]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/socket.c
Merge tag 'for-linus-5.10b-rc1c-tag' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / net / socket.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107
108 #ifdef CONFIG_NET_RX_BUSY_POLL
109 unsigned int sysctl_net_busy_read __read_mostly;
110 unsigned int sysctl_net_busy_poll __read_mostly;
111 #endif
112
113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
115 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
116
117 static int sock_close(struct inode *inode, struct file *file);
118 static __poll_t sock_poll(struct file *file,
119 struct poll_table_struct *wait);
120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
121 #ifdef CONFIG_COMPAT
122 static long compat_sock_ioctl(struct file *file,
123 unsigned int cmd, unsigned long arg);
124 #endif
125 static int sock_fasync(int fd, struct file *filp, int on);
126 static ssize_t sock_sendpage(struct file *file, struct page *page,
127 int offset, size_t size, loff_t *ppos, int more);
128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
129 struct pipe_inode_info *pipe, size_t len,
130 unsigned int flags);
131
132 #ifdef CONFIG_PROC_FS
133 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
134 {
135 struct socket *sock = f->private_data;
136
137 if (sock->ops->show_fdinfo)
138 sock->ops->show_fdinfo(m, sock);
139 }
140 #else
141 #define sock_show_fdinfo NULL
142 #endif
143
144 /*
145 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
146 * in the operation structures but are done directly via the socketcall() multiplexor.
147 */
148
149 static const struct file_operations socket_file_ops = {
150 .owner = THIS_MODULE,
151 .llseek = no_llseek,
152 .read_iter = sock_read_iter,
153 .write_iter = sock_write_iter,
154 .poll = sock_poll,
155 .unlocked_ioctl = sock_ioctl,
156 #ifdef CONFIG_COMPAT
157 .compat_ioctl = compat_sock_ioctl,
158 #endif
159 .mmap = sock_mmap,
160 .release = sock_close,
161 .fasync = sock_fasync,
162 .sendpage = sock_sendpage,
163 .splice_write = generic_splice_sendpage,
164 .splice_read = sock_splice_read,
165 .show_fdinfo = sock_show_fdinfo,
166 };
167
168 /*
169 * The protocol list. Each protocol is registered in here.
170 */
171
172 static DEFINE_SPINLOCK(net_family_lock);
173 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
174
175 /*
176 * Support routines.
177 * Move socket addresses back and forth across the kernel/user
178 * divide and look after the messy bits.
179 */
180
181 /**
182 * move_addr_to_kernel - copy a socket address into kernel space
183 * @uaddr: Address in user space
184 * @kaddr: Address in kernel space
185 * @ulen: Length in user space
186 *
187 * The address is copied into kernel space. If the provided address is
188 * too long an error code of -EINVAL is returned. If the copy gives
189 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 */
191
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 return -EINVAL;
196 if (ulen == 0)
197 return 0;
198 if (copy_from_user(kaddr, uaddr, ulen))
199 return -EFAULT;
200 return audit_sockaddr(ulen, kaddr);
201 }
202
203 /**
204 * move_addr_to_user - copy an address to user space
205 * @kaddr: kernel space address
206 * @klen: length of address in kernel
207 * @uaddr: user space address
208 * @ulen: pointer to user length field
209 *
210 * The value pointed to by ulen on entry is the buffer length available.
211 * This is overwritten with the buffer space used. -EINVAL is returned
212 * if an overlong buffer is specified or a negative buffer size. -EFAULT
213 * is returned if either the buffer or the length field are not
214 * accessible.
215 * After copying the data up to the limit the user specifies, the true
216 * length of the data is written over the length limit the user
217 * specified. Zero is returned for a success.
218 */
219
220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 void __user *uaddr, int __user *ulen)
222 {
223 int err;
224 int len;
225
226 BUG_ON(klen > sizeof(struct sockaddr_storage));
227 err = get_user(len, ulen);
228 if (err)
229 return err;
230 if (len > klen)
231 len = klen;
232 if (len < 0)
233 return -EINVAL;
234 if (len) {
235 if (audit_sockaddr(klen, kaddr))
236 return -ENOMEM;
237 if (copy_to_user(uaddr, kaddr, len))
238 return -EFAULT;
239 }
240 /*
241 * "fromlen shall refer to the value before truncation.."
242 * 1003.1g
243 */
244 return __put_user(klen, ulen);
245 }
246
247 static struct kmem_cache *sock_inode_cachep __ro_after_init;
248
249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 struct socket_alloc *ei;
252
253 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 if (!ei)
255 return NULL;
256 init_waitqueue_head(&ei->socket.wq.wait);
257 ei->socket.wq.fasync_list = NULL;
258 ei->socket.wq.flags = 0;
259
260 ei->socket.state = SS_UNCONNECTED;
261 ei->socket.flags = 0;
262 ei->socket.ops = NULL;
263 ei->socket.sk = NULL;
264 ei->socket.file = NULL;
265
266 return &ei->vfs_inode;
267 }
268
269 static void sock_free_inode(struct inode *inode)
270 {
271 struct socket_alloc *ei;
272
273 ei = container_of(inode, struct socket_alloc, vfs_inode);
274 kmem_cache_free(sock_inode_cachep, ei);
275 }
276
277 static void init_once(void *foo)
278 {
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
280
281 inode_init_once(&ei->vfs_inode);
282 }
283
284 static void init_inodecache(void)
285 {
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
288 0,
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 init_once);
293 BUG_ON(sock_inode_cachep == NULL);
294 }
295
296 static const struct super_operations sockfs_ops = {
297 .alloc_inode = sock_alloc_inode,
298 .free_inode = sock_free_inode,
299 .statfs = simple_statfs,
300 };
301
302 /*
303 * sockfs_dname() is called from d_path().
304 */
305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 {
307 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 d_inode(dentry)->i_ino);
309 }
310
311 static const struct dentry_operations sockfs_dentry_operations = {
312 .d_dname = sockfs_dname,
313 };
314
315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 struct dentry *dentry, struct inode *inode,
317 const char *suffix, void *value, size_t size)
318 {
319 if (value) {
320 if (dentry->d_name.len + 1 > size)
321 return -ERANGE;
322 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
323 }
324 return dentry->d_name.len + 1;
325 }
326
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
330
331 static const struct xattr_handler sockfs_xattr_handler = {
332 .name = XATTR_NAME_SOCKPROTONAME,
333 .get = sockfs_xattr_get,
334 };
335
336 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
337 struct dentry *dentry, struct inode *inode,
338 const char *suffix, const void *value,
339 size_t size, int flags)
340 {
341 /* Handled by LSM. */
342 return -EAGAIN;
343 }
344
345 static const struct xattr_handler sockfs_security_xattr_handler = {
346 .prefix = XATTR_SECURITY_PREFIX,
347 .set = sockfs_security_xattr_set,
348 };
349
350 static const struct xattr_handler *sockfs_xattr_handlers[] = {
351 &sockfs_xattr_handler,
352 &sockfs_security_xattr_handler,
353 NULL
354 };
355
356 static int sockfs_init_fs_context(struct fs_context *fc)
357 {
358 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
359 if (!ctx)
360 return -ENOMEM;
361 ctx->ops = &sockfs_ops;
362 ctx->dops = &sockfs_dentry_operations;
363 ctx->xattr = sockfs_xattr_handlers;
364 return 0;
365 }
366
367 static struct vfsmount *sock_mnt __read_mostly;
368
369 static struct file_system_type sock_fs_type = {
370 .name = "sockfs",
371 .init_fs_context = sockfs_init_fs_context,
372 .kill_sb = kill_anon_super,
373 };
374
375 /*
376 * Obtains the first available file descriptor and sets it up for use.
377 *
378 * These functions create file structures and maps them to fd space
379 * of the current process. On success it returns file descriptor
380 * and file struct implicitly stored in sock->file.
381 * Note that another thread may close file descriptor before we return
382 * from this function. We use the fact that now we do not refer
383 * to socket after mapping. If one day we will need it, this
384 * function will increment ref. count on file by 1.
385 *
386 * In any case returned fd MAY BE not valid!
387 * This race condition is unavoidable
388 * with shared fd spaces, we cannot solve it inside kernel,
389 * but we take care of internal coherence yet.
390 */
391
392 /**
393 * sock_alloc_file - Bind a &socket to a &file
394 * @sock: socket
395 * @flags: file status flags
396 * @dname: protocol name
397 *
398 * Returns the &file bound with @sock, implicitly storing it
399 * in sock->file. If dname is %NULL, sets to "".
400 * On failure the return is a ERR pointer (see linux/err.h).
401 * This function uses GFP_KERNEL internally.
402 */
403
404 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
405 {
406 struct file *file;
407
408 if (!dname)
409 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
410
411 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
412 O_RDWR | (flags & O_NONBLOCK),
413 &socket_file_ops);
414 if (IS_ERR(file)) {
415 sock_release(sock);
416 return file;
417 }
418
419 sock->file = file;
420 file->private_data = sock;
421 stream_open(SOCK_INODE(sock), file);
422 return file;
423 }
424 EXPORT_SYMBOL(sock_alloc_file);
425
426 static int sock_map_fd(struct socket *sock, int flags)
427 {
428 struct file *newfile;
429 int fd = get_unused_fd_flags(flags);
430 if (unlikely(fd < 0)) {
431 sock_release(sock);
432 return fd;
433 }
434
435 newfile = sock_alloc_file(sock, flags, NULL);
436 if (!IS_ERR(newfile)) {
437 fd_install(fd, newfile);
438 return fd;
439 }
440
441 put_unused_fd(fd);
442 return PTR_ERR(newfile);
443 }
444
445 /**
446 * sock_from_file - Return the &socket bounded to @file.
447 * @file: file
448 * @err: pointer to an error code return
449 *
450 * On failure returns %NULL and assigns -ENOTSOCK to @err.
451 */
452
453 struct socket *sock_from_file(struct file *file, int *err)
454 {
455 if (file->f_op == &socket_file_ops)
456 return file->private_data; /* set in sock_map_fd */
457
458 *err = -ENOTSOCK;
459 return NULL;
460 }
461 EXPORT_SYMBOL(sock_from_file);
462
463 /**
464 * sockfd_lookup - Go from a file number to its socket slot
465 * @fd: file handle
466 * @err: pointer to an error code return
467 *
468 * The file handle passed in is locked and the socket it is bound
469 * to is returned. If an error occurs the err pointer is overwritten
470 * with a negative errno code and NULL is returned. The function checks
471 * for both invalid handles and passing a handle which is not a socket.
472 *
473 * On a success the socket object pointer is returned.
474 */
475
476 struct socket *sockfd_lookup(int fd, int *err)
477 {
478 struct file *file;
479 struct socket *sock;
480
481 file = fget(fd);
482 if (!file) {
483 *err = -EBADF;
484 return NULL;
485 }
486
487 sock = sock_from_file(file, err);
488 if (!sock)
489 fput(file);
490 return sock;
491 }
492 EXPORT_SYMBOL(sockfd_lookup);
493
494 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
495 {
496 struct fd f = fdget(fd);
497 struct socket *sock;
498
499 *err = -EBADF;
500 if (f.file) {
501 sock = sock_from_file(f.file, err);
502 if (likely(sock)) {
503 *fput_needed = f.flags & FDPUT_FPUT;
504 return sock;
505 }
506 fdput(f);
507 }
508 return NULL;
509 }
510
511 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
512 size_t size)
513 {
514 ssize_t len;
515 ssize_t used = 0;
516
517 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
518 if (len < 0)
519 return len;
520 used += len;
521 if (buffer) {
522 if (size < used)
523 return -ERANGE;
524 buffer += len;
525 }
526
527 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
528 used += len;
529 if (buffer) {
530 if (size < used)
531 return -ERANGE;
532 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
533 buffer += len;
534 }
535
536 return used;
537 }
538
539 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
540 {
541 int err = simple_setattr(dentry, iattr);
542
543 if (!err && (iattr->ia_valid & ATTR_UID)) {
544 struct socket *sock = SOCKET_I(d_inode(dentry));
545
546 if (sock->sk)
547 sock->sk->sk_uid = iattr->ia_uid;
548 else
549 err = -ENOENT;
550 }
551
552 return err;
553 }
554
555 static const struct inode_operations sockfs_inode_ops = {
556 .listxattr = sockfs_listxattr,
557 .setattr = sockfs_setattr,
558 };
559
560 /**
561 * sock_alloc - allocate a socket
562 *
563 * Allocate a new inode and socket object. The two are bound together
564 * and initialised. The socket is then returned. If we are out of inodes
565 * NULL is returned. This functions uses GFP_KERNEL internally.
566 */
567
568 struct socket *sock_alloc(void)
569 {
570 struct inode *inode;
571 struct socket *sock;
572
573 inode = new_inode_pseudo(sock_mnt->mnt_sb);
574 if (!inode)
575 return NULL;
576
577 sock = SOCKET_I(inode);
578
579 inode->i_ino = get_next_ino();
580 inode->i_mode = S_IFSOCK | S_IRWXUGO;
581 inode->i_uid = current_fsuid();
582 inode->i_gid = current_fsgid();
583 inode->i_op = &sockfs_inode_ops;
584
585 return sock;
586 }
587 EXPORT_SYMBOL(sock_alloc);
588
589 static void __sock_release(struct socket *sock, struct inode *inode)
590 {
591 if (sock->ops) {
592 struct module *owner = sock->ops->owner;
593
594 if (inode)
595 inode_lock(inode);
596 sock->ops->release(sock);
597 sock->sk = NULL;
598 if (inode)
599 inode_unlock(inode);
600 sock->ops = NULL;
601 module_put(owner);
602 }
603
604 if (sock->wq.fasync_list)
605 pr_err("%s: fasync list not empty!\n", __func__);
606
607 if (!sock->file) {
608 iput(SOCK_INODE(sock));
609 return;
610 }
611 sock->file = NULL;
612 }
613
614 /**
615 * sock_release - close a socket
616 * @sock: socket to close
617 *
618 * The socket is released from the protocol stack if it has a release
619 * callback, and the inode is then released if the socket is bound to
620 * an inode not a file.
621 */
622 void sock_release(struct socket *sock)
623 {
624 __sock_release(sock, NULL);
625 }
626 EXPORT_SYMBOL(sock_release);
627
628 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
629 {
630 u8 flags = *tx_flags;
631
632 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
633 flags |= SKBTX_HW_TSTAMP;
634
635 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
636 flags |= SKBTX_SW_TSTAMP;
637
638 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
639 flags |= SKBTX_SCHED_TSTAMP;
640
641 *tx_flags = flags;
642 }
643 EXPORT_SYMBOL(__sock_tx_timestamp);
644
645 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
646 size_t));
647 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
648 size_t));
649 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
650 {
651 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
652 inet_sendmsg, sock, msg,
653 msg_data_left(msg));
654 BUG_ON(ret == -EIOCBQUEUED);
655 return ret;
656 }
657
658 /**
659 * sock_sendmsg - send a message through @sock
660 * @sock: socket
661 * @msg: message to send
662 *
663 * Sends @msg through @sock, passing through LSM.
664 * Returns the number of bytes sent, or an error code.
665 */
666 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
667 {
668 int err = security_socket_sendmsg(sock, msg,
669 msg_data_left(msg));
670
671 return err ?: sock_sendmsg_nosec(sock, msg);
672 }
673 EXPORT_SYMBOL(sock_sendmsg);
674
675 /**
676 * kernel_sendmsg - send a message through @sock (kernel-space)
677 * @sock: socket
678 * @msg: message header
679 * @vec: kernel vec
680 * @num: vec array length
681 * @size: total message data size
682 *
683 * Builds the message data with @vec and sends it through @sock.
684 * Returns the number of bytes sent, or an error code.
685 */
686
687 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
688 struct kvec *vec, size_t num, size_t size)
689 {
690 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
691 return sock_sendmsg(sock, msg);
692 }
693 EXPORT_SYMBOL(kernel_sendmsg);
694
695 /**
696 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
697 * @sk: sock
698 * @msg: message header
699 * @vec: output s/g array
700 * @num: output s/g array length
701 * @size: total message data size
702 *
703 * Builds the message data with @vec and sends it through @sock.
704 * Returns the number of bytes sent, or an error code.
705 * Caller must hold @sk.
706 */
707
708 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
709 struct kvec *vec, size_t num, size_t size)
710 {
711 struct socket *sock = sk->sk_socket;
712
713 if (!sock->ops->sendmsg_locked)
714 return sock_no_sendmsg_locked(sk, msg, size);
715
716 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
717
718 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
719 }
720 EXPORT_SYMBOL(kernel_sendmsg_locked);
721
722 static bool skb_is_err_queue(const struct sk_buff *skb)
723 {
724 /* pkt_type of skbs enqueued on the error queue are set to
725 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
726 * in recvmsg, since skbs received on a local socket will never
727 * have a pkt_type of PACKET_OUTGOING.
728 */
729 return skb->pkt_type == PACKET_OUTGOING;
730 }
731
732 /* On transmit, software and hardware timestamps are returned independently.
733 * As the two skb clones share the hardware timestamp, which may be updated
734 * before the software timestamp is received, a hardware TX timestamp may be
735 * returned only if there is no software TX timestamp. Ignore false software
736 * timestamps, which may be made in the __sock_recv_timestamp() call when the
737 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
738 * hardware timestamp.
739 */
740 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
741 {
742 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
743 }
744
745 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
746 {
747 struct scm_ts_pktinfo ts_pktinfo;
748 struct net_device *orig_dev;
749
750 if (!skb_mac_header_was_set(skb))
751 return;
752
753 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
754
755 rcu_read_lock();
756 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
757 if (orig_dev)
758 ts_pktinfo.if_index = orig_dev->ifindex;
759 rcu_read_unlock();
760
761 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
762 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
763 sizeof(ts_pktinfo), &ts_pktinfo);
764 }
765
766 /*
767 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
768 */
769 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
770 struct sk_buff *skb)
771 {
772 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
773 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
774 struct scm_timestamping_internal tss;
775
776 int empty = 1, false_tstamp = 0;
777 struct skb_shared_hwtstamps *shhwtstamps =
778 skb_hwtstamps(skb);
779
780 /* Race occurred between timestamp enabling and packet
781 receiving. Fill in the current time for now. */
782 if (need_software_tstamp && skb->tstamp == 0) {
783 __net_timestamp(skb);
784 false_tstamp = 1;
785 }
786
787 if (need_software_tstamp) {
788 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
789 if (new_tstamp) {
790 struct __kernel_sock_timeval tv;
791
792 skb_get_new_timestamp(skb, &tv);
793 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
794 sizeof(tv), &tv);
795 } else {
796 struct __kernel_old_timeval tv;
797
798 skb_get_timestamp(skb, &tv);
799 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
800 sizeof(tv), &tv);
801 }
802 } else {
803 if (new_tstamp) {
804 struct __kernel_timespec ts;
805
806 skb_get_new_timestampns(skb, &ts);
807 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
808 sizeof(ts), &ts);
809 } else {
810 struct __kernel_old_timespec ts;
811
812 skb_get_timestampns(skb, &ts);
813 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
814 sizeof(ts), &ts);
815 }
816 }
817 }
818
819 memset(&tss, 0, sizeof(tss));
820 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
821 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
822 empty = 0;
823 if (shhwtstamps &&
824 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
825 !skb_is_swtx_tstamp(skb, false_tstamp) &&
826 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
827 empty = 0;
828 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
829 !skb_is_err_queue(skb))
830 put_ts_pktinfo(msg, skb);
831 }
832 if (!empty) {
833 if (sock_flag(sk, SOCK_TSTAMP_NEW))
834 put_cmsg_scm_timestamping64(msg, &tss);
835 else
836 put_cmsg_scm_timestamping(msg, &tss);
837
838 if (skb_is_err_queue(skb) && skb->len &&
839 SKB_EXT_ERR(skb)->opt_stats)
840 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
841 skb->len, skb->data);
842 }
843 }
844 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
845
846 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
847 struct sk_buff *skb)
848 {
849 int ack;
850
851 if (!sock_flag(sk, SOCK_WIFI_STATUS))
852 return;
853 if (!skb->wifi_acked_valid)
854 return;
855
856 ack = skb->wifi_acked;
857
858 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
859 }
860 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
861
862 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
863 struct sk_buff *skb)
864 {
865 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
866 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
867 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
868 }
869
870 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
871 struct sk_buff *skb)
872 {
873 sock_recv_timestamp(msg, sk, skb);
874 sock_recv_drops(msg, sk, skb);
875 }
876 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
877
878 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
879 size_t, int));
880 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
881 size_t, int));
882 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
883 int flags)
884 {
885 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
886 inet_recvmsg, sock, msg, msg_data_left(msg),
887 flags);
888 }
889
890 /**
891 * sock_recvmsg - receive a message from @sock
892 * @sock: socket
893 * @msg: message to receive
894 * @flags: message flags
895 *
896 * Receives @msg from @sock, passing through LSM. Returns the total number
897 * of bytes received, or an error.
898 */
899 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
900 {
901 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
902
903 return err ?: sock_recvmsg_nosec(sock, msg, flags);
904 }
905 EXPORT_SYMBOL(sock_recvmsg);
906
907 /**
908 * kernel_recvmsg - Receive a message from a socket (kernel space)
909 * @sock: The socket to receive the message from
910 * @msg: Received message
911 * @vec: Input s/g array for message data
912 * @num: Size of input s/g array
913 * @size: Number of bytes to read
914 * @flags: Message flags (MSG_DONTWAIT, etc...)
915 *
916 * On return the msg structure contains the scatter/gather array passed in the
917 * vec argument. The array is modified so that it consists of the unfilled
918 * portion of the original array.
919 *
920 * The returned value is the total number of bytes received, or an error.
921 */
922
923 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
924 struct kvec *vec, size_t num, size_t size, int flags)
925 {
926 msg->msg_control_is_user = false;
927 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
928 return sock_recvmsg(sock, msg, flags);
929 }
930 EXPORT_SYMBOL(kernel_recvmsg);
931
932 static ssize_t sock_sendpage(struct file *file, struct page *page,
933 int offset, size_t size, loff_t *ppos, int more)
934 {
935 struct socket *sock;
936 int flags;
937
938 sock = file->private_data;
939
940 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
941 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
942 flags |= more;
943
944 return kernel_sendpage(sock, page, offset, size, flags);
945 }
946
947 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
948 struct pipe_inode_info *pipe, size_t len,
949 unsigned int flags)
950 {
951 struct socket *sock = file->private_data;
952
953 if (unlikely(!sock->ops->splice_read))
954 return generic_file_splice_read(file, ppos, pipe, len, flags);
955
956 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
957 }
958
959 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
960 {
961 struct file *file = iocb->ki_filp;
962 struct socket *sock = file->private_data;
963 struct msghdr msg = {.msg_iter = *to,
964 .msg_iocb = iocb};
965 ssize_t res;
966
967 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
968 msg.msg_flags = MSG_DONTWAIT;
969
970 if (iocb->ki_pos != 0)
971 return -ESPIPE;
972
973 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
974 return 0;
975
976 res = sock_recvmsg(sock, &msg, msg.msg_flags);
977 *to = msg.msg_iter;
978 return res;
979 }
980
981 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
982 {
983 struct file *file = iocb->ki_filp;
984 struct socket *sock = file->private_data;
985 struct msghdr msg = {.msg_iter = *from,
986 .msg_iocb = iocb};
987 ssize_t res;
988
989 if (iocb->ki_pos != 0)
990 return -ESPIPE;
991
992 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
993 msg.msg_flags = MSG_DONTWAIT;
994
995 if (sock->type == SOCK_SEQPACKET)
996 msg.msg_flags |= MSG_EOR;
997
998 res = sock_sendmsg(sock, &msg);
999 *from = msg.msg_iter;
1000 return res;
1001 }
1002
1003 /*
1004 * Atomic setting of ioctl hooks to avoid race
1005 * with module unload.
1006 */
1007
1008 static DEFINE_MUTEX(br_ioctl_mutex);
1009 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1010
1011 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1012 {
1013 mutex_lock(&br_ioctl_mutex);
1014 br_ioctl_hook = hook;
1015 mutex_unlock(&br_ioctl_mutex);
1016 }
1017 EXPORT_SYMBOL(brioctl_set);
1018
1019 static DEFINE_MUTEX(vlan_ioctl_mutex);
1020 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1021
1022 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1023 {
1024 mutex_lock(&vlan_ioctl_mutex);
1025 vlan_ioctl_hook = hook;
1026 mutex_unlock(&vlan_ioctl_mutex);
1027 }
1028 EXPORT_SYMBOL(vlan_ioctl_set);
1029
1030 static DEFINE_MUTEX(dlci_ioctl_mutex);
1031 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1032
1033 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1034 {
1035 mutex_lock(&dlci_ioctl_mutex);
1036 dlci_ioctl_hook = hook;
1037 mutex_unlock(&dlci_ioctl_mutex);
1038 }
1039 EXPORT_SYMBOL(dlci_ioctl_set);
1040
1041 static long sock_do_ioctl(struct net *net, struct socket *sock,
1042 unsigned int cmd, unsigned long arg)
1043 {
1044 int err;
1045 void __user *argp = (void __user *)arg;
1046
1047 err = sock->ops->ioctl(sock, cmd, arg);
1048
1049 /*
1050 * If this ioctl is unknown try to hand it down
1051 * to the NIC driver.
1052 */
1053 if (err != -ENOIOCTLCMD)
1054 return err;
1055
1056 if (cmd == SIOCGIFCONF) {
1057 struct ifconf ifc;
1058 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1059 return -EFAULT;
1060 rtnl_lock();
1061 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1062 rtnl_unlock();
1063 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1064 err = -EFAULT;
1065 } else {
1066 struct ifreq ifr;
1067 bool need_copyout;
1068 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1069 return -EFAULT;
1070 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1071 if (!err && need_copyout)
1072 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1073 return -EFAULT;
1074 }
1075 return err;
1076 }
1077
1078 /*
1079 * With an ioctl, arg may well be a user mode pointer, but we don't know
1080 * what to do with it - that's up to the protocol still.
1081 */
1082
1083 /**
1084 * get_net_ns - increment the refcount of the network namespace
1085 * @ns: common namespace (net)
1086 *
1087 * Returns the net's common namespace.
1088 */
1089
1090 struct ns_common *get_net_ns(struct ns_common *ns)
1091 {
1092 return &get_net(container_of(ns, struct net, ns))->ns;
1093 }
1094 EXPORT_SYMBOL_GPL(get_net_ns);
1095
1096 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1097 {
1098 struct socket *sock;
1099 struct sock *sk;
1100 void __user *argp = (void __user *)arg;
1101 int pid, err;
1102 struct net *net;
1103
1104 sock = file->private_data;
1105 sk = sock->sk;
1106 net = sock_net(sk);
1107 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1108 struct ifreq ifr;
1109 bool need_copyout;
1110 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1111 return -EFAULT;
1112 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1113 if (!err && need_copyout)
1114 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1115 return -EFAULT;
1116 } else
1117 #ifdef CONFIG_WEXT_CORE
1118 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1119 err = wext_handle_ioctl(net, cmd, argp);
1120 } else
1121 #endif
1122 switch (cmd) {
1123 case FIOSETOWN:
1124 case SIOCSPGRP:
1125 err = -EFAULT;
1126 if (get_user(pid, (int __user *)argp))
1127 break;
1128 err = f_setown(sock->file, pid, 1);
1129 break;
1130 case FIOGETOWN:
1131 case SIOCGPGRP:
1132 err = put_user(f_getown(sock->file),
1133 (int __user *)argp);
1134 break;
1135 case SIOCGIFBR:
1136 case SIOCSIFBR:
1137 case SIOCBRADDBR:
1138 case SIOCBRDELBR:
1139 err = -ENOPKG;
1140 if (!br_ioctl_hook)
1141 request_module("bridge");
1142
1143 mutex_lock(&br_ioctl_mutex);
1144 if (br_ioctl_hook)
1145 err = br_ioctl_hook(net, cmd, argp);
1146 mutex_unlock(&br_ioctl_mutex);
1147 break;
1148 case SIOCGIFVLAN:
1149 case SIOCSIFVLAN:
1150 err = -ENOPKG;
1151 if (!vlan_ioctl_hook)
1152 request_module("8021q");
1153
1154 mutex_lock(&vlan_ioctl_mutex);
1155 if (vlan_ioctl_hook)
1156 err = vlan_ioctl_hook(net, argp);
1157 mutex_unlock(&vlan_ioctl_mutex);
1158 break;
1159 case SIOCADDDLCI:
1160 case SIOCDELDLCI:
1161 err = -ENOPKG;
1162 if (!dlci_ioctl_hook)
1163 request_module("dlci");
1164
1165 mutex_lock(&dlci_ioctl_mutex);
1166 if (dlci_ioctl_hook)
1167 err = dlci_ioctl_hook(cmd, argp);
1168 mutex_unlock(&dlci_ioctl_mutex);
1169 break;
1170 case SIOCGSKNS:
1171 err = -EPERM;
1172 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1173 break;
1174
1175 err = open_related_ns(&net->ns, get_net_ns);
1176 break;
1177 case SIOCGSTAMP_OLD:
1178 case SIOCGSTAMPNS_OLD:
1179 if (!sock->ops->gettstamp) {
1180 err = -ENOIOCTLCMD;
1181 break;
1182 }
1183 err = sock->ops->gettstamp(sock, argp,
1184 cmd == SIOCGSTAMP_OLD,
1185 !IS_ENABLED(CONFIG_64BIT));
1186 break;
1187 case SIOCGSTAMP_NEW:
1188 case SIOCGSTAMPNS_NEW:
1189 if (!sock->ops->gettstamp) {
1190 err = -ENOIOCTLCMD;
1191 break;
1192 }
1193 err = sock->ops->gettstamp(sock, argp,
1194 cmd == SIOCGSTAMP_NEW,
1195 false);
1196 break;
1197 default:
1198 err = sock_do_ioctl(net, sock, cmd, arg);
1199 break;
1200 }
1201 return err;
1202 }
1203
1204 /**
1205 * sock_create_lite - creates a socket
1206 * @family: protocol family (AF_INET, ...)
1207 * @type: communication type (SOCK_STREAM, ...)
1208 * @protocol: protocol (0, ...)
1209 * @res: new socket
1210 *
1211 * Creates a new socket and assigns it to @res, passing through LSM.
1212 * The new socket initialization is not complete, see kernel_accept().
1213 * Returns 0 or an error. On failure @res is set to %NULL.
1214 * This function internally uses GFP_KERNEL.
1215 */
1216
1217 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1218 {
1219 int err;
1220 struct socket *sock = NULL;
1221
1222 err = security_socket_create(family, type, protocol, 1);
1223 if (err)
1224 goto out;
1225
1226 sock = sock_alloc();
1227 if (!sock) {
1228 err = -ENOMEM;
1229 goto out;
1230 }
1231
1232 sock->type = type;
1233 err = security_socket_post_create(sock, family, type, protocol, 1);
1234 if (err)
1235 goto out_release;
1236
1237 out:
1238 *res = sock;
1239 return err;
1240 out_release:
1241 sock_release(sock);
1242 sock = NULL;
1243 goto out;
1244 }
1245 EXPORT_SYMBOL(sock_create_lite);
1246
1247 /* No kernel lock held - perfect */
1248 static __poll_t sock_poll(struct file *file, poll_table *wait)
1249 {
1250 struct socket *sock = file->private_data;
1251 __poll_t events = poll_requested_events(wait), flag = 0;
1252
1253 if (!sock->ops->poll)
1254 return 0;
1255
1256 if (sk_can_busy_loop(sock->sk)) {
1257 /* poll once if requested by the syscall */
1258 if (events & POLL_BUSY_LOOP)
1259 sk_busy_loop(sock->sk, 1);
1260
1261 /* if this socket can poll_ll, tell the system call */
1262 flag = POLL_BUSY_LOOP;
1263 }
1264
1265 return sock->ops->poll(file, sock, wait) | flag;
1266 }
1267
1268 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1269 {
1270 struct socket *sock = file->private_data;
1271
1272 return sock->ops->mmap(file, sock, vma);
1273 }
1274
1275 static int sock_close(struct inode *inode, struct file *filp)
1276 {
1277 __sock_release(SOCKET_I(inode), inode);
1278 return 0;
1279 }
1280
1281 /*
1282 * Update the socket async list
1283 *
1284 * Fasync_list locking strategy.
1285 *
1286 * 1. fasync_list is modified only under process context socket lock
1287 * i.e. under semaphore.
1288 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1289 * or under socket lock
1290 */
1291
1292 static int sock_fasync(int fd, struct file *filp, int on)
1293 {
1294 struct socket *sock = filp->private_data;
1295 struct sock *sk = sock->sk;
1296 struct socket_wq *wq = &sock->wq;
1297
1298 if (sk == NULL)
1299 return -EINVAL;
1300
1301 lock_sock(sk);
1302 fasync_helper(fd, filp, on, &wq->fasync_list);
1303
1304 if (!wq->fasync_list)
1305 sock_reset_flag(sk, SOCK_FASYNC);
1306 else
1307 sock_set_flag(sk, SOCK_FASYNC);
1308
1309 release_sock(sk);
1310 return 0;
1311 }
1312
1313 /* This function may be called only under rcu_lock */
1314
1315 int sock_wake_async(struct socket_wq *wq, int how, int band)
1316 {
1317 if (!wq || !wq->fasync_list)
1318 return -1;
1319
1320 switch (how) {
1321 case SOCK_WAKE_WAITD:
1322 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1323 break;
1324 goto call_kill;
1325 case SOCK_WAKE_SPACE:
1326 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1327 break;
1328 fallthrough;
1329 case SOCK_WAKE_IO:
1330 call_kill:
1331 kill_fasync(&wq->fasync_list, SIGIO, band);
1332 break;
1333 case SOCK_WAKE_URG:
1334 kill_fasync(&wq->fasync_list, SIGURG, band);
1335 }
1336
1337 return 0;
1338 }
1339 EXPORT_SYMBOL(sock_wake_async);
1340
1341 /**
1342 * __sock_create - creates a socket
1343 * @net: net namespace
1344 * @family: protocol family (AF_INET, ...)
1345 * @type: communication type (SOCK_STREAM, ...)
1346 * @protocol: protocol (0, ...)
1347 * @res: new socket
1348 * @kern: boolean for kernel space sockets
1349 *
1350 * Creates a new socket and assigns it to @res, passing through LSM.
1351 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1352 * be set to true if the socket resides in kernel space.
1353 * This function internally uses GFP_KERNEL.
1354 */
1355
1356 int __sock_create(struct net *net, int family, int type, int protocol,
1357 struct socket **res, int kern)
1358 {
1359 int err;
1360 struct socket *sock;
1361 const struct net_proto_family *pf;
1362
1363 /*
1364 * Check protocol is in range
1365 */
1366 if (family < 0 || family >= NPROTO)
1367 return -EAFNOSUPPORT;
1368 if (type < 0 || type >= SOCK_MAX)
1369 return -EINVAL;
1370
1371 /* Compatibility.
1372
1373 This uglymoron is moved from INET layer to here to avoid
1374 deadlock in module load.
1375 */
1376 if (family == PF_INET && type == SOCK_PACKET) {
1377 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1378 current->comm);
1379 family = PF_PACKET;
1380 }
1381
1382 err = security_socket_create(family, type, protocol, kern);
1383 if (err)
1384 return err;
1385
1386 /*
1387 * Allocate the socket and allow the family to set things up. if
1388 * the protocol is 0, the family is instructed to select an appropriate
1389 * default.
1390 */
1391 sock = sock_alloc();
1392 if (!sock) {
1393 net_warn_ratelimited("socket: no more sockets\n");
1394 return -ENFILE; /* Not exactly a match, but its the
1395 closest posix thing */
1396 }
1397
1398 sock->type = type;
1399
1400 #ifdef CONFIG_MODULES
1401 /* Attempt to load a protocol module if the find failed.
1402 *
1403 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1404 * requested real, full-featured networking support upon configuration.
1405 * Otherwise module support will break!
1406 */
1407 if (rcu_access_pointer(net_families[family]) == NULL)
1408 request_module("net-pf-%d", family);
1409 #endif
1410
1411 rcu_read_lock();
1412 pf = rcu_dereference(net_families[family]);
1413 err = -EAFNOSUPPORT;
1414 if (!pf)
1415 goto out_release;
1416
1417 /*
1418 * We will call the ->create function, that possibly is in a loadable
1419 * module, so we have to bump that loadable module refcnt first.
1420 */
1421 if (!try_module_get(pf->owner))
1422 goto out_release;
1423
1424 /* Now protected by module ref count */
1425 rcu_read_unlock();
1426
1427 err = pf->create(net, sock, protocol, kern);
1428 if (err < 0)
1429 goto out_module_put;
1430
1431 /*
1432 * Now to bump the refcnt of the [loadable] module that owns this
1433 * socket at sock_release time we decrement its refcnt.
1434 */
1435 if (!try_module_get(sock->ops->owner))
1436 goto out_module_busy;
1437
1438 /*
1439 * Now that we're done with the ->create function, the [loadable]
1440 * module can have its refcnt decremented
1441 */
1442 module_put(pf->owner);
1443 err = security_socket_post_create(sock, family, type, protocol, kern);
1444 if (err)
1445 goto out_sock_release;
1446 *res = sock;
1447
1448 return 0;
1449
1450 out_module_busy:
1451 err = -EAFNOSUPPORT;
1452 out_module_put:
1453 sock->ops = NULL;
1454 module_put(pf->owner);
1455 out_sock_release:
1456 sock_release(sock);
1457 return err;
1458
1459 out_release:
1460 rcu_read_unlock();
1461 goto out_sock_release;
1462 }
1463 EXPORT_SYMBOL(__sock_create);
1464
1465 /**
1466 * sock_create - creates a socket
1467 * @family: protocol family (AF_INET, ...)
1468 * @type: communication type (SOCK_STREAM, ...)
1469 * @protocol: protocol (0, ...)
1470 * @res: new socket
1471 *
1472 * A wrapper around __sock_create().
1473 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1474 */
1475
1476 int sock_create(int family, int type, int protocol, struct socket **res)
1477 {
1478 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1479 }
1480 EXPORT_SYMBOL(sock_create);
1481
1482 /**
1483 * sock_create_kern - creates a socket (kernel space)
1484 * @net: net namespace
1485 * @family: protocol family (AF_INET, ...)
1486 * @type: communication type (SOCK_STREAM, ...)
1487 * @protocol: protocol (0, ...)
1488 * @res: new socket
1489 *
1490 * A wrapper around __sock_create().
1491 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1492 */
1493
1494 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1495 {
1496 return __sock_create(net, family, type, protocol, res, 1);
1497 }
1498 EXPORT_SYMBOL(sock_create_kern);
1499
1500 int __sys_socket(int family, int type, int protocol)
1501 {
1502 int retval;
1503 struct socket *sock;
1504 int flags;
1505
1506 /* Check the SOCK_* constants for consistency. */
1507 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1508 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1509 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1510 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1511
1512 flags = type & ~SOCK_TYPE_MASK;
1513 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1514 return -EINVAL;
1515 type &= SOCK_TYPE_MASK;
1516
1517 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1518 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1519
1520 retval = sock_create(family, type, protocol, &sock);
1521 if (retval < 0)
1522 return retval;
1523
1524 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1525 }
1526
1527 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1528 {
1529 return __sys_socket(family, type, protocol);
1530 }
1531
1532 /*
1533 * Create a pair of connected sockets.
1534 */
1535
1536 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1537 {
1538 struct socket *sock1, *sock2;
1539 int fd1, fd2, err;
1540 struct file *newfile1, *newfile2;
1541 int flags;
1542
1543 flags = type & ~SOCK_TYPE_MASK;
1544 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1545 return -EINVAL;
1546 type &= SOCK_TYPE_MASK;
1547
1548 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1549 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1550
1551 /*
1552 * reserve descriptors and make sure we won't fail
1553 * to return them to userland.
1554 */
1555 fd1 = get_unused_fd_flags(flags);
1556 if (unlikely(fd1 < 0))
1557 return fd1;
1558
1559 fd2 = get_unused_fd_flags(flags);
1560 if (unlikely(fd2 < 0)) {
1561 put_unused_fd(fd1);
1562 return fd2;
1563 }
1564
1565 err = put_user(fd1, &usockvec[0]);
1566 if (err)
1567 goto out;
1568
1569 err = put_user(fd2, &usockvec[1]);
1570 if (err)
1571 goto out;
1572
1573 /*
1574 * Obtain the first socket and check if the underlying protocol
1575 * supports the socketpair call.
1576 */
1577
1578 err = sock_create(family, type, protocol, &sock1);
1579 if (unlikely(err < 0))
1580 goto out;
1581
1582 err = sock_create(family, type, protocol, &sock2);
1583 if (unlikely(err < 0)) {
1584 sock_release(sock1);
1585 goto out;
1586 }
1587
1588 err = security_socket_socketpair(sock1, sock2);
1589 if (unlikely(err)) {
1590 sock_release(sock2);
1591 sock_release(sock1);
1592 goto out;
1593 }
1594
1595 err = sock1->ops->socketpair(sock1, sock2);
1596 if (unlikely(err < 0)) {
1597 sock_release(sock2);
1598 sock_release(sock1);
1599 goto out;
1600 }
1601
1602 newfile1 = sock_alloc_file(sock1, flags, NULL);
1603 if (IS_ERR(newfile1)) {
1604 err = PTR_ERR(newfile1);
1605 sock_release(sock2);
1606 goto out;
1607 }
1608
1609 newfile2 = sock_alloc_file(sock2, flags, NULL);
1610 if (IS_ERR(newfile2)) {
1611 err = PTR_ERR(newfile2);
1612 fput(newfile1);
1613 goto out;
1614 }
1615
1616 audit_fd_pair(fd1, fd2);
1617
1618 fd_install(fd1, newfile1);
1619 fd_install(fd2, newfile2);
1620 return 0;
1621
1622 out:
1623 put_unused_fd(fd2);
1624 put_unused_fd(fd1);
1625 return err;
1626 }
1627
1628 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1629 int __user *, usockvec)
1630 {
1631 return __sys_socketpair(family, type, protocol, usockvec);
1632 }
1633
1634 /*
1635 * Bind a name to a socket. Nothing much to do here since it's
1636 * the protocol's responsibility to handle the local address.
1637 *
1638 * We move the socket address to kernel space before we call
1639 * the protocol layer (having also checked the address is ok).
1640 */
1641
1642 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1643 {
1644 struct socket *sock;
1645 struct sockaddr_storage address;
1646 int err, fput_needed;
1647
1648 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1649 if (sock) {
1650 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1651 if (!err) {
1652 err = security_socket_bind(sock,
1653 (struct sockaddr *)&address,
1654 addrlen);
1655 if (!err)
1656 err = sock->ops->bind(sock,
1657 (struct sockaddr *)
1658 &address, addrlen);
1659 }
1660 fput_light(sock->file, fput_needed);
1661 }
1662 return err;
1663 }
1664
1665 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1666 {
1667 return __sys_bind(fd, umyaddr, addrlen);
1668 }
1669
1670 /*
1671 * Perform a listen. Basically, we allow the protocol to do anything
1672 * necessary for a listen, and if that works, we mark the socket as
1673 * ready for listening.
1674 */
1675
1676 int __sys_listen(int fd, int backlog)
1677 {
1678 struct socket *sock;
1679 int err, fput_needed;
1680 int somaxconn;
1681
1682 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1683 if (sock) {
1684 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1685 if ((unsigned int)backlog > somaxconn)
1686 backlog = somaxconn;
1687
1688 err = security_socket_listen(sock, backlog);
1689 if (!err)
1690 err = sock->ops->listen(sock, backlog);
1691
1692 fput_light(sock->file, fput_needed);
1693 }
1694 return err;
1695 }
1696
1697 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1698 {
1699 return __sys_listen(fd, backlog);
1700 }
1701
1702 int __sys_accept4_file(struct file *file, unsigned file_flags,
1703 struct sockaddr __user *upeer_sockaddr,
1704 int __user *upeer_addrlen, int flags,
1705 unsigned long nofile)
1706 {
1707 struct socket *sock, *newsock;
1708 struct file *newfile;
1709 int err, len, newfd;
1710 struct sockaddr_storage address;
1711
1712 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1713 return -EINVAL;
1714
1715 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1716 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1717
1718 sock = sock_from_file(file, &err);
1719 if (!sock)
1720 goto out;
1721
1722 err = -ENFILE;
1723 newsock = sock_alloc();
1724 if (!newsock)
1725 goto out;
1726
1727 newsock->type = sock->type;
1728 newsock->ops = sock->ops;
1729
1730 /*
1731 * We don't need try_module_get here, as the listening socket (sock)
1732 * has the protocol module (sock->ops->owner) held.
1733 */
1734 __module_get(newsock->ops->owner);
1735
1736 newfd = __get_unused_fd_flags(flags, nofile);
1737 if (unlikely(newfd < 0)) {
1738 err = newfd;
1739 sock_release(newsock);
1740 goto out;
1741 }
1742 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1743 if (IS_ERR(newfile)) {
1744 err = PTR_ERR(newfile);
1745 put_unused_fd(newfd);
1746 goto out;
1747 }
1748
1749 err = security_socket_accept(sock, newsock);
1750 if (err)
1751 goto out_fd;
1752
1753 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1754 false);
1755 if (err < 0)
1756 goto out_fd;
1757
1758 if (upeer_sockaddr) {
1759 len = newsock->ops->getname(newsock,
1760 (struct sockaddr *)&address, 2);
1761 if (len < 0) {
1762 err = -ECONNABORTED;
1763 goto out_fd;
1764 }
1765 err = move_addr_to_user(&address,
1766 len, upeer_sockaddr, upeer_addrlen);
1767 if (err < 0)
1768 goto out_fd;
1769 }
1770
1771 /* File flags are not inherited via accept() unlike another OSes. */
1772
1773 fd_install(newfd, newfile);
1774 err = newfd;
1775 out:
1776 return err;
1777 out_fd:
1778 fput(newfile);
1779 put_unused_fd(newfd);
1780 goto out;
1781
1782 }
1783
1784 /*
1785 * For accept, we attempt to create a new socket, set up the link
1786 * with the client, wake up the client, then return the new
1787 * connected fd. We collect the address of the connector in kernel
1788 * space and move it to user at the very end. This is unclean because
1789 * we open the socket then return an error.
1790 *
1791 * 1003.1g adds the ability to recvmsg() to query connection pending
1792 * status to recvmsg. We need to add that support in a way thats
1793 * clean when we restructure accept also.
1794 */
1795
1796 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1797 int __user *upeer_addrlen, int flags)
1798 {
1799 int ret = -EBADF;
1800 struct fd f;
1801
1802 f = fdget(fd);
1803 if (f.file) {
1804 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1805 upeer_addrlen, flags,
1806 rlimit(RLIMIT_NOFILE));
1807 fdput(f);
1808 }
1809
1810 return ret;
1811 }
1812
1813 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1814 int __user *, upeer_addrlen, int, flags)
1815 {
1816 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1817 }
1818
1819 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1820 int __user *, upeer_addrlen)
1821 {
1822 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1823 }
1824
1825 /*
1826 * Attempt to connect to a socket with the server address. The address
1827 * is in user space so we verify it is OK and move it to kernel space.
1828 *
1829 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1830 * break bindings
1831 *
1832 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1833 * other SEQPACKET protocols that take time to connect() as it doesn't
1834 * include the -EINPROGRESS status for such sockets.
1835 */
1836
1837 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1838 int addrlen, int file_flags)
1839 {
1840 struct socket *sock;
1841 int err;
1842
1843 sock = sock_from_file(file, &err);
1844 if (!sock)
1845 goto out;
1846
1847 err =
1848 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1849 if (err)
1850 goto out;
1851
1852 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1853 sock->file->f_flags | file_flags);
1854 out:
1855 return err;
1856 }
1857
1858 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1859 {
1860 int ret = -EBADF;
1861 struct fd f;
1862
1863 f = fdget(fd);
1864 if (f.file) {
1865 struct sockaddr_storage address;
1866
1867 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1868 if (!ret)
1869 ret = __sys_connect_file(f.file, &address, addrlen, 0);
1870 fdput(f);
1871 }
1872
1873 return ret;
1874 }
1875
1876 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1877 int, addrlen)
1878 {
1879 return __sys_connect(fd, uservaddr, addrlen);
1880 }
1881
1882 /*
1883 * Get the local address ('name') of a socket object. Move the obtained
1884 * name to user space.
1885 */
1886
1887 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1888 int __user *usockaddr_len)
1889 {
1890 struct socket *sock;
1891 struct sockaddr_storage address;
1892 int err, fput_needed;
1893
1894 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1895 if (!sock)
1896 goto out;
1897
1898 err = security_socket_getsockname(sock);
1899 if (err)
1900 goto out_put;
1901
1902 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1903 if (err < 0)
1904 goto out_put;
1905 /* "err" is actually length in this case */
1906 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1907
1908 out_put:
1909 fput_light(sock->file, fput_needed);
1910 out:
1911 return err;
1912 }
1913
1914 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1915 int __user *, usockaddr_len)
1916 {
1917 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1918 }
1919
1920 /*
1921 * Get the remote address ('name') of a socket object. Move the obtained
1922 * name to user space.
1923 */
1924
1925 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1926 int __user *usockaddr_len)
1927 {
1928 struct socket *sock;
1929 struct sockaddr_storage address;
1930 int err, fput_needed;
1931
1932 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1933 if (sock != NULL) {
1934 err = security_socket_getpeername(sock);
1935 if (err) {
1936 fput_light(sock->file, fput_needed);
1937 return err;
1938 }
1939
1940 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1941 if (err >= 0)
1942 /* "err" is actually length in this case */
1943 err = move_addr_to_user(&address, err, usockaddr,
1944 usockaddr_len);
1945 fput_light(sock->file, fput_needed);
1946 }
1947 return err;
1948 }
1949
1950 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1951 int __user *, usockaddr_len)
1952 {
1953 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1954 }
1955
1956 /*
1957 * Send a datagram to a given address. We move the address into kernel
1958 * space and check the user space data area is readable before invoking
1959 * the protocol.
1960 */
1961 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1962 struct sockaddr __user *addr, int addr_len)
1963 {
1964 struct socket *sock;
1965 struct sockaddr_storage address;
1966 int err;
1967 struct msghdr msg;
1968 struct iovec iov;
1969 int fput_needed;
1970
1971 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1972 if (unlikely(err))
1973 return err;
1974 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1975 if (!sock)
1976 goto out;
1977
1978 msg.msg_name = NULL;
1979 msg.msg_control = NULL;
1980 msg.msg_controllen = 0;
1981 msg.msg_namelen = 0;
1982 if (addr) {
1983 err = move_addr_to_kernel(addr, addr_len, &address);
1984 if (err < 0)
1985 goto out_put;
1986 msg.msg_name = (struct sockaddr *)&address;
1987 msg.msg_namelen = addr_len;
1988 }
1989 if (sock->file->f_flags & O_NONBLOCK)
1990 flags |= MSG_DONTWAIT;
1991 msg.msg_flags = flags;
1992 err = sock_sendmsg(sock, &msg);
1993
1994 out_put:
1995 fput_light(sock->file, fput_needed);
1996 out:
1997 return err;
1998 }
1999
2000 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2001 unsigned int, flags, struct sockaddr __user *, addr,
2002 int, addr_len)
2003 {
2004 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2005 }
2006
2007 /*
2008 * Send a datagram down a socket.
2009 */
2010
2011 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2012 unsigned int, flags)
2013 {
2014 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2015 }
2016
2017 /*
2018 * Receive a frame from the socket and optionally record the address of the
2019 * sender. We verify the buffers are writable and if needed move the
2020 * sender address from kernel to user space.
2021 */
2022 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2023 struct sockaddr __user *addr, int __user *addr_len)
2024 {
2025 struct socket *sock;
2026 struct iovec iov;
2027 struct msghdr msg;
2028 struct sockaddr_storage address;
2029 int err, err2;
2030 int fput_needed;
2031
2032 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2033 if (unlikely(err))
2034 return err;
2035 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2036 if (!sock)
2037 goto out;
2038
2039 msg.msg_control = NULL;
2040 msg.msg_controllen = 0;
2041 /* Save some cycles and don't copy the address if not needed */
2042 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2043 /* We assume all kernel code knows the size of sockaddr_storage */
2044 msg.msg_namelen = 0;
2045 msg.msg_iocb = NULL;
2046 msg.msg_flags = 0;
2047 if (sock->file->f_flags & O_NONBLOCK)
2048 flags |= MSG_DONTWAIT;
2049 err = sock_recvmsg(sock, &msg, flags);
2050
2051 if (err >= 0 && addr != NULL) {
2052 err2 = move_addr_to_user(&address,
2053 msg.msg_namelen, addr, addr_len);
2054 if (err2 < 0)
2055 err = err2;
2056 }
2057
2058 fput_light(sock->file, fput_needed);
2059 out:
2060 return err;
2061 }
2062
2063 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2064 unsigned int, flags, struct sockaddr __user *, addr,
2065 int __user *, addr_len)
2066 {
2067 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2068 }
2069
2070 /*
2071 * Receive a datagram from a socket.
2072 */
2073
2074 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2075 unsigned int, flags)
2076 {
2077 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2078 }
2079
2080 static bool sock_use_custom_sol_socket(const struct socket *sock)
2081 {
2082 const struct sock *sk = sock->sk;
2083
2084 /* Use sock->ops->setsockopt() for MPTCP */
2085 return IS_ENABLED(CONFIG_MPTCP) &&
2086 sk->sk_protocol == IPPROTO_MPTCP &&
2087 sk->sk_type == SOCK_STREAM &&
2088 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2089 }
2090
2091 /*
2092 * Set a socket option. Because we don't know the option lengths we have
2093 * to pass the user mode parameter for the protocols to sort out.
2094 */
2095 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2096 int optlen)
2097 {
2098 sockptr_t optval = USER_SOCKPTR(user_optval);
2099 char *kernel_optval = NULL;
2100 int err, fput_needed;
2101 struct socket *sock;
2102
2103 if (optlen < 0)
2104 return -EINVAL;
2105
2106 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2107 if (!sock)
2108 return err;
2109
2110 err = security_socket_setsockopt(sock, level, optname);
2111 if (err)
2112 goto out_put;
2113
2114 if (!in_compat_syscall())
2115 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2116 user_optval, &optlen,
2117 &kernel_optval);
2118 if (err < 0)
2119 goto out_put;
2120 if (err > 0) {
2121 err = 0;
2122 goto out_put;
2123 }
2124
2125 if (kernel_optval)
2126 optval = KERNEL_SOCKPTR(kernel_optval);
2127 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2128 err = sock_setsockopt(sock, level, optname, optval, optlen);
2129 else if (unlikely(!sock->ops->setsockopt))
2130 err = -EOPNOTSUPP;
2131 else
2132 err = sock->ops->setsockopt(sock, level, optname, optval,
2133 optlen);
2134 kfree(kernel_optval);
2135 out_put:
2136 fput_light(sock->file, fput_needed);
2137 return err;
2138 }
2139
2140 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2141 char __user *, optval, int, optlen)
2142 {
2143 return __sys_setsockopt(fd, level, optname, optval, optlen);
2144 }
2145
2146 /*
2147 * Get a socket option. Because we don't know the option lengths we have
2148 * to pass a user mode parameter for the protocols to sort out.
2149 */
2150 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2151 int __user *optlen)
2152 {
2153 int err, fput_needed;
2154 struct socket *sock;
2155 int max_optlen;
2156
2157 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2158 if (!sock)
2159 return err;
2160
2161 err = security_socket_getsockopt(sock, level, optname);
2162 if (err)
2163 goto out_put;
2164
2165 if (!in_compat_syscall())
2166 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2167
2168 if (level == SOL_SOCKET)
2169 err = sock_getsockopt(sock, level, optname, optval, optlen);
2170 else if (unlikely(!sock->ops->getsockopt))
2171 err = -EOPNOTSUPP;
2172 else
2173 err = sock->ops->getsockopt(sock, level, optname, optval,
2174 optlen);
2175
2176 if (!in_compat_syscall())
2177 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2178 optval, optlen, max_optlen,
2179 err);
2180 out_put:
2181 fput_light(sock->file, fput_needed);
2182 return err;
2183 }
2184
2185 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2186 char __user *, optval, int __user *, optlen)
2187 {
2188 return __sys_getsockopt(fd, level, optname, optval, optlen);
2189 }
2190
2191 /*
2192 * Shutdown a socket.
2193 */
2194
2195 int __sys_shutdown(int fd, int how)
2196 {
2197 int err, fput_needed;
2198 struct socket *sock;
2199
2200 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2201 if (sock != NULL) {
2202 err = security_socket_shutdown(sock, how);
2203 if (!err)
2204 err = sock->ops->shutdown(sock, how);
2205 fput_light(sock->file, fput_needed);
2206 }
2207 return err;
2208 }
2209
2210 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2211 {
2212 return __sys_shutdown(fd, how);
2213 }
2214
2215 /* A couple of helpful macros for getting the address of the 32/64 bit
2216 * fields which are the same type (int / unsigned) on our platforms.
2217 */
2218 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2219 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2220 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2221
2222 struct used_address {
2223 struct sockaddr_storage name;
2224 unsigned int name_len;
2225 };
2226
2227 int __copy_msghdr_from_user(struct msghdr *kmsg,
2228 struct user_msghdr __user *umsg,
2229 struct sockaddr __user **save_addr,
2230 struct iovec __user **uiov, size_t *nsegs)
2231 {
2232 struct user_msghdr msg;
2233 ssize_t err;
2234
2235 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2236 return -EFAULT;
2237
2238 kmsg->msg_control_is_user = true;
2239 kmsg->msg_control_user = msg.msg_control;
2240 kmsg->msg_controllen = msg.msg_controllen;
2241 kmsg->msg_flags = msg.msg_flags;
2242
2243 kmsg->msg_namelen = msg.msg_namelen;
2244 if (!msg.msg_name)
2245 kmsg->msg_namelen = 0;
2246
2247 if (kmsg->msg_namelen < 0)
2248 return -EINVAL;
2249
2250 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2251 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2252
2253 if (save_addr)
2254 *save_addr = msg.msg_name;
2255
2256 if (msg.msg_name && kmsg->msg_namelen) {
2257 if (!save_addr) {
2258 err = move_addr_to_kernel(msg.msg_name,
2259 kmsg->msg_namelen,
2260 kmsg->msg_name);
2261 if (err < 0)
2262 return err;
2263 }
2264 } else {
2265 kmsg->msg_name = NULL;
2266 kmsg->msg_namelen = 0;
2267 }
2268
2269 if (msg.msg_iovlen > UIO_MAXIOV)
2270 return -EMSGSIZE;
2271
2272 kmsg->msg_iocb = NULL;
2273 *uiov = msg.msg_iov;
2274 *nsegs = msg.msg_iovlen;
2275 return 0;
2276 }
2277
2278 static int copy_msghdr_from_user(struct msghdr *kmsg,
2279 struct user_msghdr __user *umsg,
2280 struct sockaddr __user **save_addr,
2281 struct iovec **iov)
2282 {
2283 struct user_msghdr msg;
2284 ssize_t err;
2285
2286 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2287 &msg.msg_iovlen);
2288 if (err)
2289 return err;
2290
2291 err = import_iovec(save_addr ? READ : WRITE,
2292 msg.msg_iov, msg.msg_iovlen,
2293 UIO_FASTIOV, iov, &kmsg->msg_iter);
2294 return err < 0 ? err : 0;
2295 }
2296
2297 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2298 unsigned int flags, struct used_address *used_address,
2299 unsigned int allowed_msghdr_flags)
2300 {
2301 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2302 __aligned(sizeof(__kernel_size_t));
2303 /* 20 is size of ipv6_pktinfo */
2304 unsigned char *ctl_buf = ctl;
2305 int ctl_len;
2306 ssize_t err;
2307
2308 err = -ENOBUFS;
2309
2310 if (msg_sys->msg_controllen > INT_MAX)
2311 goto out;
2312 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2313 ctl_len = msg_sys->msg_controllen;
2314 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2315 err =
2316 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2317 sizeof(ctl));
2318 if (err)
2319 goto out;
2320 ctl_buf = msg_sys->msg_control;
2321 ctl_len = msg_sys->msg_controllen;
2322 } else if (ctl_len) {
2323 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2324 CMSG_ALIGN(sizeof(struct cmsghdr)));
2325 if (ctl_len > sizeof(ctl)) {
2326 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2327 if (ctl_buf == NULL)
2328 goto out;
2329 }
2330 err = -EFAULT;
2331 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2332 goto out_freectl;
2333 msg_sys->msg_control = ctl_buf;
2334 msg_sys->msg_control_is_user = false;
2335 }
2336 msg_sys->msg_flags = flags;
2337
2338 if (sock->file->f_flags & O_NONBLOCK)
2339 msg_sys->msg_flags |= MSG_DONTWAIT;
2340 /*
2341 * If this is sendmmsg() and current destination address is same as
2342 * previously succeeded address, omit asking LSM's decision.
2343 * used_address->name_len is initialized to UINT_MAX so that the first
2344 * destination address never matches.
2345 */
2346 if (used_address && msg_sys->msg_name &&
2347 used_address->name_len == msg_sys->msg_namelen &&
2348 !memcmp(&used_address->name, msg_sys->msg_name,
2349 used_address->name_len)) {
2350 err = sock_sendmsg_nosec(sock, msg_sys);
2351 goto out_freectl;
2352 }
2353 err = sock_sendmsg(sock, msg_sys);
2354 /*
2355 * If this is sendmmsg() and sending to current destination address was
2356 * successful, remember it.
2357 */
2358 if (used_address && err >= 0) {
2359 used_address->name_len = msg_sys->msg_namelen;
2360 if (msg_sys->msg_name)
2361 memcpy(&used_address->name, msg_sys->msg_name,
2362 used_address->name_len);
2363 }
2364
2365 out_freectl:
2366 if (ctl_buf != ctl)
2367 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2368 out:
2369 return err;
2370 }
2371
2372 int sendmsg_copy_msghdr(struct msghdr *msg,
2373 struct user_msghdr __user *umsg, unsigned flags,
2374 struct iovec **iov)
2375 {
2376 int err;
2377
2378 if (flags & MSG_CMSG_COMPAT) {
2379 struct compat_msghdr __user *msg_compat;
2380
2381 msg_compat = (struct compat_msghdr __user *) umsg;
2382 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2383 } else {
2384 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2385 }
2386 if (err < 0)
2387 return err;
2388
2389 return 0;
2390 }
2391
2392 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2393 struct msghdr *msg_sys, unsigned int flags,
2394 struct used_address *used_address,
2395 unsigned int allowed_msghdr_flags)
2396 {
2397 struct sockaddr_storage address;
2398 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2399 ssize_t err;
2400
2401 msg_sys->msg_name = &address;
2402
2403 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2404 if (err < 0)
2405 return err;
2406
2407 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2408 allowed_msghdr_flags);
2409 kfree(iov);
2410 return err;
2411 }
2412
2413 /*
2414 * BSD sendmsg interface
2415 */
2416 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2417 unsigned int flags)
2418 {
2419 /* disallow ancillary data requests from this path */
2420 if (msg->msg_control || msg->msg_controllen)
2421 return -EINVAL;
2422
2423 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2424 }
2425
2426 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2427 bool forbid_cmsg_compat)
2428 {
2429 int fput_needed, err;
2430 struct msghdr msg_sys;
2431 struct socket *sock;
2432
2433 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2434 return -EINVAL;
2435
2436 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2437 if (!sock)
2438 goto out;
2439
2440 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2441
2442 fput_light(sock->file, fput_needed);
2443 out:
2444 return err;
2445 }
2446
2447 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2448 {
2449 return __sys_sendmsg(fd, msg, flags, true);
2450 }
2451
2452 /*
2453 * Linux sendmmsg interface
2454 */
2455
2456 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2457 unsigned int flags, bool forbid_cmsg_compat)
2458 {
2459 int fput_needed, err, datagrams;
2460 struct socket *sock;
2461 struct mmsghdr __user *entry;
2462 struct compat_mmsghdr __user *compat_entry;
2463 struct msghdr msg_sys;
2464 struct used_address used_address;
2465 unsigned int oflags = flags;
2466
2467 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2468 return -EINVAL;
2469
2470 if (vlen > UIO_MAXIOV)
2471 vlen = UIO_MAXIOV;
2472
2473 datagrams = 0;
2474
2475 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2476 if (!sock)
2477 return err;
2478
2479 used_address.name_len = UINT_MAX;
2480 entry = mmsg;
2481 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2482 err = 0;
2483 flags |= MSG_BATCH;
2484
2485 while (datagrams < vlen) {
2486 if (datagrams == vlen - 1)
2487 flags = oflags;
2488
2489 if (MSG_CMSG_COMPAT & flags) {
2490 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2491 &msg_sys, flags, &used_address, MSG_EOR);
2492 if (err < 0)
2493 break;
2494 err = __put_user(err, &compat_entry->msg_len);
2495 ++compat_entry;
2496 } else {
2497 err = ___sys_sendmsg(sock,
2498 (struct user_msghdr __user *)entry,
2499 &msg_sys, flags, &used_address, MSG_EOR);
2500 if (err < 0)
2501 break;
2502 err = put_user(err, &entry->msg_len);
2503 ++entry;
2504 }
2505
2506 if (err)
2507 break;
2508 ++datagrams;
2509 if (msg_data_left(&msg_sys))
2510 break;
2511 cond_resched();
2512 }
2513
2514 fput_light(sock->file, fput_needed);
2515
2516 /* We only return an error if no datagrams were able to be sent */
2517 if (datagrams != 0)
2518 return datagrams;
2519
2520 return err;
2521 }
2522
2523 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2524 unsigned int, vlen, unsigned int, flags)
2525 {
2526 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2527 }
2528
2529 int recvmsg_copy_msghdr(struct msghdr *msg,
2530 struct user_msghdr __user *umsg, unsigned flags,
2531 struct sockaddr __user **uaddr,
2532 struct iovec **iov)
2533 {
2534 ssize_t err;
2535
2536 if (MSG_CMSG_COMPAT & flags) {
2537 struct compat_msghdr __user *msg_compat;
2538
2539 msg_compat = (struct compat_msghdr __user *) umsg;
2540 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2541 } else {
2542 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2543 }
2544 if (err < 0)
2545 return err;
2546
2547 return 0;
2548 }
2549
2550 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2551 struct user_msghdr __user *msg,
2552 struct sockaddr __user *uaddr,
2553 unsigned int flags, int nosec)
2554 {
2555 struct compat_msghdr __user *msg_compat =
2556 (struct compat_msghdr __user *) msg;
2557 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2558 struct sockaddr_storage addr;
2559 unsigned long cmsg_ptr;
2560 int len;
2561 ssize_t err;
2562
2563 msg_sys->msg_name = &addr;
2564 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2565 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2566
2567 /* We assume all kernel code knows the size of sockaddr_storage */
2568 msg_sys->msg_namelen = 0;
2569
2570 if (sock->file->f_flags & O_NONBLOCK)
2571 flags |= MSG_DONTWAIT;
2572
2573 if (unlikely(nosec))
2574 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2575 else
2576 err = sock_recvmsg(sock, msg_sys, flags);
2577
2578 if (err < 0)
2579 goto out;
2580 len = err;
2581
2582 if (uaddr != NULL) {
2583 err = move_addr_to_user(&addr,
2584 msg_sys->msg_namelen, uaddr,
2585 uaddr_len);
2586 if (err < 0)
2587 goto out;
2588 }
2589 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2590 COMPAT_FLAGS(msg));
2591 if (err)
2592 goto out;
2593 if (MSG_CMSG_COMPAT & flags)
2594 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2595 &msg_compat->msg_controllen);
2596 else
2597 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2598 &msg->msg_controllen);
2599 if (err)
2600 goto out;
2601 err = len;
2602 out:
2603 return err;
2604 }
2605
2606 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2607 struct msghdr *msg_sys, unsigned int flags, int nosec)
2608 {
2609 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2610 /* user mode address pointers */
2611 struct sockaddr __user *uaddr;
2612 ssize_t err;
2613
2614 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2615 if (err < 0)
2616 return err;
2617
2618 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2619 kfree(iov);
2620 return err;
2621 }
2622
2623 /*
2624 * BSD recvmsg interface
2625 */
2626
2627 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2628 struct user_msghdr __user *umsg,
2629 struct sockaddr __user *uaddr, unsigned int flags)
2630 {
2631 if (msg->msg_control || msg->msg_controllen) {
2632 /* disallow ancillary data reqs unless cmsg is plain data */
2633 if (!(sock->ops->flags & PROTO_CMSG_DATA_ONLY))
2634 return -EINVAL;
2635 }
2636
2637 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2638 }
2639
2640 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2641 bool forbid_cmsg_compat)
2642 {
2643 int fput_needed, err;
2644 struct msghdr msg_sys;
2645 struct socket *sock;
2646
2647 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2648 return -EINVAL;
2649
2650 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2651 if (!sock)
2652 goto out;
2653
2654 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2655
2656 fput_light(sock->file, fput_needed);
2657 out:
2658 return err;
2659 }
2660
2661 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2662 unsigned int, flags)
2663 {
2664 return __sys_recvmsg(fd, msg, flags, true);
2665 }
2666
2667 /*
2668 * Linux recvmmsg interface
2669 */
2670
2671 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2672 unsigned int vlen, unsigned int flags,
2673 struct timespec64 *timeout)
2674 {
2675 int fput_needed, err, datagrams;
2676 struct socket *sock;
2677 struct mmsghdr __user *entry;
2678 struct compat_mmsghdr __user *compat_entry;
2679 struct msghdr msg_sys;
2680 struct timespec64 end_time;
2681 struct timespec64 timeout64;
2682
2683 if (timeout &&
2684 poll_select_set_timeout(&end_time, timeout->tv_sec,
2685 timeout->tv_nsec))
2686 return -EINVAL;
2687
2688 datagrams = 0;
2689
2690 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2691 if (!sock)
2692 return err;
2693
2694 if (likely(!(flags & MSG_ERRQUEUE))) {
2695 err = sock_error(sock->sk);
2696 if (err) {
2697 datagrams = err;
2698 goto out_put;
2699 }
2700 }
2701
2702 entry = mmsg;
2703 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2704
2705 while (datagrams < vlen) {
2706 /*
2707 * No need to ask LSM for more than the first datagram.
2708 */
2709 if (MSG_CMSG_COMPAT & flags) {
2710 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2711 &msg_sys, flags & ~MSG_WAITFORONE,
2712 datagrams);
2713 if (err < 0)
2714 break;
2715 err = __put_user(err, &compat_entry->msg_len);
2716 ++compat_entry;
2717 } else {
2718 err = ___sys_recvmsg(sock,
2719 (struct user_msghdr __user *)entry,
2720 &msg_sys, flags & ~MSG_WAITFORONE,
2721 datagrams);
2722 if (err < 0)
2723 break;
2724 err = put_user(err, &entry->msg_len);
2725 ++entry;
2726 }
2727
2728 if (err)
2729 break;
2730 ++datagrams;
2731
2732 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2733 if (flags & MSG_WAITFORONE)
2734 flags |= MSG_DONTWAIT;
2735
2736 if (timeout) {
2737 ktime_get_ts64(&timeout64);
2738 *timeout = timespec64_sub(end_time, timeout64);
2739 if (timeout->tv_sec < 0) {
2740 timeout->tv_sec = timeout->tv_nsec = 0;
2741 break;
2742 }
2743
2744 /* Timeout, return less than vlen datagrams */
2745 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2746 break;
2747 }
2748
2749 /* Out of band data, return right away */
2750 if (msg_sys.msg_flags & MSG_OOB)
2751 break;
2752 cond_resched();
2753 }
2754
2755 if (err == 0)
2756 goto out_put;
2757
2758 if (datagrams == 0) {
2759 datagrams = err;
2760 goto out_put;
2761 }
2762
2763 /*
2764 * We may return less entries than requested (vlen) if the
2765 * sock is non block and there aren't enough datagrams...
2766 */
2767 if (err != -EAGAIN) {
2768 /*
2769 * ... or if recvmsg returns an error after we
2770 * received some datagrams, where we record the
2771 * error to return on the next call or if the
2772 * app asks about it using getsockopt(SO_ERROR).
2773 */
2774 sock->sk->sk_err = -err;
2775 }
2776 out_put:
2777 fput_light(sock->file, fput_needed);
2778
2779 return datagrams;
2780 }
2781
2782 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2783 unsigned int vlen, unsigned int flags,
2784 struct __kernel_timespec __user *timeout,
2785 struct old_timespec32 __user *timeout32)
2786 {
2787 int datagrams;
2788 struct timespec64 timeout_sys;
2789
2790 if (timeout && get_timespec64(&timeout_sys, timeout))
2791 return -EFAULT;
2792
2793 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2794 return -EFAULT;
2795
2796 if (!timeout && !timeout32)
2797 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2798
2799 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2800
2801 if (datagrams <= 0)
2802 return datagrams;
2803
2804 if (timeout && put_timespec64(&timeout_sys, timeout))
2805 datagrams = -EFAULT;
2806
2807 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2808 datagrams = -EFAULT;
2809
2810 return datagrams;
2811 }
2812
2813 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2814 unsigned int, vlen, unsigned int, flags,
2815 struct __kernel_timespec __user *, timeout)
2816 {
2817 if (flags & MSG_CMSG_COMPAT)
2818 return -EINVAL;
2819
2820 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2821 }
2822
2823 #ifdef CONFIG_COMPAT_32BIT_TIME
2824 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2825 unsigned int, vlen, unsigned int, flags,
2826 struct old_timespec32 __user *, timeout)
2827 {
2828 if (flags & MSG_CMSG_COMPAT)
2829 return -EINVAL;
2830
2831 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2832 }
2833 #endif
2834
2835 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2836 /* Argument list sizes for sys_socketcall */
2837 #define AL(x) ((x) * sizeof(unsigned long))
2838 static const unsigned char nargs[21] = {
2839 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2840 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2841 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2842 AL(4), AL(5), AL(4)
2843 };
2844
2845 #undef AL
2846
2847 /*
2848 * System call vectors.
2849 *
2850 * Argument checking cleaned up. Saved 20% in size.
2851 * This function doesn't need to set the kernel lock because
2852 * it is set by the callees.
2853 */
2854
2855 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2856 {
2857 unsigned long a[AUDITSC_ARGS];
2858 unsigned long a0, a1;
2859 int err;
2860 unsigned int len;
2861
2862 if (call < 1 || call > SYS_SENDMMSG)
2863 return -EINVAL;
2864 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2865
2866 len = nargs[call];
2867 if (len > sizeof(a))
2868 return -EINVAL;
2869
2870 /* copy_from_user should be SMP safe. */
2871 if (copy_from_user(a, args, len))
2872 return -EFAULT;
2873
2874 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2875 if (err)
2876 return err;
2877
2878 a0 = a[0];
2879 a1 = a[1];
2880
2881 switch (call) {
2882 case SYS_SOCKET:
2883 err = __sys_socket(a0, a1, a[2]);
2884 break;
2885 case SYS_BIND:
2886 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2887 break;
2888 case SYS_CONNECT:
2889 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2890 break;
2891 case SYS_LISTEN:
2892 err = __sys_listen(a0, a1);
2893 break;
2894 case SYS_ACCEPT:
2895 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2896 (int __user *)a[2], 0);
2897 break;
2898 case SYS_GETSOCKNAME:
2899 err =
2900 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2901 (int __user *)a[2]);
2902 break;
2903 case SYS_GETPEERNAME:
2904 err =
2905 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2906 (int __user *)a[2]);
2907 break;
2908 case SYS_SOCKETPAIR:
2909 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2910 break;
2911 case SYS_SEND:
2912 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2913 NULL, 0);
2914 break;
2915 case SYS_SENDTO:
2916 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2917 (struct sockaddr __user *)a[4], a[5]);
2918 break;
2919 case SYS_RECV:
2920 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2921 NULL, NULL);
2922 break;
2923 case SYS_RECVFROM:
2924 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2925 (struct sockaddr __user *)a[4],
2926 (int __user *)a[5]);
2927 break;
2928 case SYS_SHUTDOWN:
2929 err = __sys_shutdown(a0, a1);
2930 break;
2931 case SYS_SETSOCKOPT:
2932 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2933 a[4]);
2934 break;
2935 case SYS_GETSOCKOPT:
2936 err =
2937 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2938 (int __user *)a[4]);
2939 break;
2940 case SYS_SENDMSG:
2941 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2942 a[2], true);
2943 break;
2944 case SYS_SENDMMSG:
2945 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2946 a[3], true);
2947 break;
2948 case SYS_RECVMSG:
2949 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2950 a[2], true);
2951 break;
2952 case SYS_RECVMMSG:
2953 if (IS_ENABLED(CONFIG_64BIT))
2954 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2955 a[2], a[3],
2956 (struct __kernel_timespec __user *)a[4],
2957 NULL);
2958 else
2959 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2960 a[2], a[3], NULL,
2961 (struct old_timespec32 __user *)a[4]);
2962 break;
2963 case SYS_ACCEPT4:
2964 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2965 (int __user *)a[2], a[3]);
2966 break;
2967 default:
2968 err = -EINVAL;
2969 break;
2970 }
2971 return err;
2972 }
2973
2974 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2975
2976 /**
2977 * sock_register - add a socket protocol handler
2978 * @ops: description of protocol
2979 *
2980 * This function is called by a protocol handler that wants to
2981 * advertise its address family, and have it linked into the
2982 * socket interface. The value ops->family corresponds to the
2983 * socket system call protocol family.
2984 */
2985 int sock_register(const struct net_proto_family *ops)
2986 {
2987 int err;
2988
2989 if (ops->family >= NPROTO) {
2990 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2991 return -ENOBUFS;
2992 }
2993
2994 spin_lock(&net_family_lock);
2995 if (rcu_dereference_protected(net_families[ops->family],
2996 lockdep_is_held(&net_family_lock)))
2997 err = -EEXIST;
2998 else {
2999 rcu_assign_pointer(net_families[ops->family], ops);
3000 err = 0;
3001 }
3002 spin_unlock(&net_family_lock);
3003
3004 pr_info("NET: Registered protocol family %d\n", ops->family);
3005 return err;
3006 }
3007 EXPORT_SYMBOL(sock_register);
3008
3009 /**
3010 * sock_unregister - remove a protocol handler
3011 * @family: protocol family to remove
3012 *
3013 * This function is called by a protocol handler that wants to
3014 * remove its address family, and have it unlinked from the
3015 * new socket creation.
3016 *
3017 * If protocol handler is a module, then it can use module reference
3018 * counts to protect against new references. If protocol handler is not
3019 * a module then it needs to provide its own protection in
3020 * the ops->create routine.
3021 */
3022 void sock_unregister(int family)
3023 {
3024 BUG_ON(family < 0 || family >= NPROTO);
3025
3026 spin_lock(&net_family_lock);
3027 RCU_INIT_POINTER(net_families[family], NULL);
3028 spin_unlock(&net_family_lock);
3029
3030 synchronize_rcu();
3031
3032 pr_info("NET: Unregistered protocol family %d\n", family);
3033 }
3034 EXPORT_SYMBOL(sock_unregister);
3035
3036 bool sock_is_registered(int family)
3037 {
3038 return family < NPROTO && rcu_access_pointer(net_families[family]);
3039 }
3040
3041 static int __init sock_init(void)
3042 {
3043 int err;
3044 /*
3045 * Initialize the network sysctl infrastructure.
3046 */
3047 err = net_sysctl_init();
3048 if (err)
3049 goto out;
3050
3051 /*
3052 * Initialize skbuff SLAB cache
3053 */
3054 skb_init();
3055
3056 /*
3057 * Initialize the protocols module.
3058 */
3059
3060 init_inodecache();
3061
3062 err = register_filesystem(&sock_fs_type);
3063 if (err)
3064 goto out;
3065 sock_mnt = kern_mount(&sock_fs_type);
3066 if (IS_ERR(sock_mnt)) {
3067 err = PTR_ERR(sock_mnt);
3068 goto out_mount;
3069 }
3070
3071 /* The real protocol initialization is performed in later initcalls.
3072 */
3073
3074 #ifdef CONFIG_NETFILTER
3075 err = netfilter_init();
3076 if (err)
3077 goto out;
3078 #endif
3079
3080 ptp_classifier_init();
3081
3082 out:
3083 return err;
3084
3085 out_mount:
3086 unregister_filesystem(&sock_fs_type);
3087 goto out;
3088 }
3089
3090 core_initcall(sock_init); /* early initcall */
3091
3092 #ifdef CONFIG_PROC_FS
3093 void socket_seq_show(struct seq_file *seq)
3094 {
3095 seq_printf(seq, "sockets: used %d\n",
3096 sock_inuse_get(seq->private));
3097 }
3098 #endif /* CONFIG_PROC_FS */
3099
3100 #ifdef CONFIG_COMPAT
3101 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3102 {
3103 struct compat_ifconf ifc32;
3104 struct ifconf ifc;
3105 int err;
3106
3107 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3108 return -EFAULT;
3109
3110 ifc.ifc_len = ifc32.ifc_len;
3111 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3112
3113 rtnl_lock();
3114 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3115 rtnl_unlock();
3116 if (err)
3117 return err;
3118
3119 ifc32.ifc_len = ifc.ifc_len;
3120 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3121 return -EFAULT;
3122
3123 return 0;
3124 }
3125
3126 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3127 {
3128 struct compat_ethtool_rxnfc __user *compat_rxnfc;
3129 bool convert_in = false, convert_out = false;
3130 size_t buf_size = 0;
3131 struct ethtool_rxnfc __user *rxnfc = NULL;
3132 struct ifreq ifr;
3133 u32 rule_cnt = 0, actual_rule_cnt;
3134 u32 ethcmd;
3135 u32 data;
3136 int ret;
3137
3138 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3139 return -EFAULT;
3140
3141 compat_rxnfc = compat_ptr(data);
3142
3143 if (get_user(ethcmd, &compat_rxnfc->cmd))
3144 return -EFAULT;
3145
3146 /* Most ethtool structures are defined without padding.
3147 * Unfortunately struct ethtool_rxnfc is an exception.
3148 */
3149 switch (ethcmd) {
3150 default:
3151 break;
3152 case ETHTOOL_GRXCLSRLALL:
3153 /* Buffer size is variable */
3154 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3155 return -EFAULT;
3156 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3157 return -ENOMEM;
3158 buf_size += rule_cnt * sizeof(u32);
3159 fallthrough;
3160 case ETHTOOL_GRXRINGS:
3161 case ETHTOOL_GRXCLSRLCNT:
3162 case ETHTOOL_GRXCLSRULE:
3163 case ETHTOOL_SRXCLSRLINS:
3164 convert_out = true;
3165 fallthrough;
3166 case ETHTOOL_SRXCLSRLDEL:
3167 buf_size += sizeof(struct ethtool_rxnfc);
3168 convert_in = true;
3169 rxnfc = compat_alloc_user_space(buf_size);
3170 break;
3171 }
3172
3173 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3174 return -EFAULT;
3175
3176 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3177
3178 if (convert_in) {
3179 /* We expect there to be holes between fs.m_ext and
3180 * fs.ring_cookie and at the end of fs, but nowhere else.
3181 */
3182 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3183 sizeof(compat_rxnfc->fs.m_ext) !=
3184 offsetof(struct ethtool_rxnfc, fs.m_ext) +
3185 sizeof(rxnfc->fs.m_ext));
3186 BUILD_BUG_ON(
3187 offsetof(struct compat_ethtool_rxnfc, fs.location) -
3188 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3189 offsetof(struct ethtool_rxnfc, fs.location) -
3190 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3191
3192 if (copy_in_user(rxnfc, compat_rxnfc,
3193 (void __user *)(&rxnfc->fs.m_ext + 1) -
3194 (void __user *)rxnfc) ||
3195 copy_in_user(&rxnfc->fs.ring_cookie,
3196 &compat_rxnfc->fs.ring_cookie,
3197 (void __user *)(&rxnfc->fs.location + 1) -
3198 (void __user *)&rxnfc->fs.ring_cookie))
3199 return -EFAULT;
3200 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3201 if (put_user(rule_cnt, &rxnfc->rule_cnt))
3202 return -EFAULT;
3203 } else if (copy_in_user(&rxnfc->rule_cnt,
3204 &compat_rxnfc->rule_cnt,
3205 sizeof(rxnfc->rule_cnt)))
3206 return -EFAULT;
3207 }
3208
3209 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3210 if (ret)
3211 return ret;
3212
3213 if (convert_out) {
3214 if (copy_in_user(compat_rxnfc, rxnfc,
3215 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3216 (const void __user *)rxnfc) ||
3217 copy_in_user(&compat_rxnfc->fs.ring_cookie,
3218 &rxnfc->fs.ring_cookie,
3219 (const void __user *)(&rxnfc->fs.location + 1) -
3220 (const void __user *)&rxnfc->fs.ring_cookie) ||
3221 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3222 sizeof(rxnfc->rule_cnt)))
3223 return -EFAULT;
3224
3225 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3226 /* As an optimisation, we only copy the actual
3227 * number of rules that the underlying
3228 * function returned. Since Mallory might
3229 * change the rule count in user memory, we
3230 * check that it is less than the rule count
3231 * originally given (as the user buffer size),
3232 * which has been range-checked.
3233 */
3234 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3235 return -EFAULT;
3236 if (actual_rule_cnt < rule_cnt)
3237 rule_cnt = actual_rule_cnt;
3238 if (copy_in_user(&compat_rxnfc->rule_locs[0],
3239 &rxnfc->rule_locs[0],
3240 rule_cnt * sizeof(u32)))
3241 return -EFAULT;
3242 }
3243 }
3244
3245 return 0;
3246 }
3247
3248 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3249 {
3250 compat_uptr_t uptr32;
3251 struct ifreq ifr;
3252 void __user *saved;
3253 int err;
3254
3255 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3256 return -EFAULT;
3257
3258 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3259 return -EFAULT;
3260
3261 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3262 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3263
3264 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3265 if (!err) {
3266 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3267 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3268 err = -EFAULT;
3269 }
3270 return err;
3271 }
3272
3273 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3274 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3275 struct compat_ifreq __user *u_ifreq32)
3276 {
3277 struct ifreq ifreq;
3278 u32 data32;
3279
3280 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3281 return -EFAULT;
3282 if (get_user(data32, &u_ifreq32->ifr_data))
3283 return -EFAULT;
3284 ifreq.ifr_data = compat_ptr(data32);
3285
3286 return dev_ioctl(net, cmd, &ifreq, NULL);
3287 }
3288
3289 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3290 unsigned int cmd,
3291 struct compat_ifreq __user *uifr32)
3292 {
3293 struct ifreq __user *uifr;
3294 int err;
3295
3296 /* Handle the fact that while struct ifreq has the same *layout* on
3297 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3298 * which are handled elsewhere, it still has different *size* due to
3299 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3300 * resulting in struct ifreq being 32 and 40 bytes respectively).
3301 * As a result, if the struct happens to be at the end of a page and
3302 * the next page isn't readable/writable, we get a fault. To prevent
3303 * that, copy back and forth to the full size.
3304 */
3305
3306 uifr = compat_alloc_user_space(sizeof(*uifr));
3307 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3308 return -EFAULT;
3309
3310 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3311
3312 if (!err) {
3313 switch (cmd) {
3314 case SIOCGIFFLAGS:
3315 case SIOCGIFMETRIC:
3316 case SIOCGIFMTU:
3317 case SIOCGIFMEM:
3318 case SIOCGIFHWADDR:
3319 case SIOCGIFINDEX:
3320 case SIOCGIFADDR:
3321 case SIOCGIFBRDADDR:
3322 case SIOCGIFDSTADDR:
3323 case SIOCGIFNETMASK:
3324 case SIOCGIFPFLAGS:
3325 case SIOCGIFTXQLEN:
3326 case SIOCGMIIPHY:
3327 case SIOCGMIIREG:
3328 case SIOCGIFNAME:
3329 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3330 err = -EFAULT;
3331 break;
3332 }
3333 }
3334 return err;
3335 }
3336
3337 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3338 struct compat_ifreq __user *uifr32)
3339 {
3340 struct ifreq ifr;
3341 struct compat_ifmap __user *uifmap32;
3342 int err;
3343
3344 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3345 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3346 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3347 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3348 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3349 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3350 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3351 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3352 if (err)
3353 return -EFAULT;
3354
3355 err = dev_ioctl(net, cmd, &ifr, NULL);
3356
3357 if (cmd == SIOCGIFMAP && !err) {
3358 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3359 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3360 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3361 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3362 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3363 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3364 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3365 if (err)
3366 err = -EFAULT;
3367 }
3368 return err;
3369 }
3370
3371 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3372 * for some operations; this forces use of the newer bridge-utils that
3373 * use compatible ioctls
3374 */
3375 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3376 {
3377 compat_ulong_t tmp;
3378
3379 if (get_user(tmp, argp))
3380 return -EFAULT;
3381 if (tmp == BRCTL_GET_VERSION)
3382 return BRCTL_VERSION + 1;
3383 return -EINVAL;
3384 }
3385
3386 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3387 unsigned int cmd, unsigned long arg)
3388 {
3389 void __user *argp = compat_ptr(arg);
3390 struct sock *sk = sock->sk;
3391 struct net *net = sock_net(sk);
3392
3393 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3394 return compat_ifr_data_ioctl(net, cmd, argp);
3395
3396 switch (cmd) {
3397 case SIOCSIFBR:
3398 case SIOCGIFBR:
3399 return old_bridge_ioctl(argp);
3400 case SIOCGIFCONF:
3401 return compat_dev_ifconf(net, argp);
3402 case SIOCETHTOOL:
3403 return ethtool_ioctl(net, argp);
3404 case SIOCWANDEV:
3405 return compat_siocwandev(net, argp);
3406 case SIOCGIFMAP:
3407 case SIOCSIFMAP:
3408 return compat_sioc_ifmap(net, cmd, argp);
3409 case SIOCGSTAMP_OLD:
3410 case SIOCGSTAMPNS_OLD:
3411 if (!sock->ops->gettstamp)
3412 return -ENOIOCTLCMD;
3413 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3414 !COMPAT_USE_64BIT_TIME);
3415
3416 case SIOCBONDSLAVEINFOQUERY:
3417 case SIOCBONDINFOQUERY:
3418 case SIOCSHWTSTAMP:
3419 case SIOCGHWTSTAMP:
3420 return compat_ifr_data_ioctl(net, cmd, argp);
3421
3422 case FIOSETOWN:
3423 case SIOCSPGRP:
3424 case FIOGETOWN:
3425 case SIOCGPGRP:
3426 case SIOCBRADDBR:
3427 case SIOCBRDELBR:
3428 case SIOCGIFVLAN:
3429 case SIOCSIFVLAN:
3430 case SIOCADDDLCI:
3431 case SIOCDELDLCI:
3432 case SIOCGSKNS:
3433 case SIOCGSTAMP_NEW:
3434 case SIOCGSTAMPNS_NEW:
3435 return sock_ioctl(file, cmd, arg);
3436
3437 case SIOCGIFFLAGS:
3438 case SIOCSIFFLAGS:
3439 case SIOCGIFMETRIC:
3440 case SIOCSIFMETRIC:
3441 case SIOCGIFMTU:
3442 case SIOCSIFMTU:
3443 case SIOCGIFMEM:
3444 case SIOCSIFMEM:
3445 case SIOCGIFHWADDR:
3446 case SIOCSIFHWADDR:
3447 case SIOCADDMULTI:
3448 case SIOCDELMULTI:
3449 case SIOCGIFINDEX:
3450 case SIOCGIFADDR:
3451 case SIOCSIFADDR:
3452 case SIOCSIFHWBROADCAST:
3453 case SIOCDIFADDR:
3454 case SIOCGIFBRDADDR:
3455 case SIOCSIFBRDADDR:
3456 case SIOCGIFDSTADDR:
3457 case SIOCSIFDSTADDR:
3458 case SIOCGIFNETMASK:
3459 case SIOCSIFNETMASK:
3460 case SIOCSIFPFLAGS:
3461 case SIOCGIFPFLAGS:
3462 case SIOCGIFTXQLEN:
3463 case SIOCSIFTXQLEN:
3464 case SIOCBRADDIF:
3465 case SIOCBRDELIF:
3466 case SIOCGIFNAME:
3467 case SIOCSIFNAME:
3468 case SIOCGMIIPHY:
3469 case SIOCGMIIREG:
3470 case SIOCSMIIREG:
3471 case SIOCBONDENSLAVE:
3472 case SIOCBONDRELEASE:
3473 case SIOCBONDSETHWADDR:
3474 case SIOCBONDCHANGEACTIVE:
3475 return compat_ifreq_ioctl(net, sock, cmd, argp);
3476
3477 case SIOCSARP:
3478 case SIOCGARP:
3479 case SIOCDARP:
3480 case SIOCOUTQ:
3481 case SIOCOUTQNSD:
3482 case SIOCATMARK:
3483 return sock_do_ioctl(net, sock, cmd, arg);
3484 }
3485
3486 return -ENOIOCTLCMD;
3487 }
3488
3489 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3490 unsigned long arg)
3491 {
3492 struct socket *sock = file->private_data;
3493 int ret = -ENOIOCTLCMD;
3494 struct sock *sk;
3495 struct net *net;
3496
3497 sk = sock->sk;
3498 net = sock_net(sk);
3499
3500 if (sock->ops->compat_ioctl)
3501 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3502
3503 if (ret == -ENOIOCTLCMD &&
3504 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3505 ret = compat_wext_handle_ioctl(net, cmd, arg);
3506
3507 if (ret == -ENOIOCTLCMD)
3508 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3509
3510 return ret;
3511 }
3512 #endif
3513
3514 /**
3515 * kernel_bind - bind an address to a socket (kernel space)
3516 * @sock: socket
3517 * @addr: address
3518 * @addrlen: length of address
3519 *
3520 * Returns 0 or an error.
3521 */
3522
3523 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3524 {
3525 return sock->ops->bind(sock, addr, addrlen);
3526 }
3527 EXPORT_SYMBOL(kernel_bind);
3528
3529 /**
3530 * kernel_listen - move socket to listening state (kernel space)
3531 * @sock: socket
3532 * @backlog: pending connections queue size
3533 *
3534 * Returns 0 or an error.
3535 */
3536
3537 int kernel_listen(struct socket *sock, int backlog)
3538 {
3539 return sock->ops->listen(sock, backlog);
3540 }
3541 EXPORT_SYMBOL(kernel_listen);
3542
3543 /**
3544 * kernel_accept - accept a connection (kernel space)
3545 * @sock: listening socket
3546 * @newsock: new connected socket
3547 * @flags: flags
3548 *
3549 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3550 * If it fails, @newsock is guaranteed to be %NULL.
3551 * Returns 0 or an error.
3552 */
3553
3554 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3555 {
3556 struct sock *sk = sock->sk;
3557 int err;
3558
3559 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3560 newsock);
3561 if (err < 0)
3562 goto done;
3563
3564 err = sock->ops->accept(sock, *newsock, flags, true);
3565 if (err < 0) {
3566 sock_release(*newsock);
3567 *newsock = NULL;
3568 goto done;
3569 }
3570
3571 (*newsock)->ops = sock->ops;
3572 __module_get((*newsock)->ops->owner);
3573
3574 done:
3575 return err;
3576 }
3577 EXPORT_SYMBOL(kernel_accept);
3578
3579 /**
3580 * kernel_connect - connect a socket (kernel space)
3581 * @sock: socket
3582 * @addr: address
3583 * @addrlen: address length
3584 * @flags: flags (O_NONBLOCK, ...)
3585 *
3586 * For datagram sockets, @addr is the addres to which datagrams are sent
3587 * by default, and the only address from which datagrams are received.
3588 * For stream sockets, attempts to connect to @addr.
3589 * Returns 0 or an error code.
3590 */
3591
3592 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3593 int flags)
3594 {
3595 return sock->ops->connect(sock, addr, addrlen, flags);
3596 }
3597 EXPORT_SYMBOL(kernel_connect);
3598
3599 /**
3600 * kernel_getsockname - get the address which the socket is bound (kernel space)
3601 * @sock: socket
3602 * @addr: address holder
3603 *
3604 * Fills the @addr pointer with the address which the socket is bound.
3605 * Returns 0 or an error code.
3606 */
3607
3608 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3609 {
3610 return sock->ops->getname(sock, addr, 0);
3611 }
3612 EXPORT_SYMBOL(kernel_getsockname);
3613
3614 /**
3615 * kernel_getpeername - get the address which the socket is connected (kernel space)
3616 * @sock: socket
3617 * @addr: address holder
3618 *
3619 * Fills the @addr pointer with the address which the socket is connected.
3620 * Returns 0 or an error code.
3621 */
3622
3623 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3624 {
3625 return sock->ops->getname(sock, addr, 1);
3626 }
3627 EXPORT_SYMBOL(kernel_getpeername);
3628
3629 /**
3630 * kernel_sendpage - send a &page through a socket (kernel space)
3631 * @sock: socket
3632 * @page: page
3633 * @offset: page offset
3634 * @size: total size in bytes
3635 * @flags: flags (MSG_DONTWAIT, ...)
3636 *
3637 * Returns the total amount sent in bytes or an error.
3638 */
3639
3640 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3641 size_t size, int flags)
3642 {
3643 if (sock->ops->sendpage) {
3644 /* Warn in case the improper page to zero-copy send */
3645 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3646 return sock->ops->sendpage(sock, page, offset, size, flags);
3647 }
3648 return sock_no_sendpage(sock, page, offset, size, flags);
3649 }
3650 EXPORT_SYMBOL(kernel_sendpage);
3651
3652 /**
3653 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3654 * @sk: sock
3655 * @page: page
3656 * @offset: page offset
3657 * @size: total size in bytes
3658 * @flags: flags (MSG_DONTWAIT, ...)
3659 *
3660 * Returns the total amount sent in bytes or an error.
3661 * Caller must hold @sk.
3662 */
3663
3664 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3665 size_t size, int flags)
3666 {
3667 struct socket *sock = sk->sk_socket;
3668
3669 if (sock->ops->sendpage_locked)
3670 return sock->ops->sendpage_locked(sk, page, offset, size,
3671 flags);
3672
3673 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3674 }
3675 EXPORT_SYMBOL(kernel_sendpage_locked);
3676
3677 /**
3678 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3679 * @sock: socket
3680 * @how: connection part
3681 *
3682 * Returns 0 or an error.
3683 */
3684
3685 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3686 {
3687 return sock->ops->shutdown(sock, how);
3688 }
3689 EXPORT_SYMBOL(kernel_sock_shutdown);
3690
3691 /**
3692 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3693 * @sk: socket
3694 *
3695 * This routine returns the IP overhead imposed by a socket i.e.
3696 * the length of the underlying IP header, depending on whether
3697 * this is an IPv4 or IPv6 socket and the length from IP options turned
3698 * on at the socket. Assumes that the caller has a lock on the socket.
3699 */
3700
3701 u32 kernel_sock_ip_overhead(struct sock *sk)
3702 {
3703 struct inet_sock *inet;
3704 struct ip_options_rcu *opt;
3705 u32 overhead = 0;
3706 #if IS_ENABLED(CONFIG_IPV6)
3707 struct ipv6_pinfo *np;
3708 struct ipv6_txoptions *optv6 = NULL;
3709 #endif /* IS_ENABLED(CONFIG_IPV6) */
3710
3711 if (!sk)
3712 return overhead;
3713
3714 switch (sk->sk_family) {
3715 case AF_INET:
3716 inet = inet_sk(sk);
3717 overhead += sizeof(struct iphdr);
3718 opt = rcu_dereference_protected(inet->inet_opt,
3719 sock_owned_by_user(sk));
3720 if (opt)
3721 overhead += opt->opt.optlen;
3722 return overhead;
3723 #if IS_ENABLED(CONFIG_IPV6)
3724 case AF_INET6:
3725 np = inet6_sk(sk);
3726 overhead += sizeof(struct ipv6hdr);
3727 if (np)
3728 optv6 = rcu_dereference_protected(np->opt,
3729 sock_owned_by_user(sk));
3730 if (optv6)
3731 overhead += (optv6->opt_flen + optv6->opt_nflen);
3732 return overhead;
3733 #endif /* IS_ENABLED(CONFIG_IPV6) */
3734 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3735 return overhead;
3736 }
3737 }
3738 EXPORT_SYMBOL(kernel_sock_ip_overhead);