]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/socket.c
flag parameters: socket and socketpair
[mirror_ubuntu-artful-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88
89 #include <asm/uaccess.h>
90 #include <asm/unistd.h>
91
92 #include <net/compat.h>
93 #include <net/wext.h>
94
95 #include <net/sock.h>
96 #include <linux/netfilter.h>
97
98 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
99 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
100 unsigned long nr_segs, loff_t pos);
101 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
102 unsigned long nr_segs, loff_t pos);
103 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
104
105 static int sock_close(struct inode *inode, struct file *file);
106 static unsigned int sock_poll(struct file *file,
107 struct poll_table_struct *wait);
108 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
109 #ifdef CONFIG_COMPAT
110 static long compat_sock_ioctl(struct file *file,
111 unsigned int cmd, unsigned long arg);
112 #endif
113 static int sock_fasync(int fd, struct file *filp, int on);
114 static ssize_t sock_sendpage(struct file *file, struct page *page,
115 int offset, size_t size, loff_t *ppos, int more);
116 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
117 struct pipe_inode_info *pipe, size_t len,
118 unsigned int flags);
119
120 /*
121 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
122 * in the operation structures but are done directly via the socketcall() multiplexor.
123 */
124
125 static const struct file_operations socket_file_ops = {
126 .owner = THIS_MODULE,
127 .llseek = no_llseek,
128 .aio_read = sock_aio_read,
129 .aio_write = sock_aio_write,
130 .poll = sock_poll,
131 .unlocked_ioctl = sock_ioctl,
132 #ifdef CONFIG_COMPAT
133 .compat_ioctl = compat_sock_ioctl,
134 #endif
135 .mmap = sock_mmap,
136 .open = sock_no_open, /* special open code to disallow open via /proc */
137 .release = sock_close,
138 .fasync = sock_fasync,
139 .sendpage = sock_sendpage,
140 .splice_write = generic_splice_sendpage,
141 .splice_read = sock_splice_read,
142 };
143
144 /*
145 * The protocol list. Each protocol is registered in here.
146 */
147
148 static DEFINE_SPINLOCK(net_family_lock);
149 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
150
151 /*
152 * Statistics counters of the socket lists
153 */
154
155 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
156
157 /*
158 * Support routines.
159 * Move socket addresses back and forth across the kernel/user
160 * divide and look after the messy bits.
161 */
162
163 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
164 16 for IP, 16 for IPX,
165 24 for IPv6,
166 about 80 for AX.25
167 must be at least one bigger than
168 the AF_UNIX size (see net/unix/af_unix.c
169 :unix_mkname()).
170 */
171
172 /**
173 * move_addr_to_kernel - copy a socket address into kernel space
174 * @uaddr: Address in user space
175 * @kaddr: Address in kernel space
176 * @ulen: Length in user space
177 *
178 * The address is copied into kernel space. If the provided address is
179 * too long an error code of -EINVAL is returned. If the copy gives
180 * invalid addresses -EFAULT is returned. On a success 0 is returned.
181 */
182
183 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
184 {
185 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
186 return -EINVAL;
187 if (ulen == 0)
188 return 0;
189 if (copy_from_user(kaddr, uaddr, ulen))
190 return -EFAULT;
191 return audit_sockaddr(ulen, kaddr);
192 }
193
194 /**
195 * move_addr_to_user - copy an address to user space
196 * @kaddr: kernel space address
197 * @klen: length of address in kernel
198 * @uaddr: user space address
199 * @ulen: pointer to user length field
200 *
201 * The value pointed to by ulen on entry is the buffer length available.
202 * This is overwritten with the buffer space used. -EINVAL is returned
203 * if an overlong buffer is specified or a negative buffer size. -EFAULT
204 * is returned if either the buffer or the length field are not
205 * accessible.
206 * After copying the data up to the limit the user specifies, the true
207 * length of the data is written over the length limit the user
208 * specified. Zero is returned for a success.
209 */
210
211 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
212 int __user *ulen)
213 {
214 int err;
215 int len;
216
217 err = get_user(len, ulen);
218 if (err)
219 return err;
220 if (len > klen)
221 len = klen;
222 if (len < 0 || len > sizeof(struct sockaddr_storage))
223 return -EINVAL;
224 if (len) {
225 if (audit_sockaddr(klen, kaddr))
226 return -ENOMEM;
227 if (copy_to_user(uaddr, kaddr, len))
228 return -EFAULT;
229 }
230 /*
231 * "fromlen shall refer to the value before truncation.."
232 * 1003.1g
233 */
234 return __put_user(klen, ulen);
235 }
236
237 #define SOCKFS_MAGIC 0x534F434B
238
239 static struct kmem_cache *sock_inode_cachep __read_mostly;
240
241 static struct inode *sock_alloc_inode(struct super_block *sb)
242 {
243 struct socket_alloc *ei;
244
245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 if (!ei)
247 return NULL;
248 init_waitqueue_head(&ei->socket.wait);
249
250 ei->socket.fasync_list = NULL;
251 ei->socket.state = SS_UNCONNECTED;
252 ei->socket.flags = 0;
253 ei->socket.ops = NULL;
254 ei->socket.sk = NULL;
255 ei->socket.file = NULL;
256
257 return &ei->vfs_inode;
258 }
259
260 static void sock_destroy_inode(struct inode *inode)
261 {
262 kmem_cache_free(sock_inode_cachep,
263 container_of(inode, struct socket_alloc, vfs_inode));
264 }
265
266 static void init_once(struct kmem_cache *cachep, void *foo)
267 {
268 struct socket_alloc *ei = (struct socket_alloc *)foo;
269
270 inode_init_once(&ei->vfs_inode);
271 }
272
273 static int init_inodecache(void)
274 {
275 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
276 sizeof(struct socket_alloc),
277 0,
278 (SLAB_HWCACHE_ALIGN |
279 SLAB_RECLAIM_ACCOUNT |
280 SLAB_MEM_SPREAD),
281 init_once);
282 if (sock_inode_cachep == NULL)
283 return -ENOMEM;
284 return 0;
285 }
286
287 static struct super_operations sockfs_ops = {
288 .alloc_inode = sock_alloc_inode,
289 .destroy_inode =sock_destroy_inode,
290 .statfs = simple_statfs,
291 };
292
293 static int sockfs_get_sb(struct file_system_type *fs_type,
294 int flags, const char *dev_name, void *data,
295 struct vfsmount *mnt)
296 {
297 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
298 mnt);
299 }
300
301 static struct vfsmount *sock_mnt __read_mostly;
302
303 static struct file_system_type sock_fs_type = {
304 .name = "sockfs",
305 .get_sb = sockfs_get_sb,
306 .kill_sb = kill_anon_super,
307 };
308
309 static int sockfs_delete_dentry(struct dentry *dentry)
310 {
311 /*
312 * At creation time, we pretended this dentry was hashed
313 * (by clearing DCACHE_UNHASHED bit in d_flags)
314 * At delete time, we restore the truth : not hashed.
315 * (so that dput() can proceed correctly)
316 */
317 dentry->d_flags |= DCACHE_UNHASHED;
318 return 0;
319 }
320
321 /*
322 * sockfs_dname() is called from d_path().
323 */
324 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
325 {
326 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
327 dentry->d_inode->i_ino);
328 }
329
330 static struct dentry_operations sockfs_dentry_operations = {
331 .d_delete = sockfs_delete_dentry,
332 .d_dname = sockfs_dname,
333 };
334
335 /*
336 * Obtains the first available file descriptor and sets it up for use.
337 *
338 * These functions create file structures and maps them to fd space
339 * of the current process. On success it returns file descriptor
340 * and file struct implicitly stored in sock->file.
341 * Note that another thread may close file descriptor before we return
342 * from this function. We use the fact that now we do not refer
343 * to socket after mapping. If one day we will need it, this
344 * function will increment ref. count on file by 1.
345 *
346 * In any case returned fd MAY BE not valid!
347 * This race condition is unavoidable
348 * with shared fd spaces, we cannot solve it inside kernel,
349 * but we take care of internal coherence yet.
350 */
351
352 static int sock_alloc_fd(struct file **filep, int flags)
353 {
354 int fd;
355
356 fd = get_unused_fd_flags(flags);
357 if (likely(fd >= 0)) {
358 struct file *file = get_empty_filp();
359
360 *filep = file;
361 if (unlikely(!file)) {
362 put_unused_fd(fd);
363 return -ENFILE;
364 }
365 } else
366 *filep = NULL;
367 return fd;
368 }
369
370 static int sock_attach_fd(struct socket *sock, struct file *file)
371 {
372 struct dentry *dentry;
373 struct qstr name = { .name = "" };
374
375 dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
376 if (unlikely(!dentry))
377 return -ENOMEM;
378
379 dentry->d_op = &sockfs_dentry_operations;
380 /*
381 * We dont want to push this dentry into global dentry hash table.
382 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
383 * This permits a working /proc/$pid/fd/XXX on sockets
384 */
385 dentry->d_flags &= ~DCACHE_UNHASHED;
386 d_instantiate(dentry, SOCK_INODE(sock));
387
388 sock->file = file;
389 init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
390 &socket_file_ops);
391 SOCK_INODE(sock)->i_fop = &socket_file_ops;
392 file->f_flags = O_RDWR;
393 file->f_pos = 0;
394 file->private_data = sock;
395
396 return 0;
397 }
398
399 int sock_map_fd(struct socket *sock, int flags)
400 {
401 struct file *newfile;
402 int fd = sock_alloc_fd(&newfile, flags);
403
404 if (likely(fd >= 0)) {
405 int err = sock_attach_fd(sock, newfile);
406
407 if (unlikely(err < 0)) {
408 put_filp(newfile);
409 put_unused_fd(fd);
410 return err;
411 }
412 fd_install(fd, newfile);
413 }
414 return fd;
415 }
416
417 static struct socket *sock_from_file(struct file *file, int *err)
418 {
419 if (file->f_op == &socket_file_ops)
420 return file->private_data; /* set in sock_map_fd */
421
422 *err = -ENOTSOCK;
423 return NULL;
424 }
425
426 /**
427 * sockfd_lookup - Go from a file number to its socket slot
428 * @fd: file handle
429 * @err: pointer to an error code return
430 *
431 * The file handle passed in is locked and the socket it is bound
432 * too is returned. If an error occurs the err pointer is overwritten
433 * with a negative errno code and NULL is returned. The function checks
434 * for both invalid handles and passing a handle which is not a socket.
435 *
436 * On a success the socket object pointer is returned.
437 */
438
439 struct socket *sockfd_lookup(int fd, int *err)
440 {
441 struct file *file;
442 struct socket *sock;
443
444 file = fget(fd);
445 if (!file) {
446 *err = -EBADF;
447 return NULL;
448 }
449
450 sock = sock_from_file(file, err);
451 if (!sock)
452 fput(file);
453 return sock;
454 }
455
456 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
457 {
458 struct file *file;
459 struct socket *sock;
460
461 *err = -EBADF;
462 file = fget_light(fd, fput_needed);
463 if (file) {
464 sock = sock_from_file(file, err);
465 if (sock)
466 return sock;
467 fput_light(file, *fput_needed);
468 }
469 return NULL;
470 }
471
472 /**
473 * sock_alloc - allocate a socket
474 *
475 * Allocate a new inode and socket object. The two are bound together
476 * and initialised. The socket is then returned. If we are out of inodes
477 * NULL is returned.
478 */
479
480 static struct socket *sock_alloc(void)
481 {
482 struct inode *inode;
483 struct socket *sock;
484
485 inode = new_inode(sock_mnt->mnt_sb);
486 if (!inode)
487 return NULL;
488
489 sock = SOCKET_I(inode);
490
491 inode->i_mode = S_IFSOCK | S_IRWXUGO;
492 inode->i_uid = current->fsuid;
493 inode->i_gid = current->fsgid;
494
495 get_cpu_var(sockets_in_use)++;
496 put_cpu_var(sockets_in_use);
497 return sock;
498 }
499
500 /*
501 * In theory you can't get an open on this inode, but /proc provides
502 * a back door. Remember to keep it shut otherwise you'll let the
503 * creepy crawlies in.
504 */
505
506 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
507 {
508 return -ENXIO;
509 }
510
511 const struct file_operations bad_sock_fops = {
512 .owner = THIS_MODULE,
513 .open = sock_no_open,
514 };
515
516 /**
517 * sock_release - close a socket
518 * @sock: socket to close
519 *
520 * The socket is released from the protocol stack if it has a release
521 * callback, and the inode is then released if the socket is bound to
522 * an inode not a file.
523 */
524
525 void sock_release(struct socket *sock)
526 {
527 if (sock->ops) {
528 struct module *owner = sock->ops->owner;
529
530 sock->ops->release(sock);
531 sock->ops = NULL;
532 module_put(owner);
533 }
534
535 if (sock->fasync_list)
536 printk(KERN_ERR "sock_release: fasync list not empty!\n");
537
538 get_cpu_var(sockets_in_use)--;
539 put_cpu_var(sockets_in_use);
540 if (!sock->file) {
541 iput(SOCK_INODE(sock));
542 return;
543 }
544 sock->file = NULL;
545 }
546
547 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
548 struct msghdr *msg, size_t size)
549 {
550 struct sock_iocb *si = kiocb_to_siocb(iocb);
551 int err;
552
553 si->sock = sock;
554 si->scm = NULL;
555 si->msg = msg;
556 si->size = size;
557
558 err = security_socket_sendmsg(sock, msg, size);
559 if (err)
560 return err;
561
562 return sock->ops->sendmsg(iocb, sock, msg, size);
563 }
564
565 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
566 {
567 struct kiocb iocb;
568 struct sock_iocb siocb;
569 int ret;
570
571 init_sync_kiocb(&iocb, NULL);
572 iocb.private = &siocb;
573 ret = __sock_sendmsg(&iocb, sock, msg, size);
574 if (-EIOCBQUEUED == ret)
575 ret = wait_on_sync_kiocb(&iocb);
576 return ret;
577 }
578
579 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
580 struct kvec *vec, size_t num, size_t size)
581 {
582 mm_segment_t oldfs = get_fs();
583 int result;
584
585 set_fs(KERNEL_DS);
586 /*
587 * the following is safe, since for compiler definitions of kvec and
588 * iovec are identical, yielding the same in-core layout and alignment
589 */
590 msg->msg_iov = (struct iovec *)vec;
591 msg->msg_iovlen = num;
592 result = sock_sendmsg(sock, msg, size);
593 set_fs(oldfs);
594 return result;
595 }
596
597 /*
598 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
599 */
600 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
601 struct sk_buff *skb)
602 {
603 ktime_t kt = skb->tstamp;
604
605 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
606 struct timeval tv;
607 /* Race occurred between timestamp enabling and packet
608 receiving. Fill in the current time for now. */
609 if (kt.tv64 == 0)
610 kt = ktime_get_real();
611 skb->tstamp = kt;
612 tv = ktime_to_timeval(kt);
613 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
614 } else {
615 struct timespec ts;
616 /* Race occurred between timestamp enabling and packet
617 receiving. Fill in the current time for now. */
618 if (kt.tv64 == 0)
619 kt = ktime_get_real();
620 skb->tstamp = kt;
621 ts = ktime_to_timespec(kt);
622 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
623 }
624 }
625
626 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
627
628 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
629 struct msghdr *msg, size_t size, int flags)
630 {
631 int err;
632 struct sock_iocb *si = kiocb_to_siocb(iocb);
633
634 si->sock = sock;
635 si->scm = NULL;
636 si->msg = msg;
637 si->size = size;
638 si->flags = flags;
639
640 err = security_socket_recvmsg(sock, msg, size, flags);
641 if (err)
642 return err;
643
644 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
645 }
646
647 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
648 size_t size, int flags)
649 {
650 struct kiocb iocb;
651 struct sock_iocb siocb;
652 int ret;
653
654 init_sync_kiocb(&iocb, NULL);
655 iocb.private = &siocb;
656 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
657 if (-EIOCBQUEUED == ret)
658 ret = wait_on_sync_kiocb(&iocb);
659 return ret;
660 }
661
662 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
663 struct kvec *vec, size_t num, size_t size, int flags)
664 {
665 mm_segment_t oldfs = get_fs();
666 int result;
667
668 set_fs(KERNEL_DS);
669 /*
670 * the following is safe, since for compiler definitions of kvec and
671 * iovec are identical, yielding the same in-core layout and alignment
672 */
673 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
674 result = sock_recvmsg(sock, msg, size, flags);
675 set_fs(oldfs);
676 return result;
677 }
678
679 static void sock_aio_dtor(struct kiocb *iocb)
680 {
681 kfree(iocb->private);
682 }
683
684 static ssize_t sock_sendpage(struct file *file, struct page *page,
685 int offset, size_t size, loff_t *ppos, int more)
686 {
687 struct socket *sock;
688 int flags;
689
690 sock = file->private_data;
691
692 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
693 if (more)
694 flags |= MSG_MORE;
695
696 return sock->ops->sendpage(sock, page, offset, size, flags);
697 }
698
699 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
700 struct pipe_inode_info *pipe, size_t len,
701 unsigned int flags)
702 {
703 struct socket *sock = file->private_data;
704
705 if (unlikely(!sock->ops->splice_read))
706 return -EINVAL;
707
708 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
709 }
710
711 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
712 struct sock_iocb *siocb)
713 {
714 if (!is_sync_kiocb(iocb)) {
715 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
716 if (!siocb)
717 return NULL;
718 iocb->ki_dtor = sock_aio_dtor;
719 }
720
721 siocb->kiocb = iocb;
722 iocb->private = siocb;
723 return siocb;
724 }
725
726 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
727 struct file *file, const struct iovec *iov,
728 unsigned long nr_segs)
729 {
730 struct socket *sock = file->private_data;
731 size_t size = 0;
732 int i;
733
734 for (i = 0; i < nr_segs; i++)
735 size += iov[i].iov_len;
736
737 msg->msg_name = NULL;
738 msg->msg_namelen = 0;
739 msg->msg_control = NULL;
740 msg->msg_controllen = 0;
741 msg->msg_iov = (struct iovec *)iov;
742 msg->msg_iovlen = nr_segs;
743 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
744
745 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
746 }
747
748 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
749 unsigned long nr_segs, loff_t pos)
750 {
751 struct sock_iocb siocb, *x;
752
753 if (pos != 0)
754 return -ESPIPE;
755
756 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
757 return 0;
758
759
760 x = alloc_sock_iocb(iocb, &siocb);
761 if (!x)
762 return -ENOMEM;
763 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
764 }
765
766 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
767 struct file *file, const struct iovec *iov,
768 unsigned long nr_segs)
769 {
770 struct socket *sock = file->private_data;
771 size_t size = 0;
772 int i;
773
774 for (i = 0; i < nr_segs; i++)
775 size += iov[i].iov_len;
776
777 msg->msg_name = NULL;
778 msg->msg_namelen = 0;
779 msg->msg_control = NULL;
780 msg->msg_controllen = 0;
781 msg->msg_iov = (struct iovec *)iov;
782 msg->msg_iovlen = nr_segs;
783 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
784 if (sock->type == SOCK_SEQPACKET)
785 msg->msg_flags |= MSG_EOR;
786
787 return __sock_sendmsg(iocb, sock, msg, size);
788 }
789
790 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
791 unsigned long nr_segs, loff_t pos)
792 {
793 struct sock_iocb siocb, *x;
794
795 if (pos != 0)
796 return -ESPIPE;
797
798 x = alloc_sock_iocb(iocb, &siocb);
799 if (!x)
800 return -ENOMEM;
801
802 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
803 }
804
805 /*
806 * Atomic setting of ioctl hooks to avoid race
807 * with module unload.
808 */
809
810 static DEFINE_MUTEX(br_ioctl_mutex);
811 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
812
813 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
814 {
815 mutex_lock(&br_ioctl_mutex);
816 br_ioctl_hook = hook;
817 mutex_unlock(&br_ioctl_mutex);
818 }
819
820 EXPORT_SYMBOL(brioctl_set);
821
822 static DEFINE_MUTEX(vlan_ioctl_mutex);
823 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
824
825 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
826 {
827 mutex_lock(&vlan_ioctl_mutex);
828 vlan_ioctl_hook = hook;
829 mutex_unlock(&vlan_ioctl_mutex);
830 }
831
832 EXPORT_SYMBOL(vlan_ioctl_set);
833
834 static DEFINE_MUTEX(dlci_ioctl_mutex);
835 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
836
837 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
838 {
839 mutex_lock(&dlci_ioctl_mutex);
840 dlci_ioctl_hook = hook;
841 mutex_unlock(&dlci_ioctl_mutex);
842 }
843
844 EXPORT_SYMBOL(dlci_ioctl_set);
845
846 /*
847 * With an ioctl, arg may well be a user mode pointer, but we don't know
848 * what to do with it - that's up to the protocol still.
849 */
850
851 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
852 {
853 struct socket *sock;
854 struct sock *sk;
855 void __user *argp = (void __user *)arg;
856 int pid, err;
857 struct net *net;
858
859 sock = file->private_data;
860 sk = sock->sk;
861 net = sock_net(sk);
862 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
863 err = dev_ioctl(net, cmd, argp);
864 } else
865 #ifdef CONFIG_WIRELESS_EXT
866 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
867 err = dev_ioctl(net, cmd, argp);
868 } else
869 #endif /* CONFIG_WIRELESS_EXT */
870 switch (cmd) {
871 case FIOSETOWN:
872 case SIOCSPGRP:
873 err = -EFAULT;
874 if (get_user(pid, (int __user *)argp))
875 break;
876 err = f_setown(sock->file, pid, 1);
877 break;
878 case FIOGETOWN:
879 case SIOCGPGRP:
880 err = put_user(f_getown(sock->file),
881 (int __user *)argp);
882 break;
883 case SIOCGIFBR:
884 case SIOCSIFBR:
885 case SIOCBRADDBR:
886 case SIOCBRDELBR:
887 err = -ENOPKG;
888 if (!br_ioctl_hook)
889 request_module("bridge");
890
891 mutex_lock(&br_ioctl_mutex);
892 if (br_ioctl_hook)
893 err = br_ioctl_hook(net, cmd, argp);
894 mutex_unlock(&br_ioctl_mutex);
895 break;
896 case SIOCGIFVLAN:
897 case SIOCSIFVLAN:
898 err = -ENOPKG;
899 if (!vlan_ioctl_hook)
900 request_module("8021q");
901
902 mutex_lock(&vlan_ioctl_mutex);
903 if (vlan_ioctl_hook)
904 err = vlan_ioctl_hook(net, argp);
905 mutex_unlock(&vlan_ioctl_mutex);
906 break;
907 case SIOCADDDLCI:
908 case SIOCDELDLCI:
909 err = -ENOPKG;
910 if (!dlci_ioctl_hook)
911 request_module("dlci");
912
913 mutex_lock(&dlci_ioctl_mutex);
914 if (dlci_ioctl_hook)
915 err = dlci_ioctl_hook(cmd, argp);
916 mutex_unlock(&dlci_ioctl_mutex);
917 break;
918 default:
919 err = sock->ops->ioctl(sock, cmd, arg);
920
921 /*
922 * If this ioctl is unknown try to hand it down
923 * to the NIC driver.
924 */
925 if (err == -ENOIOCTLCMD)
926 err = dev_ioctl(net, cmd, argp);
927 break;
928 }
929 return err;
930 }
931
932 int sock_create_lite(int family, int type, int protocol, struct socket **res)
933 {
934 int err;
935 struct socket *sock = NULL;
936
937 err = security_socket_create(family, type, protocol, 1);
938 if (err)
939 goto out;
940
941 sock = sock_alloc();
942 if (!sock) {
943 err = -ENOMEM;
944 goto out;
945 }
946
947 sock->type = type;
948 err = security_socket_post_create(sock, family, type, protocol, 1);
949 if (err)
950 goto out_release;
951
952 out:
953 *res = sock;
954 return err;
955 out_release:
956 sock_release(sock);
957 sock = NULL;
958 goto out;
959 }
960
961 /* No kernel lock held - perfect */
962 static unsigned int sock_poll(struct file *file, poll_table *wait)
963 {
964 struct socket *sock;
965
966 /*
967 * We can't return errors to poll, so it's either yes or no.
968 */
969 sock = file->private_data;
970 return sock->ops->poll(file, sock, wait);
971 }
972
973 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
974 {
975 struct socket *sock = file->private_data;
976
977 return sock->ops->mmap(file, sock, vma);
978 }
979
980 static int sock_close(struct inode *inode, struct file *filp)
981 {
982 /*
983 * It was possible the inode is NULL we were
984 * closing an unfinished socket.
985 */
986
987 if (!inode) {
988 printk(KERN_DEBUG "sock_close: NULL inode\n");
989 return 0;
990 }
991 sock_fasync(-1, filp, 0);
992 sock_release(SOCKET_I(inode));
993 return 0;
994 }
995
996 /*
997 * Update the socket async list
998 *
999 * Fasync_list locking strategy.
1000 *
1001 * 1. fasync_list is modified only under process context socket lock
1002 * i.e. under semaphore.
1003 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1004 * or under socket lock.
1005 * 3. fasync_list can be used from softirq context, so that
1006 * modification under socket lock have to be enhanced with
1007 * write_lock_bh(&sk->sk_callback_lock).
1008 * --ANK (990710)
1009 */
1010
1011 static int sock_fasync(int fd, struct file *filp, int on)
1012 {
1013 struct fasync_struct *fa, *fna = NULL, **prev;
1014 struct socket *sock;
1015 struct sock *sk;
1016
1017 if (on) {
1018 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1019 if (fna == NULL)
1020 return -ENOMEM;
1021 }
1022
1023 sock = filp->private_data;
1024
1025 sk = sock->sk;
1026 if (sk == NULL) {
1027 kfree(fna);
1028 return -EINVAL;
1029 }
1030
1031 lock_sock(sk);
1032
1033 prev = &(sock->fasync_list);
1034
1035 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1036 if (fa->fa_file == filp)
1037 break;
1038
1039 if (on) {
1040 if (fa != NULL) {
1041 write_lock_bh(&sk->sk_callback_lock);
1042 fa->fa_fd = fd;
1043 write_unlock_bh(&sk->sk_callback_lock);
1044
1045 kfree(fna);
1046 goto out;
1047 }
1048 fna->fa_file = filp;
1049 fna->fa_fd = fd;
1050 fna->magic = FASYNC_MAGIC;
1051 fna->fa_next = sock->fasync_list;
1052 write_lock_bh(&sk->sk_callback_lock);
1053 sock->fasync_list = fna;
1054 write_unlock_bh(&sk->sk_callback_lock);
1055 } else {
1056 if (fa != NULL) {
1057 write_lock_bh(&sk->sk_callback_lock);
1058 *prev = fa->fa_next;
1059 write_unlock_bh(&sk->sk_callback_lock);
1060 kfree(fa);
1061 }
1062 }
1063
1064 out:
1065 release_sock(sock->sk);
1066 return 0;
1067 }
1068
1069 /* This function may be called only under socket lock or callback_lock */
1070
1071 int sock_wake_async(struct socket *sock, int how, int band)
1072 {
1073 if (!sock || !sock->fasync_list)
1074 return -1;
1075 switch (how) {
1076 case SOCK_WAKE_WAITD:
1077 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1078 break;
1079 goto call_kill;
1080 case SOCK_WAKE_SPACE:
1081 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1082 break;
1083 /* fall through */
1084 case SOCK_WAKE_IO:
1085 call_kill:
1086 __kill_fasync(sock->fasync_list, SIGIO, band);
1087 break;
1088 case SOCK_WAKE_URG:
1089 __kill_fasync(sock->fasync_list, SIGURG, band);
1090 }
1091 return 0;
1092 }
1093
1094 static int __sock_create(struct net *net, int family, int type, int protocol,
1095 struct socket **res, int kern)
1096 {
1097 int err;
1098 struct socket *sock;
1099 const struct net_proto_family *pf;
1100
1101 /*
1102 * Check protocol is in range
1103 */
1104 if (family < 0 || family >= NPROTO)
1105 return -EAFNOSUPPORT;
1106 if (type < 0 || type >= SOCK_MAX)
1107 return -EINVAL;
1108
1109 /* Compatibility.
1110
1111 This uglymoron is moved from INET layer to here to avoid
1112 deadlock in module load.
1113 */
1114 if (family == PF_INET && type == SOCK_PACKET) {
1115 static int warned;
1116 if (!warned) {
1117 warned = 1;
1118 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1119 current->comm);
1120 }
1121 family = PF_PACKET;
1122 }
1123
1124 err = security_socket_create(family, type, protocol, kern);
1125 if (err)
1126 return err;
1127
1128 /*
1129 * Allocate the socket and allow the family to set things up. if
1130 * the protocol is 0, the family is instructed to select an appropriate
1131 * default.
1132 */
1133 sock = sock_alloc();
1134 if (!sock) {
1135 if (net_ratelimit())
1136 printk(KERN_WARNING "socket: no more sockets\n");
1137 return -ENFILE; /* Not exactly a match, but its the
1138 closest posix thing */
1139 }
1140
1141 sock->type = type;
1142
1143 #if defined(CONFIG_KMOD)
1144 /* Attempt to load a protocol module if the find failed.
1145 *
1146 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1147 * requested real, full-featured networking support upon configuration.
1148 * Otherwise module support will break!
1149 */
1150 if (net_families[family] == NULL)
1151 request_module("net-pf-%d", family);
1152 #endif
1153
1154 rcu_read_lock();
1155 pf = rcu_dereference(net_families[family]);
1156 err = -EAFNOSUPPORT;
1157 if (!pf)
1158 goto out_release;
1159
1160 /*
1161 * We will call the ->create function, that possibly is in a loadable
1162 * module, so we have to bump that loadable module refcnt first.
1163 */
1164 if (!try_module_get(pf->owner))
1165 goto out_release;
1166
1167 /* Now protected by module ref count */
1168 rcu_read_unlock();
1169
1170 err = pf->create(net, sock, protocol);
1171 if (err < 0)
1172 goto out_module_put;
1173
1174 /*
1175 * Now to bump the refcnt of the [loadable] module that owns this
1176 * socket at sock_release time we decrement its refcnt.
1177 */
1178 if (!try_module_get(sock->ops->owner))
1179 goto out_module_busy;
1180
1181 /*
1182 * Now that we're done with the ->create function, the [loadable]
1183 * module can have its refcnt decremented
1184 */
1185 module_put(pf->owner);
1186 err = security_socket_post_create(sock, family, type, protocol, kern);
1187 if (err)
1188 goto out_sock_release;
1189 *res = sock;
1190
1191 return 0;
1192
1193 out_module_busy:
1194 err = -EAFNOSUPPORT;
1195 out_module_put:
1196 sock->ops = NULL;
1197 module_put(pf->owner);
1198 out_sock_release:
1199 sock_release(sock);
1200 return err;
1201
1202 out_release:
1203 rcu_read_unlock();
1204 goto out_sock_release;
1205 }
1206
1207 int sock_create(int family, int type, int protocol, struct socket **res)
1208 {
1209 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1210 }
1211
1212 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1213 {
1214 return __sock_create(&init_net, family, type, protocol, res, 1);
1215 }
1216
1217 asmlinkage long sys_socket(int family, int type, int protocol)
1218 {
1219 int retval;
1220 struct socket *sock;
1221 int flags;
1222
1223 flags = type & ~SOCK_TYPE_MASK;
1224 if (flags & ~SOCK_CLOEXEC)
1225 return -EINVAL;
1226 type &= SOCK_TYPE_MASK;
1227
1228 retval = sock_create(family, type, protocol, &sock);
1229 if (retval < 0)
1230 goto out;
1231
1232 retval = sock_map_fd(sock, flags & O_CLOEXEC);
1233 if (retval < 0)
1234 goto out_release;
1235
1236 out:
1237 /* It may be already another descriptor 8) Not kernel problem. */
1238 return retval;
1239
1240 out_release:
1241 sock_release(sock);
1242 return retval;
1243 }
1244
1245 /*
1246 * Create a pair of connected sockets.
1247 */
1248
1249 asmlinkage long sys_socketpair(int family, int type, int protocol,
1250 int __user *usockvec)
1251 {
1252 struct socket *sock1, *sock2;
1253 int fd1, fd2, err;
1254 struct file *newfile1, *newfile2;
1255 int flags;
1256
1257 flags = type & ~SOCK_TYPE_MASK;
1258 if (flags & ~SOCK_CLOEXEC)
1259 return -EINVAL;
1260 type &= SOCK_TYPE_MASK;
1261
1262 /*
1263 * Obtain the first socket and check if the underlying protocol
1264 * supports the socketpair call.
1265 */
1266
1267 err = sock_create(family, type, protocol, &sock1);
1268 if (err < 0)
1269 goto out;
1270
1271 err = sock_create(family, type, protocol, &sock2);
1272 if (err < 0)
1273 goto out_release_1;
1274
1275 err = sock1->ops->socketpair(sock1, sock2);
1276 if (err < 0)
1277 goto out_release_both;
1278
1279 fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC);
1280 if (unlikely(fd1 < 0)) {
1281 err = fd1;
1282 goto out_release_both;
1283 }
1284
1285 fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC);
1286 if (unlikely(fd2 < 0)) {
1287 err = fd2;
1288 put_filp(newfile1);
1289 put_unused_fd(fd1);
1290 goto out_release_both;
1291 }
1292
1293 err = sock_attach_fd(sock1, newfile1);
1294 if (unlikely(err < 0)) {
1295 goto out_fd2;
1296 }
1297
1298 err = sock_attach_fd(sock2, newfile2);
1299 if (unlikely(err < 0)) {
1300 fput(newfile1);
1301 goto out_fd1;
1302 }
1303
1304 err = audit_fd_pair(fd1, fd2);
1305 if (err < 0) {
1306 fput(newfile1);
1307 fput(newfile2);
1308 goto out_fd;
1309 }
1310
1311 fd_install(fd1, newfile1);
1312 fd_install(fd2, newfile2);
1313 /* fd1 and fd2 may be already another descriptors.
1314 * Not kernel problem.
1315 */
1316
1317 err = put_user(fd1, &usockvec[0]);
1318 if (!err)
1319 err = put_user(fd2, &usockvec[1]);
1320 if (!err)
1321 return 0;
1322
1323 sys_close(fd2);
1324 sys_close(fd1);
1325 return err;
1326
1327 out_release_both:
1328 sock_release(sock2);
1329 out_release_1:
1330 sock_release(sock1);
1331 out:
1332 return err;
1333
1334 out_fd2:
1335 put_filp(newfile1);
1336 sock_release(sock1);
1337 out_fd1:
1338 put_filp(newfile2);
1339 sock_release(sock2);
1340 out_fd:
1341 put_unused_fd(fd1);
1342 put_unused_fd(fd2);
1343 goto out;
1344 }
1345
1346 /*
1347 * Bind a name to a socket. Nothing much to do here since it's
1348 * the protocol's responsibility to handle the local address.
1349 *
1350 * We move the socket address to kernel space before we call
1351 * the protocol layer (having also checked the address is ok).
1352 */
1353
1354 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1355 {
1356 struct socket *sock;
1357 struct sockaddr_storage address;
1358 int err, fput_needed;
1359
1360 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1361 if (sock) {
1362 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1363 if (err >= 0) {
1364 err = security_socket_bind(sock,
1365 (struct sockaddr *)&address,
1366 addrlen);
1367 if (!err)
1368 err = sock->ops->bind(sock,
1369 (struct sockaddr *)
1370 &address, addrlen);
1371 }
1372 fput_light(sock->file, fput_needed);
1373 }
1374 return err;
1375 }
1376
1377 /*
1378 * Perform a listen. Basically, we allow the protocol to do anything
1379 * necessary for a listen, and if that works, we mark the socket as
1380 * ready for listening.
1381 */
1382
1383 asmlinkage long sys_listen(int fd, int backlog)
1384 {
1385 struct socket *sock;
1386 int err, fput_needed;
1387 int somaxconn;
1388
1389 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1390 if (sock) {
1391 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1392 if ((unsigned)backlog > somaxconn)
1393 backlog = somaxconn;
1394
1395 err = security_socket_listen(sock, backlog);
1396 if (!err)
1397 err = sock->ops->listen(sock, backlog);
1398
1399 fput_light(sock->file, fput_needed);
1400 }
1401 return err;
1402 }
1403
1404 /*
1405 * For accept, we attempt to create a new socket, set up the link
1406 * with the client, wake up the client, then return the new
1407 * connected fd. We collect the address of the connector in kernel
1408 * space and move it to user at the very end. This is unclean because
1409 * we open the socket then return an error.
1410 *
1411 * 1003.1g adds the ability to recvmsg() to query connection pending
1412 * status to recvmsg. We need to add that support in a way thats
1413 * clean when we restucture accept also.
1414 */
1415
1416 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1417 int __user *upeer_addrlen)
1418 {
1419 struct socket *sock, *newsock;
1420 struct file *newfile;
1421 int err, len, newfd, fput_needed;
1422 struct sockaddr_storage address;
1423
1424 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1425 if (!sock)
1426 goto out;
1427
1428 err = -ENFILE;
1429 if (!(newsock = sock_alloc()))
1430 goto out_put;
1431
1432 newsock->type = sock->type;
1433 newsock->ops = sock->ops;
1434
1435 /*
1436 * We don't need try_module_get here, as the listening socket (sock)
1437 * has the protocol module (sock->ops->owner) held.
1438 */
1439 __module_get(newsock->ops->owner);
1440
1441 newfd = sock_alloc_fd(&newfile, 0);
1442 if (unlikely(newfd < 0)) {
1443 err = newfd;
1444 sock_release(newsock);
1445 goto out_put;
1446 }
1447
1448 err = sock_attach_fd(newsock, newfile);
1449 if (err < 0)
1450 goto out_fd_simple;
1451
1452 err = security_socket_accept(sock, newsock);
1453 if (err)
1454 goto out_fd;
1455
1456 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1457 if (err < 0)
1458 goto out_fd;
1459
1460 if (upeer_sockaddr) {
1461 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1462 &len, 2) < 0) {
1463 err = -ECONNABORTED;
1464 goto out_fd;
1465 }
1466 err = move_addr_to_user((struct sockaddr *)&address,
1467 len, upeer_sockaddr, upeer_addrlen);
1468 if (err < 0)
1469 goto out_fd;
1470 }
1471
1472 /* File flags are not inherited via accept() unlike another OSes. */
1473
1474 fd_install(newfd, newfile);
1475 err = newfd;
1476
1477 security_socket_post_accept(sock, newsock);
1478
1479 out_put:
1480 fput_light(sock->file, fput_needed);
1481 out:
1482 return err;
1483 out_fd_simple:
1484 sock_release(newsock);
1485 put_filp(newfile);
1486 put_unused_fd(newfd);
1487 goto out_put;
1488 out_fd:
1489 fput(newfile);
1490 put_unused_fd(newfd);
1491 goto out_put;
1492 }
1493
1494 /*
1495 * Attempt to connect to a socket with the server address. The address
1496 * is in user space so we verify it is OK and move it to kernel space.
1497 *
1498 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1499 * break bindings
1500 *
1501 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1502 * other SEQPACKET protocols that take time to connect() as it doesn't
1503 * include the -EINPROGRESS status for such sockets.
1504 */
1505
1506 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1507 int addrlen)
1508 {
1509 struct socket *sock;
1510 struct sockaddr_storage address;
1511 int err, fput_needed;
1512
1513 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1514 if (!sock)
1515 goto out;
1516 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1517 if (err < 0)
1518 goto out_put;
1519
1520 err =
1521 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1522 if (err)
1523 goto out_put;
1524
1525 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1526 sock->file->f_flags);
1527 out_put:
1528 fput_light(sock->file, fput_needed);
1529 out:
1530 return err;
1531 }
1532
1533 /*
1534 * Get the local address ('name') of a socket object. Move the obtained
1535 * name to user space.
1536 */
1537
1538 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1539 int __user *usockaddr_len)
1540 {
1541 struct socket *sock;
1542 struct sockaddr_storage address;
1543 int len, err, fput_needed;
1544
1545 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1546 if (!sock)
1547 goto out;
1548
1549 err = security_socket_getsockname(sock);
1550 if (err)
1551 goto out_put;
1552
1553 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1554 if (err)
1555 goto out_put;
1556 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1557
1558 out_put:
1559 fput_light(sock->file, fput_needed);
1560 out:
1561 return err;
1562 }
1563
1564 /*
1565 * Get the remote address ('name') of a socket object. Move the obtained
1566 * name to user space.
1567 */
1568
1569 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1570 int __user *usockaddr_len)
1571 {
1572 struct socket *sock;
1573 struct sockaddr_storage address;
1574 int len, err, fput_needed;
1575
1576 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1577 if (sock != NULL) {
1578 err = security_socket_getpeername(sock);
1579 if (err) {
1580 fput_light(sock->file, fput_needed);
1581 return err;
1582 }
1583
1584 err =
1585 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1586 1);
1587 if (!err)
1588 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1589 usockaddr_len);
1590 fput_light(sock->file, fput_needed);
1591 }
1592 return err;
1593 }
1594
1595 /*
1596 * Send a datagram to a given address. We move the address into kernel
1597 * space and check the user space data area is readable before invoking
1598 * the protocol.
1599 */
1600
1601 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1602 unsigned flags, struct sockaddr __user *addr,
1603 int addr_len)
1604 {
1605 struct socket *sock;
1606 struct sockaddr_storage address;
1607 int err;
1608 struct msghdr msg;
1609 struct iovec iov;
1610 int fput_needed;
1611
1612 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1613 if (!sock)
1614 goto out;
1615
1616 iov.iov_base = buff;
1617 iov.iov_len = len;
1618 msg.msg_name = NULL;
1619 msg.msg_iov = &iov;
1620 msg.msg_iovlen = 1;
1621 msg.msg_control = NULL;
1622 msg.msg_controllen = 0;
1623 msg.msg_namelen = 0;
1624 if (addr) {
1625 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1626 if (err < 0)
1627 goto out_put;
1628 msg.msg_name = (struct sockaddr *)&address;
1629 msg.msg_namelen = addr_len;
1630 }
1631 if (sock->file->f_flags & O_NONBLOCK)
1632 flags |= MSG_DONTWAIT;
1633 msg.msg_flags = flags;
1634 err = sock_sendmsg(sock, &msg, len);
1635
1636 out_put:
1637 fput_light(sock->file, fput_needed);
1638 out:
1639 return err;
1640 }
1641
1642 /*
1643 * Send a datagram down a socket.
1644 */
1645
1646 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1647 {
1648 return sys_sendto(fd, buff, len, flags, NULL, 0);
1649 }
1650
1651 /*
1652 * Receive a frame from the socket and optionally record the address of the
1653 * sender. We verify the buffers are writable and if needed move the
1654 * sender address from kernel to user space.
1655 */
1656
1657 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1658 unsigned flags, struct sockaddr __user *addr,
1659 int __user *addr_len)
1660 {
1661 struct socket *sock;
1662 struct iovec iov;
1663 struct msghdr msg;
1664 struct sockaddr_storage address;
1665 int err, err2;
1666 int fput_needed;
1667
1668 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1669 if (!sock)
1670 goto out;
1671
1672 msg.msg_control = NULL;
1673 msg.msg_controllen = 0;
1674 msg.msg_iovlen = 1;
1675 msg.msg_iov = &iov;
1676 iov.iov_len = size;
1677 iov.iov_base = ubuf;
1678 msg.msg_name = (struct sockaddr *)&address;
1679 msg.msg_namelen = sizeof(address);
1680 if (sock->file->f_flags & O_NONBLOCK)
1681 flags |= MSG_DONTWAIT;
1682 err = sock_recvmsg(sock, &msg, size, flags);
1683
1684 if (err >= 0 && addr != NULL) {
1685 err2 = move_addr_to_user((struct sockaddr *)&address,
1686 msg.msg_namelen, addr, addr_len);
1687 if (err2 < 0)
1688 err = err2;
1689 }
1690
1691 fput_light(sock->file, fput_needed);
1692 out:
1693 return err;
1694 }
1695
1696 /*
1697 * Receive a datagram from a socket.
1698 */
1699
1700 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1701 unsigned flags)
1702 {
1703 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1704 }
1705
1706 /*
1707 * Set a socket option. Because we don't know the option lengths we have
1708 * to pass the user mode parameter for the protocols to sort out.
1709 */
1710
1711 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1712 char __user *optval, int optlen)
1713 {
1714 int err, fput_needed;
1715 struct socket *sock;
1716
1717 if (optlen < 0)
1718 return -EINVAL;
1719
1720 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1721 if (sock != NULL) {
1722 err = security_socket_setsockopt(sock, level, optname);
1723 if (err)
1724 goto out_put;
1725
1726 if (level == SOL_SOCKET)
1727 err =
1728 sock_setsockopt(sock, level, optname, optval,
1729 optlen);
1730 else
1731 err =
1732 sock->ops->setsockopt(sock, level, optname, optval,
1733 optlen);
1734 out_put:
1735 fput_light(sock->file, fput_needed);
1736 }
1737 return err;
1738 }
1739
1740 /*
1741 * Get a socket option. Because we don't know the option lengths we have
1742 * to pass a user mode parameter for the protocols to sort out.
1743 */
1744
1745 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1746 char __user *optval, int __user *optlen)
1747 {
1748 int err, fput_needed;
1749 struct socket *sock;
1750
1751 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1752 if (sock != NULL) {
1753 err = security_socket_getsockopt(sock, level, optname);
1754 if (err)
1755 goto out_put;
1756
1757 if (level == SOL_SOCKET)
1758 err =
1759 sock_getsockopt(sock, level, optname, optval,
1760 optlen);
1761 else
1762 err =
1763 sock->ops->getsockopt(sock, level, optname, optval,
1764 optlen);
1765 out_put:
1766 fput_light(sock->file, fput_needed);
1767 }
1768 return err;
1769 }
1770
1771 /*
1772 * Shutdown a socket.
1773 */
1774
1775 asmlinkage long sys_shutdown(int fd, int how)
1776 {
1777 int err, fput_needed;
1778 struct socket *sock;
1779
1780 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1781 if (sock != NULL) {
1782 err = security_socket_shutdown(sock, how);
1783 if (!err)
1784 err = sock->ops->shutdown(sock, how);
1785 fput_light(sock->file, fput_needed);
1786 }
1787 return err;
1788 }
1789
1790 /* A couple of helpful macros for getting the address of the 32/64 bit
1791 * fields which are the same type (int / unsigned) on our platforms.
1792 */
1793 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1794 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1795 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1796
1797 /*
1798 * BSD sendmsg interface
1799 */
1800
1801 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1802 {
1803 struct compat_msghdr __user *msg_compat =
1804 (struct compat_msghdr __user *)msg;
1805 struct socket *sock;
1806 struct sockaddr_storage address;
1807 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1808 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1809 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1810 /* 20 is size of ipv6_pktinfo */
1811 unsigned char *ctl_buf = ctl;
1812 struct msghdr msg_sys;
1813 int err, ctl_len, iov_size, total_len;
1814 int fput_needed;
1815
1816 err = -EFAULT;
1817 if (MSG_CMSG_COMPAT & flags) {
1818 if (get_compat_msghdr(&msg_sys, msg_compat))
1819 return -EFAULT;
1820 }
1821 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1822 return -EFAULT;
1823
1824 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1825 if (!sock)
1826 goto out;
1827
1828 /* do not move before msg_sys is valid */
1829 err = -EMSGSIZE;
1830 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1831 goto out_put;
1832
1833 /* Check whether to allocate the iovec area */
1834 err = -ENOMEM;
1835 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1836 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1837 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1838 if (!iov)
1839 goto out_put;
1840 }
1841
1842 /* This will also move the address data into kernel space */
1843 if (MSG_CMSG_COMPAT & flags) {
1844 err = verify_compat_iovec(&msg_sys, iov,
1845 (struct sockaddr *)&address,
1846 VERIFY_READ);
1847 } else
1848 err = verify_iovec(&msg_sys, iov,
1849 (struct sockaddr *)&address,
1850 VERIFY_READ);
1851 if (err < 0)
1852 goto out_freeiov;
1853 total_len = err;
1854
1855 err = -ENOBUFS;
1856
1857 if (msg_sys.msg_controllen > INT_MAX)
1858 goto out_freeiov;
1859 ctl_len = msg_sys.msg_controllen;
1860 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1861 err =
1862 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1863 sizeof(ctl));
1864 if (err)
1865 goto out_freeiov;
1866 ctl_buf = msg_sys.msg_control;
1867 ctl_len = msg_sys.msg_controllen;
1868 } else if (ctl_len) {
1869 if (ctl_len > sizeof(ctl)) {
1870 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1871 if (ctl_buf == NULL)
1872 goto out_freeiov;
1873 }
1874 err = -EFAULT;
1875 /*
1876 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1877 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1878 * checking falls down on this.
1879 */
1880 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1881 ctl_len))
1882 goto out_freectl;
1883 msg_sys.msg_control = ctl_buf;
1884 }
1885 msg_sys.msg_flags = flags;
1886
1887 if (sock->file->f_flags & O_NONBLOCK)
1888 msg_sys.msg_flags |= MSG_DONTWAIT;
1889 err = sock_sendmsg(sock, &msg_sys, total_len);
1890
1891 out_freectl:
1892 if (ctl_buf != ctl)
1893 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1894 out_freeiov:
1895 if (iov != iovstack)
1896 sock_kfree_s(sock->sk, iov, iov_size);
1897 out_put:
1898 fput_light(sock->file, fput_needed);
1899 out:
1900 return err;
1901 }
1902
1903 /*
1904 * BSD recvmsg interface
1905 */
1906
1907 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1908 unsigned int flags)
1909 {
1910 struct compat_msghdr __user *msg_compat =
1911 (struct compat_msghdr __user *)msg;
1912 struct socket *sock;
1913 struct iovec iovstack[UIO_FASTIOV];
1914 struct iovec *iov = iovstack;
1915 struct msghdr msg_sys;
1916 unsigned long cmsg_ptr;
1917 int err, iov_size, total_len, len;
1918 int fput_needed;
1919
1920 /* kernel mode address */
1921 struct sockaddr_storage addr;
1922
1923 /* user mode address pointers */
1924 struct sockaddr __user *uaddr;
1925 int __user *uaddr_len;
1926
1927 if (MSG_CMSG_COMPAT & flags) {
1928 if (get_compat_msghdr(&msg_sys, msg_compat))
1929 return -EFAULT;
1930 }
1931 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1932 return -EFAULT;
1933
1934 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1935 if (!sock)
1936 goto out;
1937
1938 err = -EMSGSIZE;
1939 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1940 goto out_put;
1941
1942 /* Check whether to allocate the iovec area */
1943 err = -ENOMEM;
1944 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1945 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1946 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1947 if (!iov)
1948 goto out_put;
1949 }
1950
1951 /*
1952 * Save the user-mode address (verify_iovec will change the
1953 * kernel msghdr to use the kernel address space)
1954 */
1955
1956 uaddr = (__force void __user *)msg_sys.msg_name;
1957 uaddr_len = COMPAT_NAMELEN(msg);
1958 if (MSG_CMSG_COMPAT & flags) {
1959 err = verify_compat_iovec(&msg_sys, iov,
1960 (struct sockaddr *)&addr,
1961 VERIFY_WRITE);
1962 } else
1963 err = verify_iovec(&msg_sys, iov,
1964 (struct sockaddr *)&addr,
1965 VERIFY_WRITE);
1966 if (err < 0)
1967 goto out_freeiov;
1968 total_len = err;
1969
1970 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1971 msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
1972
1973 if (sock->file->f_flags & O_NONBLOCK)
1974 flags |= MSG_DONTWAIT;
1975 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1976 if (err < 0)
1977 goto out_freeiov;
1978 len = err;
1979
1980 if (uaddr != NULL) {
1981 err = move_addr_to_user((struct sockaddr *)&addr,
1982 msg_sys.msg_namelen, uaddr,
1983 uaddr_len);
1984 if (err < 0)
1985 goto out_freeiov;
1986 }
1987 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1988 COMPAT_FLAGS(msg));
1989 if (err)
1990 goto out_freeiov;
1991 if (MSG_CMSG_COMPAT & flags)
1992 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1993 &msg_compat->msg_controllen);
1994 else
1995 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1996 &msg->msg_controllen);
1997 if (err)
1998 goto out_freeiov;
1999 err = len;
2000
2001 out_freeiov:
2002 if (iov != iovstack)
2003 sock_kfree_s(sock->sk, iov, iov_size);
2004 out_put:
2005 fput_light(sock->file, fput_needed);
2006 out:
2007 return err;
2008 }
2009
2010 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2011
2012 /* Argument list sizes for sys_socketcall */
2013 #define AL(x) ((x) * sizeof(unsigned long))
2014 static const unsigned char nargs[18]={
2015 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2016 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2017 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
2018 };
2019
2020 #undef AL
2021
2022 /*
2023 * System call vectors.
2024 *
2025 * Argument checking cleaned up. Saved 20% in size.
2026 * This function doesn't need to set the kernel lock because
2027 * it is set by the callees.
2028 */
2029
2030 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
2031 {
2032 unsigned long a[6];
2033 unsigned long a0, a1;
2034 int err;
2035
2036 if (call < 1 || call > SYS_RECVMSG)
2037 return -EINVAL;
2038
2039 /* copy_from_user should be SMP safe. */
2040 if (copy_from_user(a, args, nargs[call]))
2041 return -EFAULT;
2042
2043 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2044 if (err)
2045 return err;
2046
2047 a0 = a[0];
2048 a1 = a[1];
2049
2050 switch (call) {
2051 case SYS_SOCKET:
2052 err = sys_socket(a0, a1, a[2]);
2053 break;
2054 case SYS_BIND:
2055 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2056 break;
2057 case SYS_CONNECT:
2058 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2059 break;
2060 case SYS_LISTEN:
2061 err = sys_listen(a0, a1);
2062 break;
2063 case SYS_ACCEPT:
2064 err =
2065 sys_accept(a0, (struct sockaddr __user *)a1,
2066 (int __user *)a[2]);
2067 break;
2068 case SYS_GETSOCKNAME:
2069 err =
2070 sys_getsockname(a0, (struct sockaddr __user *)a1,
2071 (int __user *)a[2]);
2072 break;
2073 case SYS_GETPEERNAME:
2074 err =
2075 sys_getpeername(a0, (struct sockaddr __user *)a1,
2076 (int __user *)a[2]);
2077 break;
2078 case SYS_SOCKETPAIR:
2079 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2080 break;
2081 case SYS_SEND:
2082 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2083 break;
2084 case SYS_SENDTO:
2085 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2086 (struct sockaddr __user *)a[4], a[5]);
2087 break;
2088 case SYS_RECV:
2089 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2090 break;
2091 case SYS_RECVFROM:
2092 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2093 (struct sockaddr __user *)a[4],
2094 (int __user *)a[5]);
2095 break;
2096 case SYS_SHUTDOWN:
2097 err = sys_shutdown(a0, a1);
2098 break;
2099 case SYS_SETSOCKOPT:
2100 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2101 break;
2102 case SYS_GETSOCKOPT:
2103 err =
2104 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2105 (int __user *)a[4]);
2106 break;
2107 case SYS_SENDMSG:
2108 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2109 break;
2110 case SYS_RECVMSG:
2111 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2112 break;
2113 default:
2114 err = -EINVAL;
2115 break;
2116 }
2117 return err;
2118 }
2119
2120 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2121
2122 /**
2123 * sock_register - add a socket protocol handler
2124 * @ops: description of protocol
2125 *
2126 * This function is called by a protocol handler that wants to
2127 * advertise its address family, and have it linked into the
2128 * socket interface. The value ops->family coresponds to the
2129 * socket system call protocol family.
2130 */
2131 int sock_register(const struct net_proto_family *ops)
2132 {
2133 int err;
2134
2135 if (ops->family >= NPROTO) {
2136 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2137 NPROTO);
2138 return -ENOBUFS;
2139 }
2140
2141 spin_lock(&net_family_lock);
2142 if (net_families[ops->family])
2143 err = -EEXIST;
2144 else {
2145 net_families[ops->family] = ops;
2146 err = 0;
2147 }
2148 spin_unlock(&net_family_lock);
2149
2150 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2151 return err;
2152 }
2153
2154 /**
2155 * sock_unregister - remove a protocol handler
2156 * @family: protocol family to remove
2157 *
2158 * This function is called by a protocol handler that wants to
2159 * remove its address family, and have it unlinked from the
2160 * new socket creation.
2161 *
2162 * If protocol handler is a module, then it can use module reference
2163 * counts to protect against new references. If protocol handler is not
2164 * a module then it needs to provide its own protection in
2165 * the ops->create routine.
2166 */
2167 void sock_unregister(int family)
2168 {
2169 BUG_ON(family < 0 || family >= NPROTO);
2170
2171 spin_lock(&net_family_lock);
2172 net_families[family] = NULL;
2173 spin_unlock(&net_family_lock);
2174
2175 synchronize_rcu();
2176
2177 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2178 }
2179
2180 static int __init sock_init(void)
2181 {
2182 /*
2183 * Initialize sock SLAB cache.
2184 */
2185
2186 sk_init();
2187
2188 /*
2189 * Initialize skbuff SLAB cache
2190 */
2191 skb_init();
2192
2193 /*
2194 * Initialize the protocols module.
2195 */
2196
2197 init_inodecache();
2198 register_filesystem(&sock_fs_type);
2199 sock_mnt = kern_mount(&sock_fs_type);
2200
2201 /* The real protocol initialization is performed in later initcalls.
2202 */
2203
2204 #ifdef CONFIG_NETFILTER
2205 netfilter_init();
2206 #endif
2207
2208 return 0;
2209 }
2210
2211 core_initcall(sock_init); /* early initcall */
2212
2213 #ifdef CONFIG_PROC_FS
2214 void socket_seq_show(struct seq_file *seq)
2215 {
2216 int cpu;
2217 int counter = 0;
2218
2219 for_each_possible_cpu(cpu)
2220 counter += per_cpu(sockets_in_use, cpu);
2221
2222 /* It can be negative, by the way. 8) */
2223 if (counter < 0)
2224 counter = 0;
2225
2226 seq_printf(seq, "sockets: used %d\n", counter);
2227 }
2228 #endif /* CONFIG_PROC_FS */
2229
2230 #ifdef CONFIG_COMPAT
2231 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2232 unsigned long arg)
2233 {
2234 struct socket *sock = file->private_data;
2235 int ret = -ENOIOCTLCMD;
2236 struct sock *sk;
2237 struct net *net;
2238
2239 sk = sock->sk;
2240 net = sock_net(sk);
2241
2242 if (sock->ops->compat_ioctl)
2243 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2244
2245 if (ret == -ENOIOCTLCMD &&
2246 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2247 ret = compat_wext_handle_ioctl(net, cmd, arg);
2248
2249 return ret;
2250 }
2251 #endif
2252
2253 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2254 {
2255 return sock->ops->bind(sock, addr, addrlen);
2256 }
2257
2258 int kernel_listen(struct socket *sock, int backlog)
2259 {
2260 return sock->ops->listen(sock, backlog);
2261 }
2262
2263 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2264 {
2265 struct sock *sk = sock->sk;
2266 int err;
2267
2268 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2269 newsock);
2270 if (err < 0)
2271 goto done;
2272
2273 err = sock->ops->accept(sock, *newsock, flags);
2274 if (err < 0) {
2275 sock_release(*newsock);
2276 *newsock = NULL;
2277 goto done;
2278 }
2279
2280 (*newsock)->ops = sock->ops;
2281
2282 done:
2283 return err;
2284 }
2285
2286 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2287 int flags)
2288 {
2289 return sock->ops->connect(sock, addr, addrlen, flags);
2290 }
2291
2292 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2293 int *addrlen)
2294 {
2295 return sock->ops->getname(sock, addr, addrlen, 0);
2296 }
2297
2298 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2299 int *addrlen)
2300 {
2301 return sock->ops->getname(sock, addr, addrlen, 1);
2302 }
2303
2304 int kernel_getsockopt(struct socket *sock, int level, int optname,
2305 char *optval, int *optlen)
2306 {
2307 mm_segment_t oldfs = get_fs();
2308 int err;
2309
2310 set_fs(KERNEL_DS);
2311 if (level == SOL_SOCKET)
2312 err = sock_getsockopt(sock, level, optname, optval, optlen);
2313 else
2314 err = sock->ops->getsockopt(sock, level, optname, optval,
2315 optlen);
2316 set_fs(oldfs);
2317 return err;
2318 }
2319
2320 int kernel_setsockopt(struct socket *sock, int level, int optname,
2321 char *optval, int optlen)
2322 {
2323 mm_segment_t oldfs = get_fs();
2324 int err;
2325
2326 set_fs(KERNEL_DS);
2327 if (level == SOL_SOCKET)
2328 err = sock_setsockopt(sock, level, optname, optval, optlen);
2329 else
2330 err = sock->ops->setsockopt(sock, level, optname, optval,
2331 optlen);
2332 set_fs(oldfs);
2333 return err;
2334 }
2335
2336 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2337 size_t size, int flags)
2338 {
2339 if (sock->ops->sendpage)
2340 return sock->ops->sendpage(sock, page, offset, size, flags);
2341
2342 return sock_no_sendpage(sock, page, offset, size, flags);
2343 }
2344
2345 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2346 {
2347 mm_segment_t oldfs = get_fs();
2348 int err;
2349
2350 set_fs(KERNEL_DS);
2351 err = sock->ops->ioctl(sock, cmd, arg);
2352 set_fs(oldfs);
2353
2354 return err;
2355 }
2356
2357 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2358 {
2359 return sock->ops->shutdown(sock, how);
2360 }
2361
2362 EXPORT_SYMBOL(sock_create);
2363 EXPORT_SYMBOL(sock_create_kern);
2364 EXPORT_SYMBOL(sock_create_lite);
2365 EXPORT_SYMBOL(sock_map_fd);
2366 EXPORT_SYMBOL(sock_recvmsg);
2367 EXPORT_SYMBOL(sock_register);
2368 EXPORT_SYMBOL(sock_release);
2369 EXPORT_SYMBOL(sock_sendmsg);
2370 EXPORT_SYMBOL(sock_unregister);
2371 EXPORT_SYMBOL(sock_wake_async);
2372 EXPORT_SYMBOL(sockfd_lookup);
2373 EXPORT_SYMBOL(kernel_sendmsg);
2374 EXPORT_SYMBOL(kernel_recvmsg);
2375 EXPORT_SYMBOL(kernel_bind);
2376 EXPORT_SYMBOL(kernel_listen);
2377 EXPORT_SYMBOL(kernel_accept);
2378 EXPORT_SYMBOL(kernel_connect);
2379 EXPORT_SYMBOL(kernel_getsockname);
2380 EXPORT_SYMBOL(kernel_getpeername);
2381 EXPORT_SYMBOL(kernel_getsockopt);
2382 EXPORT_SYMBOL(kernel_setsockopt);
2383 EXPORT_SYMBOL(kernel_sendpage);
2384 EXPORT_SYMBOL(kernel_sock_ioctl);
2385 EXPORT_SYMBOL(kernel_sock_shutdown);