]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/socket.c
X25: Remove bkl in sockopts
[mirror_ubuntu-artful-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94
95 #include <net/compat.h>
96 #include <net/wext.h>
97
98 #include <net/sock.h>
99 #include <linux/netfilter.h>
100
101 #include <linux/if_tun.h>
102 #include <linux/ipv6_route.h>
103 #include <linux/route.h>
104 #include <linux/sockios.h>
105 #include <linux/atalk.h>
106
107 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
108 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
109 unsigned long nr_segs, loff_t pos);
110 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
111 unsigned long nr_segs, loff_t pos);
112 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
113
114 static int sock_close(struct inode *inode, struct file *file);
115 static unsigned int sock_poll(struct file *file,
116 struct poll_table_struct *wait);
117 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
118 #ifdef CONFIG_COMPAT
119 static long compat_sock_ioctl(struct file *file,
120 unsigned int cmd, unsigned long arg);
121 #endif
122 static int sock_fasync(int fd, struct file *filp, int on);
123 static ssize_t sock_sendpage(struct file *file, struct page *page,
124 int offset, size_t size, loff_t *ppos, int more);
125 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
126 struct pipe_inode_info *pipe, size_t len,
127 unsigned int flags);
128
129 /*
130 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
131 * in the operation structures but are done directly via the socketcall() multiplexor.
132 */
133
134 static const struct file_operations socket_file_ops = {
135 .owner = THIS_MODULE,
136 .llseek = no_llseek,
137 .aio_read = sock_aio_read,
138 .aio_write = sock_aio_write,
139 .poll = sock_poll,
140 .unlocked_ioctl = sock_ioctl,
141 #ifdef CONFIG_COMPAT
142 .compat_ioctl = compat_sock_ioctl,
143 #endif
144 .mmap = sock_mmap,
145 .open = sock_no_open, /* special open code to disallow open via /proc */
146 .release = sock_close,
147 .fasync = sock_fasync,
148 .sendpage = sock_sendpage,
149 .splice_write = generic_splice_sendpage,
150 .splice_read = sock_splice_read,
151 };
152
153 /*
154 * The protocol list. Each protocol is registered in here.
155 */
156
157 static DEFINE_SPINLOCK(net_family_lock);
158 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
159
160 /*
161 * Statistics counters of the socket lists
162 */
163
164 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
165
166 /*
167 * Support routines.
168 * Move socket addresses back and forth across the kernel/user
169 * divide and look after the messy bits.
170 */
171
172 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
173 16 for IP, 16 for IPX,
174 24 for IPv6,
175 about 80 for AX.25
176 must be at least one bigger than
177 the AF_UNIX size (see net/unix/af_unix.c
178 :unix_mkname()).
179 */
180
181 /**
182 * move_addr_to_kernel - copy a socket address into kernel space
183 * @uaddr: Address in user space
184 * @kaddr: Address in kernel space
185 * @ulen: Length in user space
186 *
187 * The address is copied into kernel space. If the provided address is
188 * too long an error code of -EINVAL is returned. If the copy gives
189 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 */
191
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
193 {
194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 return -EINVAL;
196 if (ulen == 0)
197 return 0;
198 if (copy_from_user(kaddr, uaddr, ulen))
199 return -EFAULT;
200 return audit_sockaddr(ulen, kaddr);
201 }
202
203 /**
204 * move_addr_to_user - copy an address to user space
205 * @kaddr: kernel space address
206 * @klen: length of address in kernel
207 * @uaddr: user space address
208 * @ulen: pointer to user length field
209 *
210 * The value pointed to by ulen on entry is the buffer length available.
211 * This is overwritten with the buffer space used. -EINVAL is returned
212 * if an overlong buffer is specified or a negative buffer size. -EFAULT
213 * is returned if either the buffer or the length field are not
214 * accessible.
215 * After copying the data up to the limit the user specifies, the true
216 * length of the data is written over the length limit the user
217 * specified. Zero is returned for a success.
218 */
219
220 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
221 int __user *ulen)
222 {
223 int err;
224 int len;
225
226 err = get_user(len, ulen);
227 if (err)
228 return err;
229 if (len > klen)
230 len = klen;
231 if (len < 0 || len > sizeof(struct sockaddr_storage))
232 return -EINVAL;
233 if (len) {
234 if (audit_sockaddr(klen, kaddr))
235 return -ENOMEM;
236 if (copy_to_user(uaddr, kaddr, len))
237 return -EFAULT;
238 }
239 /*
240 * "fromlen shall refer to the value before truncation.."
241 * 1003.1g
242 */
243 return __put_user(klen, ulen);
244 }
245
246 static struct kmem_cache *sock_inode_cachep __read_mostly;
247
248 static struct inode *sock_alloc_inode(struct super_block *sb)
249 {
250 struct socket_alloc *ei;
251
252 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 if (!ei)
254 return NULL;
255 ei->socket.wq = kmalloc(sizeof(struct socket_wq), GFP_KERNEL);
256 if (!ei->socket.wq) {
257 kmem_cache_free(sock_inode_cachep, ei);
258 return NULL;
259 }
260 init_waitqueue_head(&ei->socket.wq->wait);
261 ei->socket.wq->fasync_list = NULL;
262
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
268
269 return &ei->vfs_inode;
270 }
271
272
273 static void wq_free_rcu(struct rcu_head *head)
274 {
275 struct socket_wq *wq = container_of(head, struct socket_wq, rcu);
276
277 kfree(wq);
278 }
279
280 static void sock_destroy_inode(struct inode *inode)
281 {
282 struct socket_alloc *ei;
283
284 ei = container_of(inode, struct socket_alloc, vfs_inode);
285 call_rcu(&ei->socket.wq->rcu, wq_free_rcu);
286 kmem_cache_free(sock_inode_cachep, ei);
287 }
288
289 static void init_once(void *foo)
290 {
291 struct socket_alloc *ei = (struct socket_alloc *)foo;
292
293 inode_init_once(&ei->vfs_inode);
294 }
295
296 static int init_inodecache(void)
297 {
298 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
299 sizeof(struct socket_alloc),
300 0,
301 (SLAB_HWCACHE_ALIGN |
302 SLAB_RECLAIM_ACCOUNT |
303 SLAB_MEM_SPREAD),
304 init_once);
305 if (sock_inode_cachep == NULL)
306 return -ENOMEM;
307 return 0;
308 }
309
310 static const struct super_operations sockfs_ops = {
311 .alloc_inode = sock_alloc_inode,
312 .destroy_inode =sock_destroy_inode,
313 .statfs = simple_statfs,
314 };
315
316 static int sockfs_get_sb(struct file_system_type *fs_type,
317 int flags, const char *dev_name, void *data,
318 struct vfsmount *mnt)
319 {
320 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
321 mnt);
322 }
323
324 static struct vfsmount *sock_mnt __read_mostly;
325
326 static struct file_system_type sock_fs_type = {
327 .name = "sockfs",
328 .get_sb = sockfs_get_sb,
329 .kill_sb = kill_anon_super,
330 };
331
332 /*
333 * sockfs_dname() is called from d_path().
334 */
335 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
336 {
337 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
338 dentry->d_inode->i_ino);
339 }
340
341 static const struct dentry_operations sockfs_dentry_operations = {
342 .d_dname = sockfs_dname,
343 };
344
345 /*
346 * Obtains the first available file descriptor and sets it up for use.
347 *
348 * These functions create file structures and maps them to fd space
349 * of the current process. On success it returns file descriptor
350 * and file struct implicitly stored in sock->file.
351 * Note that another thread may close file descriptor before we return
352 * from this function. We use the fact that now we do not refer
353 * to socket after mapping. If one day we will need it, this
354 * function will increment ref. count on file by 1.
355 *
356 * In any case returned fd MAY BE not valid!
357 * This race condition is unavoidable
358 * with shared fd spaces, we cannot solve it inside kernel,
359 * but we take care of internal coherence yet.
360 */
361
362 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
363 {
364 struct qstr name = { .name = "" };
365 struct path path;
366 struct file *file;
367 int fd;
368
369 fd = get_unused_fd_flags(flags);
370 if (unlikely(fd < 0))
371 return fd;
372
373 path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
374 if (unlikely(!path.dentry)) {
375 put_unused_fd(fd);
376 return -ENOMEM;
377 }
378 path.mnt = mntget(sock_mnt);
379
380 path.dentry->d_op = &sockfs_dentry_operations;
381 d_instantiate(path.dentry, SOCK_INODE(sock));
382 SOCK_INODE(sock)->i_fop = &socket_file_ops;
383
384 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
385 &socket_file_ops);
386 if (unlikely(!file)) {
387 /* drop dentry, keep inode */
388 atomic_inc(&path.dentry->d_inode->i_count);
389 path_put(&path);
390 put_unused_fd(fd);
391 return -ENFILE;
392 }
393
394 sock->file = file;
395 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
396 file->f_pos = 0;
397 file->private_data = sock;
398
399 *f = file;
400 return fd;
401 }
402
403 int sock_map_fd(struct socket *sock, int flags)
404 {
405 struct file *newfile;
406 int fd = sock_alloc_file(sock, &newfile, flags);
407
408 if (likely(fd >= 0))
409 fd_install(fd, newfile);
410
411 return fd;
412 }
413
414 static struct socket *sock_from_file(struct file *file, int *err)
415 {
416 if (file->f_op == &socket_file_ops)
417 return file->private_data; /* set in sock_map_fd */
418
419 *err = -ENOTSOCK;
420 return NULL;
421 }
422
423 /**
424 * sockfd_lookup - Go from a file number to its socket slot
425 * @fd: file handle
426 * @err: pointer to an error code return
427 *
428 * The file handle passed in is locked and the socket it is bound
429 * too is returned. If an error occurs the err pointer is overwritten
430 * with a negative errno code and NULL is returned. The function checks
431 * for both invalid handles and passing a handle which is not a socket.
432 *
433 * On a success the socket object pointer is returned.
434 */
435
436 struct socket *sockfd_lookup(int fd, int *err)
437 {
438 struct file *file;
439 struct socket *sock;
440
441 file = fget(fd);
442 if (!file) {
443 *err = -EBADF;
444 return NULL;
445 }
446
447 sock = sock_from_file(file, err);
448 if (!sock)
449 fput(file);
450 return sock;
451 }
452
453 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
454 {
455 struct file *file;
456 struct socket *sock;
457
458 *err = -EBADF;
459 file = fget_light(fd, fput_needed);
460 if (file) {
461 sock = sock_from_file(file, err);
462 if (sock)
463 return sock;
464 fput_light(file, *fput_needed);
465 }
466 return NULL;
467 }
468
469 /**
470 * sock_alloc - allocate a socket
471 *
472 * Allocate a new inode and socket object. The two are bound together
473 * and initialised. The socket is then returned. If we are out of inodes
474 * NULL is returned.
475 */
476
477 static struct socket *sock_alloc(void)
478 {
479 struct inode *inode;
480 struct socket *sock;
481
482 inode = new_inode(sock_mnt->mnt_sb);
483 if (!inode)
484 return NULL;
485
486 sock = SOCKET_I(inode);
487
488 kmemcheck_annotate_bitfield(sock, type);
489 inode->i_mode = S_IFSOCK | S_IRWXUGO;
490 inode->i_uid = current_fsuid();
491 inode->i_gid = current_fsgid();
492
493 percpu_add(sockets_in_use, 1);
494 return sock;
495 }
496
497 /*
498 * In theory you can't get an open on this inode, but /proc provides
499 * a back door. Remember to keep it shut otherwise you'll let the
500 * creepy crawlies in.
501 */
502
503 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
504 {
505 return -ENXIO;
506 }
507
508 const struct file_operations bad_sock_fops = {
509 .owner = THIS_MODULE,
510 .open = sock_no_open,
511 };
512
513 /**
514 * sock_release - close a socket
515 * @sock: socket to close
516 *
517 * The socket is released from the protocol stack if it has a release
518 * callback, and the inode is then released if the socket is bound to
519 * an inode not a file.
520 */
521
522 void sock_release(struct socket *sock)
523 {
524 if (sock->ops) {
525 struct module *owner = sock->ops->owner;
526
527 sock->ops->release(sock);
528 sock->ops = NULL;
529 module_put(owner);
530 }
531
532 if (sock->wq->fasync_list)
533 printk(KERN_ERR "sock_release: fasync list not empty!\n");
534
535 percpu_sub(sockets_in_use, 1);
536 if (!sock->file) {
537 iput(SOCK_INODE(sock));
538 return;
539 }
540 sock->file = NULL;
541 }
542
543 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
544 union skb_shared_tx *shtx)
545 {
546 shtx->flags = 0;
547 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
548 shtx->hardware = 1;
549 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
550 shtx->software = 1;
551 return 0;
552 }
553 EXPORT_SYMBOL(sock_tx_timestamp);
554
555 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
556 struct msghdr *msg, size_t size)
557 {
558 struct sock_iocb *si = kiocb_to_siocb(iocb);
559 int err;
560
561 si->sock = sock;
562 si->scm = NULL;
563 si->msg = msg;
564 si->size = size;
565
566 err = security_socket_sendmsg(sock, msg, size);
567 if (err)
568 return err;
569
570 return sock->ops->sendmsg(iocb, sock, msg, size);
571 }
572
573 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
574 {
575 struct kiocb iocb;
576 struct sock_iocb siocb;
577 int ret;
578
579 init_sync_kiocb(&iocb, NULL);
580 iocb.private = &siocb;
581 ret = __sock_sendmsg(&iocb, sock, msg, size);
582 if (-EIOCBQUEUED == ret)
583 ret = wait_on_sync_kiocb(&iocb);
584 return ret;
585 }
586
587 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
588 struct kvec *vec, size_t num, size_t size)
589 {
590 mm_segment_t oldfs = get_fs();
591 int result;
592
593 set_fs(KERNEL_DS);
594 /*
595 * the following is safe, since for compiler definitions of kvec and
596 * iovec are identical, yielding the same in-core layout and alignment
597 */
598 msg->msg_iov = (struct iovec *)vec;
599 msg->msg_iovlen = num;
600 result = sock_sendmsg(sock, msg, size);
601 set_fs(oldfs);
602 return result;
603 }
604
605 static int ktime2ts(ktime_t kt, struct timespec *ts)
606 {
607 if (kt.tv64) {
608 *ts = ktime_to_timespec(kt);
609 return 1;
610 } else {
611 return 0;
612 }
613 }
614
615 /*
616 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
617 */
618 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
619 struct sk_buff *skb)
620 {
621 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
622 struct timespec ts[3];
623 int empty = 1;
624 struct skb_shared_hwtstamps *shhwtstamps =
625 skb_hwtstamps(skb);
626
627 /* Race occurred between timestamp enabling and packet
628 receiving. Fill in the current time for now. */
629 if (need_software_tstamp && skb->tstamp.tv64 == 0)
630 __net_timestamp(skb);
631
632 if (need_software_tstamp) {
633 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
634 struct timeval tv;
635 skb_get_timestamp(skb, &tv);
636 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
637 sizeof(tv), &tv);
638 } else {
639 skb_get_timestampns(skb, &ts[0]);
640 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
641 sizeof(ts[0]), &ts[0]);
642 }
643 }
644
645
646 memset(ts, 0, sizeof(ts));
647 if (skb->tstamp.tv64 &&
648 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
649 skb_get_timestampns(skb, ts + 0);
650 empty = 0;
651 }
652 if (shhwtstamps) {
653 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
654 ktime2ts(shhwtstamps->syststamp, ts + 1))
655 empty = 0;
656 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
657 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
658 empty = 0;
659 }
660 if (!empty)
661 put_cmsg(msg, SOL_SOCKET,
662 SCM_TIMESTAMPING, sizeof(ts), &ts);
663 }
664
665 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
666
667 inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
668 {
669 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
670 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
671 sizeof(__u32), &skb->dropcount);
672 }
673
674 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
675 struct sk_buff *skb)
676 {
677 sock_recv_timestamp(msg, sk, skb);
678 sock_recv_drops(msg, sk, skb);
679 }
680 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
681
682 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
683 struct msghdr *msg, size_t size, int flags)
684 {
685 struct sock_iocb *si = kiocb_to_siocb(iocb);
686
687 si->sock = sock;
688 si->scm = NULL;
689 si->msg = msg;
690 si->size = size;
691 si->flags = flags;
692
693 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
694 }
695
696 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
697 struct msghdr *msg, size_t size, int flags)
698 {
699 int err = security_socket_recvmsg(sock, msg, size, flags);
700
701 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
702 }
703
704 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
705 size_t size, int flags)
706 {
707 struct kiocb iocb;
708 struct sock_iocb siocb;
709 int ret;
710
711 init_sync_kiocb(&iocb, NULL);
712 iocb.private = &siocb;
713 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
714 if (-EIOCBQUEUED == ret)
715 ret = wait_on_sync_kiocb(&iocb);
716 return ret;
717 }
718
719 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
720 size_t size, int flags)
721 {
722 struct kiocb iocb;
723 struct sock_iocb siocb;
724 int ret;
725
726 init_sync_kiocb(&iocb, NULL);
727 iocb.private = &siocb;
728 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
729 if (-EIOCBQUEUED == ret)
730 ret = wait_on_sync_kiocb(&iocb);
731 return ret;
732 }
733
734 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
735 struct kvec *vec, size_t num, size_t size, int flags)
736 {
737 mm_segment_t oldfs = get_fs();
738 int result;
739
740 set_fs(KERNEL_DS);
741 /*
742 * the following is safe, since for compiler definitions of kvec and
743 * iovec are identical, yielding the same in-core layout and alignment
744 */
745 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
746 result = sock_recvmsg(sock, msg, size, flags);
747 set_fs(oldfs);
748 return result;
749 }
750
751 static void sock_aio_dtor(struct kiocb *iocb)
752 {
753 kfree(iocb->private);
754 }
755
756 static ssize_t sock_sendpage(struct file *file, struct page *page,
757 int offset, size_t size, loff_t *ppos, int more)
758 {
759 struct socket *sock;
760 int flags;
761
762 sock = file->private_data;
763
764 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
765 if (more)
766 flags |= MSG_MORE;
767
768 return kernel_sendpage(sock, page, offset, size, flags);
769 }
770
771 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
772 struct pipe_inode_info *pipe, size_t len,
773 unsigned int flags)
774 {
775 struct socket *sock = file->private_data;
776
777 if (unlikely(!sock->ops->splice_read))
778 return -EINVAL;
779
780 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
781 }
782
783 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
784 struct sock_iocb *siocb)
785 {
786 if (!is_sync_kiocb(iocb)) {
787 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
788 if (!siocb)
789 return NULL;
790 iocb->ki_dtor = sock_aio_dtor;
791 }
792
793 siocb->kiocb = iocb;
794 iocb->private = siocb;
795 return siocb;
796 }
797
798 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
799 struct file *file, const struct iovec *iov,
800 unsigned long nr_segs)
801 {
802 struct socket *sock = file->private_data;
803 size_t size = 0;
804 int i;
805
806 for (i = 0; i < nr_segs; i++)
807 size += iov[i].iov_len;
808
809 msg->msg_name = NULL;
810 msg->msg_namelen = 0;
811 msg->msg_control = NULL;
812 msg->msg_controllen = 0;
813 msg->msg_iov = (struct iovec *)iov;
814 msg->msg_iovlen = nr_segs;
815 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
816
817 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
818 }
819
820 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
821 unsigned long nr_segs, loff_t pos)
822 {
823 struct sock_iocb siocb, *x;
824
825 if (pos != 0)
826 return -ESPIPE;
827
828 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
829 return 0;
830
831
832 x = alloc_sock_iocb(iocb, &siocb);
833 if (!x)
834 return -ENOMEM;
835 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
836 }
837
838 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
839 struct file *file, const struct iovec *iov,
840 unsigned long nr_segs)
841 {
842 struct socket *sock = file->private_data;
843 size_t size = 0;
844 int i;
845
846 for (i = 0; i < nr_segs; i++)
847 size += iov[i].iov_len;
848
849 msg->msg_name = NULL;
850 msg->msg_namelen = 0;
851 msg->msg_control = NULL;
852 msg->msg_controllen = 0;
853 msg->msg_iov = (struct iovec *)iov;
854 msg->msg_iovlen = nr_segs;
855 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
856 if (sock->type == SOCK_SEQPACKET)
857 msg->msg_flags |= MSG_EOR;
858
859 return __sock_sendmsg(iocb, sock, msg, size);
860 }
861
862 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
863 unsigned long nr_segs, loff_t pos)
864 {
865 struct sock_iocb siocb, *x;
866
867 if (pos != 0)
868 return -ESPIPE;
869
870 x = alloc_sock_iocb(iocb, &siocb);
871 if (!x)
872 return -ENOMEM;
873
874 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
875 }
876
877 /*
878 * Atomic setting of ioctl hooks to avoid race
879 * with module unload.
880 */
881
882 static DEFINE_MUTEX(br_ioctl_mutex);
883 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
884
885 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
886 {
887 mutex_lock(&br_ioctl_mutex);
888 br_ioctl_hook = hook;
889 mutex_unlock(&br_ioctl_mutex);
890 }
891
892 EXPORT_SYMBOL(brioctl_set);
893
894 static DEFINE_MUTEX(vlan_ioctl_mutex);
895 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
896
897 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
898 {
899 mutex_lock(&vlan_ioctl_mutex);
900 vlan_ioctl_hook = hook;
901 mutex_unlock(&vlan_ioctl_mutex);
902 }
903
904 EXPORT_SYMBOL(vlan_ioctl_set);
905
906 static DEFINE_MUTEX(dlci_ioctl_mutex);
907 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
908
909 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
910 {
911 mutex_lock(&dlci_ioctl_mutex);
912 dlci_ioctl_hook = hook;
913 mutex_unlock(&dlci_ioctl_mutex);
914 }
915
916 EXPORT_SYMBOL(dlci_ioctl_set);
917
918 static long sock_do_ioctl(struct net *net, struct socket *sock,
919 unsigned int cmd, unsigned long arg)
920 {
921 int err;
922 void __user *argp = (void __user *)arg;
923
924 err = sock->ops->ioctl(sock, cmd, arg);
925
926 /*
927 * If this ioctl is unknown try to hand it down
928 * to the NIC driver.
929 */
930 if (err == -ENOIOCTLCMD)
931 err = dev_ioctl(net, cmd, argp);
932
933 return err;
934 }
935
936 /*
937 * With an ioctl, arg may well be a user mode pointer, but we don't know
938 * what to do with it - that's up to the protocol still.
939 */
940
941 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
942 {
943 struct socket *sock;
944 struct sock *sk;
945 void __user *argp = (void __user *)arg;
946 int pid, err;
947 struct net *net;
948
949 sock = file->private_data;
950 sk = sock->sk;
951 net = sock_net(sk);
952 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
953 err = dev_ioctl(net, cmd, argp);
954 } else
955 #ifdef CONFIG_WEXT_CORE
956 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
957 err = dev_ioctl(net, cmd, argp);
958 } else
959 #endif
960 switch (cmd) {
961 case FIOSETOWN:
962 case SIOCSPGRP:
963 err = -EFAULT;
964 if (get_user(pid, (int __user *)argp))
965 break;
966 err = f_setown(sock->file, pid, 1);
967 break;
968 case FIOGETOWN:
969 case SIOCGPGRP:
970 err = put_user(f_getown(sock->file),
971 (int __user *)argp);
972 break;
973 case SIOCGIFBR:
974 case SIOCSIFBR:
975 case SIOCBRADDBR:
976 case SIOCBRDELBR:
977 err = -ENOPKG;
978 if (!br_ioctl_hook)
979 request_module("bridge");
980
981 mutex_lock(&br_ioctl_mutex);
982 if (br_ioctl_hook)
983 err = br_ioctl_hook(net, cmd, argp);
984 mutex_unlock(&br_ioctl_mutex);
985 break;
986 case SIOCGIFVLAN:
987 case SIOCSIFVLAN:
988 err = -ENOPKG;
989 if (!vlan_ioctl_hook)
990 request_module("8021q");
991
992 mutex_lock(&vlan_ioctl_mutex);
993 if (vlan_ioctl_hook)
994 err = vlan_ioctl_hook(net, argp);
995 mutex_unlock(&vlan_ioctl_mutex);
996 break;
997 case SIOCADDDLCI:
998 case SIOCDELDLCI:
999 err = -ENOPKG;
1000 if (!dlci_ioctl_hook)
1001 request_module("dlci");
1002
1003 mutex_lock(&dlci_ioctl_mutex);
1004 if (dlci_ioctl_hook)
1005 err = dlci_ioctl_hook(cmd, argp);
1006 mutex_unlock(&dlci_ioctl_mutex);
1007 break;
1008 default:
1009 err = sock_do_ioctl(net, sock, cmd, arg);
1010 break;
1011 }
1012 return err;
1013 }
1014
1015 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1016 {
1017 int err;
1018 struct socket *sock = NULL;
1019
1020 err = security_socket_create(family, type, protocol, 1);
1021 if (err)
1022 goto out;
1023
1024 sock = sock_alloc();
1025 if (!sock) {
1026 err = -ENOMEM;
1027 goto out;
1028 }
1029
1030 sock->type = type;
1031 err = security_socket_post_create(sock, family, type, protocol, 1);
1032 if (err)
1033 goto out_release;
1034
1035 out:
1036 *res = sock;
1037 return err;
1038 out_release:
1039 sock_release(sock);
1040 sock = NULL;
1041 goto out;
1042 }
1043
1044 /* No kernel lock held - perfect */
1045 static unsigned int sock_poll(struct file *file, poll_table *wait)
1046 {
1047 struct socket *sock;
1048
1049 /*
1050 * We can't return errors to poll, so it's either yes or no.
1051 */
1052 sock = file->private_data;
1053 return sock->ops->poll(file, sock, wait);
1054 }
1055
1056 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1057 {
1058 struct socket *sock = file->private_data;
1059
1060 return sock->ops->mmap(file, sock, vma);
1061 }
1062
1063 static int sock_close(struct inode *inode, struct file *filp)
1064 {
1065 /*
1066 * It was possible the inode is NULL we were
1067 * closing an unfinished socket.
1068 */
1069
1070 if (!inode) {
1071 printk(KERN_DEBUG "sock_close: NULL inode\n");
1072 return 0;
1073 }
1074 sock_release(SOCKET_I(inode));
1075 return 0;
1076 }
1077
1078 /*
1079 * Update the socket async list
1080 *
1081 * Fasync_list locking strategy.
1082 *
1083 * 1. fasync_list is modified only under process context socket lock
1084 * i.e. under semaphore.
1085 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1086 * or under socket lock
1087 */
1088
1089 static int sock_fasync(int fd, struct file *filp, int on)
1090 {
1091 struct socket *sock = filp->private_data;
1092 struct sock *sk = sock->sk;
1093
1094 if (sk == NULL)
1095 return -EINVAL;
1096
1097 lock_sock(sk);
1098
1099 fasync_helper(fd, filp, on, &sock->wq->fasync_list);
1100
1101 if (!sock->wq->fasync_list)
1102 sock_reset_flag(sk, SOCK_FASYNC);
1103 else
1104 sock_set_flag(sk, SOCK_FASYNC);
1105
1106 release_sock(sk);
1107 return 0;
1108 }
1109
1110 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1111
1112 int sock_wake_async(struct socket *sock, int how, int band)
1113 {
1114 struct socket_wq *wq;
1115
1116 if (!sock)
1117 return -1;
1118 rcu_read_lock();
1119 wq = rcu_dereference(sock->wq);
1120 if (!wq || !wq->fasync_list) {
1121 rcu_read_unlock();
1122 return -1;
1123 }
1124 switch (how) {
1125 case SOCK_WAKE_WAITD:
1126 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1127 break;
1128 goto call_kill;
1129 case SOCK_WAKE_SPACE:
1130 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1131 break;
1132 /* fall through */
1133 case SOCK_WAKE_IO:
1134 call_kill:
1135 kill_fasync(&wq->fasync_list, SIGIO, band);
1136 break;
1137 case SOCK_WAKE_URG:
1138 kill_fasync(&wq->fasync_list, SIGURG, band);
1139 }
1140 rcu_read_unlock();
1141 return 0;
1142 }
1143
1144 static int __sock_create(struct net *net, int family, int type, int protocol,
1145 struct socket **res, int kern)
1146 {
1147 int err;
1148 struct socket *sock;
1149 const struct net_proto_family *pf;
1150
1151 /*
1152 * Check protocol is in range
1153 */
1154 if (family < 0 || family >= NPROTO)
1155 return -EAFNOSUPPORT;
1156 if (type < 0 || type >= SOCK_MAX)
1157 return -EINVAL;
1158
1159 /* Compatibility.
1160
1161 This uglymoron is moved from INET layer to here to avoid
1162 deadlock in module load.
1163 */
1164 if (family == PF_INET && type == SOCK_PACKET) {
1165 static int warned;
1166 if (!warned) {
1167 warned = 1;
1168 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1169 current->comm);
1170 }
1171 family = PF_PACKET;
1172 }
1173
1174 err = security_socket_create(family, type, protocol, kern);
1175 if (err)
1176 return err;
1177
1178 /*
1179 * Allocate the socket and allow the family to set things up. if
1180 * the protocol is 0, the family is instructed to select an appropriate
1181 * default.
1182 */
1183 sock = sock_alloc();
1184 if (!sock) {
1185 if (net_ratelimit())
1186 printk(KERN_WARNING "socket: no more sockets\n");
1187 return -ENFILE; /* Not exactly a match, but its the
1188 closest posix thing */
1189 }
1190
1191 sock->type = type;
1192
1193 #ifdef CONFIG_MODULES
1194 /* Attempt to load a protocol module if the find failed.
1195 *
1196 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1197 * requested real, full-featured networking support upon configuration.
1198 * Otherwise module support will break!
1199 */
1200 if (net_families[family] == NULL)
1201 request_module("net-pf-%d", family);
1202 #endif
1203
1204 rcu_read_lock();
1205 pf = rcu_dereference(net_families[family]);
1206 err = -EAFNOSUPPORT;
1207 if (!pf)
1208 goto out_release;
1209
1210 /*
1211 * We will call the ->create function, that possibly is in a loadable
1212 * module, so we have to bump that loadable module refcnt first.
1213 */
1214 if (!try_module_get(pf->owner))
1215 goto out_release;
1216
1217 /* Now protected by module ref count */
1218 rcu_read_unlock();
1219
1220 err = pf->create(net, sock, protocol, kern);
1221 if (err < 0)
1222 goto out_module_put;
1223
1224 /*
1225 * Now to bump the refcnt of the [loadable] module that owns this
1226 * socket at sock_release time we decrement its refcnt.
1227 */
1228 if (!try_module_get(sock->ops->owner))
1229 goto out_module_busy;
1230
1231 /*
1232 * Now that we're done with the ->create function, the [loadable]
1233 * module can have its refcnt decremented
1234 */
1235 module_put(pf->owner);
1236 err = security_socket_post_create(sock, family, type, protocol, kern);
1237 if (err)
1238 goto out_sock_release;
1239 *res = sock;
1240
1241 return 0;
1242
1243 out_module_busy:
1244 err = -EAFNOSUPPORT;
1245 out_module_put:
1246 sock->ops = NULL;
1247 module_put(pf->owner);
1248 out_sock_release:
1249 sock_release(sock);
1250 return err;
1251
1252 out_release:
1253 rcu_read_unlock();
1254 goto out_sock_release;
1255 }
1256
1257 int sock_create(int family, int type, int protocol, struct socket **res)
1258 {
1259 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1260 }
1261
1262 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1263 {
1264 return __sock_create(&init_net, family, type, protocol, res, 1);
1265 }
1266
1267 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1268 {
1269 int retval;
1270 struct socket *sock;
1271 int flags;
1272
1273 /* Check the SOCK_* constants for consistency. */
1274 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1275 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1276 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1277 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1278
1279 flags = type & ~SOCK_TYPE_MASK;
1280 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1281 return -EINVAL;
1282 type &= SOCK_TYPE_MASK;
1283
1284 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1285 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1286
1287 retval = sock_create(family, type, protocol, &sock);
1288 if (retval < 0)
1289 goto out;
1290
1291 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1292 if (retval < 0)
1293 goto out_release;
1294
1295 out:
1296 /* It may be already another descriptor 8) Not kernel problem. */
1297 return retval;
1298
1299 out_release:
1300 sock_release(sock);
1301 return retval;
1302 }
1303
1304 /*
1305 * Create a pair of connected sockets.
1306 */
1307
1308 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1309 int __user *, usockvec)
1310 {
1311 struct socket *sock1, *sock2;
1312 int fd1, fd2, err;
1313 struct file *newfile1, *newfile2;
1314 int flags;
1315
1316 flags = type & ~SOCK_TYPE_MASK;
1317 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1318 return -EINVAL;
1319 type &= SOCK_TYPE_MASK;
1320
1321 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1322 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1323
1324 /*
1325 * Obtain the first socket and check if the underlying protocol
1326 * supports the socketpair call.
1327 */
1328
1329 err = sock_create(family, type, protocol, &sock1);
1330 if (err < 0)
1331 goto out;
1332
1333 err = sock_create(family, type, protocol, &sock2);
1334 if (err < 0)
1335 goto out_release_1;
1336
1337 err = sock1->ops->socketpair(sock1, sock2);
1338 if (err < 0)
1339 goto out_release_both;
1340
1341 fd1 = sock_alloc_file(sock1, &newfile1, flags);
1342 if (unlikely(fd1 < 0)) {
1343 err = fd1;
1344 goto out_release_both;
1345 }
1346
1347 fd2 = sock_alloc_file(sock2, &newfile2, flags);
1348 if (unlikely(fd2 < 0)) {
1349 err = fd2;
1350 fput(newfile1);
1351 put_unused_fd(fd1);
1352 sock_release(sock2);
1353 goto out;
1354 }
1355
1356 audit_fd_pair(fd1, fd2);
1357 fd_install(fd1, newfile1);
1358 fd_install(fd2, newfile2);
1359 /* fd1 and fd2 may be already another descriptors.
1360 * Not kernel problem.
1361 */
1362
1363 err = put_user(fd1, &usockvec[0]);
1364 if (!err)
1365 err = put_user(fd2, &usockvec[1]);
1366 if (!err)
1367 return 0;
1368
1369 sys_close(fd2);
1370 sys_close(fd1);
1371 return err;
1372
1373 out_release_both:
1374 sock_release(sock2);
1375 out_release_1:
1376 sock_release(sock1);
1377 out:
1378 return err;
1379 }
1380
1381 /*
1382 * Bind a name to a socket. Nothing much to do here since it's
1383 * the protocol's responsibility to handle the local address.
1384 *
1385 * We move the socket address to kernel space before we call
1386 * the protocol layer (having also checked the address is ok).
1387 */
1388
1389 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1390 {
1391 struct socket *sock;
1392 struct sockaddr_storage address;
1393 int err, fput_needed;
1394
1395 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1396 if (sock) {
1397 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1398 if (err >= 0) {
1399 err = security_socket_bind(sock,
1400 (struct sockaddr *)&address,
1401 addrlen);
1402 if (!err)
1403 err = sock->ops->bind(sock,
1404 (struct sockaddr *)
1405 &address, addrlen);
1406 }
1407 fput_light(sock->file, fput_needed);
1408 }
1409 return err;
1410 }
1411
1412 /*
1413 * Perform a listen. Basically, we allow the protocol to do anything
1414 * necessary for a listen, and if that works, we mark the socket as
1415 * ready for listening.
1416 */
1417
1418 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1419 {
1420 struct socket *sock;
1421 int err, fput_needed;
1422 int somaxconn;
1423
1424 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1425 if (sock) {
1426 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1427 if ((unsigned)backlog > somaxconn)
1428 backlog = somaxconn;
1429
1430 err = security_socket_listen(sock, backlog);
1431 if (!err)
1432 err = sock->ops->listen(sock, backlog);
1433
1434 fput_light(sock->file, fput_needed);
1435 }
1436 return err;
1437 }
1438
1439 /*
1440 * For accept, we attempt to create a new socket, set up the link
1441 * with the client, wake up the client, then return the new
1442 * connected fd. We collect the address of the connector in kernel
1443 * space and move it to user at the very end. This is unclean because
1444 * we open the socket then return an error.
1445 *
1446 * 1003.1g adds the ability to recvmsg() to query connection pending
1447 * status to recvmsg. We need to add that support in a way thats
1448 * clean when we restucture accept also.
1449 */
1450
1451 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1452 int __user *, upeer_addrlen, int, flags)
1453 {
1454 struct socket *sock, *newsock;
1455 struct file *newfile;
1456 int err, len, newfd, fput_needed;
1457 struct sockaddr_storage address;
1458
1459 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1460 return -EINVAL;
1461
1462 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1463 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1464
1465 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1466 if (!sock)
1467 goto out;
1468
1469 err = -ENFILE;
1470 if (!(newsock = sock_alloc()))
1471 goto out_put;
1472
1473 newsock->type = sock->type;
1474 newsock->ops = sock->ops;
1475
1476 /*
1477 * We don't need try_module_get here, as the listening socket (sock)
1478 * has the protocol module (sock->ops->owner) held.
1479 */
1480 __module_get(newsock->ops->owner);
1481
1482 newfd = sock_alloc_file(newsock, &newfile, flags);
1483 if (unlikely(newfd < 0)) {
1484 err = newfd;
1485 sock_release(newsock);
1486 goto out_put;
1487 }
1488
1489 err = security_socket_accept(sock, newsock);
1490 if (err)
1491 goto out_fd;
1492
1493 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1494 if (err < 0)
1495 goto out_fd;
1496
1497 if (upeer_sockaddr) {
1498 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1499 &len, 2) < 0) {
1500 err = -ECONNABORTED;
1501 goto out_fd;
1502 }
1503 err = move_addr_to_user((struct sockaddr *)&address,
1504 len, upeer_sockaddr, upeer_addrlen);
1505 if (err < 0)
1506 goto out_fd;
1507 }
1508
1509 /* File flags are not inherited via accept() unlike another OSes. */
1510
1511 fd_install(newfd, newfile);
1512 err = newfd;
1513
1514 out_put:
1515 fput_light(sock->file, fput_needed);
1516 out:
1517 return err;
1518 out_fd:
1519 fput(newfile);
1520 put_unused_fd(newfd);
1521 goto out_put;
1522 }
1523
1524 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1525 int __user *, upeer_addrlen)
1526 {
1527 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1528 }
1529
1530 /*
1531 * Attempt to connect to a socket with the server address. The address
1532 * is in user space so we verify it is OK and move it to kernel space.
1533 *
1534 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1535 * break bindings
1536 *
1537 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1538 * other SEQPACKET protocols that take time to connect() as it doesn't
1539 * include the -EINPROGRESS status for such sockets.
1540 */
1541
1542 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1543 int, addrlen)
1544 {
1545 struct socket *sock;
1546 struct sockaddr_storage address;
1547 int err, fput_needed;
1548
1549 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1550 if (!sock)
1551 goto out;
1552 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1553 if (err < 0)
1554 goto out_put;
1555
1556 err =
1557 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1558 if (err)
1559 goto out_put;
1560
1561 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1562 sock->file->f_flags);
1563 out_put:
1564 fput_light(sock->file, fput_needed);
1565 out:
1566 return err;
1567 }
1568
1569 /*
1570 * Get the local address ('name') of a socket object. Move the obtained
1571 * name to user space.
1572 */
1573
1574 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1575 int __user *, usockaddr_len)
1576 {
1577 struct socket *sock;
1578 struct sockaddr_storage address;
1579 int len, err, fput_needed;
1580
1581 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1582 if (!sock)
1583 goto out;
1584
1585 err = security_socket_getsockname(sock);
1586 if (err)
1587 goto out_put;
1588
1589 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1590 if (err)
1591 goto out_put;
1592 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1593
1594 out_put:
1595 fput_light(sock->file, fput_needed);
1596 out:
1597 return err;
1598 }
1599
1600 /*
1601 * Get the remote address ('name') of a socket object. Move the obtained
1602 * name to user space.
1603 */
1604
1605 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1606 int __user *, usockaddr_len)
1607 {
1608 struct socket *sock;
1609 struct sockaddr_storage address;
1610 int len, err, fput_needed;
1611
1612 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1613 if (sock != NULL) {
1614 err = security_socket_getpeername(sock);
1615 if (err) {
1616 fput_light(sock->file, fput_needed);
1617 return err;
1618 }
1619
1620 err =
1621 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1622 1);
1623 if (!err)
1624 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1625 usockaddr_len);
1626 fput_light(sock->file, fput_needed);
1627 }
1628 return err;
1629 }
1630
1631 /*
1632 * Send a datagram to a given address. We move the address into kernel
1633 * space and check the user space data area is readable before invoking
1634 * the protocol.
1635 */
1636
1637 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1638 unsigned, flags, struct sockaddr __user *, addr,
1639 int, addr_len)
1640 {
1641 struct socket *sock;
1642 struct sockaddr_storage address;
1643 int err;
1644 struct msghdr msg;
1645 struct iovec iov;
1646 int fput_needed;
1647
1648 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1649 if (!sock)
1650 goto out;
1651
1652 iov.iov_base = buff;
1653 iov.iov_len = len;
1654 msg.msg_name = NULL;
1655 msg.msg_iov = &iov;
1656 msg.msg_iovlen = 1;
1657 msg.msg_control = NULL;
1658 msg.msg_controllen = 0;
1659 msg.msg_namelen = 0;
1660 if (addr) {
1661 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1662 if (err < 0)
1663 goto out_put;
1664 msg.msg_name = (struct sockaddr *)&address;
1665 msg.msg_namelen = addr_len;
1666 }
1667 if (sock->file->f_flags & O_NONBLOCK)
1668 flags |= MSG_DONTWAIT;
1669 msg.msg_flags = flags;
1670 err = sock_sendmsg(sock, &msg, len);
1671
1672 out_put:
1673 fput_light(sock->file, fput_needed);
1674 out:
1675 return err;
1676 }
1677
1678 /*
1679 * Send a datagram down a socket.
1680 */
1681
1682 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1683 unsigned, flags)
1684 {
1685 return sys_sendto(fd, buff, len, flags, NULL, 0);
1686 }
1687
1688 /*
1689 * Receive a frame from the socket and optionally record the address of the
1690 * sender. We verify the buffers are writable and if needed move the
1691 * sender address from kernel to user space.
1692 */
1693
1694 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1695 unsigned, flags, struct sockaddr __user *, addr,
1696 int __user *, addr_len)
1697 {
1698 struct socket *sock;
1699 struct iovec iov;
1700 struct msghdr msg;
1701 struct sockaddr_storage address;
1702 int err, err2;
1703 int fput_needed;
1704
1705 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1706 if (!sock)
1707 goto out;
1708
1709 msg.msg_control = NULL;
1710 msg.msg_controllen = 0;
1711 msg.msg_iovlen = 1;
1712 msg.msg_iov = &iov;
1713 iov.iov_len = size;
1714 iov.iov_base = ubuf;
1715 msg.msg_name = (struct sockaddr *)&address;
1716 msg.msg_namelen = sizeof(address);
1717 if (sock->file->f_flags & O_NONBLOCK)
1718 flags |= MSG_DONTWAIT;
1719 err = sock_recvmsg(sock, &msg, size, flags);
1720
1721 if (err >= 0 && addr != NULL) {
1722 err2 = move_addr_to_user((struct sockaddr *)&address,
1723 msg.msg_namelen, addr, addr_len);
1724 if (err2 < 0)
1725 err = err2;
1726 }
1727
1728 fput_light(sock->file, fput_needed);
1729 out:
1730 return err;
1731 }
1732
1733 /*
1734 * Receive a datagram from a socket.
1735 */
1736
1737 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1738 unsigned flags)
1739 {
1740 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1741 }
1742
1743 /*
1744 * Set a socket option. Because we don't know the option lengths we have
1745 * to pass the user mode parameter for the protocols to sort out.
1746 */
1747
1748 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1749 char __user *, optval, int, optlen)
1750 {
1751 int err, fput_needed;
1752 struct socket *sock;
1753
1754 if (optlen < 0)
1755 return -EINVAL;
1756
1757 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1758 if (sock != NULL) {
1759 err = security_socket_setsockopt(sock, level, optname);
1760 if (err)
1761 goto out_put;
1762
1763 if (level == SOL_SOCKET)
1764 err =
1765 sock_setsockopt(sock, level, optname, optval,
1766 optlen);
1767 else
1768 err =
1769 sock->ops->setsockopt(sock, level, optname, optval,
1770 optlen);
1771 out_put:
1772 fput_light(sock->file, fput_needed);
1773 }
1774 return err;
1775 }
1776
1777 /*
1778 * Get a socket option. Because we don't know the option lengths we have
1779 * to pass a user mode parameter for the protocols to sort out.
1780 */
1781
1782 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1783 char __user *, optval, int __user *, optlen)
1784 {
1785 int err, fput_needed;
1786 struct socket *sock;
1787
1788 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1789 if (sock != NULL) {
1790 err = security_socket_getsockopt(sock, level, optname);
1791 if (err)
1792 goto out_put;
1793
1794 if (level == SOL_SOCKET)
1795 err =
1796 sock_getsockopt(sock, level, optname, optval,
1797 optlen);
1798 else
1799 err =
1800 sock->ops->getsockopt(sock, level, optname, optval,
1801 optlen);
1802 out_put:
1803 fput_light(sock->file, fput_needed);
1804 }
1805 return err;
1806 }
1807
1808 /*
1809 * Shutdown a socket.
1810 */
1811
1812 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1813 {
1814 int err, fput_needed;
1815 struct socket *sock;
1816
1817 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1818 if (sock != NULL) {
1819 err = security_socket_shutdown(sock, how);
1820 if (!err)
1821 err = sock->ops->shutdown(sock, how);
1822 fput_light(sock->file, fput_needed);
1823 }
1824 return err;
1825 }
1826
1827 /* A couple of helpful macros for getting the address of the 32/64 bit
1828 * fields which are the same type (int / unsigned) on our platforms.
1829 */
1830 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1831 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1832 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1833
1834 /*
1835 * BSD sendmsg interface
1836 */
1837
1838 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1839 {
1840 struct compat_msghdr __user *msg_compat =
1841 (struct compat_msghdr __user *)msg;
1842 struct socket *sock;
1843 struct sockaddr_storage address;
1844 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1845 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1846 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1847 /* 20 is size of ipv6_pktinfo */
1848 unsigned char *ctl_buf = ctl;
1849 struct msghdr msg_sys;
1850 int err, ctl_len, iov_size, total_len;
1851 int fput_needed;
1852
1853 err = -EFAULT;
1854 if (MSG_CMSG_COMPAT & flags) {
1855 if (get_compat_msghdr(&msg_sys, msg_compat))
1856 return -EFAULT;
1857 }
1858 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1859 return -EFAULT;
1860
1861 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1862 if (!sock)
1863 goto out;
1864
1865 /* do not move before msg_sys is valid */
1866 err = -EMSGSIZE;
1867 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1868 goto out_put;
1869
1870 /* Check whether to allocate the iovec area */
1871 err = -ENOMEM;
1872 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1873 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1874 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1875 if (!iov)
1876 goto out_put;
1877 }
1878
1879 /* This will also move the address data into kernel space */
1880 if (MSG_CMSG_COMPAT & flags) {
1881 err = verify_compat_iovec(&msg_sys, iov,
1882 (struct sockaddr *)&address,
1883 VERIFY_READ);
1884 } else
1885 err = verify_iovec(&msg_sys, iov,
1886 (struct sockaddr *)&address,
1887 VERIFY_READ);
1888 if (err < 0)
1889 goto out_freeiov;
1890 total_len = err;
1891
1892 err = -ENOBUFS;
1893
1894 if (msg_sys.msg_controllen > INT_MAX)
1895 goto out_freeiov;
1896 ctl_len = msg_sys.msg_controllen;
1897 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1898 err =
1899 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1900 sizeof(ctl));
1901 if (err)
1902 goto out_freeiov;
1903 ctl_buf = msg_sys.msg_control;
1904 ctl_len = msg_sys.msg_controllen;
1905 } else if (ctl_len) {
1906 if (ctl_len > sizeof(ctl)) {
1907 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1908 if (ctl_buf == NULL)
1909 goto out_freeiov;
1910 }
1911 err = -EFAULT;
1912 /*
1913 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1914 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1915 * checking falls down on this.
1916 */
1917 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1918 ctl_len))
1919 goto out_freectl;
1920 msg_sys.msg_control = ctl_buf;
1921 }
1922 msg_sys.msg_flags = flags;
1923
1924 if (sock->file->f_flags & O_NONBLOCK)
1925 msg_sys.msg_flags |= MSG_DONTWAIT;
1926 err = sock_sendmsg(sock, &msg_sys, total_len);
1927
1928 out_freectl:
1929 if (ctl_buf != ctl)
1930 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1931 out_freeiov:
1932 if (iov != iovstack)
1933 sock_kfree_s(sock->sk, iov, iov_size);
1934 out_put:
1935 fput_light(sock->file, fput_needed);
1936 out:
1937 return err;
1938 }
1939
1940 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1941 struct msghdr *msg_sys, unsigned flags, int nosec)
1942 {
1943 struct compat_msghdr __user *msg_compat =
1944 (struct compat_msghdr __user *)msg;
1945 struct iovec iovstack[UIO_FASTIOV];
1946 struct iovec *iov = iovstack;
1947 unsigned long cmsg_ptr;
1948 int err, iov_size, total_len, len;
1949
1950 /* kernel mode address */
1951 struct sockaddr_storage addr;
1952
1953 /* user mode address pointers */
1954 struct sockaddr __user *uaddr;
1955 int __user *uaddr_len;
1956
1957 if (MSG_CMSG_COMPAT & flags) {
1958 if (get_compat_msghdr(msg_sys, msg_compat))
1959 return -EFAULT;
1960 }
1961 else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1962 return -EFAULT;
1963
1964 err = -EMSGSIZE;
1965 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1966 goto out;
1967
1968 /* Check whether to allocate the iovec area */
1969 err = -ENOMEM;
1970 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1971 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1972 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1973 if (!iov)
1974 goto out;
1975 }
1976
1977 /*
1978 * Save the user-mode address (verify_iovec will change the
1979 * kernel msghdr to use the kernel address space)
1980 */
1981
1982 uaddr = (__force void __user *)msg_sys->msg_name;
1983 uaddr_len = COMPAT_NAMELEN(msg);
1984 if (MSG_CMSG_COMPAT & flags) {
1985 err = verify_compat_iovec(msg_sys, iov,
1986 (struct sockaddr *)&addr,
1987 VERIFY_WRITE);
1988 } else
1989 err = verify_iovec(msg_sys, iov,
1990 (struct sockaddr *)&addr,
1991 VERIFY_WRITE);
1992 if (err < 0)
1993 goto out_freeiov;
1994 total_len = err;
1995
1996 cmsg_ptr = (unsigned long)msg_sys->msg_control;
1997 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
1998
1999 if (sock->file->f_flags & O_NONBLOCK)
2000 flags |= MSG_DONTWAIT;
2001 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2002 total_len, flags);
2003 if (err < 0)
2004 goto out_freeiov;
2005 len = err;
2006
2007 if (uaddr != NULL) {
2008 err = move_addr_to_user((struct sockaddr *)&addr,
2009 msg_sys->msg_namelen, uaddr,
2010 uaddr_len);
2011 if (err < 0)
2012 goto out_freeiov;
2013 }
2014 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2015 COMPAT_FLAGS(msg));
2016 if (err)
2017 goto out_freeiov;
2018 if (MSG_CMSG_COMPAT & flags)
2019 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2020 &msg_compat->msg_controllen);
2021 else
2022 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2023 &msg->msg_controllen);
2024 if (err)
2025 goto out_freeiov;
2026 err = len;
2027
2028 out_freeiov:
2029 if (iov != iovstack)
2030 sock_kfree_s(sock->sk, iov, iov_size);
2031 out:
2032 return err;
2033 }
2034
2035 /*
2036 * BSD recvmsg interface
2037 */
2038
2039 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2040 unsigned int, flags)
2041 {
2042 int fput_needed, err;
2043 struct msghdr msg_sys;
2044 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2045
2046 if (!sock)
2047 goto out;
2048
2049 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2050
2051 fput_light(sock->file, fput_needed);
2052 out:
2053 return err;
2054 }
2055
2056 /*
2057 * Linux recvmmsg interface
2058 */
2059
2060 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2061 unsigned int flags, struct timespec *timeout)
2062 {
2063 int fput_needed, err, datagrams;
2064 struct socket *sock;
2065 struct mmsghdr __user *entry;
2066 struct compat_mmsghdr __user *compat_entry;
2067 struct msghdr msg_sys;
2068 struct timespec end_time;
2069
2070 if (timeout &&
2071 poll_select_set_timeout(&end_time, timeout->tv_sec,
2072 timeout->tv_nsec))
2073 return -EINVAL;
2074
2075 datagrams = 0;
2076
2077 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2078 if (!sock)
2079 return err;
2080
2081 err = sock_error(sock->sk);
2082 if (err)
2083 goto out_put;
2084
2085 entry = mmsg;
2086 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2087
2088 while (datagrams < vlen) {
2089 /*
2090 * No need to ask LSM for more than the first datagram.
2091 */
2092 if (MSG_CMSG_COMPAT & flags) {
2093 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2094 &msg_sys, flags, datagrams);
2095 if (err < 0)
2096 break;
2097 err = __put_user(err, &compat_entry->msg_len);
2098 ++compat_entry;
2099 } else {
2100 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2101 &msg_sys, flags, datagrams);
2102 if (err < 0)
2103 break;
2104 err = put_user(err, &entry->msg_len);
2105 ++entry;
2106 }
2107
2108 if (err)
2109 break;
2110 ++datagrams;
2111
2112 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2113 if (flags & MSG_WAITFORONE)
2114 flags |= MSG_DONTWAIT;
2115
2116 if (timeout) {
2117 ktime_get_ts(timeout);
2118 *timeout = timespec_sub(end_time, *timeout);
2119 if (timeout->tv_sec < 0) {
2120 timeout->tv_sec = timeout->tv_nsec = 0;
2121 break;
2122 }
2123
2124 /* Timeout, return less than vlen datagrams */
2125 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2126 break;
2127 }
2128
2129 /* Out of band data, return right away */
2130 if (msg_sys.msg_flags & MSG_OOB)
2131 break;
2132 }
2133
2134 out_put:
2135 fput_light(sock->file, fput_needed);
2136
2137 if (err == 0)
2138 return datagrams;
2139
2140 if (datagrams != 0) {
2141 /*
2142 * We may return less entries than requested (vlen) if the
2143 * sock is non block and there aren't enough datagrams...
2144 */
2145 if (err != -EAGAIN) {
2146 /*
2147 * ... or if recvmsg returns an error after we
2148 * received some datagrams, where we record the
2149 * error to return on the next call or if the
2150 * app asks about it using getsockopt(SO_ERROR).
2151 */
2152 sock->sk->sk_err = -err;
2153 }
2154
2155 return datagrams;
2156 }
2157
2158 return err;
2159 }
2160
2161 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2162 unsigned int, vlen, unsigned int, flags,
2163 struct timespec __user *, timeout)
2164 {
2165 int datagrams;
2166 struct timespec timeout_sys;
2167
2168 if (!timeout)
2169 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2170
2171 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2172 return -EFAULT;
2173
2174 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2175
2176 if (datagrams > 0 &&
2177 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2178 datagrams = -EFAULT;
2179
2180 return datagrams;
2181 }
2182
2183 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2184 /* Argument list sizes for sys_socketcall */
2185 #define AL(x) ((x) * sizeof(unsigned long))
2186 static const unsigned char nargs[20] = {
2187 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2188 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2189 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2190 AL(4),AL(5)
2191 };
2192
2193 #undef AL
2194
2195 /*
2196 * System call vectors.
2197 *
2198 * Argument checking cleaned up. Saved 20% in size.
2199 * This function doesn't need to set the kernel lock because
2200 * it is set by the callees.
2201 */
2202
2203 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2204 {
2205 unsigned long a[6];
2206 unsigned long a0, a1;
2207 int err;
2208 unsigned int len;
2209
2210 if (call < 1 || call > SYS_RECVMMSG)
2211 return -EINVAL;
2212
2213 len = nargs[call];
2214 if (len > sizeof(a))
2215 return -EINVAL;
2216
2217 /* copy_from_user should be SMP safe. */
2218 if (copy_from_user(a, args, len))
2219 return -EFAULT;
2220
2221 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2222
2223 a0 = a[0];
2224 a1 = a[1];
2225
2226 switch (call) {
2227 case SYS_SOCKET:
2228 err = sys_socket(a0, a1, a[2]);
2229 break;
2230 case SYS_BIND:
2231 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2232 break;
2233 case SYS_CONNECT:
2234 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2235 break;
2236 case SYS_LISTEN:
2237 err = sys_listen(a0, a1);
2238 break;
2239 case SYS_ACCEPT:
2240 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2241 (int __user *)a[2], 0);
2242 break;
2243 case SYS_GETSOCKNAME:
2244 err =
2245 sys_getsockname(a0, (struct sockaddr __user *)a1,
2246 (int __user *)a[2]);
2247 break;
2248 case SYS_GETPEERNAME:
2249 err =
2250 sys_getpeername(a0, (struct sockaddr __user *)a1,
2251 (int __user *)a[2]);
2252 break;
2253 case SYS_SOCKETPAIR:
2254 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2255 break;
2256 case SYS_SEND:
2257 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2258 break;
2259 case SYS_SENDTO:
2260 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2261 (struct sockaddr __user *)a[4], a[5]);
2262 break;
2263 case SYS_RECV:
2264 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2265 break;
2266 case SYS_RECVFROM:
2267 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2268 (struct sockaddr __user *)a[4],
2269 (int __user *)a[5]);
2270 break;
2271 case SYS_SHUTDOWN:
2272 err = sys_shutdown(a0, a1);
2273 break;
2274 case SYS_SETSOCKOPT:
2275 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2276 break;
2277 case SYS_GETSOCKOPT:
2278 err =
2279 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2280 (int __user *)a[4]);
2281 break;
2282 case SYS_SENDMSG:
2283 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2284 break;
2285 case SYS_RECVMSG:
2286 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2287 break;
2288 case SYS_RECVMMSG:
2289 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2290 (struct timespec __user *)a[4]);
2291 break;
2292 case SYS_ACCEPT4:
2293 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2294 (int __user *)a[2], a[3]);
2295 break;
2296 default:
2297 err = -EINVAL;
2298 break;
2299 }
2300 return err;
2301 }
2302
2303 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2304
2305 /**
2306 * sock_register - add a socket protocol handler
2307 * @ops: description of protocol
2308 *
2309 * This function is called by a protocol handler that wants to
2310 * advertise its address family, and have it linked into the
2311 * socket interface. The value ops->family coresponds to the
2312 * socket system call protocol family.
2313 */
2314 int sock_register(const struct net_proto_family *ops)
2315 {
2316 int err;
2317
2318 if (ops->family >= NPROTO) {
2319 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2320 NPROTO);
2321 return -ENOBUFS;
2322 }
2323
2324 spin_lock(&net_family_lock);
2325 if (net_families[ops->family])
2326 err = -EEXIST;
2327 else {
2328 net_families[ops->family] = ops;
2329 err = 0;
2330 }
2331 spin_unlock(&net_family_lock);
2332
2333 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2334 return err;
2335 }
2336
2337 /**
2338 * sock_unregister - remove a protocol handler
2339 * @family: protocol family to remove
2340 *
2341 * This function is called by a protocol handler that wants to
2342 * remove its address family, and have it unlinked from the
2343 * new socket creation.
2344 *
2345 * If protocol handler is a module, then it can use module reference
2346 * counts to protect against new references. If protocol handler is not
2347 * a module then it needs to provide its own protection in
2348 * the ops->create routine.
2349 */
2350 void sock_unregister(int family)
2351 {
2352 BUG_ON(family < 0 || family >= NPROTO);
2353
2354 spin_lock(&net_family_lock);
2355 net_families[family] = NULL;
2356 spin_unlock(&net_family_lock);
2357
2358 synchronize_rcu();
2359
2360 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2361 }
2362
2363 static int __init sock_init(void)
2364 {
2365 /*
2366 * Initialize sock SLAB cache.
2367 */
2368
2369 sk_init();
2370
2371 /*
2372 * Initialize skbuff SLAB cache
2373 */
2374 skb_init();
2375
2376 /*
2377 * Initialize the protocols module.
2378 */
2379
2380 init_inodecache();
2381 register_filesystem(&sock_fs_type);
2382 sock_mnt = kern_mount(&sock_fs_type);
2383
2384 /* The real protocol initialization is performed in later initcalls.
2385 */
2386
2387 #ifdef CONFIG_NETFILTER
2388 netfilter_init();
2389 #endif
2390
2391 return 0;
2392 }
2393
2394 core_initcall(sock_init); /* early initcall */
2395
2396 #ifdef CONFIG_PROC_FS
2397 void socket_seq_show(struct seq_file *seq)
2398 {
2399 int cpu;
2400 int counter = 0;
2401
2402 for_each_possible_cpu(cpu)
2403 counter += per_cpu(sockets_in_use, cpu);
2404
2405 /* It can be negative, by the way. 8) */
2406 if (counter < 0)
2407 counter = 0;
2408
2409 seq_printf(seq, "sockets: used %d\n", counter);
2410 }
2411 #endif /* CONFIG_PROC_FS */
2412
2413 #ifdef CONFIG_COMPAT
2414 static int do_siocgstamp(struct net *net, struct socket *sock,
2415 unsigned int cmd, struct compat_timeval __user *up)
2416 {
2417 mm_segment_t old_fs = get_fs();
2418 struct timeval ktv;
2419 int err;
2420
2421 set_fs(KERNEL_DS);
2422 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2423 set_fs(old_fs);
2424 if (!err) {
2425 err = put_user(ktv.tv_sec, &up->tv_sec);
2426 err |= __put_user(ktv.tv_usec, &up->tv_usec);
2427 }
2428 return err;
2429 }
2430
2431 static int do_siocgstampns(struct net *net, struct socket *sock,
2432 unsigned int cmd, struct compat_timespec __user *up)
2433 {
2434 mm_segment_t old_fs = get_fs();
2435 struct timespec kts;
2436 int err;
2437
2438 set_fs(KERNEL_DS);
2439 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2440 set_fs(old_fs);
2441 if (!err) {
2442 err = put_user(kts.tv_sec, &up->tv_sec);
2443 err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2444 }
2445 return err;
2446 }
2447
2448 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2449 {
2450 struct ifreq __user *uifr;
2451 int err;
2452
2453 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2454 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2455 return -EFAULT;
2456
2457 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2458 if (err)
2459 return err;
2460
2461 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2462 return -EFAULT;
2463
2464 return 0;
2465 }
2466
2467 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2468 {
2469 struct compat_ifconf ifc32;
2470 struct ifconf ifc;
2471 struct ifconf __user *uifc;
2472 struct compat_ifreq __user *ifr32;
2473 struct ifreq __user *ifr;
2474 unsigned int i, j;
2475 int err;
2476
2477 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2478 return -EFAULT;
2479
2480 if (ifc32.ifcbuf == 0) {
2481 ifc32.ifc_len = 0;
2482 ifc.ifc_len = 0;
2483 ifc.ifc_req = NULL;
2484 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2485 } else {
2486 size_t len =((ifc32.ifc_len / sizeof (struct compat_ifreq)) + 1) *
2487 sizeof (struct ifreq);
2488 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2489 ifc.ifc_len = len;
2490 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2491 ifr32 = compat_ptr(ifc32.ifcbuf);
2492 for (i = 0; i < ifc32.ifc_len; i += sizeof (struct compat_ifreq)) {
2493 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2494 return -EFAULT;
2495 ifr++;
2496 ifr32++;
2497 }
2498 }
2499 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2500 return -EFAULT;
2501
2502 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2503 if (err)
2504 return err;
2505
2506 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2507 return -EFAULT;
2508
2509 ifr = ifc.ifc_req;
2510 ifr32 = compat_ptr(ifc32.ifcbuf);
2511 for (i = 0, j = 0;
2512 i + sizeof (struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2513 i += sizeof (struct compat_ifreq), j += sizeof (struct ifreq)) {
2514 if (copy_in_user(ifr32, ifr, sizeof (struct compat_ifreq)))
2515 return -EFAULT;
2516 ifr32++;
2517 ifr++;
2518 }
2519
2520 if (ifc32.ifcbuf == 0) {
2521 /* Translate from 64-bit structure multiple to
2522 * a 32-bit one.
2523 */
2524 i = ifc.ifc_len;
2525 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2526 ifc32.ifc_len = i;
2527 } else {
2528 ifc32.ifc_len = i;
2529 }
2530 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2531 return -EFAULT;
2532
2533 return 0;
2534 }
2535
2536 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2537 {
2538 struct ifreq __user *ifr;
2539 u32 data;
2540 void __user *datap;
2541
2542 ifr = compat_alloc_user_space(sizeof(*ifr));
2543
2544 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2545 return -EFAULT;
2546
2547 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2548 return -EFAULT;
2549
2550 datap = compat_ptr(data);
2551 if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2552 return -EFAULT;
2553
2554 return dev_ioctl(net, SIOCETHTOOL, ifr);
2555 }
2556
2557 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2558 {
2559 void __user *uptr;
2560 compat_uptr_t uptr32;
2561 struct ifreq __user *uifr;
2562
2563 uifr = compat_alloc_user_space(sizeof (*uifr));
2564 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2565 return -EFAULT;
2566
2567 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2568 return -EFAULT;
2569
2570 uptr = compat_ptr(uptr32);
2571
2572 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2573 return -EFAULT;
2574
2575 return dev_ioctl(net, SIOCWANDEV, uifr);
2576 }
2577
2578 static int bond_ioctl(struct net *net, unsigned int cmd,
2579 struct compat_ifreq __user *ifr32)
2580 {
2581 struct ifreq kifr;
2582 struct ifreq __user *uifr;
2583 mm_segment_t old_fs;
2584 int err;
2585 u32 data;
2586 void __user *datap;
2587
2588 switch (cmd) {
2589 case SIOCBONDENSLAVE:
2590 case SIOCBONDRELEASE:
2591 case SIOCBONDSETHWADDR:
2592 case SIOCBONDCHANGEACTIVE:
2593 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2594 return -EFAULT;
2595
2596 old_fs = get_fs();
2597 set_fs (KERNEL_DS);
2598 err = dev_ioctl(net, cmd, &kifr);
2599 set_fs (old_fs);
2600
2601 return err;
2602 case SIOCBONDSLAVEINFOQUERY:
2603 case SIOCBONDINFOQUERY:
2604 uifr = compat_alloc_user_space(sizeof(*uifr));
2605 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2606 return -EFAULT;
2607
2608 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2609 return -EFAULT;
2610
2611 datap = compat_ptr(data);
2612 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2613 return -EFAULT;
2614
2615 return dev_ioctl(net, cmd, uifr);
2616 default:
2617 return -EINVAL;
2618 };
2619 }
2620
2621 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2622 struct compat_ifreq __user *u_ifreq32)
2623 {
2624 struct ifreq __user *u_ifreq64;
2625 char tmp_buf[IFNAMSIZ];
2626 void __user *data64;
2627 u32 data32;
2628
2629 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2630 IFNAMSIZ))
2631 return -EFAULT;
2632 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2633 return -EFAULT;
2634 data64 = compat_ptr(data32);
2635
2636 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2637
2638 /* Don't check these user accesses, just let that get trapped
2639 * in the ioctl handler instead.
2640 */
2641 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2642 IFNAMSIZ))
2643 return -EFAULT;
2644 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2645 return -EFAULT;
2646
2647 return dev_ioctl(net, cmd, u_ifreq64);
2648 }
2649
2650 static int dev_ifsioc(struct net *net, struct socket *sock,
2651 unsigned int cmd, struct compat_ifreq __user *uifr32)
2652 {
2653 struct ifreq __user *uifr;
2654 int err;
2655
2656 uifr = compat_alloc_user_space(sizeof(*uifr));
2657 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2658 return -EFAULT;
2659
2660 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2661
2662 if (!err) {
2663 switch (cmd) {
2664 case SIOCGIFFLAGS:
2665 case SIOCGIFMETRIC:
2666 case SIOCGIFMTU:
2667 case SIOCGIFMEM:
2668 case SIOCGIFHWADDR:
2669 case SIOCGIFINDEX:
2670 case SIOCGIFADDR:
2671 case SIOCGIFBRDADDR:
2672 case SIOCGIFDSTADDR:
2673 case SIOCGIFNETMASK:
2674 case SIOCGIFPFLAGS:
2675 case SIOCGIFTXQLEN:
2676 case SIOCGMIIPHY:
2677 case SIOCGMIIREG:
2678 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2679 err = -EFAULT;
2680 break;
2681 }
2682 }
2683 return err;
2684 }
2685
2686 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2687 struct compat_ifreq __user *uifr32)
2688 {
2689 struct ifreq ifr;
2690 struct compat_ifmap __user *uifmap32;
2691 mm_segment_t old_fs;
2692 int err;
2693
2694 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2695 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2696 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2697 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2698 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2699 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2700 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2701 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2702 if (err)
2703 return -EFAULT;
2704
2705 old_fs = get_fs();
2706 set_fs (KERNEL_DS);
2707 err = dev_ioctl(net, cmd, (void __user *)&ifr);
2708 set_fs (old_fs);
2709
2710 if (cmd == SIOCGIFMAP && !err) {
2711 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2712 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2713 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2714 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2715 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2716 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2717 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2718 if (err)
2719 err = -EFAULT;
2720 }
2721 return err;
2722 }
2723
2724 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2725 {
2726 void __user *uptr;
2727 compat_uptr_t uptr32;
2728 struct ifreq __user *uifr;
2729
2730 uifr = compat_alloc_user_space(sizeof (*uifr));
2731 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2732 return -EFAULT;
2733
2734 if (get_user(uptr32, &uifr32->ifr_data))
2735 return -EFAULT;
2736
2737 uptr = compat_ptr(uptr32);
2738
2739 if (put_user(uptr, &uifr->ifr_data))
2740 return -EFAULT;
2741
2742 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2743 }
2744
2745 struct rtentry32 {
2746 u32 rt_pad1;
2747 struct sockaddr rt_dst; /* target address */
2748 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2749 struct sockaddr rt_genmask; /* target network mask (IP) */
2750 unsigned short rt_flags;
2751 short rt_pad2;
2752 u32 rt_pad3;
2753 unsigned char rt_tos;
2754 unsigned char rt_class;
2755 short rt_pad4;
2756 short rt_metric; /* +1 for binary compatibility! */
2757 /* char * */ u32 rt_dev; /* forcing the device at add */
2758 u32 rt_mtu; /* per route MTU/Window */
2759 u32 rt_window; /* Window clamping */
2760 unsigned short rt_irtt; /* Initial RTT */
2761 };
2762
2763 struct in6_rtmsg32 {
2764 struct in6_addr rtmsg_dst;
2765 struct in6_addr rtmsg_src;
2766 struct in6_addr rtmsg_gateway;
2767 u32 rtmsg_type;
2768 u16 rtmsg_dst_len;
2769 u16 rtmsg_src_len;
2770 u32 rtmsg_metric;
2771 u32 rtmsg_info;
2772 u32 rtmsg_flags;
2773 s32 rtmsg_ifindex;
2774 };
2775
2776 static int routing_ioctl(struct net *net, struct socket *sock,
2777 unsigned int cmd, void __user *argp)
2778 {
2779 int ret;
2780 void *r = NULL;
2781 struct in6_rtmsg r6;
2782 struct rtentry r4;
2783 char devname[16];
2784 u32 rtdev;
2785 mm_segment_t old_fs = get_fs();
2786
2787 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2788 struct in6_rtmsg32 __user *ur6 = argp;
2789 ret = copy_from_user (&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2790 3 * sizeof(struct in6_addr));
2791 ret |= __get_user (r6.rtmsg_type, &(ur6->rtmsg_type));
2792 ret |= __get_user (r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2793 ret |= __get_user (r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2794 ret |= __get_user (r6.rtmsg_metric, &(ur6->rtmsg_metric));
2795 ret |= __get_user (r6.rtmsg_info, &(ur6->rtmsg_info));
2796 ret |= __get_user (r6.rtmsg_flags, &(ur6->rtmsg_flags));
2797 ret |= __get_user (r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2798
2799 r = (void *) &r6;
2800 } else { /* ipv4 */
2801 struct rtentry32 __user *ur4 = argp;
2802 ret = copy_from_user (&r4.rt_dst, &(ur4->rt_dst),
2803 3 * sizeof(struct sockaddr));
2804 ret |= __get_user (r4.rt_flags, &(ur4->rt_flags));
2805 ret |= __get_user (r4.rt_metric, &(ur4->rt_metric));
2806 ret |= __get_user (r4.rt_mtu, &(ur4->rt_mtu));
2807 ret |= __get_user (r4.rt_window, &(ur4->rt_window));
2808 ret |= __get_user (r4.rt_irtt, &(ur4->rt_irtt));
2809 ret |= __get_user (rtdev, &(ur4->rt_dev));
2810 if (rtdev) {
2811 ret |= copy_from_user (devname, compat_ptr(rtdev), 15);
2812 r4.rt_dev = devname; devname[15] = 0;
2813 } else
2814 r4.rt_dev = NULL;
2815
2816 r = (void *) &r4;
2817 }
2818
2819 if (ret) {
2820 ret = -EFAULT;
2821 goto out;
2822 }
2823
2824 set_fs (KERNEL_DS);
2825 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2826 set_fs (old_fs);
2827
2828 out:
2829 return ret;
2830 }
2831
2832 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2833 * for some operations; this forces use of the newer bridge-utils that
2834 * use compatiable ioctls
2835 */
2836 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2837 {
2838 compat_ulong_t tmp;
2839
2840 if (get_user(tmp, argp))
2841 return -EFAULT;
2842 if (tmp == BRCTL_GET_VERSION)
2843 return BRCTL_VERSION + 1;
2844 return -EINVAL;
2845 }
2846
2847 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2848 unsigned int cmd, unsigned long arg)
2849 {
2850 void __user *argp = compat_ptr(arg);
2851 struct sock *sk = sock->sk;
2852 struct net *net = sock_net(sk);
2853
2854 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2855 return siocdevprivate_ioctl(net, cmd, argp);
2856
2857 switch (cmd) {
2858 case SIOCSIFBR:
2859 case SIOCGIFBR:
2860 return old_bridge_ioctl(argp);
2861 case SIOCGIFNAME:
2862 return dev_ifname32(net, argp);
2863 case SIOCGIFCONF:
2864 return dev_ifconf(net, argp);
2865 case SIOCETHTOOL:
2866 return ethtool_ioctl(net, argp);
2867 case SIOCWANDEV:
2868 return compat_siocwandev(net, argp);
2869 case SIOCGIFMAP:
2870 case SIOCSIFMAP:
2871 return compat_sioc_ifmap(net, cmd, argp);
2872 case SIOCBONDENSLAVE:
2873 case SIOCBONDRELEASE:
2874 case SIOCBONDSETHWADDR:
2875 case SIOCBONDSLAVEINFOQUERY:
2876 case SIOCBONDINFOQUERY:
2877 case SIOCBONDCHANGEACTIVE:
2878 return bond_ioctl(net, cmd, argp);
2879 case SIOCADDRT:
2880 case SIOCDELRT:
2881 return routing_ioctl(net, sock, cmd, argp);
2882 case SIOCGSTAMP:
2883 return do_siocgstamp(net, sock, cmd, argp);
2884 case SIOCGSTAMPNS:
2885 return do_siocgstampns(net, sock, cmd, argp);
2886 case SIOCSHWTSTAMP:
2887 return compat_siocshwtstamp(net, argp);
2888
2889 case FIOSETOWN:
2890 case SIOCSPGRP:
2891 case FIOGETOWN:
2892 case SIOCGPGRP:
2893 case SIOCBRADDBR:
2894 case SIOCBRDELBR:
2895 case SIOCGIFVLAN:
2896 case SIOCSIFVLAN:
2897 case SIOCADDDLCI:
2898 case SIOCDELDLCI:
2899 return sock_ioctl(file, cmd, arg);
2900
2901 case SIOCGIFFLAGS:
2902 case SIOCSIFFLAGS:
2903 case SIOCGIFMETRIC:
2904 case SIOCSIFMETRIC:
2905 case SIOCGIFMTU:
2906 case SIOCSIFMTU:
2907 case SIOCGIFMEM:
2908 case SIOCSIFMEM:
2909 case SIOCGIFHWADDR:
2910 case SIOCSIFHWADDR:
2911 case SIOCADDMULTI:
2912 case SIOCDELMULTI:
2913 case SIOCGIFINDEX:
2914 case SIOCGIFADDR:
2915 case SIOCSIFADDR:
2916 case SIOCSIFHWBROADCAST:
2917 case SIOCDIFADDR:
2918 case SIOCGIFBRDADDR:
2919 case SIOCSIFBRDADDR:
2920 case SIOCGIFDSTADDR:
2921 case SIOCSIFDSTADDR:
2922 case SIOCGIFNETMASK:
2923 case SIOCSIFNETMASK:
2924 case SIOCSIFPFLAGS:
2925 case SIOCGIFPFLAGS:
2926 case SIOCGIFTXQLEN:
2927 case SIOCSIFTXQLEN:
2928 case SIOCBRADDIF:
2929 case SIOCBRDELIF:
2930 case SIOCSIFNAME:
2931 case SIOCGMIIPHY:
2932 case SIOCGMIIREG:
2933 case SIOCSMIIREG:
2934 return dev_ifsioc(net, sock, cmd, argp);
2935
2936 case SIOCSARP:
2937 case SIOCGARP:
2938 case SIOCDARP:
2939 case SIOCATMARK:
2940 return sock_do_ioctl(net, sock, cmd, arg);
2941 }
2942
2943 /* Prevent warning from compat_sys_ioctl, these always
2944 * result in -EINVAL in the native case anyway. */
2945 switch (cmd) {
2946 case SIOCRTMSG:
2947 case SIOCGIFCOUNT:
2948 case SIOCSRARP:
2949 case SIOCGRARP:
2950 case SIOCDRARP:
2951 case SIOCSIFLINK:
2952 case SIOCGIFSLAVE:
2953 case SIOCSIFSLAVE:
2954 return -EINVAL;
2955 }
2956
2957 return -ENOIOCTLCMD;
2958 }
2959
2960 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2961 unsigned long arg)
2962 {
2963 struct socket *sock = file->private_data;
2964 int ret = -ENOIOCTLCMD;
2965 struct sock *sk;
2966 struct net *net;
2967
2968 sk = sock->sk;
2969 net = sock_net(sk);
2970
2971 if (sock->ops->compat_ioctl)
2972 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2973
2974 if (ret == -ENOIOCTLCMD &&
2975 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2976 ret = compat_wext_handle_ioctl(net, cmd, arg);
2977
2978 if (ret == -ENOIOCTLCMD)
2979 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
2980
2981 return ret;
2982 }
2983 #endif
2984
2985 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2986 {
2987 return sock->ops->bind(sock, addr, addrlen);
2988 }
2989
2990 int kernel_listen(struct socket *sock, int backlog)
2991 {
2992 return sock->ops->listen(sock, backlog);
2993 }
2994
2995 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2996 {
2997 struct sock *sk = sock->sk;
2998 int err;
2999
3000 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3001 newsock);
3002 if (err < 0)
3003 goto done;
3004
3005 err = sock->ops->accept(sock, *newsock, flags);
3006 if (err < 0) {
3007 sock_release(*newsock);
3008 *newsock = NULL;
3009 goto done;
3010 }
3011
3012 (*newsock)->ops = sock->ops;
3013 __module_get((*newsock)->ops->owner);
3014
3015 done:
3016 return err;
3017 }
3018
3019 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3020 int flags)
3021 {
3022 return sock->ops->connect(sock, addr, addrlen, flags);
3023 }
3024
3025 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3026 int *addrlen)
3027 {
3028 return sock->ops->getname(sock, addr, addrlen, 0);
3029 }
3030
3031 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3032 int *addrlen)
3033 {
3034 return sock->ops->getname(sock, addr, addrlen, 1);
3035 }
3036
3037 int kernel_getsockopt(struct socket *sock, int level, int optname,
3038 char *optval, int *optlen)
3039 {
3040 mm_segment_t oldfs = get_fs();
3041 int err;
3042
3043 set_fs(KERNEL_DS);
3044 if (level == SOL_SOCKET)
3045 err = sock_getsockopt(sock, level, optname, optval, optlen);
3046 else
3047 err = sock->ops->getsockopt(sock, level, optname, optval,
3048 optlen);
3049 set_fs(oldfs);
3050 return err;
3051 }
3052
3053 int kernel_setsockopt(struct socket *sock, int level, int optname,
3054 char *optval, unsigned int optlen)
3055 {
3056 mm_segment_t oldfs = get_fs();
3057 int err;
3058
3059 set_fs(KERNEL_DS);
3060 if (level == SOL_SOCKET)
3061 err = sock_setsockopt(sock, level, optname, optval, optlen);
3062 else
3063 err = sock->ops->setsockopt(sock, level, optname, optval,
3064 optlen);
3065 set_fs(oldfs);
3066 return err;
3067 }
3068
3069 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3070 size_t size, int flags)
3071 {
3072 if (sock->ops->sendpage)
3073 return sock->ops->sendpage(sock, page, offset, size, flags);
3074
3075 return sock_no_sendpage(sock, page, offset, size, flags);
3076 }
3077
3078 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3079 {
3080 mm_segment_t oldfs = get_fs();
3081 int err;
3082
3083 set_fs(KERNEL_DS);
3084 err = sock->ops->ioctl(sock, cmd, arg);
3085 set_fs(oldfs);
3086
3087 return err;
3088 }
3089
3090 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3091 {
3092 return sock->ops->shutdown(sock, how);
3093 }
3094
3095 EXPORT_SYMBOL(sock_create);
3096 EXPORT_SYMBOL(sock_create_kern);
3097 EXPORT_SYMBOL(sock_create_lite);
3098 EXPORT_SYMBOL(sock_map_fd);
3099 EXPORT_SYMBOL(sock_recvmsg);
3100 EXPORT_SYMBOL(sock_register);
3101 EXPORT_SYMBOL(sock_release);
3102 EXPORT_SYMBOL(sock_sendmsg);
3103 EXPORT_SYMBOL(sock_unregister);
3104 EXPORT_SYMBOL(sock_wake_async);
3105 EXPORT_SYMBOL(sockfd_lookup);
3106 EXPORT_SYMBOL(kernel_sendmsg);
3107 EXPORT_SYMBOL(kernel_recvmsg);
3108 EXPORT_SYMBOL(kernel_bind);
3109 EXPORT_SYMBOL(kernel_listen);
3110 EXPORT_SYMBOL(kernel_accept);
3111 EXPORT_SYMBOL(kernel_connect);
3112 EXPORT_SYMBOL(kernel_getsockname);
3113 EXPORT_SYMBOL(kernel_getpeername);
3114 EXPORT_SYMBOL(kernel_getsockopt);
3115 EXPORT_SYMBOL(kernel_setsockopt);
3116 EXPORT_SYMBOL(kernel_sendpage);
3117 EXPORT_SYMBOL(kernel_sock_ioctl);
3118 EXPORT_SYMBOL(kernel_sock_shutdown);