]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/socket.c
Merge branch 'next' of git://git.secretlab.ca/git/linux-2.6
[mirror_ubuntu-zesty-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90
91 #include <asm/uaccess.h>
92 #include <asm/unistd.h>
93
94 #include <net/compat.h>
95 #include <net/wext.h>
96
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/sockios.h>
104 #include <linux/atalk.h>
105
106 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
107 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
108 unsigned long nr_segs, loff_t pos);
109 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
112
113 static int sock_close(struct inode *inode, struct file *file);
114 static unsigned int sock_poll(struct file *file,
115 struct poll_table_struct *wait);
116 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
117 #ifdef CONFIG_COMPAT
118 static long compat_sock_ioctl(struct file *file,
119 unsigned int cmd, unsigned long arg);
120 #endif
121 static int sock_fasync(int fd, struct file *filp, int on);
122 static ssize_t sock_sendpage(struct file *file, struct page *page,
123 int offset, size_t size, loff_t *ppos, int more);
124 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
125 struct pipe_inode_info *pipe, size_t len,
126 unsigned int flags);
127
128 /*
129 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
130 * in the operation structures but are done directly via the socketcall() multiplexor.
131 */
132
133 static const struct file_operations socket_file_ops = {
134 .owner = THIS_MODULE,
135 .llseek = no_llseek,
136 .aio_read = sock_aio_read,
137 .aio_write = sock_aio_write,
138 .poll = sock_poll,
139 .unlocked_ioctl = sock_ioctl,
140 #ifdef CONFIG_COMPAT
141 .compat_ioctl = compat_sock_ioctl,
142 #endif
143 .mmap = sock_mmap,
144 .open = sock_no_open, /* special open code to disallow open via /proc */
145 .release = sock_close,
146 .fasync = sock_fasync,
147 .sendpage = sock_sendpage,
148 .splice_write = generic_splice_sendpage,
149 .splice_read = sock_splice_read,
150 };
151
152 /*
153 * The protocol list. Each protocol is registered in here.
154 */
155
156 static DEFINE_SPINLOCK(net_family_lock);
157 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
158
159 /*
160 * Statistics counters of the socket lists
161 */
162
163 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
164
165 /*
166 * Support routines.
167 * Move socket addresses back and forth across the kernel/user
168 * divide and look after the messy bits.
169 */
170
171 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
172 16 for IP, 16 for IPX,
173 24 for IPv6,
174 about 80 for AX.25
175 must be at least one bigger than
176 the AF_UNIX size (see net/unix/af_unix.c
177 :unix_mkname()).
178 */
179
180 /**
181 * move_addr_to_kernel - copy a socket address into kernel space
182 * @uaddr: Address in user space
183 * @kaddr: Address in kernel space
184 * @ulen: Length in user space
185 *
186 * The address is copied into kernel space. If the provided address is
187 * too long an error code of -EINVAL is returned. If the copy gives
188 * invalid addresses -EFAULT is returned. On a success 0 is returned.
189 */
190
191 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
192 {
193 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
194 return -EINVAL;
195 if (ulen == 0)
196 return 0;
197 if (copy_from_user(kaddr, uaddr, ulen))
198 return -EFAULT;
199 return audit_sockaddr(ulen, kaddr);
200 }
201
202 /**
203 * move_addr_to_user - copy an address to user space
204 * @kaddr: kernel space address
205 * @klen: length of address in kernel
206 * @uaddr: user space address
207 * @ulen: pointer to user length field
208 *
209 * The value pointed to by ulen on entry is the buffer length available.
210 * This is overwritten with the buffer space used. -EINVAL is returned
211 * if an overlong buffer is specified or a negative buffer size. -EFAULT
212 * is returned if either the buffer or the length field are not
213 * accessible.
214 * After copying the data up to the limit the user specifies, the true
215 * length of the data is written over the length limit the user
216 * specified. Zero is returned for a success.
217 */
218
219 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
220 int __user *ulen)
221 {
222 int err;
223 int len;
224
225 err = get_user(len, ulen);
226 if (err)
227 return err;
228 if (len > klen)
229 len = klen;
230 if (len < 0 || len > sizeof(struct sockaddr_storage))
231 return -EINVAL;
232 if (len) {
233 if (audit_sockaddr(klen, kaddr))
234 return -ENOMEM;
235 if (copy_to_user(uaddr, kaddr, len))
236 return -EFAULT;
237 }
238 /*
239 * "fromlen shall refer to the value before truncation.."
240 * 1003.1g
241 */
242 return __put_user(klen, ulen);
243 }
244
245 static struct kmem_cache *sock_inode_cachep __read_mostly;
246
247 static struct inode *sock_alloc_inode(struct super_block *sb)
248 {
249 struct socket_alloc *ei;
250
251 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
252 if (!ei)
253 return NULL;
254 init_waitqueue_head(&ei->socket.wait);
255
256 ei->socket.fasync_list = NULL;
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
262
263 return &ei->vfs_inode;
264 }
265
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 kmem_cache_free(sock_inode_cachep,
269 container_of(inode, struct socket_alloc, vfs_inode));
270 }
271
272 static void init_once(void *foo)
273 {
274 struct socket_alloc *ei = (struct socket_alloc *)foo;
275
276 inode_init_once(&ei->vfs_inode);
277 }
278
279 static int init_inodecache(void)
280 {
281 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
282 sizeof(struct socket_alloc),
283 0,
284 (SLAB_HWCACHE_ALIGN |
285 SLAB_RECLAIM_ACCOUNT |
286 SLAB_MEM_SPREAD),
287 init_once);
288 if (sock_inode_cachep == NULL)
289 return -ENOMEM;
290 return 0;
291 }
292
293 static const struct super_operations sockfs_ops = {
294 .alloc_inode = sock_alloc_inode,
295 .destroy_inode =sock_destroy_inode,
296 .statfs = simple_statfs,
297 };
298
299 static int sockfs_get_sb(struct file_system_type *fs_type,
300 int flags, const char *dev_name, void *data,
301 struct vfsmount *mnt)
302 {
303 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
304 mnt);
305 }
306
307 static struct vfsmount *sock_mnt __read_mostly;
308
309 static struct file_system_type sock_fs_type = {
310 .name = "sockfs",
311 .get_sb = sockfs_get_sb,
312 .kill_sb = kill_anon_super,
313 };
314
315 static int sockfs_delete_dentry(struct dentry *dentry)
316 {
317 /*
318 * At creation time, we pretended this dentry was hashed
319 * (by clearing DCACHE_UNHASHED bit in d_flags)
320 * At delete time, we restore the truth : not hashed.
321 * (so that dput() can proceed correctly)
322 */
323 dentry->d_flags |= DCACHE_UNHASHED;
324 return 0;
325 }
326
327 /*
328 * sockfs_dname() is called from d_path().
329 */
330 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
331 {
332 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
333 dentry->d_inode->i_ino);
334 }
335
336 static const struct dentry_operations sockfs_dentry_operations = {
337 .d_delete = sockfs_delete_dentry,
338 .d_dname = sockfs_dname,
339 };
340
341 /*
342 * Obtains the first available file descriptor and sets it up for use.
343 *
344 * These functions create file structures and maps them to fd space
345 * of the current process. On success it returns file descriptor
346 * and file struct implicitly stored in sock->file.
347 * Note that another thread may close file descriptor before we return
348 * from this function. We use the fact that now we do not refer
349 * to socket after mapping. If one day we will need it, this
350 * function will increment ref. count on file by 1.
351 *
352 * In any case returned fd MAY BE not valid!
353 * This race condition is unavoidable
354 * with shared fd spaces, we cannot solve it inside kernel,
355 * but we take care of internal coherence yet.
356 */
357
358 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
359 {
360 struct qstr name = { .name = "" };
361 struct path path;
362 struct file *file;
363 int fd;
364
365 fd = get_unused_fd_flags(flags);
366 if (unlikely(fd < 0))
367 return fd;
368
369 path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
370 if (unlikely(!path.dentry)) {
371 put_unused_fd(fd);
372 return -ENOMEM;
373 }
374 path.mnt = mntget(sock_mnt);
375
376 path.dentry->d_op = &sockfs_dentry_operations;
377 /*
378 * We dont want to push this dentry into global dentry hash table.
379 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
380 * This permits a working /proc/$pid/fd/XXX on sockets
381 */
382 path.dentry->d_flags &= ~DCACHE_UNHASHED;
383 d_instantiate(path.dentry, SOCK_INODE(sock));
384 SOCK_INODE(sock)->i_fop = &socket_file_ops;
385
386 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
387 &socket_file_ops);
388 if (unlikely(!file)) {
389 /* drop dentry, keep inode */
390 atomic_inc(&path.dentry->d_inode->i_count);
391 path_put(&path);
392 put_unused_fd(fd);
393 return -ENFILE;
394 }
395
396 sock->file = file;
397 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
398 file->f_pos = 0;
399 file->private_data = sock;
400
401 *f = file;
402 return fd;
403 }
404
405 int sock_map_fd(struct socket *sock, int flags)
406 {
407 struct file *newfile;
408 int fd = sock_alloc_file(sock, &newfile, flags);
409
410 if (likely(fd >= 0))
411 fd_install(fd, newfile);
412
413 return fd;
414 }
415
416 static struct socket *sock_from_file(struct file *file, int *err)
417 {
418 if (file->f_op == &socket_file_ops)
419 return file->private_data; /* set in sock_map_fd */
420
421 *err = -ENOTSOCK;
422 return NULL;
423 }
424
425 /**
426 * sockfd_lookup - Go from a file number to its socket slot
427 * @fd: file handle
428 * @err: pointer to an error code return
429 *
430 * The file handle passed in is locked and the socket it is bound
431 * too is returned. If an error occurs the err pointer is overwritten
432 * with a negative errno code and NULL is returned. The function checks
433 * for both invalid handles and passing a handle which is not a socket.
434 *
435 * On a success the socket object pointer is returned.
436 */
437
438 struct socket *sockfd_lookup(int fd, int *err)
439 {
440 struct file *file;
441 struct socket *sock;
442
443 file = fget(fd);
444 if (!file) {
445 *err = -EBADF;
446 return NULL;
447 }
448
449 sock = sock_from_file(file, err);
450 if (!sock)
451 fput(file);
452 return sock;
453 }
454
455 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
456 {
457 struct file *file;
458 struct socket *sock;
459
460 *err = -EBADF;
461 file = fget_light(fd, fput_needed);
462 if (file) {
463 sock = sock_from_file(file, err);
464 if (sock)
465 return sock;
466 fput_light(file, *fput_needed);
467 }
468 return NULL;
469 }
470
471 /**
472 * sock_alloc - allocate a socket
473 *
474 * Allocate a new inode and socket object. The two are bound together
475 * and initialised. The socket is then returned. If we are out of inodes
476 * NULL is returned.
477 */
478
479 static struct socket *sock_alloc(void)
480 {
481 struct inode *inode;
482 struct socket *sock;
483
484 inode = new_inode(sock_mnt->mnt_sb);
485 if (!inode)
486 return NULL;
487
488 sock = SOCKET_I(inode);
489
490 kmemcheck_annotate_bitfield(sock, type);
491 inode->i_mode = S_IFSOCK | S_IRWXUGO;
492 inode->i_uid = current_fsuid();
493 inode->i_gid = current_fsgid();
494
495 percpu_add(sockets_in_use, 1);
496 return sock;
497 }
498
499 /*
500 * In theory you can't get an open on this inode, but /proc provides
501 * a back door. Remember to keep it shut otherwise you'll let the
502 * creepy crawlies in.
503 */
504
505 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
506 {
507 return -ENXIO;
508 }
509
510 const struct file_operations bad_sock_fops = {
511 .owner = THIS_MODULE,
512 .open = sock_no_open,
513 };
514
515 /**
516 * sock_release - close a socket
517 * @sock: socket to close
518 *
519 * The socket is released from the protocol stack if it has a release
520 * callback, and the inode is then released if the socket is bound to
521 * an inode not a file.
522 */
523
524 void sock_release(struct socket *sock)
525 {
526 if (sock->ops) {
527 struct module *owner = sock->ops->owner;
528
529 sock->ops->release(sock);
530 sock->ops = NULL;
531 module_put(owner);
532 }
533
534 if (sock->fasync_list)
535 printk(KERN_ERR "sock_release: fasync list not empty!\n");
536
537 percpu_sub(sockets_in_use, 1);
538 if (!sock->file) {
539 iput(SOCK_INODE(sock));
540 return;
541 }
542 sock->file = NULL;
543 }
544
545 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
546 union skb_shared_tx *shtx)
547 {
548 shtx->flags = 0;
549 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
550 shtx->hardware = 1;
551 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
552 shtx->software = 1;
553 return 0;
554 }
555 EXPORT_SYMBOL(sock_tx_timestamp);
556
557 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
558 struct msghdr *msg, size_t size)
559 {
560 struct sock_iocb *si = kiocb_to_siocb(iocb);
561 int err;
562
563 si->sock = sock;
564 si->scm = NULL;
565 si->msg = msg;
566 si->size = size;
567
568 err = security_socket_sendmsg(sock, msg, size);
569 if (err)
570 return err;
571
572 return sock->ops->sendmsg(iocb, sock, msg, size);
573 }
574
575 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
576 {
577 struct kiocb iocb;
578 struct sock_iocb siocb;
579 int ret;
580
581 init_sync_kiocb(&iocb, NULL);
582 iocb.private = &siocb;
583 ret = __sock_sendmsg(&iocb, sock, msg, size);
584 if (-EIOCBQUEUED == ret)
585 ret = wait_on_sync_kiocb(&iocb);
586 return ret;
587 }
588
589 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
590 struct kvec *vec, size_t num, size_t size)
591 {
592 mm_segment_t oldfs = get_fs();
593 int result;
594
595 set_fs(KERNEL_DS);
596 /*
597 * the following is safe, since for compiler definitions of kvec and
598 * iovec are identical, yielding the same in-core layout and alignment
599 */
600 msg->msg_iov = (struct iovec *)vec;
601 msg->msg_iovlen = num;
602 result = sock_sendmsg(sock, msg, size);
603 set_fs(oldfs);
604 return result;
605 }
606
607 static int ktime2ts(ktime_t kt, struct timespec *ts)
608 {
609 if (kt.tv64) {
610 *ts = ktime_to_timespec(kt);
611 return 1;
612 } else {
613 return 0;
614 }
615 }
616
617 /*
618 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
619 */
620 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
621 struct sk_buff *skb)
622 {
623 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
624 struct timespec ts[3];
625 int empty = 1;
626 struct skb_shared_hwtstamps *shhwtstamps =
627 skb_hwtstamps(skb);
628
629 /* Race occurred between timestamp enabling and packet
630 receiving. Fill in the current time for now. */
631 if (need_software_tstamp && skb->tstamp.tv64 == 0)
632 __net_timestamp(skb);
633
634 if (need_software_tstamp) {
635 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
636 struct timeval tv;
637 skb_get_timestamp(skb, &tv);
638 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
639 sizeof(tv), &tv);
640 } else {
641 struct timespec ts;
642 skb_get_timestampns(skb, &ts);
643 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
644 sizeof(ts), &ts);
645 }
646 }
647
648
649 memset(ts, 0, sizeof(ts));
650 if (skb->tstamp.tv64 &&
651 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
652 skb_get_timestampns(skb, ts + 0);
653 empty = 0;
654 }
655 if (shhwtstamps) {
656 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
657 ktime2ts(shhwtstamps->syststamp, ts + 1))
658 empty = 0;
659 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
660 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
661 empty = 0;
662 }
663 if (!empty)
664 put_cmsg(msg, SOL_SOCKET,
665 SCM_TIMESTAMPING, sizeof(ts), &ts);
666 }
667
668 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
669
670 inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
671 {
672 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
673 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
674 sizeof(__u32), &skb->dropcount);
675 }
676
677 void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
678 struct sk_buff *skb)
679 {
680 sock_recv_timestamp(msg, sk, skb);
681 sock_recv_drops(msg, sk, skb);
682 }
683 EXPORT_SYMBOL_GPL(sock_recv_ts_and_drops);
684
685 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
686 struct msghdr *msg, size_t size, int flags)
687 {
688 struct sock_iocb *si = kiocb_to_siocb(iocb);
689
690 si->sock = sock;
691 si->scm = NULL;
692 si->msg = msg;
693 si->size = size;
694 si->flags = flags;
695
696 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
697 }
698
699 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
700 struct msghdr *msg, size_t size, int flags)
701 {
702 int err = security_socket_recvmsg(sock, msg, size, flags);
703
704 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
705 }
706
707 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
708 size_t size, int flags)
709 {
710 struct kiocb iocb;
711 struct sock_iocb siocb;
712 int ret;
713
714 init_sync_kiocb(&iocb, NULL);
715 iocb.private = &siocb;
716 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
717 if (-EIOCBQUEUED == ret)
718 ret = wait_on_sync_kiocb(&iocb);
719 return ret;
720 }
721
722 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
723 size_t size, int flags)
724 {
725 struct kiocb iocb;
726 struct sock_iocb siocb;
727 int ret;
728
729 init_sync_kiocb(&iocb, NULL);
730 iocb.private = &siocb;
731 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
732 if (-EIOCBQUEUED == ret)
733 ret = wait_on_sync_kiocb(&iocb);
734 return ret;
735 }
736
737 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
738 struct kvec *vec, size_t num, size_t size, int flags)
739 {
740 mm_segment_t oldfs = get_fs();
741 int result;
742
743 set_fs(KERNEL_DS);
744 /*
745 * the following is safe, since for compiler definitions of kvec and
746 * iovec are identical, yielding the same in-core layout and alignment
747 */
748 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
749 result = sock_recvmsg(sock, msg, size, flags);
750 set_fs(oldfs);
751 return result;
752 }
753
754 static void sock_aio_dtor(struct kiocb *iocb)
755 {
756 kfree(iocb->private);
757 }
758
759 static ssize_t sock_sendpage(struct file *file, struct page *page,
760 int offset, size_t size, loff_t *ppos, int more)
761 {
762 struct socket *sock;
763 int flags;
764
765 sock = file->private_data;
766
767 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
768 if (more)
769 flags |= MSG_MORE;
770
771 return kernel_sendpage(sock, page, offset, size, flags);
772 }
773
774 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
775 struct pipe_inode_info *pipe, size_t len,
776 unsigned int flags)
777 {
778 struct socket *sock = file->private_data;
779
780 if (unlikely(!sock->ops->splice_read))
781 return -EINVAL;
782
783 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
784 }
785
786 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
787 struct sock_iocb *siocb)
788 {
789 if (!is_sync_kiocb(iocb)) {
790 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
791 if (!siocb)
792 return NULL;
793 iocb->ki_dtor = sock_aio_dtor;
794 }
795
796 siocb->kiocb = iocb;
797 iocb->private = siocb;
798 return siocb;
799 }
800
801 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
802 struct file *file, const struct iovec *iov,
803 unsigned long nr_segs)
804 {
805 struct socket *sock = file->private_data;
806 size_t size = 0;
807 int i;
808
809 for (i = 0; i < nr_segs; i++)
810 size += iov[i].iov_len;
811
812 msg->msg_name = NULL;
813 msg->msg_namelen = 0;
814 msg->msg_control = NULL;
815 msg->msg_controllen = 0;
816 msg->msg_iov = (struct iovec *)iov;
817 msg->msg_iovlen = nr_segs;
818 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
819
820 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
821 }
822
823 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
824 unsigned long nr_segs, loff_t pos)
825 {
826 struct sock_iocb siocb, *x;
827
828 if (pos != 0)
829 return -ESPIPE;
830
831 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
832 return 0;
833
834
835 x = alloc_sock_iocb(iocb, &siocb);
836 if (!x)
837 return -ENOMEM;
838 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
839 }
840
841 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
842 struct file *file, const struct iovec *iov,
843 unsigned long nr_segs)
844 {
845 struct socket *sock = file->private_data;
846 size_t size = 0;
847 int i;
848
849 for (i = 0; i < nr_segs; i++)
850 size += iov[i].iov_len;
851
852 msg->msg_name = NULL;
853 msg->msg_namelen = 0;
854 msg->msg_control = NULL;
855 msg->msg_controllen = 0;
856 msg->msg_iov = (struct iovec *)iov;
857 msg->msg_iovlen = nr_segs;
858 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
859 if (sock->type == SOCK_SEQPACKET)
860 msg->msg_flags |= MSG_EOR;
861
862 return __sock_sendmsg(iocb, sock, msg, size);
863 }
864
865 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
866 unsigned long nr_segs, loff_t pos)
867 {
868 struct sock_iocb siocb, *x;
869
870 if (pos != 0)
871 return -ESPIPE;
872
873 x = alloc_sock_iocb(iocb, &siocb);
874 if (!x)
875 return -ENOMEM;
876
877 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
878 }
879
880 /*
881 * Atomic setting of ioctl hooks to avoid race
882 * with module unload.
883 */
884
885 static DEFINE_MUTEX(br_ioctl_mutex);
886 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
887
888 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
889 {
890 mutex_lock(&br_ioctl_mutex);
891 br_ioctl_hook = hook;
892 mutex_unlock(&br_ioctl_mutex);
893 }
894
895 EXPORT_SYMBOL(brioctl_set);
896
897 static DEFINE_MUTEX(vlan_ioctl_mutex);
898 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
899
900 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
901 {
902 mutex_lock(&vlan_ioctl_mutex);
903 vlan_ioctl_hook = hook;
904 mutex_unlock(&vlan_ioctl_mutex);
905 }
906
907 EXPORT_SYMBOL(vlan_ioctl_set);
908
909 static DEFINE_MUTEX(dlci_ioctl_mutex);
910 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
911
912 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
913 {
914 mutex_lock(&dlci_ioctl_mutex);
915 dlci_ioctl_hook = hook;
916 mutex_unlock(&dlci_ioctl_mutex);
917 }
918
919 EXPORT_SYMBOL(dlci_ioctl_set);
920
921 static long sock_do_ioctl(struct net *net, struct socket *sock,
922 unsigned int cmd, unsigned long arg)
923 {
924 int err;
925 void __user *argp = (void __user *)arg;
926
927 err = sock->ops->ioctl(sock, cmd, arg);
928
929 /*
930 * If this ioctl is unknown try to hand it down
931 * to the NIC driver.
932 */
933 if (err == -ENOIOCTLCMD)
934 err = dev_ioctl(net, cmd, argp);
935
936 return err;
937 }
938
939 /*
940 * With an ioctl, arg may well be a user mode pointer, but we don't know
941 * what to do with it - that's up to the protocol still.
942 */
943
944 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
945 {
946 struct socket *sock;
947 struct sock *sk;
948 void __user *argp = (void __user *)arg;
949 int pid, err;
950 struct net *net;
951
952 sock = file->private_data;
953 sk = sock->sk;
954 net = sock_net(sk);
955 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
956 err = dev_ioctl(net, cmd, argp);
957 } else
958 #ifdef CONFIG_WEXT_CORE
959 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
960 err = dev_ioctl(net, cmd, argp);
961 } else
962 #endif
963 switch (cmd) {
964 case FIOSETOWN:
965 case SIOCSPGRP:
966 err = -EFAULT;
967 if (get_user(pid, (int __user *)argp))
968 break;
969 err = f_setown(sock->file, pid, 1);
970 break;
971 case FIOGETOWN:
972 case SIOCGPGRP:
973 err = put_user(f_getown(sock->file),
974 (int __user *)argp);
975 break;
976 case SIOCGIFBR:
977 case SIOCSIFBR:
978 case SIOCBRADDBR:
979 case SIOCBRDELBR:
980 err = -ENOPKG;
981 if (!br_ioctl_hook)
982 request_module("bridge");
983
984 mutex_lock(&br_ioctl_mutex);
985 if (br_ioctl_hook)
986 err = br_ioctl_hook(net, cmd, argp);
987 mutex_unlock(&br_ioctl_mutex);
988 break;
989 case SIOCGIFVLAN:
990 case SIOCSIFVLAN:
991 err = -ENOPKG;
992 if (!vlan_ioctl_hook)
993 request_module("8021q");
994
995 mutex_lock(&vlan_ioctl_mutex);
996 if (vlan_ioctl_hook)
997 err = vlan_ioctl_hook(net, argp);
998 mutex_unlock(&vlan_ioctl_mutex);
999 break;
1000 case SIOCADDDLCI:
1001 case SIOCDELDLCI:
1002 err = -ENOPKG;
1003 if (!dlci_ioctl_hook)
1004 request_module("dlci");
1005
1006 mutex_lock(&dlci_ioctl_mutex);
1007 if (dlci_ioctl_hook)
1008 err = dlci_ioctl_hook(cmd, argp);
1009 mutex_unlock(&dlci_ioctl_mutex);
1010 break;
1011 default:
1012 err = sock_do_ioctl(net, sock, cmd, arg);
1013 break;
1014 }
1015 return err;
1016 }
1017
1018 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1019 {
1020 int err;
1021 struct socket *sock = NULL;
1022
1023 err = security_socket_create(family, type, protocol, 1);
1024 if (err)
1025 goto out;
1026
1027 sock = sock_alloc();
1028 if (!sock) {
1029 err = -ENOMEM;
1030 goto out;
1031 }
1032
1033 sock->type = type;
1034 err = security_socket_post_create(sock, family, type, protocol, 1);
1035 if (err)
1036 goto out_release;
1037
1038 out:
1039 *res = sock;
1040 return err;
1041 out_release:
1042 sock_release(sock);
1043 sock = NULL;
1044 goto out;
1045 }
1046
1047 /* No kernel lock held - perfect */
1048 static unsigned int sock_poll(struct file *file, poll_table *wait)
1049 {
1050 struct socket *sock;
1051
1052 /*
1053 * We can't return errors to poll, so it's either yes or no.
1054 */
1055 sock = file->private_data;
1056 return sock->ops->poll(file, sock, wait);
1057 }
1058
1059 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1060 {
1061 struct socket *sock = file->private_data;
1062
1063 return sock->ops->mmap(file, sock, vma);
1064 }
1065
1066 static int sock_close(struct inode *inode, struct file *filp)
1067 {
1068 /*
1069 * It was possible the inode is NULL we were
1070 * closing an unfinished socket.
1071 */
1072
1073 if (!inode) {
1074 printk(KERN_DEBUG "sock_close: NULL inode\n");
1075 return 0;
1076 }
1077 sock_release(SOCKET_I(inode));
1078 return 0;
1079 }
1080
1081 /*
1082 * Update the socket async list
1083 *
1084 * Fasync_list locking strategy.
1085 *
1086 * 1. fasync_list is modified only under process context socket lock
1087 * i.e. under semaphore.
1088 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1089 * or under socket lock.
1090 * 3. fasync_list can be used from softirq context, so that
1091 * modification under socket lock have to be enhanced with
1092 * write_lock_bh(&sk->sk_callback_lock).
1093 * --ANK (990710)
1094 */
1095
1096 static int sock_fasync(int fd, struct file *filp, int on)
1097 {
1098 struct fasync_struct *fa, *fna = NULL, **prev;
1099 struct socket *sock;
1100 struct sock *sk;
1101
1102 if (on) {
1103 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1104 if (fna == NULL)
1105 return -ENOMEM;
1106 }
1107
1108 sock = filp->private_data;
1109
1110 sk = sock->sk;
1111 if (sk == NULL) {
1112 kfree(fna);
1113 return -EINVAL;
1114 }
1115
1116 lock_sock(sk);
1117
1118 spin_lock(&filp->f_lock);
1119 if (on)
1120 filp->f_flags |= FASYNC;
1121 else
1122 filp->f_flags &= ~FASYNC;
1123 spin_unlock(&filp->f_lock);
1124
1125 prev = &(sock->fasync_list);
1126
1127 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1128 if (fa->fa_file == filp)
1129 break;
1130
1131 if (on) {
1132 if (fa != NULL) {
1133 write_lock_bh(&sk->sk_callback_lock);
1134 fa->fa_fd = fd;
1135 write_unlock_bh(&sk->sk_callback_lock);
1136
1137 kfree(fna);
1138 goto out;
1139 }
1140 fna->fa_file = filp;
1141 fna->fa_fd = fd;
1142 fna->magic = FASYNC_MAGIC;
1143 fna->fa_next = sock->fasync_list;
1144 write_lock_bh(&sk->sk_callback_lock);
1145 sock->fasync_list = fna;
1146 sock_set_flag(sk, SOCK_FASYNC);
1147 write_unlock_bh(&sk->sk_callback_lock);
1148 } else {
1149 if (fa != NULL) {
1150 write_lock_bh(&sk->sk_callback_lock);
1151 *prev = fa->fa_next;
1152 if (!sock->fasync_list)
1153 sock_reset_flag(sk, SOCK_FASYNC);
1154 write_unlock_bh(&sk->sk_callback_lock);
1155 kfree(fa);
1156 }
1157 }
1158
1159 out:
1160 release_sock(sock->sk);
1161 return 0;
1162 }
1163
1164 /* This function may be called only under socket lock or callback_lock */
1165
1166 int sock_wake_async(struct socket *sock, int how, int band)
1167 {
1168 if (!sock || !sock->fasync_list)
1169 return -1;
1170 switch (how) {
1171 case SOCK_WAKE_WAITD:
1172 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1173 break;
1174 goto call_kill;
1175 case SOCK_WAKE_SPACE:
1176 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1177 break;
1178 /* fall through */
1179 case SOCK_WAKE_IO:
1180 call_kill:
1181 __kill_fasync(sock->fasync_list, SIGIO, band);
1182 break;
1183 case SOCK_WAKE_URG:
1184 __kill_fasync(sock->fasync_list, SIGURG, band);
1185 }
1186 return 0;
1187 }
1188
1189 static int __sock_create(struct net *net, int family, int type, int protocol,
1190 struct socket **res, int kern)
1191 {
1192 int err;
1193 struct socket *sock;
1194 const struct net_proto_family *pf;
1195
1196 /*
1197 * Check protocol is in range
1198 */
1199 if (family < 0 || family >= NPROTO)
1200 return -EAFNOSUPPORT;
1201 if (type < 0 || type >= SOCK_MAX)
1202 return -EINVAL;
1203
1204 /* Compatibility.
1205
1206 This uglymoron is moved from INET layer to here to avoid
1207 deadlock in module load.
1208 */
1209 if (family == PF_INET && type == SOCK_PACKET) {
1210 static int warned;
1211 if (!warned) {
1212 warned = 1;
1213 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1214 current->comm);
1215 }
1216 family = PF_PACKET;
1217 }
1218
1219 err = security_socket_create(family, type, protocol, kern);
1220 if (err)
1221 return err;
1222
1223 /*
1224 * Allocate the socket and allow the family to set things up. if
1225 * the protocol is 0, the family is instructed to select an appropriate
1226 * default.
1227 */
1228 sock = sock_alloc();
1229 if (!sock) {
1230 if (net_ratelimit())
1231 printk(KERN_WARNING "socket: no more sockets\n");
1232 return -ENFILE; /* Not exactly a match, but its the
1233 closest posix thing */
1234 }
1235
1236 sock->type = type;
1237
1238 #ifdef CONFIG_MODULES
1239 /* Attempt to load a protocol module if the find failed.
1240 *
1241 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1242 * requested real, full-featured networking support upon configuration.
1243 * Otherwise module support will break!
1244 */
1245 if (net_families[family] == NULL)
1246 request_module("net-pf-%d", family);
1247 #endif
1248
1249 rcu_read_lock();
1250 pf = rcu_dereference(net_families[family]);
1251 err = -EAFNOSUPPORT;
1252 if (!pf)
1253 goto out_release;
1254
1255 /*
1256 * We will call the ->create function, that possibly is in a loadable
1257 * module, so we have to bump that loadable module refcnt first.
1258 */
1259 if (!try_module_get(pf->owner))
1260 goto out_release;
1261
1262 /* Now protected by module ref count */
1263 rcu_read_unlock();
1264
1265 err = pf->create(net, sock, protocol, kern);
1266 if (err < 0)
1267 goto out_module_put;
1268
1269 /*
1270 * Now to bump the refcnt of the [loadable] module that owns this
1271 * socket at sock_release time we decrement its refcnt.
1272 */
1273 if (!try_module_get(sock->ops->owner))
1274 goto out_module_busy;
1275
1276 /*
1277 * Now that we're done with the ->create function, the [loadable]
1278 * module can have its refcnt decremented
1279 */
1280 module_put(pf->owner);
1281 err = security_socket_post_create(sock, family, type, protocol, kern);
1282 if (err)
1283 goto out_sock_release;
1284 *res = sock;
1285
1286 return 0;
1287
1288 out_module_busy:
1289 err = -EAFNOSUPPORT;
1290 out_module_put:
1291 sock->ops = NULL;
1292 module_put(pf->owner);
1293 out_sock_release:
1294 sock_release(sock);
1295 return err;
1296
1297 out_release:
1298 rcu_read_unlock();
1299 goto out_sock_release;
1300 }
1301
1302 int sock_create(int family, int type, int protocol, struct socket **res)
1303 {
1304 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1305 }
1306
1307 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1308 {
1309 return __sock_create(&init_net, family, type, protocol, res, 1);
1310 }
1311
1312 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1313 {
1314 int retval;
1315 struct socket *sock;
1316 int flags;
1317
1318 /* Check the SOCK_* constants for consistency. */
1319 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1320 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1321 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1322 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1323
1324 flags = type & ~SOCK_TYPE_MASK;
1325 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1326 return -EINVAL;
1327 type &= SOCK_TYPE_MASK;
1328
1329 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1330 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1331
1332 retval = sock_create(family, type, protocol, &sock);
1333 if (retval < 0)
1334 goto out;
1335
1336 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1337 if (retval < 0)
1338 goto out_release;
1339
1340 out:
1341 /* It may be already another descriptor 8) Not kernel problem. */
1342 return retval;
1343
1344 out_release:
1345 sock_release(sock);
1346 return retval;
1347 }
1348
1349 /*
1350 * Create a pair of connected sockets.
1351 */
1352
1353 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1354 int __user *, usockvec)
1355 {
1356 struct socket *sock1, *sock2;
1357 int fd1, fd2, err;
1358 struct file *newfile1, *newfile2;
1359 int flags;
1360
1361 flags = type & ~SOCK_TYPE_MASK;
1362 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1363 return -EINVAL;
1364 type &= SOCK_TYPE_MASK;
1365
1366 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1367 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1368
1369 /*
1370 * Obtain the first socket and check if the underlying protocol
1371 * supports the socketpair call.
1372 */
1373
1374 err = sock_create(family, type, protocol, &sock1);
1375 if (err < 0)
1376 goto out;
1377
1378 err = sock_create(family, type, protocol, &sock2);
1379 if (err < 0)
1380 goto out_release_1;
1381
1382 err = sock1->ops->socketpair(sock1, sock2);
1383 if (err < 0)
1384 goto out_release_both;
1385
1386 fd1 = sock_alloc_file(sock1, &newfile1, flags);
1387 if (unlikely(fd1 < 0)) {
1388 err = fd1;
1389 goto out_release_both;
1390 }
1391
1392 fd2 = sock_alloc_file(sock2, &newfile2, flags);
1393 if (unlikely(fd2 < 0)) {
1394 err = fd2;
1395 fput(newfile1);
1396 put_unused_fd(fd1);
1397 sock_release(sock2);
1398 goto out;
1399 }
1400
1401 audit_fd_pair(fd1, fd2);
1402 fd_install(fd1, newfile1);
1403 fd_install(fd2, newfile2);
1404 /* fd1 and fd2 may be already another descriptors.
1405 * Not kernel problem.
1406 */
1407
1408 err = put_user(fd1, &usockvec[0]);
1409 if (!err)
1410 err = put_user(fd2, &usockvec[1]);
1411 if (!err)
1412 return 0;
1413
1414 sys_close(fd2);
1415 sys_close(fd1);
1416 return err;
1417
1418 out_release_both:
1419 sock_release(sock2);
1420 out_release_1:
1421 sock_release(sock1);
1422 out:
1423 return err;
1424 }
1425
1426 /*
1427 * Bind a name to a socket. Nothing much to do here since it's
1428 * the protocol's responsibility to handle the local address.
1429 *
1430 * We move the socket address to kernel space before we call
1431 * the protocol layer (having also checked the address is ok).
1432 */
1433
1434 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1435 {
1436 struct socket *sock;
1437 struct sockaddr_storage address;
1438 int err, fput_needed;
1439
1440 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1441 if (sock) {
1442 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1443 if (err >= 0) {
1444 err = security_socket_bind(sock,
1445 (struct sockaddr *)&address,
1446 addrlen);
1447 if (!err)
1448 err = sock->ops->bind(sock,
1449 (struct sockaddr *)
1450 &address, addrlen);
1451 }
1452 fput_light(sock->file, fput_needed);
1453 }
1454 return err;
1455 }
1456
1457 /*
1458 * Perform a listen. Basically, we allow the protocol to do anything
1459 * necessary for a listen, and if that works, we mark the socket as
1460 * ready for listening.
1461 */
1462
1463 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1464 {
1465 struct socket *sock;
1466 int err, fput_needed;
1467 int somaxconn;
1468
1469 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1470 if (sock) {
1471 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1472 if ((unsigned)backlog > somaxconn)
1473 backlog = somaxconn;
1474
1475 err = security_socket_listen(sock, backlog);
1476 if (!err)
1477 err = sock->ops->listen(sock, backlog);
1478
1479 fput_light(sock->file, fput_needed);
1480 }
1481 return err;
1482 }
1483
1484 /*
1485 * For accept, we attempt to create a new socket, set up the link
1486 * with the client, wake up the client, then return the new
1487 * connected fd. We collect the address of the connector in kernel
1488 * space and move it to user at the very end. This is unclean because
1489 * we open the socket then return an error.
1490 *
1491 * 1003.1g adds the ability to recvmsg() to query connection pending
1492 * status to recvmsg. We need to add that support in a way thats
1493 * clean when we restucture accept also.
1494 */
1495
1496 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1497 int __user *, upeer_addrlen, int, flags)
1498 {
1499 struct socket *sock, *newsock;
1500 struct file *newfile;
1501 int err, len, newfd, fput_needed;
1502 struct sockaddr_storage address;
1503
1504 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1505 return -EINVAL;
1506
1507 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1508 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1509
1510 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1511 if (!sock)
1512 goto out;
1513
1514 err = -ENFILE;
1515 if (!(newsock = sock_alloc()))
1516 goto out_put;
1517
1518 newsock->type = sock->type;
1519 newsock->ops = sock->ops;
1520
1521 /*
1522 * We don't need try_module_get here, as the listening socket (sock)
1523 * has the protocol module (sock->ops->owner) held.
1524 */
1525 __module_get(newsock->ops->owner);
1526
1527 newfd = sock_alloc_file(newsock, &newfile, flags);
1528 if (unlikely(newfd < 0)) {
1529 err = newfd;
1530 sock_release(newsock);
1531 goto out_put;
1532 }
1533
1534 err = security_socket_accept(sock, newsock);
1535 if (err)
1536 goto out_fd;
1537
1538 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1539 if (err < 0)
1540 goto out_fd;
1541
1542 if (upeer_sockaddr) {
1543 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1544 &len, 2) < 0) {
1545 err = -ECONNABORTED;
1546 goto out_fd;
1547 }
1548 err = move_addr_to_user((struct sockaddr *)&address,
1549 len, upeer_sockaddr, upeer_addrlen);
1550 if (err < 0)
1551 goto out_fd;
1552 }
1553
1554 /* File flags are not inherited via accept() unlike another OSes. */
1555
1556 fd_install(newfd, newfile);
1557 err = newfd;
1558
1559 out_put:
1560 fput_light(sock->file, fput_needed);
1561 out:
1562 return err;
1563 out_fd:
1564 fput(newfile);
1565 put_unused_fd(newfd);
1566 goto out_put;
1567 }
1568
1569 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1570 int __user *, upeer_addrlen)
1571 {
1572 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1573 }
1574
1575 /*
1576 * Attempt to connect to a socket with the server address. The address
1577 * is in user space so we verify it is OK and move it to kernel space.
1578 *
1579 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1580 * break bindings
1581 *
1582 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1583 * other SEQPACKET protocols that take time to connect() as it doesn't
1584 * include the -EINPROGRESS status for such sockets.
1585 */
1586
1587 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1588 int, addrlen)
1589 {
1590 struct socket *sock;
1591 struct sockaddr_storage address;
1592 int err, fput_needed;
1593
1594 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1595 if (!sock)
1596 goto out;
1597 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1598 if (err < 0)
1599 goto out_put;
1600
1601 err =
1602 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1603 if (err)
1604 goto out_put;
1605
1606 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1607 sock->file->f_flags);
1608 out_put:
1609 fput_light(sock->file, fput_needed);
1610 out:
1611 return err;
1612 }
1613
1614 /*
1615 * Get the local address ('name') of a socket object. Move the obtained
1616 * name to user space.
1617 */
1618
1619 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1620 int __user *, usockaddr_len)
1621 {
1622 struct socket *sock;
1623 struct sockaddr_storage address;
1624 int len, err, fput_needed;
1625
1626 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1627 if (!sock)
1628 goto out;
1629
1630 err = security_socket_getsockname(sock);
1631 if (err)
1632 goto out_put;
1633
1634 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1635 if (err)
1636 goto out_put;
1637 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1638
1639 out_put:
1640 fput_light(sock->file, fput_needed);
1641 out:
1642 return err;
1643 }
1644
1645 /*
1646 * Get the remote address ('name') of a socket object. Move the obtained
1647 * name to user space.
1648 */
1649
1650 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1651 int __user *, usockaddr_len)
1652 {
1653 struct socket *sock;
1654 struct sockaddr_storage address;
1655 int len, err, fput_needed;
1656
1657 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1658 if (sock != NULL) {
1659 err = security_socket_getpeername(sock);
1660 if (err) {
1661 fput_light(sock->file, fput_needed);
1662 return err;
1663 }
1664
1665 err =
1666 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1667 1);
1668 if (!err)
1669 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1670 usockaddr_len);
1671 fput_light(sock->file, fput_needed);
1672 }
1673 return err;
1674 }
1675
1676 /*
1677 * Send a datagram to a given address. We move the address into kernel
1678 * space and check the user space data area is readable before invoking
1679 * the protocol.
1680 */
1681
1682 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1683 unsigned, flags, struct sockaddr __user *, addr,
1684 int, addr_len)
1685 {
1686 struct socket *sock;
1687 struct sockaddr_storage address;
1688 int err;
1689 struct msghdr msg;
1690 struct iovec iov;
1691 int fput_needed;
1692
1693 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1694 if (!sock)
1695 goto out;
1696
1697 iov.iov_base = buff;
1698 iov.iov_len = len;
1699 msg.msg_name = NULL;
1700 msg.msg_iov = &iov;
1701 msg.msg_iovlen = 1;
1702 msg.msg_control = NULL;
1703 msg.msg_controllen = 0;
1704 msg.msg_namelen = 0;
1705 if (addr) {
1706 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1707 if (err < 0)
1708 goto out_put;
1709 msg.msg_name = (struct sockaddr *)&address;
1710 msg.msg_namelen = addr_len;
1711 }
1712 if (sock->file->f_flags & O_NONBLOCK)
1713 flags |= MSG_DONTWAIT;
1714 msg.msg_flags = flags;
1715 err = sock_sendmsg(sock, &msg, len);
1716
1717 out_put:
1718 fput_light(sock->file, fput_needed);
1719 out:
1720 return err;
1721 }
1722
1723 /*
1724 * Send a datagram down a socket.
1725 */
1726
1727 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1728 unsigned, flags)
1729 {
1730 return sys_sendto(fd, buff, len, flags, NULL, 0);
1731 }
1732
1733 /*
1734 * Receive a frame from the socket and optionally record the address of the
1735 * sender. We verify the buffers are writable and if needed move the
1736 * sender address from kernel to user space.
1737 */
1738
1739 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1740 unsigned, flags, struct sockaddr __user *, addr,
1741 int __user *, addr_len)
1742 {
1743 struct socket *sock;
1744 struct iovec iov;
1745 struct msghdr msg;
1746 struct sockaddr_storage address;
1747 int err, err2;
1748 int fput_needed;
1749
1750 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1751 if (!sock)
1752 goto out;
1753
1754 msg.msg_control = NULL;
1755 msg.msg_controllen = 0;
1756 msg.msg_iovlen = 1;
1757 msg.msg_iov = &iov;
1758 iov.iov_len = size;
1759 iov.iov_base = ubuf;
1760 msg.msg_name = (struct sockaddr *)&address;
1761 msg.msg_namelen = sizeof(address);
1762 if (sock->file->f_flags & O_NONBLOCK)
1763 flags |= MSG_DONTWAIT;
1764 err = sock_recvmsg(sock, &msg, size, flags);
1765
1766 if (err >= 0 && addr != NULL) {
1767 err2 = move_addr_to_user((struct sockaddr *)&address,
1768 msg.msg_namelen, addr, addr_len);
1769 if (err2 < 0)
1770 err = err2;
1771 }
1772
1773 fput_light(sock->file, fput_needed);
1774 out:
1775 return err;
1776 }
1777
1778 /*
1779 * Receive a datagram from a socket.
1780 */
1781
1782 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1783 unsigned flags)
1784 {
1785 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1786 }
1787
1788 /*
1789 * Set a socket option. Because we don't know the option lengths we have
1790 * to pass the user mode parameter for the protocols to sort out.
1791 */
1792
1793 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1794 char __user *, optval, int, optlen)
1795 {
1796 int err, fput_needed;
1797 struct socket *sock;
1798
1799 if (optlen < 0)
1800 return -EINVAL;
1801
1802 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1803 if (sock != NULL) {
1804 err = security_socket_setsockopt(sock, level, optname);
1805 if (err)
1806 goto out_put;
1807
1808 if (level == SOL_SOCKET)
1809 err =
1810 sock_setsockopt(sock, level, optname, optval,
1811 optlen);
1812 else
1813 err =
1814 sock->ops->setsockopt(sock, level, optname, optval,
1815 optlen);
1816 out_put:
1817 fput_light(sock->file, fput_needed);
1818 }
1819 return err;
1820 }
1821
1822 /*
1823 * Get a socket option. Because we don't know the option lengths we have
1824 * to pass a user mode parameter for the protocols to sort out.
1825 */
1826
1827 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1828 char __user *, optval, int __user *, optlen)
1829 {
1830 int err, fput_needed;
1831 struct socket *sock;
1832
1833 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1834 if (sock != NULL) {
1835 err = security_socket_getsockopt(sock, level, optname);
1836 if (err)
1837 goto out_put;
1838
1839 if (level == SOL_SOCKET)
1840 err =
1841 sock_getsockopt(sock, level, optname, optval,
1842 optlen);
1843 else
1844 err =
1845 sock->ops->getsockopt(sock, level, optname, optval,
1846 optlen);
1847 out_put:
1848 fput_light(sock->file, fput_needed);
1849 }
1850 return err;
1851 }
1852
1853 /*
1854 * Shutdown a socket.
1855 */
1856
1857 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1858 {
1859 int err, fput_needed;
1860 struct socket *sock;
1861
1862 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1863 if (sock != NULL) {
1864 err = security_socket_shutdown(sock, how);
1865 if (!err)
1866 err = sock->ops->shutdown(sock, how);
1867 fput_light(sock->file, fput_needed);
1868 }
1869 return err;
1870 }
1871
1872 /* A couple of helpful macros for getting the address of the 32/64 bit
1873 * fields which are the same type (int / unsigned) on our platforms.
1874 */
1875 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1876 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1877 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1878
1879 /*
1880 * BSD sendmsg interface
1881 */
1882
1883 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1884 {
1885 struct compat_msghdr __user *msg_compat =
1886 (struct compat_msghdr __user *)msg;
1887 struct socket *sock;
1888 struct sockaddr_storage address;
1889 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1890 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1891 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1892 /* 20 is size of ipv6_pktinfo */
1893 unsigned char *ctl_buf = ctl;
1894 struct msghdr msg_sys;
1895 int err, ctl_len, iov_size, total_len;
1896 int fput_needed;
1897
1898 err = -EFAULT;
1899 if (MSG_CMSG_COMPAT & flags) {
1900 if (get_compat_msghdr(&msg_sys, msg_compat))
1901 return -EFAULT;
1902 }
1903 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1904 return -EFAULT;
1905
1906 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1907 if (!sock)
1908 goto out;
1909
1910 /* do not move before msg_sys is valid */
1911 err = -EMSGSIZE;
1912 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1913 goto out_put;
1914
1915 /* Check whether to allocate the iovec area */
1916 err = -ENOMEM;
1917 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1918 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1919 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1920 if (!iov)
1921 goto out_put;
1922 }
1923
1924 /* This will also move the address data into kernel space */
1925 if (MSG_CMSG_COMPAT & flags) {
1926 err = verify_compat_iovec(&msg_sys, iov,
1927 (struct sockaddr *)&address,
1928 VERIFY_READ);
1929 } else
1930 err = verify_iovec(&msg_sys, iov,
1931 (struct sockaddr *)&address,
1932 VERIFY_READ);
1933 if (err < 0)
1934 goto out_freeiov;
1935 total_len = err;
1936
1937 err = -ENOBUFS;
1938
1939 if (msg_sys.msg_controllen > INT_MAX)
1940 goto out_freeiov;
1941 ctl_len = msg_sys.msg_controllen;
1942 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1943 err =
1944 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1945 sizeof(ctl));
1946 if (err)
1947 goto out_freeiov;
1948 ctl_buf = msg_sys.msg_control;
1949 ctl_len = msg_sys.msg_controllen;
1950 } else if (ctl_len) {
1951 if (ctl_len > sizeof(ctl)) {
1952 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1953 if (ctl_buf == NULL)
1954 goto out_freeiov;
1955 }
1956 err = -EFAULT;
1957 /*
1958 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1959 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1960 * checking falls down on this.
1961 */
1962 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1963 ctl_len))
1964 goto out_freectl;
1965 msg_sys.msg_control = ctl_buf;
1966 }
1967 msg_sys.msg_flags = flags;
1968
1969 if (sock->file->f_flags & O_NONBLOCK)
1970 msg_sys.msg_flags |= MSG_DONTWAIT;
1971 err = sock_sendmsg(sock, &msg_sys, total_len);
1972
1973 out_freectl:
1974 if (ctl_buf != ctl)
1975 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1976 out_freeiov:
1977 if (iov != iovstack)
1978 sock_kfree_s(sock->sk, iov, iov_size);
1979 out_put:
1980 fput_light(sock->file, fput_needed);
1981 out:
1982 return err;
1983 }
1984
1985 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1986 struct msghdr *msg_sys, unsigned flags, int nosec)
1987 {
1988 struct compat_msghdr __user *msg_compat =
1989 (struct compat_msghdr __user *)msg;
1990 struct iovec iovstack[UIO_FASTIOV];
1991 struct iovec *iov = iovstack;
1992 unsigned long cmsg_ptr;
1993 int err, iov_size, total_len, len;
1994
1995 /* kernel mode address */
1996 struct sockaddr_storage addr;
1997
1998 /* user mode address pointers */
1999 struct sockaddr __user *uaddr;
2000 int __user *uaddr_len;
2001
2002 if (MSG_CMSG_COMPAT & flags) {
2003 if (get_compat_msghdr(msg_sys, msg_compat))
2004 return -EFAULT;
2005 }
2006 else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2007 return -EFAULT;
2008
2009 err = -EMSGSIZE;
2010 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2011 goto out;
2012
2013 /* Check whether to allocate the iovec area */
2014 err = -ENOMEM;
2015 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
2016 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2017 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2018 if (!iov)
2019 goto out;
2020 }
2021
2022 /*
2023 * Save the user-mode address (verify_iovec will change the
2024 * kernel msghdr to use the kernel address space)
2025 */
2026
2027 uaddr = (__force void __user *)msg_sys->msg_name;
2028 uaddr_len = COMPAT_NAMELEN(msg);
2029 if (MSG_CMSG_COMPAT & flags) {
2030 err = verify_compat_iovec(msg_sys, iov,
2031 (struct sockaddr *)&addr,
2032 VERIFY_WRITE);
2033 } else
2034 err = verify_iovec(msg_sys, iov,
2035 (struct sockaddr *)&addr,
2036 VERIFY_WRITE);
2037 if (err < 0)
2038 goto out_freeiov;
2039 total_len = err;
2040
2041 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2042 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2043
2044 if (sock->file->f_flags & O_NONBLOCK)
2045 flags |= MSG_DONTWAIT;
2046 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2047 total_len, flags);
2048 if (err < 0)
2049 goto out_freeiov;
2050 len = err;
2051
2052 if (uaddr != NULL) {
2053 err = move_addr_to_user((struct sockaddr *)&addr,
2054 msg_sys->msg_namelen, uaddr,
2055 uaddr_len);
2056 if (err < 0)
2057 goto out_freeiov;
2058 }
2059 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2060 COMPAT_FLAGS(msg));
2061 if (err)
2062 goto out_freeiov;
2063 if (MSG_CMSG_COMPAT & flags)
2064 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2065 &msg_compat->msg_controllen);
2066 else
2067 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2068 &msg->msg_controllen);
2069 if (err)
2070 goto out_freeiov;
2071 err = len;
2072
2073 out_freeiov:
2074 if (iov != iovstack)
2075 sock_kfree_s(sock->sk, iov, iov_size);
2076 out:
2077 return err;
2078 }
2079
2080 /*
2081 * BSD recvmsg interface
2082 */
2083
2084 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2085 unsigned int, flags)
2086 {
2087 int fput_needed, err;
2088 struct msghdr msg_sys;
2089 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2090
2091 if (!sock)
2092 goto out;
2093
2094 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2095
2096 fput_light(sock->file, fput_needed);
2097 out:
2098 return err;
2099 }
2100
2101 /*
2102 * Linux recvmmsg interface
2103 */
2104
2105 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2106 unsigned int flags, struct timespec *timeout)
2107 {
2108 int fput_needed, err, datagrams;
2109 struct socket *sock;
2110 struct mmsghdr __user *entry;
2111 struct compat_mmsghdr __user *compat_entry;
2112 struct msghdr msg_sys;
2113 struct timespec end_time;
2114
2115 if (timeout &&
2116 poll_select_set_timeout(&end_time, timeout->tv_sec,
2117 timeout->tv_nsec))
2118 return -EINVAL;
2119
2120 datagrams = 0;
2121
2122 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2123 if (!sock)
2124 return err;
2125
2126 err = sock_error(sock->sk);
2127 if (err)
2128 goto out_put;
2129
2130 entry = mmsg;
2131 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2132
2133 while (datagrams < vlen) {
2134 /*
2135 * No need to ask LSM for more than the first datagram.
2136 */
2137 if (MSG_CMSG_COMPAT & flags) {
2138 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2139 &msg_sys, flags, datagrams);
2140 if (err < 0)
2141 break;
2142 err = __put_user(err, &compat_entry->msg_len);
2143 ++compat_entry;
2144 } else {
2145 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2146 &msg_sys, flags, datagrams);
2147 if (err < 0)
2148 break;
2149 err = put_user(err, &entry->msg_len);
2150 ++entry;
2151 }
2152
2153 if (err)
2154 break;
2155 ++datagrams;
2156
2157 if (timeout) {
2158 ktime_get_ts(timeout);
2159 *timeout = timespec_sub(end_time, *timeout);
2160 if (timeout->tv_sec < 0) {
2161 timeout->tv_sec = timeout->tv_nsec = 0;
2162 break;
2163 }
2164
2165 /* Timeout, return less than vlen datagrams */
2166 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2167 break;
2168 }
2169
2170 /* Out of band data, return right away */
2171 if (msg_sys.msg_flags & MSG_OOB)
2172 break;
2173 }
2174
2175 out_put:
2176 fput_light(sock->file, fput_needed);
2177
2178 if (err == 0)
2179 return datagrams;
2180
2181 if (datagrams != 0) {
2182 /*
2183 * We may return less entries than requested (vlen) if the
2184 * sock is non block and there aren't enough datagrams...
2185 */
2186 if (err != -EAGAIN) {
2187 /*
2188 * ... or if recvmsg returns an error after we
2189 * received some datagrams, where we record the
2190 * error to return on the next call or if the
2191 * app asks about it using getsockopt(SO_ERROR).
2192 */
2193 sock->sk->sk_err = -err;
2194 }
2195
2196 return datagrams;
2197 }
2198
2199 return err;
2200 }
2201
2202 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2203 unsigned int, vlen, unsigned int, flags,
2204 struct timespec __user *, timeout)
2205 {
2206 int datagrams;
2207 struct timespec timeout_sys;
2208
2209 if (!timeout)
2210 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2211
2212 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2213 return -EFAULT;
2214
2215 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2216
2217 if (datagrams > 0 &&
2218 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2219 datagrams = -EFAULT;
2220
2221 return datagrams;
2222 }
2223
2224 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2225 /* Argument list sizes for sys_socketcall */
2226 #define AL(x) ((x) * sizeof(unsigned long))
2227 static const unsigned char nargs[20] = {
2228 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2229 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2230 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2231 AL(4),AL(5)
2232 };
2233
2234 #undef AL
2235
2236 /*
2237 * System call vectors.
2238 *
2239 * Argument checking cleaned up. Saved 20% in size.
2240 * This function doesn't need to set the kernel lock because
2241 * it is set by the callees.
2242 */
2243
2244 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2245 {
2246 unsigned long a[6];
2247 unsigned long a0, a1;
2248 int err;
2249 unsigned int len;
2250
2251 if (call < 1 || call > SYS_RECVMMSG)
2252 return -EINVAL;
2253
2254 len = nargs[call];
2255 if (len > sizeof(a))
2256 return -EINVAL;
2257
2258 /* copy_from_user should be SMP safe. */
2259 if (copy_from_user(a, args, len))
2260 return -EFAULT;
2261
2262 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2263
2264 a0 = a[0];
2265 a1 = a[1];
2266
2267 switch (call) {
2268 case SYS_SOCKET:
2269 err = sys_socket(a0, a1, a[2]);
2270 break;
2271 case SYS_BIND:
2272 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2273 break;
2274 case SYS_CONNECT:
2275 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2276 break;
2277 case SYS_LISTEN:
2278 err = sys_listen(a0, a1);
2279 break;
2280 case SYS_ACCEPT:
2281 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2282 (int __user *)a[2], 0);
2283 break;
2284 case SYS_GETSOCKNAME:
2285 err =
2286 sys_getsockname(a0, (struct sockaddr __user *)a1,
2287 (int __user *)a[2]);
2288 break;
2289 case SYS_GETPEERNAME:
2290 err =
2291 sys_getpeername(a0, (struct sockaddr __user *)a1,
2292 (int __user *)a[2]);
2293 break;
2294 case SYS_SOCKETPAIR:
2295 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2296 break;
2297 case SYS_SEND:
2298 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2299 break;
2300 case SYS_SENDTO:
2301 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2302 (struct sockaddr __user *)a[4], a[5]);
2303 break;
2304 case SYS_RECV:
2305 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2306 break;
2307 case SYS_RECVFROM:
2308 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2309 (struct sockaddr __user *)a[4],
2310 (int __user *)a[5]);
2311 break;
2312 case SYS_SHUTDOWN:
2313 err = sys_shutdown(a0, a1);
2314 break;
2315 case SYS_SETSOCKOPT:
2316 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2317 break;
2318 case SYS_GETSOCKOPT:
2319 err =
2320 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2321 (int __user *)a[4]);
2322 break;
2323 case SYS_SENDMSG:
2324 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2325 break;
2326 case SYS_RECVMSG:
2327 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2328 break;
2329 case SYS_RECVMMSG:
2330 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2331 (struct timespec __user *)a[4]);
2332 break;
2333 case SYS_ACCEPT4:
2334 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2335 (int __user *)a[2], a[3]);
2336 break;
2337 default:
2338 err = -EINVAL;
2339 break;
2340 }
2341 return err;
2342 }
2343
2344 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2345
2346 /**
2347 * sock_register - add a socket protocol handler
2348 * @ops: description of protocol
2349 *
2350 * This function is called by a protocol handler that wants to
2351 * advertise its address family, and have it linked into the
2352 * socket interface. The value ops->family coresponds to the
2353 * socket system call protocol family.
2354 */
2355 int sock_register(const struct net_proto_family *ops)
2356 {
2357 int err;
2358
2359 if (ops->family >= NPROTO) {
2360 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2361 NPROTO);
2362 return -ENOBUFS;
2363 }
2364
2365 spin_lock(&net_family_lock);
2366 if (net_families[ops->family])
2367 err = -EEXIST;
2368 else {
2369 net_families[ops->family] = ops;
2370 err = 0;
2371 }
2372 spin_unlock(&net_family_lock);
2373
2374 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2375 return err;
2376 }
2377
2378 /**
2379 * sock_unregister - remove a protocol handler
2380 * @family: protocol family to remove
2381 *
2382 * This function is called by a protocol handler that wants to
2383 * remove its address family, and have it unlinked from the
2384 * new socket creation.
2385 *
2386 * If protocol handler is a module, then it can use module reference
2387 * counts to protect against new references. If protocol handler is not
2388 * a module then it needs to provide its own protection in
2389 * the ops->create routine.
2390 */
2391 void sock_unregister(int family)
2392 {
2393 BUG_ON(family < 0 || family >= NPROTO);
2394
2395 spin_lock(&net_family_lock);
2396 net_families[family] = NULL;
2397 spin_unlock(&net_family_lock);
2398
2399 synchronize_rcu();
2400
2401 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2402 }
2403
2404 static int __init sock_init(void)
2405 {
2406 /*
2407 * Initialize sock SLAB cache.
2408 */
2409
2410 sk_init();
2411
2412 /*
2413 * Initialize skbuff SLAB cache
2414 */
2415 skb_init();
2416
2417 /*
2418 * Initialize the protocols module.
2419 */
2420
2421 init_inodecache();
2422 register_filesystem(&sock_fs_type);
2423 sock_mnt = kern_mount(&sock_fs_type);
2424
2425 /* The real protocol initialization is performed in later initcalls.
2426 */
2427
2428 #ifdef CONFIG_NETFILTER
2429 netfilter_init();
2430 #endif
2431
2432 return 0;
2433 }
2434
2435 core_initcall(sock_init); /* early initcall */
2436
2437 #ifdef CONFIG_PROC_FS
2438 void socket_seq_show(struct seq_file *seq)
2439 {
2440 int cpu;
2441 int counter = 0;
2442
2443 for_each_possible_cpu(cpu)
2444 counter += per_cpu(sockets_in_use, cpu);
2445
2446 /* It can be negative, by the way. 8) */
2447 if (counter < 0)
2448 counter = 0;
2449
2450 seq_printf(seq, "sockets: used %d\n", counter);
2451 }
2452 #endif /* CONFIG_PROC_FS */
2453
2454 #ifdef CONFIG_COMPAT
2455 static int do_siocgstamp(struct net *net, struct socket *sock,
2456 unsigned int cmd, struct compat_timeval __user *up)
2457 {
2458 mm_segment_t old_fs = get_fs();
2459 struct timeval ktv;
2460 int err;
2461
2462 set_fs(KERNEL_DS);
2463 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2464 set_fs(old_fs);
2465 if (!err) {
2466 err = put_user(ktv.tv_sec, &up->tv_sec);
2467 err |= __put_user(ktv.tv_usec, &up->tv_usec);
2468 }
2469 return err;
2470 }
2471
2472 static int do_siocgstampns(struct net *net, struct socket *sock,
2473 unsigned int cmd, struct compat_timespec __user *up)
2474 {
2475 mm_segment_t old_fs = get_fs();
2476 struct timespec kts;
2477 int err;
2478
2479 set_fs(KERNEL_DS);
2480 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2481 set_fs(old_fs);
2482 if (!err) {
2483 err = put_user(kts.tv_sec, &up->tv_sec);
2484 err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2485 }
2486 return err;
2487 }
2488
2489 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2490 {
2491 struct ifreq __user *uifr;
2492 int err;
2493
2494 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2495 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2496 return -EFAULT;
2497
2498 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2499 if (err)
2500 return err;
2501
2502 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2503 return -EFAULT;
2504
2505 return 0;
2506 }
2507
2508 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2509 {
2510 struct compat_ifconf ifc32;
2511 struct ifconf ifc;
2512 struct ifconf __user *uifc;
2513 struct compat_ifreq __user *ifr32;
2514 struct ifreq __user *ifr;
2515 unsigned int i, j;
2516 int err;
2517
2518 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2519 return -EFAULT;
2520
2521 if (ifc32.ifcbuf == 0) {
2522 ifc32.ifc_len = 0;
2523 ifc.ifc_len = 0;
2524 ifc.ifc_req = NULL;
2525 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2526 } else {
2527 size_t len =((ifc32.ifc_len / sizeof (struct compat_ifreq)) + 1) *
2528 sizeof (struct ifreq);
2529 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2530 ifc.ifc_len = len;
2531 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2532 ifr32 = compat_ptr(ifc32.ifcbuf);
2533 for (i = 0; i < ifc32.ifc_len; i += sizeof (struct compat_ifreq)) {
2534 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2535 return -EFAULT;
2536 ifr++;
2537 ifr32++;
2538 }
2539 }
2540 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2541 return -EFAULT;
2542
2543 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2544 if (err)
2545 return err;
2546
2547 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2548 return -EFAULT;
2549
2550 ifr = ifc.ifc_req;
2551 ifr32 = compat_ptr(ifc32.ifcbuf);
2552 for (i = 0, j = 0;
2553 i + sizeof (struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2554 i += sizeof (struct compat_ifreq), j += sizeof (struct ifreq)) {
2555 if (copy_in_user(ifr32, ifr, sizeof (struct compat_ifreq)))
2556 return -EFAULT;
2557 ifr32++;
2558 ifr++;
2559 }
2560
2561 if (ifc32.ifcbuf == 0) {
2562 /* Translate from 64-bit structure multiple to
2563 * a 32-bit one.
2564 */
2565 i = ifc.ifc_len;
2566 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2567 ifc32.ifc_len = i;
2568 } else {
2569 ifc32.ifc_len = i;
2570 }
2571 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2572 return -EFAULT;
2573
2574 return 0;
2575 }
2576
2577 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2578 {
2579 struct ifreq __user *ifr;
2580 u32 data;
2581 void __user *datap;
2582
2583 ifr = compat_alloc_user_space(sizeof(*ifr));
2584
2585 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2586 return -EFAULT;
2587
2588 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2589 return -EFAULT;
2590
2591 datap = compat_ptr(data);
2592 if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2593 return -EFAULT;
2594
2595 return dev_ioctl(net, SIOCETHTOOL, ifr);
2596 }
2597
2598 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2599 {
2600 void __user *uptr;
2601 compat_uptr_t uptr32;
2602 struct ifreq __user *uifr;
2603
2604 uifr = compat_alloc_user_space(sizeof (*uifr));
2605 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2606 return -EFAULT;
2607
2608 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2609 return -EFAULT;
2610
2611 uptr = compat_ptr(uptr32);
2612
2613 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2614 return -EFAULT;
2615
2616 return dev_ioctl(net, SIOCWANDEV, uifr);
2617 }
2618
2619 static int bond_ioctl(struct net *net, unsigned int cmd,
2620 struct compat_ifreq __user *ifr32)
2621 {
2622 struct ifreq kifr;
2623 struct ifreq __user *uifr;
2624 mm_segment_t old_fs;
2625 int err;
2626 u32 data;
2627 void __user *datap;
2628
2629 switch (cmd) {
2630 case SIOCBONDENSLAVE:
2631 case SIOCBONDRELEASE:
2632 case SIOCBONDSETHWADDR:
2633 case SIOCBONDCHANGEACTIVE:
2634 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2635 return -EFAULT;
2636
2637 old_fs = get_fs();
2638 set_fs (KERNEL_DS);
2639 err = dev_ioctl(net, cmd, &kifr);
2640 set_fs (old_fs);
2641
2642 return err;
2643 case SIOCBONDSLAVEINFOQUERY:
2644 case SIOCBONDINFOQUERY:
2645 uifr = compat_alloc_user_space(sizeof(*uifr));
2646 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2647 return -EFAULT;
2648
2649 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2650 return -EFAULT;
2651
2652 datap = compat_ptr(data);
2653 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2654 return -EFAULT;
2655
2656 return dev_ioctl(net, cmd, uifr);
2657 default:
2658 return -EINVAL;
2659 };
2660 }
2661
2662 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2663 struct compat_ifreq __user *u_ifreq32)
2664 {
2665 struct ifreq __user *u_ifreq64;
2666 char tmp_buf[IFNAMSIZ];
2667 void __user *data64;
2668 u32 data32;
2669
2670 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2671 IFNAMSIZ))
2672 return -EFAULT;
2673 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2674 return -EFAULT;
2675 data64 = compat_ptr(data32);
2676
2677 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2678
2679 /* Don't check these user accesses, just let that get trapped
2680 * in the ioctl handler instead.
2681 */
2682 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2683 IFNAMSIZ))
2684 return -EFAULT;
2685 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2686 return -EFAULT;
2687
2688 return dev_ioctl(net, cmd, u_ifreq64);
2689 }
2690
2691 static int dev_ifsioc(struct net *net, struct socket *sock,
2692 unsigned int cmd, struct compat_ifreq __user *uifr32)
2693 {
2694 struct ifreq __user *uifr;
2695 int err;
2696
2697 uifr = compat_alloc_user_space(sizeof(*uifr));
2698 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2699 return -EFAULT;
2700
2701 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2702
2703 if (!err) {
2704 switch (cmd) {
2705 case SIOCGIFFLAGS:
2706 case SIOCGIFMETRIC:
2707 case SIOCGIFMTU:
2708 case SIOCGIFMEM:
2709 case SIOCGIFHWADDR:
2710 case SIOCGIFINDEX:
2711 case SIOCGIFADDR:
2712 case SIOCGIFBRDADDR:
2713 case SIOCGIFDSTADDR:
2714 case SIOCGIFNETMASK:
2715 case SIOCGIFPFLAGS:
2716 case SIOCGIFTXQLEN:
2717 case SIOCGMIIPHY:
2718 case SIOCGMIIREG:
2719 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2720 err = -EFAULT;
2721 break;
2722 }
2723 }
2724 return err;
2725 }
2726
2727 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2728 struct compat_ifreq __user *uifr32)
2729 {
2730 struct ifreq ifr;
2731 struct compat_ifmap __user *uifmap32;
2732 mm_segment_t old_fs;
2733 int err;
2734
2735 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2736 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2737 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2738 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2739 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2740 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2741 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2742 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2743 if (err)
2744 return -EFAULT;
2745
2746 old_fs = get_fs();
2747 set_fs (KERNEL_DS);
2748 err = dev_ioctl(net, cmd, (void __user *)&ifr);
2749 set_fs (old_fs);
2750
2751 if (cmd == SIOCGIFMAP && !err) {
2752 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2753 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2754 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2755 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2756 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2757 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2758 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2759 if (err)
2760 err = -EFAULT;
2761 }
2762 return err;
2763 }
2764
2765 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2766 {
2767 void __user *uptr;
2768 compat_uptr_t uptr32;
2769 struct ifreq __user *uifr;
2770
2771 uifr = compat_alloc_user_space(sizeof (*uifr));
2772 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2773 return -EFAULT;
2774
2775 if (get_user(uptr32, &uifr32->ifr_data))
2776 return -EFAULT;
2777
2778 uptr = compat_ptr(uptr32);
2779
2780 if (put_user(uptr, &uifr->ifr_data))
2781 return -EFAULT;
2782
2783 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2784 }
2785
2786 struct rtentry32 {
2787 u32 rt_pad1;
2788 struct sockaddr rt_dst; /* target address */
2789 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2790 struct sockaddr rt_genmask; /* target network mask (IP) */
2791 unsigned short rt_flags;
2792 short rt_pad2;
2793 u32 rt_pad3;
2794 unsigned char rt_tos;
2795 unsigned char rt_class;
2796 short rt_pad4;
2797 short rt_metric; /* +1 for binary compatibility! */
2798 /* char * */ u32 rt_dev; /* forcing the device at add */
2799 u32 rt_mtu; /* per route MTU/Window */
2800 u32 rt_window; /* Window clamping */
2801 unsigned short rt_irtt; /* Initial RTT */
2802 };
2803
2804 struct in6_rtmsg32 {
2805 struct in6_addr rtmsg_dst;
2806 struct in6_addr rtmsg_src;
2807 struct in6_addr rtmsg_gateway;
2808 u32 rtmsg_type;
2809 u16 rtmsg_dst_len;
2810 u16 rtmsg_src_len;
2811 u32 rtmsg_metric;
2812 u32 rtmsg_info;
2813 u32 rtmsg_flags;
2814 s32 rtmsg_ifindex;
2815 };
2816
2817 static int routing_ioctl(struct net *net, struct socket *sock,
2818 unsigned int cmd, void __user *argp)
2819 {
2820 int ret;
2821 void *r = NULL;
2822 struct in6_rtmsg r6;
2823 struct rtentry r4;
2824 char devname[16];
2825 u32 rtdev;
2826 mm_segment_t old_fs = get_fs();
2827
2828 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2829 struct in6_rtmsg32 __user *ur6 = argp;
2830 ret = copy_from_user (&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2831 3 * sizeof(struct in6_addr));
2832 ret |= __get_user (r6.rtmsg_type, &(ur6->rtmsg_type));
2833 ret |= __get_user (r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2834 ret |= __get_user (r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2835 ret |= __get_user (r6.rtmsg_metric, &(ur6->rtmsg_metric));
2836 ret |= __get_user (r6.rtmsg_info, &(ur6->rtmsg_info));
2837 ret |= __get_user (r6.rtmsg_flags, &(ur6->rtmsg_flags));
2838 ret |= __get_user (r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2839
2840 r = (void *) &r6;
2841 } else { /* ipv4 */
2842 struct rtentry32 __user *ur4 = argp;
2843 ret = copy_from_user (&r4.rt_dst, &(ur4->rt_dst),
2844 3 * sizeof(struct sockaddr));
2845 ret |= __get_user (r4.rt_flags, &(ur4->rt_flags));
2846 ret |= __get_user (r4.rt_metric, &(ur4->rt_metric));
2847 ret |= __get_user (r4.rt_mtu, &(ur4->rt_mtu));
2848 ret |= __get_user (r4.rt_window, &(ur4->rt_window));
2849 ret |= __get_user (r4.rt_irtt, &(ur4->rt_irtt));
2850 ret |= __get_user (rtdev, &(ur4->rt_dev));
2851 if (rtdev) {
2852 ret |= copy_from_user (devname, compat_ptr(rtdev), 15);
2853 r4.rt_dev = devname; devname[15] = 0;
2854 } else
2855 r4.rt_dev = NULL;
2856
2857 r = (void *) &r4;
2858 }
2859
2860 if (ret) {
2861 ret = -EFAULT;
2862 goto out;
2863 }
2864
2865 set_fs (KERNEL_DS);
2866 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2867 set_fs (old_fs);
2868
2869 out:
2870 return ret;
2871 }
2872
2873 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2874 * for some operations; this forces use of the newer bridge-utils that
2875 * use compatiable ioctls
2876 */
2877 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2878 {
2879 compat_ulong_t tmp;
2880
2881 if (get_user(tmp, argp))
2882 return -EFAULT;
2883 if (tmp == BRCTL_GET_VERSION)
2884 return BRCTL_VERSION + 1;
2885 return -EINVAL;
2886 }
2887
2888 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2889 unsigned int cmd, unsigned long arg)
2890 {
2891 void __user *argp = compat_ptr(arg);
2892 struct sock *sk = sock->sk;
2893 struct net *net = sock_net(sk);
2894
2895 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2896 return siocdevprivate_ioctl(net, cmd, argp);
2897
2898 switch (cmd) {
2899 case SIOCSIFBR:
2900 case SIOCGIFBR:
2901 return old_bridge_ioctl(argp);
2902 case SIOCGIFNAME:
2903 return dev_ifname32(net, argp);
2904 case SIOCGIFCONF:
2905 return dev_ifconf(net, argp);
2906 case SIOCETHTOOL:
2907 return ethtool_ioctl(net, argp);
2908 case SIOCWANDEV:
2909 return compat_siocwandev(net, argp);
2910 case SIOCGIFMAP:
2911 case SIOCSIFMAP:
2912 return compat_sioc_ifmap(net, cmd, argp);
2913 case SIOCBONDENSLAVE:
2914 case SIOCBONDRELEASE:
2915 case SIOCBONDSETHWADDR:
2916 case SIOCBONDSLAVEINFOQUERY:
2917 case SIOCBONDINFOQUERY:
2918 case SIOCBONDCHANGEACTIVE:
2919 return bond_ioctl(net, cmd, argp);
2920 case SIOCADDRT:
2921 case SIOCDELRT:
2922 return routing_ioctl(net, sock, cmd, argp);
2923 case SIOCGSTAMP:
2924 return do_siocgstamp(net, sock, cmd, argp);
2925 case SIOCGSTAMPNS:
2926 return do_siocgstampns(net, sock, cmd, argp);
2927 case SIOCSHWTSTAMP:
2928 return compat_siocshwtstamp(net, argp);
2929
2930 case FIOSETOWN:
2931 case SIOCSPGRP:
2932 case FIOGETOWN:
2933 case SIOCGPGRP:
2934 case SIOCBRADDBR:
2935 case SIOCBRDELBR:
2936 case SIOCGIFVLAN:
2937 case SIOCSIFVLAN:
2938 case SIOCADDDLCI:
2939 case SIOCDELDLCI:
2940 return sock_ioctl(file, cmd, arg);
2941
2942 case SIOCGIFFLAGS:
2943 case SIOCSIFFLAGS:
2944 case SIOCGIFMETRIC:
2945 case SIOCSIFMETRIC:
2946 case SIOCGIFMTU:
2947 case SIOCSIFMTU:
2948 case SIOCGIFMEM:
2949 case SIOCSIFMEM:
2950 case SIOCGIFHWADDR:
2951 case SIOCSIFHWADDR:
2952 case SIOCADDMULTI:
2953 case SIOCDELMULTI:
2954 case SIOCGIFINDEX:
2955 case SIOCGIFADDR:
2956 case SIOCSIFADDR:
2957 case SIOCSIFHWBROADCAST:
2958 case SIOCDIFADDR:
2959 case SIOCGIFBRDADDR:
2960 case SIOCSIFBRDADDR:
2961 case SIOCGIFDSTADDR:
2962 case SIOCSIFDSTADDR:
2963 case SIOCGIFNETMASK:
2964 case SIOCSIFNETMASK:
2965 case SIOCSIFPFLAGS:
2966 case SIOCGIFPFLAGS:
2967 case SIOCGIFTXQLEN:
2968 case SIOCSIFTXQLEN:
2969 case SIOCBRADDIF:
2970 case SIOCBRDELIF:
2971 case SIOCSIFNAME:
2972 case SIOCGMIIPHY:
2973 case SIOCGMIIREG:
2974 case SIOCSMIIREG:
2975 return dev_ifsioc(net, sock, cmd, argp);
2976
2977 case SIOCSARP:
2978 case SIOCGARP:
2979 case SIOCDARP:
2980 case SIOCATMARK:
2981 return sock_do_ioctl(net, sock, cmd, arg);
2982 }
2983
2984 /* Prevent warning from compat_sys_ioctl, these always
2985 * result in -EINVAL in the native case anyway. */
2986 switch (cmd) {
2987 case SIOCRTMSG:
2988 case SIOCGIFCOUNT:
2989 case SIOCSRARP:
2990 case SIOCGRARP:
2991 case SIOCDRARP:
2992 case SIOCSIFLINK:
2993 case SIOCGIFSLAVE:
2994 case SIOCSIFSLAVE:
2995 return -EINVAL;
2996 }
2997
2998 return -ENOIOCTLCMD;
2999 }
3000
3001 static long compat_sock_ioctl(struct file *file, unsigned cmd,
3002 unsigned long arg)
3003 {
3004 struct socket *sock = file->private_data;
3005 int ret = -ENOIOCTLCMD;
3006 struct sock *sk;
3007 struct net *net;
3008
3009 sk = sock->sk;
3010 net = sock_net(sk);
3011
3012 if (sock->ops->compat_ioctl)
3013 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3014
3015 if (ret == -ENOIOCTLCMD &&
3016 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3017 ret = compat_wext_handle_ioctl(net, cmd, arg);
3018
3019 if (ret == -ENOIOCTLCMD)
3020 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3021
3022 return ret;
3023 }
3024 #endif
3025
3026 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3027 {
3028 return sock->ops->bind(sock, addr, addrlen);
3029 }
3030
3031 int kernel_listen(struct socket *sock, int backlog)
3032 {
3033 return sock->ops->listen(sock, backlog);
3034 }
3035
3036 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3037 {
3038 struct sock *sk = sock->sk;
3039 int err;
3040
3041 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3042 newsock);
3043 if (err < 0)
3044 goto done;
3045
3046 err = sock->ops->accept(sock, *newsock, flags);
3047 if (err < 0) {
3048 sock_release(*newsock);
3049 *newsock = NULL;
3050 goto done;
3051 }
3052
3053 (*newsock)->ops = sock->ops;
3054 __module_get((*newsock)->ops->owner);
3055
3056 done:
3057 return err;
3058 }
3059
3060 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3061 int flags)
3062 {
3063 return sock->ops->connect(sock, addr, addrlen, flags);
3064 }
3065
3066 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3067 int *addrlen)
3068 {
3069 return sock->ops->getname(sock, addr, addrlen, 0);
3070 }
3071
3072 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3073 int *addrlen)
3074 {
3075 return sock->ops->getname(sock, addr, addrlen, 1);
3076 }
3077
3078 int kernel_getsockopt(struct socket *sock, int level, int optname,
3079 char *optval, int *optlen)
3080 {
3081 mm_segment_t oldfs = get_fs();
3082 int err;
3083
3084 set_fs(KERNEL_DS);
3085 if (level == SOL_SOCKET)
3086 err = sock_getsockopt(sock, level, optname, optval, optlen);
3087 else
3088 err = sock->ops->getsockopt(sock, level, optname, optval,
3089 optlen);
3090 set_fs(oldfs);
3091 return err;
3092 }
3093
3094 int kernel_setsockopt(struct socket *sock, int level, int optname,
3095 char *optval, unsigned int optlen)
3096 {
3097 mm_segment_t oldfs = get_fs();
3098 int err;
3099
3100 set_fs(KERNEL_DS);
3101 if (level == SOL_SOCKET)
3102 err = sock_setsockopt(sock, level, optname, optval, optlen);
3103 else
3104 err = sock->ops->setsockopt(sock, level, optname, optval,
3105 optlen);
3106 set_fs(oldfs);
3107 return err;
3108 }
3109
3110 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3111 size_t size, int flags)
3112 {
3113 if (sock->ops->sendpage)
3114 return sock->ops->sendpage(sock, page, offset, size, flags);
3115
3116 return sock_no_sendpage(sock, page, offset, size, flags);
3117 }
3118
3119 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3120 {
3121 mm_segment_t oldfs = get_fs();
3122 int err;
3123
3124 set_fs(KERNEL_DS);
3125 err = sock->ops->ioctl(sock, cmd, arg);
3126 set_fs(oldfs);
3127
3128 return err;
3129 }
3130
3131 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3132 {
3133 return sock->ops->shutdown(sock, how);
3134 }
3135
3136 EXPORT_SYMBOL(sock_create);
3137 EXPORT_SYMBOL(sock_create_kern);
3138 EXPORT_SYMBOL(sock_create_lite);
3139 EXPORT_SYMBOL(sock_map_fd);
3140 EXPORT_SYMBOL(sock_recvmsg);
3141 EXPORT_SYMBOL(sock_register);
3142 EXPORT_SYMBOL(sock_release);
3143 EXPORT_SYMBOL(sock_sendmsg);
3144 EXPORT_SYMBOL(sock_unregister);
3145 EXPORT_SYMBOL(sock_wake_async);
3146 EXPORT_SYMBOL(sockfd_lookup);
3147 EXPORT_SYMBOL(kernel_sendmsg);
3148 EXPORT_SYMBOL(kernel_recvmsg);
3149 EXPORT_SYMBOL(kernel_bind);
3150 EXPORT_SYMBOL(kernel_listen);
3151 EXPORT_SYMBOL(kernel_accept);
3152 EXPORT_SYMBOL(kernel_connect);
3153 EXPORT_SYMBOL(kernel_getsockname);
3154 EXPORT_SYMBOL(kernel_getpeername);
3155 EXPORT_SYMBOL(kernel_getsockopt);
3156 EXPORT_SYMBOL(kernel_setsockopt);
3157 EXPORT_SYMBOL(kernel_sendpage);
3158 EXPORT_SYMBOL(kernel_sock_ioctl);
3159 EXPORT_SYMBOL(kernel_sock_shutdown);