err)
1642 goto out_put;
1643
1644 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1645 if (err)
1646 goto out_put;
1647 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1648
1649 out_put:
1650 fput_light(sock->file, fput_needed);
1651 out:
1652 return err;
1653 }
1654
1655 /*
1656 * Get the remote address ('name') of a socket object. Move the obtained
1657 * name to user space.
1658 */
1659
1660 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1661 int __user *, usockaddr_len)
1662 {
1663 struct socket *sock;
1664 struct sockaddr_storage address;
1665 int len, err, fput_needed;
1666
1667 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1668 if (sock != NULL) {
1669 err = security_socket_getpeername(sock);
1670 if (err) {
1671 fput_light(sock->file, fput_needed);
1672 return err;
1673 }
1674
1675 err =
1676 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1677 1);
1678 if (!err)
1679 err = move_addr_to_user(&address, len, usockaddr,
1680 usockaddr_len);
1681 fput_light(sock->file, fput_needed);
1682 }
1683 return err;
1684 }
1685
1686 /*
1687 * Send a datagram to a given address. We move the address into kernel
1688 * space and check the user space data area is readable before invoking
1689 * the protocol.
1690 */
1691
1692 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1693 unsigned int, flags, struct sockaddr __user *, addr,
1694 int, addr_len)
1695 {
1696 struct socket *sock;
1697 struct sockaddr_storage address;
1698 int err;
1699 struct msghdr msg;
1700 struct iovec iov;
1701 int fput_needed;
1702
1703 if (len > INT_MAX)
1704 len = INT_MAX;
1705 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1706 if (!sock)
1707 goto out;
1708
1709 iov.iov_base = buff;
1710 iov.iov_len = len;
1711 msg.msg_name = NULL;
1712 iov_iter_init(&msg.msg_iter, WRITE, &iov, 1, len);
1713 msg.msg_control = NULL;
1714 msg.msg_controllen = 0;
1715 msg.msg_namelen = 0;
1716 if (addr) {
1717 err = move_addr_to_kernel(addr, addr_len, &address);
1718 if (err < 0)
1719 goto out_put;
1720 msg.msg_name = (struct sockaddr *)&address;
1721 msg.msg_namelen = addr_len;
1722 }
1723 if (sock->file->f_flags & O_NONBLOCK)
1724 flags |= MSG_DONTWAIT;
1725 msg.msg_flags = flags;
1726 err = sock_sendmsg(sock, &msg, len);
1727
1728 out_put:
1729 fput_light(sock->file, fput_needed);
1730 out:
1731 return err;
1732 }
1733
1734 /*
1735 * Send a datagram down a socket.
1736 */
1737
1738 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1739 unsigned int, flags)
1740 {
1741 return sys_sendto(fd, buff, len, flags, NULL, 0);
1742 }
1743
1744 /*
1745 * Receive a frame from the socket and optionally record the address of the
1746 * sender. We verify the buffers are writable and if needed move the
1747 * sender address from kernel to user space.
1748 */
1749
1750 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1751 unsigned int, flags, struct sockaddr __user *, addr,
1752 int __user *, addr_len)
1753 {
1754 struct socket *sock;
1755 struct iovec iov;
1756 struct msghdr msg;
1757 struct sockaddr_storage address;
1758 int err, err2;
1759 int fput_needed;
1760
1761 if (size > INT_MAX)
1762 size = INT_MAX;
1763 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1764 if (!sock)
1765 goto out;
1766
1767 msg.msg_control = NULL;
1768 msg.msg_controllen = 0;
1769 iov.iov_len = size;
1770 iov.iov_base = ubuf;
1771 iov_iter_init(&msg.msg_iter, READ, &iov, 1, size);
1772 /* Save some cycles and don't copy the address if not needed */
1773 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1774 /* We assume all kernel code knows the size of sockaddr_storage */
1775 msg.msg_namelen = 0;
1776 if (sock->file->f_flags & O_NONBLOCK)
1777 flags |= MSG_DONTWAIT;
1778 err = sock_recvmsg(sock, &msg, size, flags);
1779
1780 if (err >= 0 && addr != NULL) {
1781 err2 = move_addr_to_user(&address,
1782 msg.msg_namelen, addr, addr_len);
1783 if (err2 < 0)
1784 err = err2;
1785 }
1786
1787 fput_light(sock->file, fput_needed);
1788 out:
1789 return err;
1790 }
1791
1792 /*
1793 * Receive a datagram from a socket.
1794 */
1795
1796 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1797 unsigned int, flags)
1798 {
1799 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1800 }
1801
1802 /*
1803 * Set a socket option. Because we don't know the option lengths we have
1804 * to pass the user mode parameter for the protocols to sort out.
1805 */
1806
1807 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1808 char __user *, optval, int, optlen)
1809 {
1810 int err, fput_needed;
1811 struct socket *sock;
1812
1813 if (optlen < 0)
1814 return -EINVAL;
1815
1816 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1817 if (sock != NULL) {
1818 err = security_socket_setsockopt(sock, level, optname);
1819 if (err)
1820 goto out_put;
1821
1822 if (level == SOL_SOCKET)
1823 err =
1824 sock_setsockopt(sock, level, optname, optval,
1825 optlen);
1826 else
1827 err =
1828 sock->ops->setsockopt(sock, level, optname, optval,
1829 optlen);
1830 out_put:
1831 fput_light(sock->file, fput_needed);
1832 }
1833 return err;
1834 }
1835
1836 /*
1837 * Get a socket option. Because we don't know the option lengths we have
1838 * to pass a user mode parameter for the protocols to sort out.
1839 */
1840
1841 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1842 char __user *, optval, int __user *, optlen)
1843 {
1844 int err, fput_needed;
1845 struct socket *sock;
1846
1847 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1848 if (sock != NULL) {
1849 err = security_socket_getsockopt(sock, level, optname);
1850 if (err)
1851 goto out_put;
1852
1853 if (level == SOL_SOCKET)
1854 err =
1855 sock_getsockopt(sock, level, optname, optval,
1856 optlen);
1857 else
1858 err =
1859 sock->ops->getsockopt(sock, level, optname, optval,
1860 optlen);
1861 out_put:
1862 fput_light(sock->file, fput_needed);
1863 }
1864 return err;
1865 }
1866
1867 /*
1868 * Shutdown a socket.
1869 */
1870
1871 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1872 {
1873 int err, fput_needed;
1874 struct socket *sock;
1875
1876 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1877 if (sock != NULL) {
1878 err = security_socket_shutdown(sock, how);
1879 if (!err)
1880 err = sock->ops->shutdown(sock, how);
1881 fput_light(sock->file, fput_needed);
1882 }
1883 return err;
1884 }
1885
1886 /* A couple of helpful macros for getting the address of the 32/64 bit
1887 * fields which are the same type (int / unsigned) on our platforms.
1888 */
1889 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1890 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1891 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1892
1893 struct used_address {
1894 struct sockaddr_storage name;
1895 unsigned int name_len;
1896 };
1897
1898 static ssize_t copy_msghdr_from_user(struct msghdr *kmsg,
1899 struct user_msghdr __user *umsg,
1900 struct sockaddr __user **save_addr,
1901 struct iovec **iov)
1902 {
1903 struct sockaddr __user *uaddr;
1904 struct iovec __user *uiov;
1905 size_t nr_segs;
1906 ssize_t err;
1907
1908 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1909 __get_user(uaddr, &umsg->msg_name) ||
1910 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1911 __get_user(uiov, &umsg->msg_iov) ||
1912 __get_user(nr_segs, &umsg->msg_iovlen) ||
1913 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1914 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1915 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1916 return -EFAULT;
1917
1918 if (!uaddr)
1919 kmsg->msg_namelen = 0;
1920
1921 if (kmsg->msg_namelen < 0)
1922 return -EINVAL;
1923
1924 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1925 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1926
1927 if (save_addr)
1928 *save_addr = uaddr;
1929
1930 if (uaddr && kmsg->msg_namelen) {
1931 if (!save_addr) {
1932 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1933 kmsg->msg_name);
1934 if (err < 0)
1935 return err;
1936 }
1937 } else {
1938 kmsg->msg_name = NULL;
1939 kmsg->msg_namelen = 0;
1940 }
1941
1942 if (nr_segs > UIO_MAXIOV)
1943 return -EMSGSIZE;
1944
1945 err = rw_copy_check_uvector(save_addr ? READ : WRITE,
1946 uiov, nr_segs,
1947 UIO_FASTIOV, *iov, iov);
1948 if (err >= 0)
1949 iov_iter_init(&kmsg->msg_iter, save_addr ? READ : WRITE,
1950 *iov, nr_segs, err);
1951 return err;
1952 }
1953
1954 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1955 struct msghdr *msg_sys, unsigned int flags,
1956 struct used_address *used_address)
1957 {
1958 struct compat_msghdr __user *msg_compat =
1959 (struct compat_msghdr __user *)msg;
1960 struct sockaddr_storage address;
1961 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1962 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1963 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1964 /* 20 is size of ipv6_pktinfo */
1965 unsigned char *ctl_buf = ctl;
1966 int ctl_len, total_len;
1967 ssize_t err;
1968
1969 msg_sys->msg_name = &address;
1970
1971 if (MSG_CMSG_COMPAT & flags)
1972 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1973 else
1974 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1975 if (err < 0)
1976 goto out_freeiov;
1977 total_len = err;
1978
1979 err = -ENOBUFS;
1980
1981 if (msg_sys->msg_controllen > INT_MAX)
1982 goto out_freeiov;
1983 ctl_len = msg_sys->msg_controllen;
1984 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1985 err =
1986 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1987 sizeof(ctl));
1988 if (err)
1989 goto out_freeiov;
1990 ctl_buf = msg_sys->msg_control;
1991 ctl_len = msg_sys->msg_controllen;
1992 } else if (ctl_len) {
1993 if (ctl_len > sizeof(ctl)) {
1994 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1995 if (ctl_buf == NULL)
1996 goto out_freeiov;
1997 }
1998 err = -EFAULT;
1999 /*
2000 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2001 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2002 * checking falls down on this.
2003 */
2004 if (copy_from_user(ctl_buf,
2005 (void __user __force *)msg_sys->msg_control,
2006 ctl_len))
2007 goto out_freectl;
2008 msg_sys->msg_control = ctl_buf;
2009 }
2010 msg_sys->msg_flags = flags;
2011
2012 if (sock->file->f_flags & O_NONBLOCK)
2013 msg_sys->msg_flags |= MSG_DONTWAIT;
2014 /*
2015 * If this is sendmmsg() and current destination address is same as
2016 * previously succeeded address, omit asking LSM's decision.
2017 * used_address->name_len is initialized to UINT_MAX so that the first
2018 * destination address never matches.
2019 */
2020 if (used_address && msg_sys->msg_name &&
2021 used_address->name_len == msg_sys->msg_namelen &&
2022 !memcmp(&used_address->name, msg_sys->msg_name,
2023 used_address->name_len)) {
2024 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2025 goto out_freectl;
2026 }
2027 err = sock_sendmsg(sock, msg_sys, total_len);
2028 /*
2029 * If this is sendmmsg() and sending to current destination address was
2030 * successful, remember it.
2031 */
2032 if (used_address && err >= 0) {
2033 used_address->name_len = msg_sys->msg_namelen;
2034 if (msg_sys->msg_name)
2035 memcpy(&used_address->name, msg_sys->msg_name,
2036 used_address->name_len);
2037 }
2038
2039 out_freectl:
2040 if (ctl_buf != ctl)
2041 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2042 out_freeiov:
2043 if (iov != iovstack)
2044 kfree(iov);
2045 return err;
2046 }
2047
2048 /*
2049 * BSD sendmsg interface
2050 */
2051
2052 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2053 {
2054 int fput_needed, err;
2055 struct msghdr msg_sys;
2056 struct socket *sock;
2057
2058 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2059 if (!sock)
2060 goto out;
2061
2062 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2063
2064 fput_light(sock->file, fput_needed);
2065 out:
2066 return err;
2067 }
2068
2069 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2070 {
2071 if (flags & MSG_CMSG_COMPAT)
2072 return -EINVAL;
2073 return __sys_sendmsg(fd, msg, flags);
2074 }
2075
2076 /*
2077 * Linux sendmmsg interface
2078 */
2079
2080 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2081 unsigned int flags)
2082 {
2083 int fput_needed, err, datagrams;
2084 struct socket *sock;
2085 struct mmsghdr __user *entry;
2086 struct compat_mmsghdr __user *compat_entry;
2087 struct msghdr msg_sys;
2088 struct used_address used_address;
2089
2090 if (vlen > UIO_MAXIOV)
2091 vlen = UIO_MAXIOV;
2092
2093 datagrams = 0;
2094
2095 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2096 if (!sock)
2097 return err;
2098
2099 used_address.name_len = UINT_MAX;
2100 entry = mmsg;
2101 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2102 err = 0;
2103
2104 while (datagrams < vlen) {
2105 if (MSG_CMSG_COMPAT & flags) {
2106 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2107 &msg_sys, flags, &used_address);
2108 if (err < 0)
2109 break;
2110 err = __put_user(err, &compat_entry->msg_len);
2111 ++compat_entry;
2112 } else {
2113 err = ___sys_sendmsg(sock,
2114 (struct user_msghdr __user *)entry,
2115 &msg_sys, flags, &used_address);
2116 if (err < 0)
2117 break;
2118 err = put_user(err, &entry->msg_len);
2119 ++entry;
2120 }
2121
2122 if (err)
2123 break;
2124 ++datagrams;
2125 }
2126
2127 fput_light(sock->file, fput_needed);
2128
2129 /* We only return an error if no datagrams were able to be sent */
2130 if (datagrams != 0)
2131 return datagrams;
2132
2133 return err;
2134 }
2135
2136 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2137 unsigned int, vlen, unsigned int, flags)
2138 {
2139 if (flags & MSG_CMSG_COMPAT)
2140 return -EINVAL;
2141 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2142 }
2143
2144 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2145 struct msghdr *msg_sys, unsigned int flags, int nosec)
2146 {
2147 struct compat_msghdr __user *msg_compat =
2148 (struct compat_msghdr __user *)msg;
2149 struct iovec iovstack[UIO_FASTIOV];
2150 struct iovec *iov = iovstack;
2151 unsigned long cmsg_ptr;
2152 int total_len, len;
2153 ssize_t err;
2154
2155 /* kernel mode address */
2156 struct sockaddr_storage addr;
2157
2158 /* user mode address pointers */
2159 struct sockaddr __user *uaddr;
2160 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2161
2162 msg_sys->msg_name = &addr;
2163
2164 if (MSG_CMSG_COMPAT & flags)
2165 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2166 else
2167 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2168 if (err < 0)
2169 goto out_freeiov;
2170 total_len = err;
2171
2172 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2173 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2174
2175 /* We assume all kernel code knows the size of sockaddr_storage */
2176 msg_sys->msg_namelen = 0;
2177
2178 if (sock->file->f_flags & O_NONBLOCK)
2179 flags |= MSG_DONTWAIT;
2180 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2181 total_len, flags);
2182 if (err < 0)
2183 goto out_freeiov;
2184 len = err;
2185
2186 if (uaddr != NULL) {
2187 err = move_addr_to_user(&addr,
2188 msg_sys->msg_namelen, uaddr,
2189 uaddr_len);
2190 if (err < 0)
2191 goto out_freeiov;
2192 }
2193 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2194 COMPAT_FLAGS(msg));
2195 if (err)
2196 goto out_freeiov;
2197 if (MSG_CMSG_COMPAT & flags)
2198 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2199 &msg_compat->msg_controllen);
2200 else
2201 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2202 &msg->msg_controllen);
2203 if (err)
2204 goto out_freeiov;
2205 err = len;
2206
2207 out_freeiov:
2208 if (iov != iovstack)
2209 kfree(iov);
2210 return err;
2211 }
2212
2213 /*
2214 * BSD recvmsg interface
2215 */
2216
2217 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2218 {
2219 int fput_needed, err;
2220 struct msghdr msg_sys;
2221 struct socket *sock;
2222
2223 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2224 if (!sock)
2225 goto out;
2226
2227 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2228
2229 fput_light(sock->file, fput_needed);
2230 out:
2231 return err;
2232 }
2233
2234 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2235 unsigned int, flags)
2236 {
2237 if (flags & MSG_CMSG_COMPAT)
2238 return -EINVAL;
2239 return __sys_recvmsg(fd, msg, flags);
2240 }
2241
2242 /*
2243 * Linux recvmmsg interface
2244 */
2245
2246 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2247 unsigned int flags, struct timespec *timeout)
2248 {
2249 int fput_needed, err, datagrams;
2250 struct socket *sock;
2251 struct mmsghdr __user *entry;
2252 struct compat_mmsghdr __user *compat_entry;
2253 struct msghdr msg_sys;
2254 struct timespec end_time;
2255
2256 if (timeout &&
2257 poll_select_set_timeout(&end_time, timeout->tv_sec,
2258 timeout->tv_nsec))
2259 return -EINVAL;
2260
2261 datagrams = 0;
2262
2263 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2264 if (!sock)
2265 return err;
2266
2267 err = sock_error(sock->sk);
2268 if (err)
2269 goto out_put;
2270
2271 entry = mmsg;
2272 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2273
2274 while (datagrams < vlen) {
2275 /*
2276 * No need to ask LSM for more than the first datagram.
2277 */
2278 if (MSG_CMSG_COMPAT & flags) {
2279 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2280 &msg_sys, flags & ~MSG_WAITFORONE,
2281 datagrams);
2282 if (err < 0)
2283 break;
2284 err = __put_user(err, &compat_entry->msg_len);
2285 ++compat_entry;
2286 } else {
2287 err = ___sys_recvmsg(sock,
2288 (struct user_msghdr __user *)entry,
2289 &msg_sys, flags & ~MSG_WAITFORONE,
2290 datagrams);
2291 if (err < 0)
2292 break;
2293 err = put_user(err, &entry->msg_len);
2294 ++entry;
2295 }
2296
2297 if (err)
2298 break;
2299 ++datagrams;
2300
2301 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2302 if (flags & MSG_WAITFORONE)
2303 flags |= MSG_DONTWAIT;
2304
2305 if (timeout) {
2306 ktime_get_ts(timeout);
2307 *timeout = timespec_sub(end_time, *timeout);
2308 if (timeout->tv_sec < 0) {
2309 timeout->tv_sec = timeout->tv_nsec = 0;
2310 break;
2311 }
2312
2313 /* Timeout, return less than vlen datagrams */
2314 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2315 break;
2316 }
2317
2318 /* Out of band data, return right away */
2319 if (msg_sys.msg_flags & MSG_OOB)
2320 break;
2321 }
2322
2323 out_put:
2324 fput_light(sock->file, fput_needed);
2325
2326 if (err == 0)
2327 return datagrams;
2328
2329 if (datagrams != 0) {
2330 /*
2331 * We may return less entries than requested (vlen) if the
2332 * sock is non block and there aren't enough datagrams...
2333 */
2334 if (err != -EAGAIN) {
2335 /*
2336 * ... or if recvmsg returns an error after we
2337 * received some datagrams, where we record the
2338 * error to return on the next call or if the
2339 * app asks about it using getsockopt(SO_ERROR).
2340 */
2341 sock->sk->sk_err = -err;
2342 }
2343
2344 return datagrams;
2345 }
2346
2347 return err;
2348 }
2349
2350 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2351 unsigned int, vlen, unsigned int, flags,
2352 struct timespec __user *, timeout)
2353 {
2354 int datagrams;
2355 struct timespec timeout_sys;
2356
2357 if (flags & MSG_CMSG_COMPAT)
2358 return -EINVAL;
2359
2360 if (!timeout)
2361 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2362
2363 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2364 return -EFAULT;
2365
2366 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2367
2368 if (datagrams > 0 &&
2369 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2370 datagrams = -EFAULT;
2371
2372 return datagrams;
2373 }
2374
2375 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2376 /* Argument list sizes for sys_socketcall */
2377 #define AL(x) ((x) * sizeof(unsigned long))
2378 static const unsigned char nargs[21] = {
2379 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2380 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2381 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2382 AL(4), AL(5), AL(4)
2383 };
2384
2385 #undef AL
2386
2387 /*
2388 * System call vectors.
2389 *
2390 * Argument checking cleaned up. Saved 20% in size.
2391 * This function doesn't need to set the kernel lock because
2392 * it is set by the callees.
2393 */
2394
2395 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2396 {
2397 unsigned long a[AUDITSC_ARGS];
2398 unsigned long a0, a1;
2399 int err;
2400 unsigned int len;
2401
2402 if (call < 1 || call > SYS_SENDMMSG)
2403 return -EINVAL;
2404
2405 len = nargs[call];
2406 if (len > sizeof(a))
2407 return -EINVAL;
2408
2409 /* copy_from_user should be SMP safe. */
2410 if (copy_from_user(a, args, len))
2411 return -EFAULT;
2412
2413 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2414 if (err)
2415 return err;
2416
2417 a0 = a[0];
2418 a1 = a[1];
2419
2420 switch (call) {
2421 case SYS_SOCKET:
2422 err = sys_socket(a0, a1, a[2]);
2423 break;
2424 case SYS_BIND:
2425 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2426 break;
2427 case SYS_CONNECT:
2428 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2429 break;
2430 case SYS_LISTEN:
2431 err = sys_listen(a0, a1);
2432 break;
2433 case SYS_ACCEPT:
2434 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2435 (int __user *)a[2], 0);
2436 break;
2437 case SYS_GETSOCKNAME:
2438 err =
2439 sys_getsockname(a0, (struct sockaddr __user *)a1,
2440 (int __user *)a[2]);
2441 break;
2442 case SYS_GETPEERNAME:
2443 err =
2444 sys_getpeername(a0, (struct sockaddr __user *)a1,
2445 (int __user *)a[2]);
2446 break;
2447 case SYS_SOCKETPAIR:
2448 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2449 break;
2450 case SYS_SEND:
2451 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2452 break;
2453 case SYS_SENDTO:
2454 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2455 (struct sockaddr __user *)a[4], a[5]);
2456 break;
2457 case SYS_RECV:
2458 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2459 break;
2460 case SYS_RECVFROM:
2461 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2462 (struct sockaddr __user *)a[4],
2463 (int __user *)a[5]);
2464 break;
2465 case SYS_SHUTDOWN:
2466 err = sys_shutdown(a0, a1);
2467 break;
2468 case SYS_SETSOCKOPT:
2469 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2470 break;
2471 case SYS_GETSOCKOPT:
2472 err =
2473 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2474 (int __user *)a[4]);
2475 break;
2476 case SYS_SENDMSG:
2477 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2478 break;
2479 case SYS_SENDMMSG:
2480 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2481 break;
2482 case SYS_RECVMSG:
2483 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2484 break;
2485 case SYS_RECVMMSG:
2486 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2487 (struct timespec __user *)a[4]);
2488 break;
2489 case SYS_ACCEPT4:
2490 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2491 (int __user *)a[2], a[3]);
2492 break;
2493 default:
2494 err = -EINVAL;
2495 break;
2496 }
2497 return err;
2498 }
2499
2500 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2501
2502 /**
2503 * sock_register - add a socket protocol handler
2504 * @ops: description of protocol
2505 *
2506 * This function is called by a protocol handler that wants to
2507 * advertise its address family, and have it linked into the
2508 * socket interface. The value ops->family corresponds to the
2509 * socket system call protocol family.
2510 */
2511 int sock_register(const struct net_proto_family *ops)
2512 {
2513 int err;
2514
2515 if (ops->family >= NPROTO) {
2516 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2517 return -ENOBUFS;
2518 }
2519
2520 spin_lock(&net_family_lock);
2521 if (rcu_dereference_protected(net_families[ops->family],
2522 lockdep_is_held(&net_family_lock)))
2523 err = -EEXIST;
2524 else {
2525 rcu_assign_pointer(net_families[ops->family], ops);
2526 err = 0;
2527 }
2528 spin_unlock(&net_family_lock);
2529
2530 pr_info("NET: Registered protocol family %d\n", ops->family);
2531 return err;
2532 }
2533 EXPORT_SYMBOL(sock_register);
2534
2535 /**
2536 * sock_unregister - remove a protocol handler
2537 * @family: protocol family to remove
2538 *
2539 * This function is called by a protocol handler that wants to
2540 * remove its address family, and have it unlinked from the
2541 * new socket creation.
2542 *
2543 * If protocol handler is a module, then it can use module reference
2544 * counts to protect against new references. If protocol handler is not
2545 * a module then it needs to provide its own protection in
2546 * the ops->create routine.
2547 */
2548 void sock_unregister(int family)
2549 {
2550 BUG_ON(family < 0 || family >= NPROTO);
2551
2552 spin_lock(&net_family_lock);
2553 RCU_INIT_POINTER(net_families[family], NULL);
2554 spin_unlock(&net_family_lock);
2555
2556 synchronize_rcu();
2557
2558 pr_info("NET: Unregistered protocol family %d\n", family);
2559 }
2560 EXPORT_SYMBOL(sock_unregister);
2561
2562 static int __init sock_init(void)
2563 {
2564 int err;
2565 /*
2566 * Initialize the network sysctl infrastructure.
2567 */
2568 err = net_sysctl_init();
2569 if (err)
2570 goto out;
2571
2572 /*
2573 * Initialize skbuff SLAB cache
2574 */
2575 skb_init();
2576
2577 /*
2578 * Initialize the protocols module.
2579 */
2580
2581 init_inodecache();
2582
2583 err = register_filesystem(&sock_fs_type);
2584 if (err)
2585 goto out_fs;
2586 sock_mnt = kern_mount(&sock_fs_type);
2587 if (IS_ERR(sock_mnt)) {
2588 err = PTR_ERR(sock_mnt);
2589 goto out_mount;
2590 }
2591
2592 /* The real protocol initialization is performed in later initcalls.
2593 */
2594
2595 #ifdef CONFIG_NETFILTER
2596 err = netfilter_init();
2597 if (err)
2598 goto out;
2599 #endif
2600
2601 ptp_classifier_init();
2602
2603 out:
2604 return err;
2605
2606 out_mount:
2607 unregister_filesystem(&sock_fs_type);
2608 out_fs:
2609 goto out;
2610 }
2611
2612 core_initcall(sock_init); /* early initcall */
2613
2614 #ifdef CONFIG_PROC_FS
2615 void socket_seq_show(struct seq_file *seq)
2616 {
2617 int cpu;
2618 int counter = 0;
2619
2620 for_each_possible_cpu(cpu)
2621 counter += per_cpu(sockets_in_use, cpu);
2622
2623 /* It can be negative, by the way. 8) */
2624 if (counter < 0)
2625 counter = 0;
2626
2627 seq_printf(seq, "sockets: used %d\n", counter);
2628 }
2629 #endif /* CONFIG_PROC_FS */
2630
2631 #ifdef CONFIG_COMPAT
2632 static int do_siocgstamp(struct net *net, struct socket *sock,
2633 unsigned int cmd, void __user *up)
2634 {
2635 mm_segment_t old_fs = get_fs();
2636 struct timeval ktv;
2637 int err;
2638
2639 set_fs(KERNEL_DS);
2640 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2641 set_fs(old_fs);
2642 if (!err)
2643 err = compat_put_timeval(&ktv, up);
2644
2645 return err;
2646 }
2647
2648 static int do_siocgstampns(struct net *net, struct socket *sock,
2649 unsigned int cmd, void __user *up)
2650 {
2651 mm_segment_t old_fs = get_fs();
2652 struct timespec kts;
2653 int err;
2654
2655 set_fs(KERNEL_DS);
2656 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2657 set_fs(old_fs);
2658 if (!err)
2659 err = compat_put_timespec(&kts, up);
2660
2661 return err;
2662 }
2663
2664 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2665 {
2666 struct ifreq __user *uifr;
2667 int err;
2668
2669 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2670 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2671 return -EFAULT;
2672
2673 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2674 if (err)
2675 return err;
2676
2677 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2678 return -EFAULT;
2679
2680 return 0;
2681 }
2682
2683 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2684 {
2685 struct compat_ifconf ifc32;
2686 struct ifconf ifc;
2687 struct ifconf __user *uifc;
2688 struct compat_ifreq __user *ifr32;
2689 struct ifreq __user *ifr;
2690 unsigned int i, j;
2691 int err;
2692
2693 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2694 return -EFAULT;
2695
2696 memset(&ifc, 0, sizeof(ifc));
2697 if (ifc32.ifcbuf == 0) {
2698 ifc32.ifc_len = 0;
2699 ifc.ifc_len = 0;
2700 ifc.ifc_req = NULL;
2701 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2702 } else {
2703 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2704 sizeof(struct ifreq);
2705 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2706 ifc.ifc_len = len;
2707 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2708 ifr32 = compat_ptr(ifc32.ifcbuf);
2709 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2710 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2711 return -EFAULT;
2712 ifr++;
2713 ifr32++;
2714 }
2715 }
2716 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2717 return -EFAULT;
2718
2719 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2720 if (err)
2721 return err;
2722
2723 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2724 return -EFAULT;
2725
2726 ifr = ifc.ifc_req;
2727 ifr32 = compat_ptr(ifc32.ifcbuf);
2728 for (i = 0, j = 0;
2729 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2730 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2731 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2732 return -EFAULT;
2733 ifr32++;
2734 ifr++;
2735 }
2736
2737 if (ifc32.ifcbuf == 0) {
2738 /* Translate from 64-bit structure multiple to
2739 * a 32-bit one.
2740 */
2741 i = ifc.ifc_len;
2742 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2743 ifc32.ifc_len = i;
2744 } else {
2745 ifc32.ifc_len = i;
2746 }
2747 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2748 return -EFAULT;
2749
2750 return 0;
2751 }
2752
2753 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2754 {
2755 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2756 bool convert_in = false, convert_out = false;
2757 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2758 struct ethtool_rxnfc __user *rxnfc;
2759 struct ifreq __user *ifr;
2760 u32 rule_cnt = 0, actual_rule_cnt;
2761 u32 ethcmd;
2762 u32 data;
2763 int ret;
2764
2765 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2766 return -EFAULT;
2767
2768 compat_rxnfc = compat_ptr(data);
2769
2770 if (get_user(ethcmd, &compat_rxnfc->cmd))
2771 return -EFAULT;
2772
2773 /* Most ethtool structures are defined without padding.
2774 * Unfortunately struct ethtool_rxnfc is an exception.
2775 */
2776 switch (ethcmd) {
2777 default:
2778 break;
2779 case ETHTOOL_GRXCLSRLALL:
2780 /* Buffer size is variable */
2781 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2782 return -EFAULT;
2783 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2784 return -ENOMEM;
2785 buf_size += rule_cnt * sizeof(u32);
2786 /* fall through */
2787 case ETHTOOL_GRXRINGS:
2788 case ETHTOOL_GRXCLSRLCNT:
2789 case ETHTOOL_GRXCLSRULE:
2790 case ETHTOOL_SRXCLSRLINS:
2791 convert_out = true;
2792 /* fall through */
2793 case ETHTOOL_SRXCLSRLDEL:
2794 buf_size += sizeof(struct ethtool_rxnfc);
2795 convert_in = true;
2796 break;
2797 }
2798
2799 ifr = compat_alloc_user_space(buf_size);
2800 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2801
2802 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2803 return -EFAULT;
2804
2805 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2806 &ifr->ifr_ifru.ifru_data))
2807 return -EFAULT;
2808
2809 if (convert_in) {
2810 /* We expect there to be holes between fs.m_ext and
2811 * fs.ring_cookie and at the end of fs, but nowhere else.
2812 */
2813 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2814 sizeof(compat_rxnfc->fs.m_ext) !=
2815 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2816 sizeof(rxnfc->fs.m_ext));
2817 BUILD_BUG_ON(
2818 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2819 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2820 offsetof(struct ethtool_rxnfc, fs.location) -
2821 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2822
2823 if (copy_in_user(rxnfc, compat_rxnfc,
2824 (void __user *)(&rxnfc->fs.m_ext + 1) -
2825 (void __user *)rxnfc) ||
2826 copy_in_user(&rxnfc->fs.ring_cookie,
2827 &compat_rxnfc->fs.ring_cookie,
2828 (void __user *)(&rxnfc->fs.location + 1) -
2829 (void __user *)&rxnfc->fs.ring_cookie) ||
2830 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2831 sizeof(rxnfc->rule_cnt)))
2832 return -EFAULT;
2833 }
2834
2835 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2836 if (ret)
2837 return ret;
2838
2839 if (convert_out) {
2840 if (copy_in_user(compat_rxnfc, rxnfc,
2841 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2842 (const void __user *)rxnfc) ||
2843 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2844 &rxnfc->fs.ring_cookie,
2845 (const void __user *)(&rxnfc->fs.location + 1) -
2846 (const void __user *)&rxnfc->fs.ring_cookie) ||
2847 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2848 sizeof(rxnfc->rule_cnt)))
2849 return -EFAULT;
2850
2851 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2852 /* As an optimisation, we only copy the actual
2853 * number of rules that the underlying
2854 * function returned. Since Mallory might
2855 * change the rule count in user memory, we
2856 * check that it is less than the rule count
2857 * originally given (as the user buffer size),
2858 * which has been range-checked.
2859 */
2860 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2861 return -EFAULT;
2862 if (actual_rule_cnt < rule_cnt)
2863 rule_cnt = actual_rule_cnt;
2864 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2865 &rxnfc->rule_locs[0],
2866 rule_cnt * sizeof(u32)))
2867 return -EFAULT;
2868 }
2869 }
2870
2871 return 0;
2872 }
2873
2874 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2875 {
2876 void __user *uptr;
2877 compat_uptr_t uptr32;
2878 struct ifreq __user *uifr;
2879
2880 uifr = compat_alloc_user_space(sizeof(*uifr));
2881 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2882 return -EFAULT;
2883
2884 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2885 return -EFAULT;
2886
2887 uptr = compat_ptr(uptr32);
2888
2889 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2890 return -EFAULT;
2891
2892 return dev_ioctl(net, SIOCWANDEV, uifr);
2893 }
2894
2895 static int bond_ioctl(struct net *net, unsigned int cmd,
2896 struct compat_ifreq __user *ifr32)
2897 {
2898 struct ifreq kifr;
2899 mm_segment_t old_fs;
2900 int err;
2901
2902 switch (cmd) {
2903 case SIOCBONDENSLAVE:
2904 case SIOCBONDRELEASE:
2905 case SIOCBONDSETHWADDR:
2906 case SIOCBONDCHANGEACTIVE:
2907 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2908 return -EFAULT;
2909
2910 old_fs = get_fs();
2911 set_fs(KERNEL_DS);
2912 err = dev_ioctl(net, cmd,
2913 (struct ifreq __user __force *) &kifr);
2914 set_fs(old_fs);
2915
2916 return err;
2917 default:
2918 return -ENOIOCTLCMD;
2919 }
2920 }
2921
2922 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2923 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2924 struct compat_ifreq __user *u_ifreq32)
2925 {
2926 struct ifreq __user *u_ifreq64;
2927 char tmp_buf[IFNAMSIZ];
2928 void __user *data64;
2929 u32 data32;
2930
2931 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2932 IFNAMSIZ))
2933 return -EFAULT;
2934 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2935 return -EFAULT;
2936 data64 = compat_ptr(data32);
2937
2938 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2939
2940 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2941 IFNAMSIZ))
2942 return -EFAULT;
2943 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2944 return -EFAULT;
2945
2946 return dev_ioctl(net, cmd, u_ifreq64);
2947 }
2948
2949 static int dev_ifsioc(struct net *net, struct socket *sock,
2950 unsigned int cmd, struct compat_ifreq __user *uifr32)
2951 {
2952 struct ifreq __user *uifr;
2953 int err;
2954
2955 uifr = compat_alloc_user_space(sizeof(*uifr));
2956 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2957 return -EFAULT;
2958
2959 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2960
2961 if (!err) {
2962 switch (cmd) {
2963 case SIOCGIFFLAGS:
2964 case SIOCGIFMETRIC:
2965 case SIOCGIFMTU:
2966 case SIOCGIFMEM:
2967 case SIOCGIFHWADDR:
2968 case SIOCGIFINDEX:
2969 case SIOCGIFADDR:
2970 case SIOCGIFBRDADDR:
2971 case SIOCGIFDSTADDR:
2972 case SIOCGIFNETMASK:
2973 case SIOCGIFPFLAGS:
2974 case SIOCGIFTXQLEN:
2975 case SIOCGMIIPHY:
2976 case SIOCGMIIREG:
2977 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2978 err = -EFAULT;
2979 break;
2980 }
2981 }
2982 return err;
2983 }
2984
2985 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2986 struct compat_ifreq __user *uifr32)
2987 {
2988 struct ifreq ifr;
2989 struct compat_ifmap __user *uifmap32;
2990 mm_segment_t old_fs;
2991 int err;
2992
2993 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2994 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2995 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2996 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2997 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2998 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2999 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3000 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3001 if (err)
3002 return -EFAULT;
3003
3004 old_fs = get_fs();
3005 set_fs(KERNEL_DS);
3006 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3007 set_fs(old_fs);
3008
3009 if (cmd == SIOCGIFMAP && !err) {
3010 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3011 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3012 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3013 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3014 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3015 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3016 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3017 if (err)
3018 err = -EFAULT;
3019 }
3020 return err;
3021 }
3022
3023 struct rtentry32 {
3024 u32 rt_pad1;
3025 struct sockaddr rt_dst; /* target address */
3026 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3027 struct sockaddr rt_genmask; /* target network mask (IP) */
3028 unsigned short rt_flags;
3029 short rt_pad2;
3030 u32 rt_pad3;
3031 unsigned char rt_tos;
3032 unsigned char rt_class;
3033 short rt_pad4;
3034 short rt_metric; /* +1 for binary compatibility! */
3035 /* char * */ u32 rt_dev; /* forcing the device at add */
3036 u32 rt_mtu; /* per route MTU/Window */
3037 u32 rt_window; /* Window clamping */
3038 unsigned short rt_irtt; /* Initial RTT */
3039 };
3040
3041 struct in6_rtmsg32 {
3042 struct in6_addr rtmsg_dst;
3043 struct in6_addr rtmsg_src;
3044 struct in6_addr rtmsg_gateway;
3045 u32 rtmsg_type;
3046 u16 rtmsg_dst_len;
3047 u16 rtmsg_src_len;
3048 u32 rtmsg_metric;
3049 u32 rtmsg_info;
3050 u32 rtmsg_flags;
3051 s32 rtmsg_ifindex;
3052 };
3053
3054 static int routing_ioctl(struct net *net, struct socket *sock,
3055 unsigned int cmd, void __user *argp)
3056 {
3057 int ret;
3058 void *r = NULL;
3059 struct in6_rtmsg r6;
3060 struct rtentry r4;
3061 char devname[16];
3062 u32 rtdev;
3063 mm_segment_t old_fs = get_fs();
3064
3065 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3066 struct in6_rtmsg32 __user *ur6 = argp;
3067 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3068 3 * sizeof(struct in6_addr));
3069 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3070 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3071 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3072 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3073 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3074 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3075 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3076
3077 r = (void *) &r6;
3078 } else { /* ipv4 */
3079 struct rtentry32 __user *ur4 = argp;
3080 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3081 3 * sizeof(struct sockaddr));
3082 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3083 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3084 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3085 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3086 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3087 ret |= get_user(rtdev, &(ur4->rt_dev));
3088 if (rtdev) {
3089 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3090 r4.rt_dev = (char __user __force *)devname;
3091 devname[15] = 0;
3092 } else
3093 r4.rt_dev = NULL;
3094
3095 r = (void *) &r4;
3096 }
3097
3098 if (ret) {
3099 ret = -EFAULT;
3100 goto out;
3101 }
3102
3103 set_fs(KERNEL_DS);
3104 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3105 set_fs(old_fs);
3106
3107 out:
3108 return ret;
3109 }
3110
3111 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3112 * for some operations; this forces use of the newer bridge-utils that
3113 * use compatible ioctls
3114 */
3115 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3116 {
3117 compat_ulong_t tmp;
3118
3119 if (get_user(tmp, argp))
3120 return -EFAULT;
3121 if (tmp == BRCTL_GET_VERSION)
3122 return BRCTL_VERSION + 1;
3123 return -EINVAL;
3124 }
3125
3126 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3127 unsigned int cmd, unsigned long arg)
3128 {
3129 void __user *argp = compat_ptr(arg);
3130 struct sock *sk = sock->sk;
3131 struct net *net = sock_net(sk);
3132
3133 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3134 return compat_ifr_data_ioctl(net, cmd, argp);
3135
3136 switch (cmd) {
3137 case SIOCSIFBR:
3138 case SIOCGIFBR:
3139 return old_bridge_ioctl(argp);
3140 case SIOCGIFNAME:
3141 return dev_ifname32(net, argp);
3142 case SIOCGIFCONF:
3143 return dev_ifconf(net, argp);
3144 case SIOCETHTOOL:
3145 return ethtool_ioctl(net, argp);
3146 case SIOCWANDEV:
3147 return compat_siocwandev(net, argp);
3148 case SIOCGIFMAP:
3149 case SIOCSIFMAP:
3150 return compat_sioc_ifmap(net, cmd, argp);
3151 case SIOCBONDENSLAVE:
3152 case SIOCBONDRELEASE:
3153 case SIOCBONDSETHWADDR:
3154 case SIOCBONDCHANGEACTIVE:
3155 return bond_ioctl(net, cmd, argp);
3156 case SIOCADDRT:
3157 case SIOCDELRT:
3158 return routing_ioctl(net, sock, cmd, argp);
3159 case SIOCGSTAMP:
3160 return do_siocgstamp(net, sock, cmd, argp);
3161 case SIOCGSTAMPNS:
3162 return do_siocgstampns(net, sock, cmd, argp);
3163 case SIOCBONDSLAVEINFOQUERY:
3164 case SIOCBONDINFOQUERY:
3165 case SIOCSHWTSTAMP:
3166 case SIOCGHWTSTAMP:
3167 return compat_ifr_data_ioctl(net, cmd, argp);
3168
3169 case FIOSETOWN:
3170 case SIOCSPGRP:
3171 case FIOGETOWN:
3172 case SIOCGPGRP:
3173 case SIOCBRADDBR:
3174 case SIOCBRDELBR:
3175 case SIOCGIFVLAN:
3176 case SIOCSIFVLAN:
3177 case SIOCADDDLCI:
3178 case SIOCDELDLCI:
3179 return sock_ioctl(file, cmd, arg);
3180
3181 case SIOCGIFFLAGS:
3182 case SIOCSIFFLAGS:
3183 case SIOCGIFMETRIC:
3184 case SIOCSIFMETRIC:
3185 case SIOCGIFMTU:
3186 case SIOCSIFMTU:
3187 case SIOCGIFMEM:
3188 case SIOCSIFMEM:
3189 case SIOCGIFHWADDR:
3190 case SIOCSIFHWADDR:
3191 case SIOCADDMULTI:
3192 case SIOCDELMULTI:
3193 case SIOCGIFINDEX:
3194 case SIOCGIFADDR:
3195 case SIOCSIFADDR:
3196 case SIOCSIFHWBROADCAST:
3197 case SIOCDIFADDR:
3198 case SIOCGIFBRDADDR:
3199 case SIOCSIFBRDADDR:
3200 case SIOCGIFDSTADDR:
3201 case SIOCSIFDSTADDR:
3202 case SIOCGIFNETMASK:
3203 case SIOCSIFNETMASK:
3204 case SIOCSIFPFLAGS:
3205 case SIOCGIFPFLAGS:
3206 case SIOCGIFTXQLEN:
3207 case SIOCSIFTXQLEN:
3208 case SIOCBRADDIF:
3209 case SIOCBRDELIF:
3210 case SIOCSIFNAME:
3211 case SIOCGMIIPHY:
3212 case SIOCGMIIREG:
3213 case SIOCSMIIREG:
3214 return dev_ifsioc(net, sock, cmd, argp);
3215
3216 case SIOCSARP:
3217 case SIOCGARP:
3218 case SIOCDARP:
3219 case SIOCATMARK:
3220 return sock_do_ioctl(net, sock, cmd, arg);
3221 }
3222
3223 return -ENOIOCTLCMD;
3224 }
3225
3226 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3227 unsigned long arg)
3228 {
3229 struct socket *sock = file->private_data;
3230 int ret = -ENOIOCTLCMD;
3231 struct sock *sk;
3232 struct net *net;
3233
3234 sk = sock->sk;
3235 net = sock_net(sk);
3236
3237 if (sock->ops->compat_ioctl)
3238 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3239
3240 if (ret == -ENOIOCTLCMD &&
3241 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3242 ret = compat_wext_handle_ioctl(net, cmd, arg);
3243
3244 if (ret == -ENOIOCTLCMD)
3245 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3246
3247 return ret;
3248 }
3249 #endif
3250
3251 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3252 {
3253 return sock->ops->bind(sock, addr, addrlen);
3254 }
3255 EXPORT_SYMBOL(kernel_bind);
3256
3257 int kernel_listen(struct socket *sock, int backlog)
3258 {
3259 return sock->ops->listen(sock, backlog);
3260 }
3261 EXPORT_SYMBOL(kernel_listen);
3262
3263 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3264 {
3265 struct sock *sk = sock->sk;
3266 int err;
3267
3268 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3269 newsock);
3270 if (err < 0)
3271 goto done;
3272
3273 err = sock->ops->accept(sock, *newsock, flags);
3274 if (err < 0) {
3275 sock_release(*newsock);
3276 *newsock = NULL;
3277 goto done;
3278 }
3279
3280 (*newsock)->ops = sock->ops;
3281 __module_get((*newsock)->ops->owner);
3282
3283 done:
3284 return err;
3285 }
3286 EXPORT_SYMBOL(kernel_accept);
3287
3288 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3289 int flags)
3290 {
3291 return sock->ops->connect(sock, addr, addrlen, flags);
3292 }
3293 EXPORT_SYMBOL(kernel_connect);
3294
3295 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3296 int *addrlen)
3297 {
3298 return sock->ops->getname(sock, addr, addrlen, 0);
3299 }
3300 EXPORT_SYMBOL(kernel_getsockname);
3301
3302 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3303 int *addrlen)
3304 {
3305 return sock->ops->getname(sock, addr, addrlen, 1);
3306 }
3307 EXPORT_SYMBOL(kernel_getpeername);
3308
3309 int kernel_getsockopt(struct socket *sock, int level, int optname,
3310 char *optval, int *optlen)
3311 {
3312 mm_segment_t oldfs = get_fs();
3313 char __user *uoptval;
3314 int __user *uoptlen;
3315 int err;
3316
3317 uoptval = (char __user __force *) optval;
3318 uoptlen = (int __user __force *) optlen;
3319
3320 set_fs(KERNEL_DS);
3321 if (level == SOL_SOCKET)
3322 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3323 else
3324 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3325 uoptlen);
3326 set_fs(oldfs);
3327 return err;
3328 }
3329 EXPORT_SYMBOL(kernel_getsockopt);
3330
3331 int kernel_setsockopt(struct socket *sock, int level, int optname,
3332 char *optval, unsigned int optlen)
3333 {
3334 mm_segment_t oldfs = get_fs();
3335 char __user *uoptval;
3336 int err;
3337
3338 uoptval = (char __user __force *) optval;
3339
3340 set_fs(KERNEL_DS);
3341 if (level == SOL_SOCKET)
3342 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3343 else
3344 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3345 optlen);
3346 set_fs(oldfs);
3347 return err;
3348 }
3349 EXPORT_SYMBOL(kernel_setsockopt);
3350
3351 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3352 size_t size, int flags)
3353 {
3354 if (sock->ops->sendpage)
3355 return sock->ops->sendpage(sock, page, offset, size, flags);
3356
3357 return sock_no_sendpage(sock, page, offset, size, flags);
3358 }
3359 EXPORT_SYMBOL(kernel_sendpage);
3360
3361 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3362 {
3363 mm_segment_t oldfs = get_fs();
3364 int err;
3365
3366 set_fs(KERNEL_DS);
3367 err = sock->ops->ioctl(sock, cmd, arg);
3368 set_fs(oldfs);
3369
3370 return err;
3371 }
3372 EXPORT_SYMBOL(kernel_sock_ioctl);
3373
3374 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3375 {
3376 return sock->ops->shutdown(sock, how);
3377 }
3378 EXPORT_SYMBOL(kernel_sock_shutdown);