]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/socket.c
Fix a leak in socket(2) when we fail to allocate a file descriptor.
[mirror_ubuntu-bionic-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156 };
157
158 /*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165 /*
166 * Statistics counters of the socket lists
167 */
168
169 static DEFINE_PER_CPU(int, sockets_in_use);
170
171 /*
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
175 */
176
177 /**
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
182 *
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
186 */
187
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
197 }
198
199 /**
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
205 *
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
214 */
215
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
218 {
219 int err;
220 int len;
221
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
235 }
236 /*
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
239 */
240 return __put_user(klen, ulen);
241 }
242
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
249
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
257 }
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 wq->flags = 0;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
262
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
268
269 return &ei->vfs_inode;
270 }
271
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
276
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
281 }
282
283 static void init_once(void *foo)
284 {
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
286
287 inode_init_once(&ei->vfs_inode);
288 }
289
290 static void init_inodecache(void)
291 {
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
294 0,
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 init_once);
299 BUG_ON(sock_inode_cachep == NULL);
300 }
301
302 static const struct super_operations sockfs_ops = {
303 .alloc_inode = sock_alloc_inode,
304 .destroy_inode = sock_destroy_inode,
305 .statfs = simple_statfs,
306 };
307
308 /*
309 * sockfs_dname() is called from d_path().
310 */
311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
312 {
313 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
314 d_inode(dentry)->i_ino);
315 }
316
317 static const struct dentry_operations sockfs_dentry_operations = {
318 .d_dname = sockfs_dname,
319 };
320
321 static int sockfs_xattr_get(const struct xattr_handler *handler,
322 struct dentry *dentry, struct inode *inode,
323 const char *suffix, void *value, size_t size)
324 {
325 if (value) {
326 if (dentry->d_name.len + 1 > size)
327 return -ERANGE;
328 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
329 }
330 return dentry->d_name.len + 1;
331 }
332
333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
336
337 static const struct xattr_handler sockfs_xattr_handler = {
338 .name = XATTR_NAME_SOCKPROTONAME,
339 .get = sockfs_xattr_get,
340 };
341
342 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
343 struct dentry *dentry, struct inode *inode,
344 const char *suffix, const void *value,
345 size_t size, int flags)
346 {
347 /* Handled by LSM. */
348 return -EAGAIN;
349 }
350
351 static const struct xattr_handler sockfs_security_xattr_handler = {
352 .prefix = XATTR_SECURITY_PREFIX,
353 .set = sockfs_security_xattr_set,
354 };
355
356 static const struct xattr_handler *sockfs_xattr_handlers[] = {
357 &sockfs_xattr_handler,
358 &sockfs_security_xattr_handler,
359 NULL
360 };
361
362 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
363 int flags, const char *dev_name, void *data)
364 {
365 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
366 sockfs_xattr_handlers,
367 &sockfs_dentry_operations, SOCKFS_MAGIC);
368 }
369
370 static struct vfsmount *sock_mnt __read_mostly;
371
372 static struct file_system_type sock_fs_type = {
373 .name = "sockfs",
374 .mount = sockfs_mount,
375 .kill_sb = kill_anon_super,
376 };
377
378 /*
379 * Obtains the first available file descriptor and sets it up for use.
380 *
381 * These functions create file structures and maps them to fd space
382 * of the current process. On success it returns file descriptor
383 * and file struct implicitly stored in sock->file.
384 * Note that another thread may close file descriptor before we return
385 * from this function. We use the fact that now we do not refer
386 * to socket after mapping. If one day we will need it, this
387 * function will increment ref. count on file by 1.
388 *
389 * In any case returned fd MAY BE not valid!
390 * This race condition is unavoidable
391 * with shared fd spaces, we cannot solve it inside kernel,
392 * but we take care of internal coherence yet.
393 */
394
395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
396 {
397 struct qstr name = { .name = "" };
398 struct path path;
399 struct file *file;
400
401 if (dname) {
402 name.name = dname;
403 name.len = strlen(name.name);
404 } else if (sock->sk) {
405 name.name = sock->sk->sk_prot_creator->name;
406 name.len = strlen(name.name);
407 }
408 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
409 if (unlikely(!path.dentry))
410 return ERR_PTR(-ENOMEM);
411 path.mnt = mntget(sock_mnt);
412
413 d_instantiate(path.dentry, SOCK_INODE(sock));
414
415 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
416 &socket_file_ops);
417 if (IS_ERR(file)) {
418 /* drop dentry, keep inode */
419 ihold(d_inode(path.dentry));
420 path_put(&path);
421 return file;
422 }
423
424 sock->file = file;
425 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
426 file->private_data = sock;
427 return file;
428 }
429 EXPORT_SYMBOL(sock_alloc_file);
430
431 static int sock_map_fd(struct socket *sock, int flags)
432 {
433 struct file *newfile;
434 int fd = get_unused_fd_flags(flags);
435 if (unlikely(fd < 0)) {
436 sock_release(sock);
437 return fd;
438 }
439
440 newfile = sock_alloc_file(sock, flags, NULL);
441 if (likely(!IS_ERR(newfile))) {
442 fd_install(fd, newfile);
443 return fd;
444 }
445
446 put_unused_fd(fd);
447 return PTR_ERR(newfile);
448 }
449
450 struct socket *sock_from_file(struct file *file, int *err)
451 {
452 if (file->f_op == &socket_file_ops)
453 return file->private_data; /* set in sock_map_fd */
454
455 *err = -ENOTSOCK;
456 return NULL;
457 }
458 EXPORT_SYMBOL(sock_from_file);
459
460 /**
461 * sockfd_lookup - Go from a file number to its socket slot
462 * @fd: file handle
463 * @err: pointer to an error code return
464 *
465 * The file handle passed in is locked and the socket it is bound
466 * to is returned. If an error occurs the err pointer is overwritten
467 * with a negative errno code and NULL is returned. The function checks
468 * for both invalid handles and passing a handle which is not a socket.
469 *
470 * On a success the socket object pointer is returned.
471 */
472
473 struct socket *sockfd_lookup(int fd, int *err)
474 {
475 struct file *file;
476 struct socket *sock;
477
478 file = fget(fd);
479 if (!file) {
480 *err = -EBADF;
481 return NULL;
482 }
483
484 sock = sock_from_file(file, err);
485 if (!sock)
486 fput(file);
487 return sock;
488 }
489 EXPORT_SYMBOL(sockfd_lookup);
490
491 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
492 {
493 struct fd f = fdget(fd);
494 struct socket *sock;
495
496 *err = -EBADF;
497 if (f.file) {
498 sock = sock_from_file(f.file, err);
499 if (likely(sock)) {
500 *fput_needed = f.flags;
501 return sock;
502 }
503 fdput(f);
504 }
505 return NULL;
506 }
507
508 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
509 size_t size)
510 {
511 ssize_t len;
512 ssize_t used = 0;
513
514 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
515 if (len < 0)
516 return len;
517 used += len;
518 if (buffer) {
519 if (size < used)
520 return -ERANGE;
521 buffer += len;
522 }
523
524 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
525 used += len;
526 if (buffer) {
527 if (size < used)
528 return -ERANGE;
529 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
530 buffer += len;
531 }
532
533 return used;
534 }
535
536 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
537 {
538 int err = simple_setattr(dentry, iattr);
539
540 if (!err && (iattr->ia_valid & ATTR_UID)) {
541 struct socket *sock = SOCKET_I(d_inode(dentry));
542
543 sock->sk->sk_uid = iattr->ia_uid;
544 }
545
546 return err;
547 }
548
549 static const struct inode_operations sockfs_inode_ops = {
550 .listxattr = sockfs_listxattr,
551 .setattr = sockfs_setattr,
552 };
553
554 /**
555 * sock_alloc - allocate a socket
556 *
557 * Allocate a new inode and socket object. The two are bound together
558 * and initialised. The socket is then returned. If we are out of inodes
559 * NULL is returned.
560 */
561
562 struct socket *sock_alloc(void)
563 {
564 struct inode *inode;
565 struct socket *sock;
566
567 inode = new_inode_pseudo(sock_mnt->mnt_sb);
568 if (!inode)
569 return NULL;
570
571 sock = SOCKET_I(inode);
572
573 inode->i_ino = get_next_ino();
574 inode->i_mode = S_IFSOCK | S_IRWXUGO;
575 inode->i_uid = current_fsuid();
576 inode->i_gid = current_fsgid();
577 inode->i_op = &sockfs_inode_ops;
578
579 this_cpu_add(sockets_in_use, 1);
580 return sock;
581 }
582 EXPORT_SYMBOL(sock_alloc);
583
584 /**
585 * sock_release - close a socket
586 * @sock: socket to close
587 *
588 * The socket is released from the protocol stack if it has a release
589 * callback, and the inode is then released if the socket is bound to
590 * an inode not a file.
591 */
592
593 void sock_release(struct socket *sock)
594 {
595 if (sock->ops) {
596 struct module *owner = sock->ops->owner;
597
598 sock->ops->release(sock);
599 sock->ops = NULL;
600 module_put(owner);
601 }
602
603 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
604 pr_err("%s: fasync list not empty!\n", __func__);
605
606 this_cpu_sub(sockets_in_use, 1);
607 if (!sock->file) {
608 iput(SOCK_INODE(sock));
609 return;
610 }
611 sock->file = NULL;
612 }
613 EXPORT_SYMBOL(sock_release);
614
615 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
616 {
617 u8 flags = *tx_flags;
618
619 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
620 flags |= SKBTX_HW_TSTAMP;
621
622 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
623 flags |= SKBTX_SW_TSTAMP;
624
625 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
626 flags |= SKBTX_SCHED_TSTAMP;
627
628 *tx_flags = flags;
629 }
630 EXPORT_SYMBOL(__sock_tx_timestamp);
631
632 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
633 {
634 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
635 BUG_ON(ret == -EIOCBQUEUED);
636 return ret;
637 }
638
639 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
640 {
641 int err = security_socket_sendmsg(sock, msg,
642 msg_data_left(msg));
643
644 return err ?: sock_sendmsg_nosec(sock, msg);
645 }
646 EXPORT_SYMBOL(sock_sendmsg);
647
648 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
649 struct kvec *vec, size_t num, size_t size)
650 {
651 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
652 return sock_sendmsg(sock, msg);
653 }
654 EXPORT_SYMBOL(kernel_sendmsg);
655
656 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
657 struct kvec *vec, size_t num, size_t size)
658 {
659 struct socket *sock = sk->sk_socket;
660
661 if (!sock->ops->sendmsg_locked)
662 return sock_no_sendmsg_locked(sk, msg, size);
663
664 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
665
666 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
667 }
668 EXPORT_SYMBOL(kernel_sendmsg_locked);
669
670 static bool skb_is_err_queue(const struct sk_buff *skb)
671 {
672 /* pkt_type of skbs enqueued on the error queue are set to
673 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
674 * in recvmsg, since skbs received on a local socket will never
675 * have a pkt_type of PACKET_OUTGOING.
676 */
677 return skb->pkt_type == PACKET_OUTGOING;
678 }
679
680 /* On transmit, software and hardware timestamps are returned independently.
681 * As the two skb clones share the hardware timestamp, which may be updated
682 * before the software timestamp is received, a hardware TX timestamp may be
683 * returned only if there is no software TX timestamp. Ignore false software
684 * timestamps, which may be made in the __sock_recv_timestamp() call when the
685 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
686 * hardware timestamp.
687 */
688 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
689 {
690 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
691 }
692
693 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
694 {
695 struct scm_ts_pktinfo ts_pktinfo;
696 struct net_device *orig_dev;
697
698 if (!skb_mac_header_was_set(skb))
699 return;
700
701 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
702
703 rcu_read_lock();
704 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
705 if (orig_dev)
706 ts_pktinfo.if_index = orig_dev->ifindex;
707 rcu_read_unlock();
708
709 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
710 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
711 sizeof(ts_pktinfo), &ts_pktinfo);
712 }
713
714 /*
715 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
716 */
717 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
718 struct sk_buff *skb)
719 {
720 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
721 struct scm_timestamping tss;
722 int empty = 1, false_tstamp = 0;
723 struct skb_shared_hwtstamps *shhwtstamps =
724 skb_hwtstamps(skb);
725
726 /* Race occurred between timestamp enabling and packet
727 receiving. Fill in the current time for now. */
728 if (need_software_tstamp && skb->tstamp == 0) {
729 __net_timestamp(skb);
730 false_tstamp = 1;
731 }
732
733 if (need_software_tstamp) {
734 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
735 struct timeval tv;
736 skb_get_timestamp(skb, &tv);
737 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
738 sizeof(tv), &tv);
739 } else {
740 struct timespec ts;
741 skb_get_timestampns(skb, &ts);
742 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
743 sizeof(ts), &ts);
744 }
745 }
746
747 memset(&tss, 0, sizeof(tss));
748 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
749 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
750 empty = 0;
751 if (shhwtstamps &&
752 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
753 !skb_is_swtx_tstamp(skb, false_tstamp) &&
754 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
755 empty = 0;
756 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
757 !skb_is_err_queue(skb))
758 put_ts_pktinfo(msg, skb);
759 }
760 if (!empty) {
761 put_cmsg(msg, SOL_SOCKET,
762 SCM_TIMESTAMPING, sizeof(tss), &tss);
763
764 if (skb_is_err_queue(skb) && skb->len &&
765 SKB_EXT_ERR(skb)->opt_stats)
766 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
767 skb->len, skb->data);
768 }
769 }
770 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
771
772 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
773 struct sk_buff *skb)
774 {
775 int ack;
776
777 if (!sock_flag(sk, SOCK_WIFI_STATUS))
778 return;
779 if (!skb->wifi_acked_valid)
780 return;
781
782 ack = skb->wifi_acked;
783
784 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
785 }
786 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
787
788 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
789 struct sk_buff *skb)
790 {
791 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
792 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
793 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
794 }
795
796 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
797 struct sk_buff *skb)
798 {
799 sock_recv_timestamp(msg, sk, skb);
800 sock_recv_drops(msg, sk, skb);
801 }
802 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
803
804 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
805 int flags)
806 {
807 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
808 }
809
810 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
811 {
812 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
813
814 return err ?: sock_recvmsg_nosec(sock, msg, flags);
815 }
816 EXPORT_SYMBOL(sock_recvmsg);
817
818 /**
819 * kernel_recvmsg - Receive a message from a socket (kernel space)
820 * @sock: The socket to receive the message from
821 * @msg: Received message
822 * @vec: Input s/g array for message data
823 * @num: Size of input s/g array
824 * @size: Number of bytes to read
825 * @flags: Message flags (MSG_DONTWAIT, etc...)
826 *
827 * On return the msg structure contains the scatter/gather array passed in the
828 * vec argument. The array is modified so that it consists of the unfilled
829 * portion of the original array.
830 *
831 * The returned value is the total number of bytes received, or an error.
832 */
833 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
834 struct kvec *vec, size_t num, size_t size, int flags)
835 {
836 mm_segment_t oldfs = get_fs();
837 int result;
838
839 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
840 set_fs(KERNEL_DS);
841 result = sock_recvmsg(sock, msg, flags);
842 set_fs(oldfs);
843 return result;
844 }
845 EXPORT_SYMBOL(kernel_recvmsg);
846
847 static ssize_t sock_sendpage(struct file *file, struct page *page,
848 int offset, size_t size, loff_t *ppos, int more)
849 {
850 struct socket *sock;
851 int flags;
852
853 sock = file->private_data;
854
855 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
856 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
857 flags |= more;
858
859 return kernel_sendpage(sock, page, offset, size, flags);
860 }
861
862 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
863 struct pipe_inode_info *pipe, size_t len,
864 unsigned int flags)
865 {
866 struct socket *sock = file->private_data;
867
868 if (unlikely(!sock->ops->splice_read))
869 return -EINVAL;
870
871 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
872 }
873
874 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
875 {
876 struct file *file = iocb->ki_filp;
877 struct socket *sock = file->private_data;
878 struct msghdr msg = {.msg_iter = *to,
879 .msg_iocb = iocb};
880 ssize_t res;
881
882 if (file->f_flags & O_NONBLOCK)
883 msg.msg_flags = MSG_DONTWAIT;
884
885 if (iocb->ki_pos != 0)
886 return -ESPIPE;
887
888 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
889 return 0;
890
891 res = sock_recvmsg(sock, &msg, msg.msg_flags);
892 *to = msg.msg_iter;
893 return res;
894 }
895
896 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
897 {
898 struct file *file = iocb->ki_filp;
899 struct socket *sock = file->private_data;
900 struct msghdr msg = {.msg_iter = *from,
901 .msg_iocb = iocb};
902 ssize_t res;
903
904 if (iocb->ki_pos != 0)
905 return -ESPIPE;
906
907 if (file->f_flags & O_NONBLOCK)
908 msg.msg_flags = MSG_DONTWAIT;
909
910 if (sock->type == SOCK_SEQPACKET)
911 msg.msg_flags |= MSG_EOR;
912
913 res = sock_sendmsg(sock, &msg);
914 *from = msg.msg_iter;
915 return res;
916 }
917
918 /*
919 * Atomic setting of ioctl hooks to avoid race
920 * with module unload.
921 */
922
923 static DEFINE_MUTEX(br_ioctl_mutex);
924 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
925
926 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
927 {
928 mutex_lock(&br_ioctl_mutex);
929 br_ioctl_hook = hook;
930 mutex_unlock(&br_ioctl_mutex);
931 }
932 EXPORT_SYMBOL(brioctl_set);
933
934 static DEFINE_MUTEX(vlan_ioctl_mutex);
935 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
936
937 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
938 {
939 mutex_lock(&vlan_ioctl_mutex);
940 vlan_ioctl_hook = hook;
941 mutex_unlock(&vlan_ioctl_mutex);
942 }
943 EXPORT_SYMBOL(vlan_ioctl_set);
944
945 static DEFINE_MUTEX(dlci_ioctl_mutex);
946 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
947
948 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
949 {
950 mutex_lock(&dlci_ioctl_mutex);
951 dlci_ioctl_hook = hook;
952 mutex_unlock(&dlci_ioctl_mutex);
953 }
954 EXPORT_SYMBOL(dlci_ioctl_set);
955
956 static long sock_do_ioctl(struct net *net, struct socket *sock,
957 unsigned int cmd, unsigned long arg)
958 {
959 int err;
960 void __user *argp = (void __user *)arg;
961
962 err = sock->ops->ioctl(sock, cmd, arg);
963
964 /*
965 * If this ioctl is unknown try to hand it down
966 * to the NIC driver.
967 */
968 if (err == -ENOIOCTLCMD)
969 err = dev_ioctl(net, cmd, argp);
970
971 return err;
972 }
973
974 /*
975 * With an ioctl, arg may well be a user mode pointer, but we don't know
976 * what to do with it - that's up to the protocol still.
977 */
978
979 static struct ns_common *get_net_ns(struct ns_common *ns)
980 {
981 return &get_net(container_of(ns, struct net, ns))->ns;
982 }
983
984 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
985 {
986 struct socket *sock;
987 struct sock *sk;
988 void __user *argp = (void __user *)arg;
989 int pid, err;
990 struct net *net;
991
992 sock = file->private_data;
993 sk = sock->sk;
994 net = sock_net(sk);
995 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
996 err = dev_ioctl(net, cmd, argp);
997 } else
998 #ifdef CONFIG_WEXT_CORE
999 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1000 err = dev_ioctl(net, cmd, argp);
1001 } else
1002 #endif
1003 switch (cmd) {
1004 case FIOSETOWN:
1005 case SIOCSPGRP:
1006 err = -EFAULT;
1007 if (get_user(pid, (int __user *)argp))
1008 break;
1009 err = f_setown(sock->file, pid, 1);
1010 break;
1011 case FIOGETOWN:
1012 case SIOCGPGRP:
1013 err = put_user(f_getown(sock->file),
1014 (int __user *)argp);
1015 break;
1016 case SIOCGIFBR:
1017 case SIOCSIFBR:
1018 case SIOCBRADDBR:
1019 case SIOCBRDELBR:
1020 err = -ENOPKG;
1021 if (!br_ioctl_hook)
1022 request_module("bridge");
1023
1024 mutex_lock(&br_ioctl_mutex);
1025 if (br_ioctl_hook)
1026 err = br_ioctl_hook(net, cmd, argp);
1027 mutex_unlock(&br_ioctl_mutex);
1028 break;
1029 case SIOCGIFVLAN:
1030 case SIOCSIFVLAN:
1031 err = -ENOPKG;
1032 if (!vlan_ioctl_hook)
1033 request_module("8021q");
1034
1035 mutex_lock(&vlan_ioctl_mutex);
1036 if (vlan_ioctl_hook)
1037 err = vlan_ioctl_hook(net, argp);
1038 mutex_unlock(&vlan_ioctl_mutex);
1039 break;
1040 case SIOCADDDLCI:
1041 case SIOCDELDLCI:
1042 err = -ENOPKG;
1043 if (!dlci_ioctl_hook)
1044 request_module("dlci");
1045
1046 mutex_lock(&dlci_ioctl_mutex);
1047 if (dlci_ioctl_hook)
1048 err = dlci_ioctl_hook(cmd, argp);
1049 mutex_unlock(&dlci_ioctl_mutex);
1050 break;
1051 case SIOCGSKNS:
1052 err = -EPERM;
1053 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1054 break;
1055
1056 err = open_related_ns(&net->ns, get_net_ns);
1057 break;
1058 default:
1059 err = sock_do_ioctl(net, sock, cmd, arg);
1060 break;
1061 }
1062 return err;
1063 }
1064
1065 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1066 {
1067 int err;
1068 struct socket *sock = NULL;
1069
1070 err = security_socket_create(family, type, protocol, 1);
1071 if (err)
1072 goto out;
1073
1074 sock = sock_alloc();
1075 if (!sock) {
1076 err = -ENOMEM;
1077 goto out;
1078 }
1079
1080 sock->type = type;
1081 err = security_socket_post_create(sock, family, type, protocol, 1);
1082 if (err)
1083 goto out_release;
1084
1085 out:
1086 *res = sock;
1087 return err;
1088 out_release:
1089 sock_release(sock);
1090 sock = NULL;
1091 goto out;
1092 }
1093 EXPORT_SYMBOL(sock_create_lite);
1094
1095 /* No kernel lock held - perfect */
1096 static unsigned int sock_poll(struct file *file, poll_table *wait)
1097 {
1098 unsigned int busy_flag = 0;
1099 struct socket *sock;
1100
1101 /*
1102 * We can't return errors to poll, so it's either yes or no.
1103 */
1104 sock = file->private_data;
1105
1106 if (sk_can_busy_loop(sock->sk)) {
1107 /* this socket can poll_ll so tell the system call */
1108 busy_flag = POLL_BUSY_LOOP;
1109
1110 /* once, only if requested by syscall */
1111 if (wait && (wait->_key & POLL_BUSY_LOOP))
1112 sk_busy_loop(sock->sk, 1);
1113 }
1114
1115 return busy_flag | sock->ops->poll(file, sock, wait);
1116 }
1117
1118 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1119 {
1120 struct socket *sock = file->private_data;
1121
1122 return sock->ops->mmap(file, sock, vma);
1123 }
1124
1125 static int sock_close(struct inode *inode, struct file *filp)
1126 {
1127 sock_release(SOCKET_I(inode));
1128 return 0;
1129 }
1130
1131 /*
1132 * Update the socket async list
1133 *
1134 * Fasync_list locking strategy.
1135 *
1136 * 1. fasync_list is modified only under process context socket lock
1137 * i.e. under semaphore.
1138 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1139 * or under socket lock
1140 */
1141
1142 static int sock_fasync(int fd, struct file *filp, int on)
1143 {
1144 struct socket *sock = filp->private_data;
1145 struct sock *sk = sock->sk;
1146 struct socket_wq *wq;
1147
1148 if (sk == NULL)
1149 return -EINVAL;
1150
1151 lock_sock(sk);
1152 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1153 fasync_helper(fd, filp, on, &wq->fasync_list);
1154
1155 if (!wq->fasync_list)
1156 sock_reset_flag(sk, SOCK_FASYNC);
1157 else
1158 sock_set_flag(sk, SOCK_FASYNC);
1159
1160 release_sock(sk);
1161 return 0;
1162 }
1163
1164 /* This function may be called only under rcu_lock */
1165
1166 int sock_wake_async(struct socket_wq *wq, int how, int band)
1167 {
1168 if (!wq || !wq->fasync_list)
1169 return -1;
1170
1171 switch (how) {
1172 case SOCK_WAKE_WAITD:
1173 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1174 break;
1175 goto call_kill;
1176 case SOCK_WAKE_SPACE:
1177 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1178 break;
1179 /* fall through */
1180 case SOCK_WAKE_IO:
1181 call_kill:
1182 kill_fasync(&wq->fasync_list, SIGIO, band);
1183 break;
1184 case SOCK_WAKE_URG:
1185 kill_fasync(&wq->fasync_list, SIGURG, band);
1186 }
1187
1188 return 0;
1189 }
1190 EXPORT_SYMBOL(sock_wake_async);
1191
1192 int __sock_create(struct net *net, int family, int type, int protocol,
1193 struct socket **res, int kern)
1194 {
1195 int err;
1196 struct socket *sock;
1197 const struct net_proto_family *pf;
1198
1199 /*
1200 * Check protocol is in range
1201 */
1202 if (family < 0 || family >= NPROTO)
1203 return -EAFNOSUPPORT;
1204 if (type < 0 || type >= SOCK_MAX)
1205 return -EINVAL;
1206
1207 /* Compatibility.
1208
1209 This uglymoron is moved from INET layer to here to avoid
1210 deadlock in module load.
1211 */
1212 if (family == PF_INET && type == SOCK_PACKET) {
1213 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1214 current->comm);
1215 family = PF_PACKET;
1216 }
1217
1218 err = security_socket_create(family, type, protocol, kern);
1219 if (err)
1220 return err;
1221
1222 /*
1223 * Allocate the socket and allow the family to set things up. if
1224 * the protocol is 0, the family is instructed to select an appropriate
1225 * default.
1226 */
1227 sock = sock_alloc();
1228 if (!sock) {
1229 net_warn_ratelimited("socket: no more sockets\n");
1230 return -ENFILE; /* Not exactly a match, but its the
1231 closest posix thing */
1232 }
1233
1234 sock->type = type;
1235
1236 #ifdef CONFIG_MODULES
1237 /* Attempt to load a protocol module if the find failed.
1238 *
1239 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1240 * requested real, full-featured networking support upon configuration.
1241 * Otherwise module support will break!
1242 */
1243 if (rcu_access_pointer(net_families[family]) == NULL)
1244 request_module("net-pf-%d", family);
1245 #endif
1246
1247 rcu_read_lock();
1248 pf = rcu_dereference(net_families[family]);
1249 err = -EAFNOSUPPORT;
1250 if (!pf)
1251 goto out_release;
1252
1253 /*
1254 * We will call the ->create function, that possibly is in a loadable
1255 * module, so we have to bump that loadable module refcnt first.
1256 */
1257 if (!try_module_get(pf->owner))
1258 goto out_release;
1259
1260 /* Now protected by module ref count */
1261 rcu_read_unlock();
1262
1263 err = pf->create(net, sock, protocol, kern);
1264 if (err < 0)
1265 goto out_module_put;
1266
1267 /*
1268 * Now to bump the refcnt of the [loadable] module that owns this
1269 * socket at sock_release time we decrement its refcnt.
1270 */
1271 if (!try_module_get(sock->ops->owner))
1272 goto out_module_busy;
1273
1274 /*
1275 * Now that we're done with the ->create function, the [loadable]
1276 * module can have its refcnt decremented
1277 */
1278 module_put(pf->owner);
1279 err = security_socket_post_create(sock, family, type, protocol, kern);
1280 if (err)
1281 goto out_sock_release;
1282 *res = sock;
1283
1284 return 0;
1285
1286 out_module_busy:
1287 err = -EAFNOSUPPORT;
1288 out_module_put:
1289 sock->ops = NULL;
1290 module_put(pf->owner);
1291 out_sock_release:
1292 sock_release(sock);
1293 return err;
1294
1295 out_release:
1296 rcu_read_unlock();
1297 goto out_sock_release;
1298 }
1299 EXPORT_SYMBOL(__sock_create);
1300
1301 int sock_create(int family, int type, int protocol, struct socket **res)
1302 {
1303 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1304 }
1305 EXPORT_SYMBOL(sock_create);
1306
1307 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1308 {
1309 return __sock_create(net, family, type, protocol, res, 1);
1310 }
1311 EXPORT_SYMBOL(sock_create_kern);
1312
1313 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1314 {
1315 int retval;
1316 struct socket *sock;
1317 int flags;
1318
1319 /* Check the SOCK_* constants for consistency. */
1320 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1321 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1322 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1323 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1324
1325 flags = type & ~SOCK_TYPE_MASK;
1326 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1327 return -EINVAL;
1328 type &= SOCK_TYPE_MASK;
1329
1330 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1331 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1332
1333 retval = sock_create(family, type, protocol, &sock);
1334 if (retval < 0)
1335 goto out;
1336
1337 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1338 if (retval < 0)
1339 goto out_release;
1340
1341 out:
1342 /* It may be already another descriptor 8) Not kernel problem. */
1343 return retval;
1344
1345 out_release:
1346 sock_release(sock);
1347 return retval;
1348 }
1349
1350 /*
1351 * Create a pair of connected sockets.
1352 */
1353
1354 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1355 int __user *, usockvec)
1356 {
1357 struct socket *sock1, *sock2;
1358 int fd1, fd2, err;
1359 struct file *newfile1, *newfile2;
1360 int flags;
1361
1362 flags = type & ~SOCK_TYPE_MASK;
1363 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1364 return -EINVAL;
1365 type &= SOCK_TYPE_MASK;
1366
1367 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1368 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1369
1370 /*
1371 * Obtain the first socket and check if the underlying protocol
1372 * supports the socketpair call.
1373 */
1374
1375 err = sock_create(family, type, protocol, &sock1);
1376 if (err < 0)
1377 goto out;
1378
1379 err = sock_create(family, type, protocol, &sock2);
1380 if (err < 0)
1381 goto out_release_1;
1382
1383 err = sock1->ops->socketpair(sock1, sock2);
1384 if (err < 0)
1385 goto out_release_both;
1386
1387 fd1 = get_unused_fd_flags(flags);
1388 if (unlikely(fd1 < 0)) {
1389 err = fd1;
1390 goto out_release_both;
1391 }
1392
1393 fd2 = get_unused_fd_flags(flags);
1394 if (unlikely(fd2 < 0)) {
1395 err = fd2;
1396 goto out_put_unused_1;
1397 }
1398
1399 newfile1 = sock_alloc_file(sock1, flags, NULL);
1400 if (IS_ERR(newfile1)) {
1401 err = PTR_ERR(newfile1);
1402 goto out_put_unused_both;
1403 }
1404
1405 newfile2 = sock_alloc_file(sock2, flags, NULL);
1406 if (IS_ERR(newfile2)) {
1407 err = PTR_ERR(newfile2);
1408 goto out_fput_1;
1409 }
1410
1411 err = put_user(fd1, &usockvec[0]);
1412 if (err)
1413 goto out_fput_both;
1414
1415 err = put_user(fd2, &usockvec[1]);
1416 if (err)
1417 goto out_fput_both;
1418
1419 audit_fd_pair(fd1, fd2);
1420
1421 fd_install(fd1, newfile1);
1422 fd_install(fd2, newfile2);
1423 /* fd1 and fd2 may be already another descriptors.
1424 * Not kernel problem.
1425 */
1426
1427 return 0;
1428
1429 out_fput_both:
1430 fput(newfile2);
1431 fput(newfile1);
1432 put_unused_fd(fd2);
1433 put_unused_fd(fd1);
1434 goto out;
1435
1436 out_fput_1:
1437 fput(newfile1);
1438 put_unused_fd(fd2);
1439 put_unused_fd(fd1);
1440 sock_release(sock2);
1441 goto out;
1442
1443 out_put_unused_both:
1444 put_unused_fd(fd2);
1445 out_put_unused_1:
1446 put_unused_fd(fd1);
1447 out_release_both:
1448 sock_release(sock2);
1449 out_release_1:
1450 sock_release(sock1);
1451 out:
1452 return err;
1453 }
1454
1455 /*
1456 * Bind a name to a socket. Nothing much to do here since it's
1457 * the protocol's responsibility to handle the local address.
1458 *
1459 * We move the socket address to kernel space before we call
1460 * the protocol layer (having also checked the address is ok).
1461 */
1462
1463 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1464 {
1465 struct socket *sock;
1466 struct sockaddr_storage address;
1467 int err, fput_needed;
1468
1469 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1470 if (sock) {
1471 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1472 if (err >= 0) {
1473 err = security_socket_bind(sock,
1474 (struct sockaddr *)&address,
1475 addrlen);
1476 if (!err)
1477 err = sock->ops->bind(sock,
1478 (struct sockaddr *)
1479 &address, addrlen);
1480 }
1481 fput_light(sock->file, fput_needed);
1482 }
1483 return err;
1484 }
1485
1486 /*
1487 * Perform a listen. Basically, we allow the protocol to do anything
1488 * necessary for a listen, and if that works, we mark the socket as
1489 * ready for listening.
1490 */
1491
1492 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1493 {
1494 struct socket *sock;
1495 int err, fput_needed;
1496 int somaxconn;
1497
1498 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1499 if (sock) {
1500 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1501 if ((unsigned int)backlog > somaxconn)
1502 backlog = somaxconn;
1503
1504 err = security_socket_listen(sock, backlog);
1505 if (!err)
1506 err = sock->ops->listen(sock, backlog);
1507
1508 fput_light(sock->file, fput_needed);
1509 }
1510 return err;
1511 }
1512
1513 /*
1514 * For accept, we attempt to create a new socket, set up the link
1515 * with the client, wake up the client, then return the new
1516 * connected fd. We collect the address of the connector in kernel
1517 * space and move it to user at the very end. This is unclean because
1518 * we open the socket then return an error.
1519 *
1520 * 1003.1g adds the ability to recvmsg() to query connection pending
1521 * status to recvmsg. We need to add that support in a way thats
1522 * clean when we restucture accept also.
1523 */
1524
1525 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1526 int __user *, upeer_addrlen, int, flags)
1527 {
1528 struct socket *sock, *newsock;
1529 struct file *newfile;
1530 int err, len, newfd, fput_needed;
1531 struct sockaddr_storage address;
1532
1533 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1534 return -EINVAL;
1535
1536 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1537 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1538
1539 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1540 if (!sock)
1541 goto out;
1542
1543 err = -ENFILE;
1544 newsock = sock_alloc();
1545 if (!newsock)
1546 goto out_put;
1547
1548 newsock->type = sock->type;
1549 newsock->ops = sock->ops;
1550
1551 /*
1552 * We don't need try_module_get here, as the listening socket (sock)
1553 * has the protocol module (sock->ops->owner) held.
1554 */
1555 __module_get(newsock->ops->owner);
1556
1557 newfd = get_unused_fd_flags(flags);
1558 if (unlikely(newfd < 0)) {
1559 err = newfd;
1560 sock_release(newsock);
1561 goto out_put;
1562 }
1563 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1564 if (IS_ERR(newfile)) {
1565 err = PTR_ERR(newfile);
1566 put_unused_fd(newfd);
1567 sock_release(newsock);
1568 goto out_put;
1569 }
1570
1571 err = security_socket_accept(sock, newsock);
1572 if (err)
1573 goto out_fd;
1574
1575 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1576 if (err < 0)
1577 goto out_fd;
1578
1579 if (upeer_sockaddr) {
1580 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1581 &len, 2) < 0) {
1582 err = -ECONNABORTED;
1583 goto out_fd;
1584 }
1585 err = move_addr_to_user(&address,
1586 len, upeer_sockaddr, upeer_addrlen);
1587 if (err < 0)
1588 goto out_fd;
1589 }
1590
1591 /* File flags are not inherited via accept() unlike another OSes. */
1592
1593 fd_install(newfd, newfile);
1594 err = newfd;
1595
1596 out_put:
1597 fput_light(sock->file, fput_needed);
1598 out:
1599 return err;
1600 out_fd:
1601 fput(newfile);
1602 put_unused_fd(newfd);
1603 goto out_put;
1604 }
1605
1606 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1607 int __user *, upeer_addrlen)
1608 {
1609 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1610 }
1611
1612 /*
1613 * Attempt to connect to a socket with the server address. The address
1614 * is in user space so we verify it is OK and move it to kernel space.
1615 *
1616 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1617 * break bindings
1618 *
1619 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1620 * other SEQPACKET protocols that take time to connect() as it doesn't
1621 * include the -EINPROGRESS status for such sockets.
1622 */
1623
1624 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1625 int, addrlen)
1626 {
1627 struct socket *sock;
1628 struct sockaddr_storage address;
1629 int err, fput_needed;
1630
1631 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1632 if (!sock)
1633 goto out;
1634 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1635 if (err < 0)
1636 goto out_put;
1637
1638 err =
1639 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1640 if (err)
1641 goto out_put;
1642
1643 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1644 sock->file->f_flags);
1645 out_put:
1646 fput_light(sock->file, fput_needed);
1647 out:
1648 return err;
1649 }
1650
1651 /*
1652 * Get the local address ('name') of a socket object. Move the obtained
1653 * name to user space.
1654 */
1655
1656 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1657 int __user *, usockaddr_len)
1658 {
1659 struct socket *sock;
1660 struct sockaddr_storage address;
1661 int len, err, fput_needed;
1662
1663 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1664 if (!sock)
1665 goto out;
1666
1667 err = security_socket_getsockname(sock);
1668 if (err)
1669 goto out_put;
1670
1671 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1672 if (err)
1673 goto out_put;
1674 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1675
1676 out_put:
1677 fput_light(sock->file, fput_needed);
1678 out:
1679 return err;
1680 }
1681
1682 /*
1683 * Get the remote address ('name') of a socket object. Move the obtained
1684 * name to user space.
1685 */
1686
1687 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1688 int __user *, usockaddr_len)
1689 {
1690 struct socket *sock;
1691 struct sockaddr_storage address;
1692 int len, err, fput_needed;
1693
1694 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1695 if (sock != NULL) {
1696 err = security_socket_getpeername(sock);
1697 if (err) {
1698 fput_light(sock->file, fput_needed);
1699 return err;
1700 }
1701
1702 err =
1703 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1704 1);
1705 if (!err)
1706 err = move_addr_to_user(&address, len, usockaddr,
1707 usockaddr_len);
1708 fput_light(sock->file, fput_needed);
1709 }
1710 return err;
1711 }
1712
1713 /*
1714 * Send a datagram to a given address. We move the address into kernel
1715 * space and check the user space data area is readable before invoking
1716 * the protocol.
1717 */
1718
1719 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1720 unsigned int, flags, struct sockaddr __user *, addr,
1721 int, addr_len)
1722 {
1723 struct socket *sock;
1724 struct sockaddr_storage address;
1725 int err;
1726 struct msghdr msg;
1727 struct iovec iov;
1728 int fput_needed;
1729
1730 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1731 if (unlikely(err))
1732 return err;
1733 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1734 if (!sock)
1735 goto out;
1736
1737 msg.msg_name = NULL;
1738 msg.msg_control = NULL;
1739 msg.msg_controllen = 0;
1740 msg.msg_namelen = 0;
1741 if (addr) {
1742 err = move_addr_to_kernel(addr, addr_len, &address);
1743 if (err < 0)
1744 goto out_put;
1745 msg.msg_name = (struct sockaddr *)&address;
1746 msg.msg_namelen = addr_len;
1747 }
1748 if (sock->file->f_flags & O_NONBLOCK)
1749 flags |= MSG_DONTWAIT;
1750 msg.msg_flags = flags;
1751 err = sock_sendmsg(sock, &msg);
1752
1753 out_put:
1754 fput_light(sock->file, fput_needed);
1755 out:
1756 return err;
1757 }
1758
1759 /*
1760 * Send a datagram down a socket.
1761 */
1762
1763 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1764 unsigned int, flags)
1765 {
1766 return sys_sendto(fd, buff, len, flags, NULL, 0);
1767 }
1768
1769 /*
1770 * Receive a frame from the socket and optionally record the address of the
1771 * sender. We verify the buffers are writable and if needed move the
1772 * sender address from kernel to user space.
1773 */
1774
1775 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1776 unsigned int, flags, struct sockaddr __user *, addr,
1777 int __user *, addr_len)
1778 {
1779 struct socket *sock;
1780 struct iovec iov;
1781 struct msghdr msg;
1782 struct sockaddr_storage address;
1783 int err, err2;
1784 int fput_needed;
1785
1786 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1787 if (unlikely(err))
1788 return err;
1789 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1790 if (!sock)
1791 goto out;
1792
1793 msg.msg_control = NULL;
1794 msg.msg_controllen = 0;
1795 /* Save some cycles and don't copy the address if not needed */
1796 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1797 /* We assume all kernel code knows the size of sockaddr_storage */
1798 msg.msg_namelen = 0;
1799 msg.msg_iocb = NULL;
1800 msg.msg_flags = 0;
1801 if (sock->file->f_flags & O_NONBLOCK)
1802 flags |= MSG_DONTWAIT;
1803 err = sock_recvmsg(sock, &msg, flags);
1804
1805 if (err >= 0 && addr != NULL) {
1806 err2 = move_addr_to_user(&address,
1807 msg.msg_namelen, addr, addr_len);
1808 if (err2 < 0)
1809 err = err2;
1810 }
1811
1812 fput_light(sock->file, fput_needed);
1813 out:
1814 return err;
1815 }
1816
1817 /*
1818 * Receive a datagram from a socket.
1819 */
1820
1821 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1822 unsigned int, flags)
1823 {
1824 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1825 }
1826
1827 /*
1828 * Set a socket option. Because we don't know the option lengths we have
1829 * to pass the user mode parameter for the protocols to sort out.
1830 */
1831
1832 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1833 char __user *, optval, int, optlen)
1834 {
1835 int err, fput_needed;
1836 struct socket *sock;
1837
1838 if (optlen < 0)
1839 return -EINVAL;
1840
1841 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1842 if (sock != NULL) {
1843 err = security_socket_setsockopt(sock, level, optname);
1844 if (err)
1845 goto out_put;
1846
1847 if (level == SOL_SOCKET)
1848 err =
1849 sock_setsockopt(sock, level, optname, optval,
1850 optlen);
1851 else
1852 err =
1853 sock->ops->setsockopt(sock, level, optname, optval,
1854 optlen);
1855 out_put:
1856 fput_light(sock->file, fput_needed);
1857 }
1858 return err;
1859 }
1860
1861 /*
1862 * Get a socket option. Because we don't know the option lengths we have
1863 * to pass a user mode parameter for the protocols to sort out.
1864 */
1865
1866 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1867 char __user *, optval, int __user *, optlen)
1868 {
1869 int err, fput_needed;
1870 struct socket *sock;
1871
1872 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1873 if (sock != NULL) {
1874 err = security_socket_getsockopt(sock, level, optname);
1875 if (err)
1876 goto out_put;
1877
1878 if (level == SOL_SOCKET)
1879 err =
1880 sock_getsockopt(sock, level, optname, optval,
1881 optlen);
1882 else
1883 err =
1884 sock->ops->getsockopt(sock, level, optname, optval,
1885 optlen);
1886 out_put:
1887 fput_light(sock->file, fput_needed);
1888 }
1889 return err;
1890 }
1891
1892 /*
1893 * Shutdown a socket.
1894 */
1895
1896 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1897 {
1898 int err, fput_needed;
1899 struct socket *sock;
1900
1901 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1902 if (sock != NULL) {
1903 err = security_socket_shutdown(sock, how);
1904 if (!err)
1905 err = sock->ops->shutdown(sock, how);
1906 fput_light(sock->file, fput_needed);
1907 }
1908 return err;
1909 }
1910
1911 /* A couple of helpful macros for getting the address of the 32/64 bit
1912 * fields which are the same type (int / unsigned) on our platforms.
1913 */
1914 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1915 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1916 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1917
1918 struct used_address {
1919 struct sockaddr_storage name;
1920 unsigned int name_len;
1921 };
1922
1923 static int copy_msghdr_from_user(struct msghdr *kmsg,
1924 struct user_msghdr __user *umsg,
1925 struct sockaddr __user **save_addr,
1926 struct iovec **iov)
1927 {
1928 struct user_msghdr msg;
1929 ssize_t err;
1930
1931 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1932 return -EFAULT;
1933
1934 kmsg->msg_control = (void __force *)msg.msg_control;
1935 kmsg->msg_controllen = msg.msg_controllen;
1936 kmsg->msg_flags = msg.msg_flags;
1937
1938 kmsg->msg_namelen = msg.msg_namelen;
1939 if (!msg.msg_name)
1940 kmsg->msg_namelen = 0;
1941
1942 if (kmsg->msg_namelen < 0)
1943 return -EINVAL;
1944
1945 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1946 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1947
1948 if (save_addr)
1949 *save_addr = msg.msg_name;
1950
1951 if (msg.msg_name && kmsg->msg_namelen) {
1952 if (!save_addr) {
1953 err = move_addr_to_kernel(msg.msg_name,
1954 kmsg->msg_namelen,
1955 kmsg->msg_name);
1956 if (err < 0)
1957 return err;
1958 }
1959 } else {
1960 kmsg->msg_name = NULL;
1961 kmsg->msg_namelen = 0;
1962 }
1963
1964 if (msg.msg_iovlen > UIO_MAXIOV)
1965 return -EMSGSIZE;
1966
1967 kmsg->msg_iocb = NULL;
1968
1969 return import_iovec(save_addr ? READ : WRITE,
1970 msg.msg_iov, msg.msg_iovlen,
1971 UIO_FASTIOV, iov, &kmsg->msg_iter);
1972 }
1973
1974 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1975 struct msghdr *msg_sys, unsigned int flags,
1976 struct used_address *used_address,
1977 unsigned int allowed_msghdr_flags)
1978 {
1979 struct compat_msghdr __user *msg_compat =
1980 (struct compat_msghdr __user *)msg;
1981 struct sockaddr_storage address;
1982 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1983 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1984 __aligned(sizeof(__kernel_size_t));
1985 /* 20 is size of ipv6_pktinfo */
1986 unsigned char *ctl_buf = ctl;
1987 int ctl_len;
1988 ssize_t err;
1989
1990 msg_sys->msg_name = &address;
1991
1992 if (MSG_CMSG_COMPAT & flags)
1993 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1994 else
1995 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1996 if (err < 0)
1997 return err;
1998
1999 err = -ENOBUFS;
2000
2001 if (msg_sys->msg_controllen > INT_MAX)
2002 goto out_freeiov;
2003 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2004 ctl_len = msg_sys->msg_controllen;
2005 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2006 err =
2007 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2008 sizeof(ctl));
2009 if (err)
2010 goto out_freeiov;
2011 ctl_buf = msg_sys->msg_control;
2012 ctl_len = msg_sys->msg_controllen;
2013 } else if (ctl_len) {
2014 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2015 CMSG_ALIGN(sizeof(struct cmsghdr)));
2016 if (ctl_len > sizeof(ctl)) {
2017 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2018 if (ctl_buf == NULL)
2019 goto out_freeiov;
2020 }
2021 err = -EFAULT;
2022 /*
2023 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2024 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2025 * checking falls down on this.
2026 */
2027 if (copy_from_user(ctl_buf,
2028 (void __user __force *)msg_sys->msg_control,
2029 ctl_len))
2030 goto out_freectl;
2031 msg_sys->msg_control = ctl_buf;
2032 }
2033 msg_sys->msg_flags = flags;
2034
2035 if (sock->file->f_flags & O_NONBLOCK)
2036 msg_sys->msg_flags |= MSG_DONTWAIT;
2037 /*
2038 * If this is sendmmsg() and current destination address is same as
2039 * previously succeeded address, omit asking LSM's decision.
2040 * used_address->name_len is initialized to UINT_MAX so that the first
2041 * destination address never matches.
2042 */
2043 if (used_address && msg_sys->msg_name &&
2044 used_address->name_len == msg_sys->msg_namelen &&
2045 !memcmp(&used_address->name, msg_sys->msg_name,
2046 used_address->name_len)) {
2047 err = sock_sendmsg_nosec(sock, msg_sys);
2048 goto out_freectl;
2049 }
2050 err = sock_sendmsg(sock, msg_sys);
2051 /*
2052 * If this is sendmmsg() and sending to current destination address was
2053 * successful, remember it.
2054 */
2055 if (used_address && err >= 0) {
2056 used_address->name_len = msg_sys->msg_namelen;
2057 if (msg_sys->msg_name)
2058 memcpy(&used_address->name, msg_sys->msg_name,
2059 used_address->name_len);
2060 }
2061
2062 out_freectl:
2063 if (ctl_buf != ctl)
2064 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2065 out_freeiov:
2066 kfree(iov);
2067 return err;
2068 }
2069
2070 /*
2071 * BSD sendmsg interface
2072 */
2073
2074 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2075 {
2076 int fput_needed, err;
2077 struct msghdr msg_sys;
2078 struct socket *sock;
2079
2080 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2081 if (!sock)
2082 goto out;
2083
2084 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2085
2086 fput_light(sock->file, fput_needed);
2087 out:
2088 return err;
2089 }
2090
2091 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2092 {
2093 if (flags & MSG_CMSG_COMPAT)
2094 return -EINVAL;
2095 return __sys_sendmsg(fd, msg, flags);
2096 }
2097
2098 /*
2099 * Linux sendmmsg interface
2100 */
2101
2102 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2103 unsigned int flags)
2104 {
2105 int fput_needed, err, datagrams;
2106 struct socket *sock;
2107 struct mmsghdr __user *entry;
2108 struct compat_mmsghdr __user *compat_entry;
2109 struct msghdr msg_sys;
2110 struct used_address used_address;
2111 unsigned int oflags = flags;
2112
2113 if (vlen > UIO_MAXIOV)
2114 vlen = UIO_MAXIOV;
2115
2116 datagrams = 0;
2117
2118 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2119 if (!sock)
2120 return err;
2121
2122 used_address.name_len = UINT_MAX;
2123 entry = mmsg;
2124 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2125 err = 0;
2126 flags |= MSG_BATCH;
2127
2128 while (datagrams < vlen) {
2129 if (datagrams == vlen - 1)
2130 flags = oflags;
2131
2132 if (MSG_CMSG_COMPAT & flags) {
2133 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2134 &msg_sys, flags, &used_address, MSG_EOR);
2135 if (err < 0)
2136 break;
2137 err = __put_user(err, &compat_entry->msg_len);
2138 ++compat_entry;
2139 } else {
2140 err = ___sys_sendmsg(sock,
2141 (struct user_msghdr __user *)entry,
2142 &msg_sys, flags, &used_address, MSG_EOR);
2143 if (err < 0)
2144 break;
2145 err = put_user(err, &entry->msg_len);
2146 ++entry;
2147 }
2148
2149 if (err)
2150 break;
2151 ++datagrams;
2152 if (msg_data_left(&msg_sys))
2153 break;
2154 cond_resched();
2155 }
2156
2157 fput_light(sock->file, fput_needed);
2158
2159 /* We only return an error if no datagrams were able to be sent */
2160 if (datagrams != 0)
2161 return datagrams;
2162
2163 return err;
2164 }
2165
2166 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2167 unsigned int, vlen, unsigned int, flags)
2168 {
2169 if (flags & MSG_CMSG_COMPAT)
2170 return -EINVAL;
2171 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2172 }
2173
2174 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2175 struct msghdr *msg_sys, unsigned int flags, int nosec)
2176 {
2177 struct compat_msghdr __user *msg_compat =
2178 (struct compat_msghdr __user *)msg;
2179 struct iovec iovstack[UIO_FASTIOV];
2180 struct iovec *iov = iovstack;
2181 unsigned long cmsg_ptr;
2182 int len;
2183 ssize_t err;
2184
2185 /* kernel mode address */
2186 struct sockaddr_storage addr;
2187
2188 /* user mode address pointers */
2189 struct sockaddr __user *uaddr;
2190 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2191
2192 msg_sys->msg_name = &addr;
2193
2194 if (MSG_CMSG_COMPAT & flags)
2195 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2196 else
2197 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2198 if (err < 0)
2199 return err;
2200
2201 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2202 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2203
2204 /* We assume all kernel code knows the size of sockaddr_storage */
2205 msg_sys->msg_namelen = 0;
2206
2207 if (sock->file->f_flags & O_NONBLOCK)
2208 flags |= MSG_DONTWAIT;
2209 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2210 if (err < 0)
2211 goto out_freeiov;
2212 len = err;
2213
2214 if (uaddr != NULL) {
2215 err = move_addr_to_user(&addr,
2216 msg_sys->msg_namelen, uaddr,
2217 uaddr_len);
2218 if (err < 0)
2219 goto out_freeiov;
2220 }
2221 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2222 COMPAT_FLAGS(msg));
2223 if (err)
2224 goto out_freeiov;
2225 if (MSG_CMSG_COMPAT & flags)
2226 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2227 &msg_compat->msg_controllen);
2228 else
2229 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2230 &msg->msg_controllen);
2231 if (err)
2232 goto out_freeiov;
2233 err = len;
2234
2235 out_freeiov:
2236 kfree(iov);
2237 return err;
2238 }
2239
2240 /*
2241 * BSD recvmsg interface
2242 */
2243
2244 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2245 {
2246 int fput_needed, err;
2247 struct msghdr msg_sys;
2248 struct socket *sock;
2249
2250 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2251 if (!sock)
2252 goto out;
2253
2254 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2255
2256 fput_light(sock->file, fput_needed);
2257 out:
2258 return err;
2259 }
2260
2261 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2262 unsigned int, flags)
2263 {
2264 if (flags & MSG_CMSG_COMPAT)
2265 return -EINVAL;
2266 return __sys_recvmsg(fd, msg, flags);
2267 }
2268
2269 /*
2270 * Linux recvmmsg interface
2271 */
2272
2273 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2274 unsigned int flags, struct timespec *timeout)
2275 {
2276 int fput_needed, err, datagrams;
2277 struct socket *sock;
2278 struct mmsghdr __user *entry;
2279 struct compat_mmsghdr __user *compat_entry;
2280 struct msghdr msg_sys;
2281 struct timespec64 end_time;
2282 struct timespec64 timeout64;
2283
2284 if (timeout &&
2285 poll_select_set_timeout(&end_time, timeout->tv_sec,
2286 timeout->tv_nsec))
2287 return -EINVAL;
2288
2289 datagrams = 0;
2290
2291 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2292 if (!sock)
2293 return err;
2294
2295 err = sock_error(sock->sk);
2296 if (err) {
2297 datagrams = err;
2298 goto out_put;
2299 }
2300
2301 entry = mmsg;
2302 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2303
2304 while (datagrams < vlen) {
2305 /*
2306 * No need to ask LSM for more than the first datagram.
2307 */
2308 if (MSG_CMSG_COMPAT & flags) {
2309 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2310 &msg_sys, flags & ~MSG_WAITFORONE,
2311 datagrams);
2312 if (err < 0)
2313 break;
2314 err = __put_user(err, &compat_entry->msg_len);
2315 ++compat_entry;
2316 } else {
2317 err = ___sys_recvmsg(sock,
2318 (struct user_msghdr __user *)entry,
2319 &msg_sys, flags & ~MSG_WAITFORONE,
2320 datagrams);
2321 if (err < 0)
2322 break;
2323 err = put_user(err, &entry->msg_len);
2324 ++entry;
2325 }
2326
2327 if (err)
2328 break;
2329 ++datagrams;
2330
2331 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2332 if (flags & MSG_WAITFORONE)
2333 flags |= MSG_DONTWAIT;
2334
2335 if (timeout) {
2336 ktime_get_ts64(&timeout64);
2337 *timeout = timespec64_to_timespec(
2338 timespec64_sub(end_time, timeout64));
2339 if (timeout->tv_sec < 0) {
2340 timeout->tv_sec = timeout->tv_nsec = 0;
2341 break;
2342 }
2343
2344 /* Timeout, return less than vlen datagrams */
2345 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2346 break;
2347 }
2348
2349 /* Out of band data, return right away */
2350 if (msg_sys.msg_flags & MSG_OOB)
2351 break;
2352 cond_resched();
2353 }
2354
2355 if (err == 0)
2356 goto out_put;
2357
2358 if (datagrams == 0) {
2359 datagrams = err;
2360 goto out_put;
2361 }
2362
2363 /*
2364 * We may return less entries than requested (vlen) if the
2365 * sock is non block and there aren't enough datagrams...
2366 */
2367 if (err != -EAGAIN) {
2368 /*
2369 * ... or if recvmsg returns an error after we
2370 * received some datagrams, where we record the
2371 * error to return on the next call or if the
2372 * app asks about it using getsockopt(SO_ERROR).
2373 */
2374 sock->sk->sk_err = -err;
2375 }
2376 out_put:
2377 fput_light(sock->file, fput_needed);
2378
2379 return datagrams;
2380 }
2381
2382 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2383 unsigned int, vlen, unsigned int, flags,
2384 struct timespec __user *, timeout)
2385 {
2386 int datagrams;
2387 struct timespec timeout_sys;
2388
2389 if (flags & MSG_CMSG_COMPAT)
2390 return -EINVAL;
2391
2392 if (!timeout)
2393 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2394
2395 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2396 return -EFAULT;
2397
2398 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2399
2400 if (datagrams > 0 &&
2401 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2402 datagrams = -EFAULT;
2403
2404 return datagrams;
2405 }
2406
2407 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2408 /* Argument list sizes for sys_socketcall */
2409 #define AL(x) ((x) * sizeof(unsigned long))
2410 static const unsigned char nargs[21] = {
2411 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2412 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2413 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2414 AL(4), AL(5), AL(4)
2415 };
2416
2417 #undef AL
2418
2419 /*
2420 * System call vectors.
2421 *
2422 * Argument checking cleaned up. Saved 20% in size.
2423 * This function doesn't need to set the kernel lock because
2424 * it is set by the callees.
2425 */
2426
2427 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2428 {
2429 unsigned long a[AUDITSC_ARGS];
2430 unsigned long a0, a1;
2431 int err;
2432 unsigned int len;
2433
2434 if (call < 1 || call > SYS_SENDMMSG)
2435 return -EINVAL;
2436
2437 len = nargs[call];
2438 if (len > sizeof(a))
2439 return -EINVAL;
2440
2441 /* copy_from_user should be SMP safe. */
2442 if (copy_from_user(a, args, len))
2443 return -EFAULT;
2444
2445 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2446 if (err)
2447 return err;
2448
2449 a0 = a[0];
2450 a1 = a[1];
2451
2452 switch (call) {
2453 case SYS_SOCKET:
2454 err = sys_socket(a0, a1, a[2]);
2455 break;
2456 case SYS_BIND:
2457 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2458 break;
2459 case SYS_CONNECT:
2460 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2461 break;
2462 case SYS_LISTEN:
2463 err = sys_listen(a0, a1);
2464 break;
2465 case SYS_ACCEPT:
2466 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2467 (int __user *)a[2], 0);
2468 break;
2469 case SYS_GETSOCKNAME:
2470 err =
2471 sys_getsockname(a0, (struct sockaddr __user *)a1,
2472 (int __user *)a[2]);
2473 break;
2474 case SYS_GETPEERNAME:
2475 err =
2476 sys_getpeername(a0, (struct sockaddr __user *)a1,
2477 (int __user *)a[2]);
2478 break;
2479 case SYS_SOCKETPAIR:
2480 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2481 break;
2482 case SYS_SEND:
2483 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2484 break;
2485 case SYS_SENDTO:
2486 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2487 (struct sockaddr __user *)a[4], a[5]);
2488 break;
2489 case SYS_RECV:
2490 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2491 break;
2492 case SYS_RECVFROM:
2493 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2494 (struct sockaddr __user *)a[4],
2495 (int __user *)a[5]);
2496 break;
2497 case SYS_SHUTDOWN:
2498 err = sys_shutdown(a0, a1);
2499 break;
2500 case SYS_SETSOCKOPT:
2501 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2502 break;
2503 case SYS_GETSOCKOPT:
2504 err =
2505 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2506 (int __user *)a[4]);
2507 break;
2508 case SYS_SENDMSG:
2509 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2510 break;
2511 case SYS_SENDMMSG:
2512 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2513 break;
2514 case SYS_RECVMSG:
2515 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2516 break;
2517 case SYS_RECVMMSG:
2518 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2519 (struct timespec __user *)a[4]);
2520 break;
2521 case SYS_ACCEPT4:
2522 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2523 (int __user *)a[2], a[3]);
2524 break;
2525 default:
2526 err = -EINVAL;
2527 break;
2528 }
2529 return err;
2530 }
2531
2532 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2533
2534 /**
2535 * sock_register - add a socket protocol handler
2536 * @ops: description of protocol
2537 *
2538 * This function is called by a protocol handler that wants to
2539 * advertise its address family, and have it linked into the
2540 * socket interface. The value ops->family corresponds to the
2541 * socket system call protocol family.
2542 */
2543 int sock_register(const struct net_proto_family *ops)
2544 {
2545 int err;
2546
2547 if (ops->family >= NPROTO) {
2548 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2549 return -ENOBUFS;
2550 }
2551
2552 spin_lock(&net_family_lock);
2553 if (rcu_dereference_protected(net_families[ops->family],
2554 lockdep_is_held(&net_family_lock)))
2555 err = -EEXIST;
2556 else {
2557 rcu_assign_pointer(net_families[ops->family], ops);
2558 err = 0;
2559 }
2560 spin_unlock(&net_family_lock);
2561
2562 pr_info("NET: Registered protocol family %d\n", ops->family);
2563 return err;
2564 }
2565 EXPORT_SYMBOL(sock_register);
2566
2567 /**
2568 * sock_unregister - remove a protocol handler
2569 * @family: protocol family to remove
2570 *
2571 * This function is called by a protocol handler that wants to
2572 * remove its address family, and have it unlinked from the
2573 * new socket creation.
2574 *
2575 * If protocol handler is a module, then it can use module reference
2576 * counts to protect against new references. If protocol handler is not
2577 * a module then it needs to provide its own protection in
2578 * the ops->create routine.
2579 */
2580 void sock_unregister(int family)
2581 {
2582 BUG_ON(family < 0 || family >= NPROTO);
2583
2584 spin_lock(&net_family_lock);
2585 RCU_INIT_POINTER(net_families[family], NULL);
2586 spin_unlock(&net_family_lock);
2587
2588 synchronize_rcu();
2589
2590 pr_info("NET: Unregistered protocol family %d\n", family);
2591 }
2592 EXPORT_SYMBOL(sock_unregister);
2593
2594 static int __init sock_init(void)
2595 {
2596 int err;
2597 /*
2598 * Initialize the network sysctl infrastructure.
2599 */
2600 err = net_sysctl_init();
2601 if (err)
2602 goto out;
2603
2604 /*
2605 * Initialize skbuff SLAB cache
2606 */
2607 skb_init();
2608
2609 /*
2610 * Initialize the protocols module.
2611 */
2612
2613 init_inodecache();
2614
2615 err = register_filesystem(&sock_fs_type);
2616 if (err)
2617 goto out_fs;
2618 sock_mnt = kern_mount(&sock_fs_type);
2619 if (IS_ERR(sock_mnt)) {
2620 err = PTR_ERR(sock_mnt);
2621 goto out_mount;
2622 }
2623
2624 /* The real protocol initialization is performed in later initcalls.
2625 */
2626
2627 #ifdef CONFIG_NETFILTER
2628 err = netfilter_init();
2629 if (err)
2630 goto out;
2631 #endif
2632
2633 ptp_classifier_init();
2634
2635 out:
2636 return err;
2637
2638 out_mount:
2639 unregister_filesystem(&sock_fs_type);
2640 out_fs:
2641 goto out;
2642 }
2643
2644 core_initcall(sock_init); /* early initcall */
2645
2646 #ifdef CONFIG_PROC_FS
2647 void socket_seq_show(struct seq_file *seq)
2648 {
2649 int cpu;
2650 int counter = 0;
2651
2652 for_each_possible_cpu(cpu)
2653 counter += per_cpu(sockets_in_use, cpu);
2654
2655 /* It can be negative, by the way. 8) */
2656 if (counter < 0)
2657 counter = 0;
2658
2659 seq_printf(seq, "sockets: used %d\n", counter);
2660 }
2661 #endif /* CONFIG_PROC_FS */
2662
2663 #ifdef CONFIG_COMPAT
2664 static int do_siocgstamp(struct net *net, struct socket *sock,
2665 unsigned int cmd, void __user *up)
2666 {
2667 mm_segment_t old_fs = get_fs();
2668 struct timeval ktv;
2669 int err;
2670
2671 set_fs(KERNEL_DS);
2672 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2673 set_fs(old_fs);
2674 if (!err)
2675 err = compat_put_timeval(&ktv, up);
2676
2677 return err;
2678 }
2679
2680 static int do_siocgstampns(struct net *net, struct socket *sock,
2681 unsigned int cmd, void __user *up)
2682 {
2683 mm_segment_t old_fs = get_fs();
2684 struct timespec kts;
2685 int err;
2686
2687 set_fs(KERNEL_DS);
2688 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2689 set_fs(old_fs);
2690 if (!err)
2691 err = compat_put_timespec(&kts, up);
2692
2693 return err;
2694 }
2695
2696 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2697 {
2698 struct ifreq __user *uifr;
2699 int err;
2700
2701 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2702 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2703 return -EFAULT;
2704
2705 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2706 if (err)
2707 return err;
2708
2709 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2710 return -EFAULT;
2711
2712 return 0;
2713 }
2714
2715 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2716 {
2717 struct compat_ifconf ifc32;
2718 struct ifconf ifc;
2719 struct ifconf __user *uifc;
2720 struct compat_ifreq __user *ifr32;
2721 struct ifreq __user *ifr;
2722 unsigned int i, j;
2723 int err;
2724
2725 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2726 return -EFAULT;
2727
2728 memset(&ifc, 0, sizeof(ifc));
2729 if (ifc32.ifcbuf == 0) {
2730 ifc32.ifc_len = 0;
2731 ifc.ifc_len = 0;
2732 ifc.ifc_req = NULL;
2733 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2734 } else {
2735 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2736 sizeof(struct ifreq);
2737 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2738 ifc.ifc_len = len;
2739 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2740 ifr32 = compat_ptr(ifc32.ifcbuf);
2741 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2742 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2743 return -EFAULT;
2744 ifr++;
2745 ifr32++;
2746 }
2747 }
2748 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2749 return -EFAULT;
2750
2751 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2752 if (err)
2753 return err;
2754
2755 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2756 return -EFAULT;
2757
2758 ifr = ifc.ifc_req;
2759 ifr32 = compat_ptr(ifc32.ifcbuf);
2760 for (i = 0, j = 0;
2761 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2762 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2763 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2764 return -EFAULT;
2765 ifr32++;
2766 ifr++;
2767 }
2768
2769 if (ifc32.ifcbuf == 0) {
2770 /* Translate from 64-bit structure multiple to
2771 * a 32-bit one.
2772 */
2773 i = ifc.ifc_len;
2774 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2775 ifc32.ifc_len = i;
2776 } else {
2777 ifc32.ifc_len = i;
2778 }
2779 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2780 return -EFAULT;
2781
2782 return 0;
2783 }
2784
2785 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2786 {
2787 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2788 bool convert_in = false, convert_out = false;
2789 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2790 struct ethtool_rxnfc __user *rxnfc;
2791 struct ifreq __user *ifr;
2792 u32 rule_cnt = 0, actual_rule_cnt;
2793 u32 ethcmd;
2794 u32 data;
2795 int ret;
2796
2797 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2798 return -EFAULT;
2799
2800 compat_rxnfc = compat_ptr(data);
2801
2802 if (get_user(ethcmd, &compat_rxnfc->cmd))
2803 return -EFAULT;
2804
2805 /* Most ethtool structures are defined without padding.
2806 * Unfortunately struct ethtool_rxnfc is an exception.
2807 */
2808 switch (ethcmd) {
2809 default:
2810 break;
2811 case ETHTOOL_GRXCLSRLALL:
2812 /* Buffer size is variable */
2813 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2814 return -EFAULT;
2815 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2816 return -ENOMEM;
2817 buf_size += rule_cnt * sizeof(u32);
2818 /* fall through */
2819 case ETHTOOL_GRXRINGS:
2820 case ETHTOOL_GRXCLSRLCNT:
2821 case ETHTOOL_GRXCLSRULE:
2822 case ETHTOOL_SRXCLSRLINS:
2823 convert_out = true;
2824 /* fall through */
2825 case ETHTOOL_SRXCLSRLDEL:
2826 buf_size += sizeof(struct ethtool_rxnfc);
2827 convert_in = true;
2828 break;
2829 }
2830
2831 ifr = compat_alloc_user_space(buf_size);
2832 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2833
2834 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2835 return -EFAULT;
2836
2837 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2838 &ifr->ifr_ifru.ifru_data))
2839 return -EFAULT;
2840
2841 if (convert_in) {
2842 /* We expect there to be holes between fs.m_ext and
2843 * fs.ring_cookie and at the end of fs, but nowhere else.
2844 */
2845 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2846 sizeof(compat_rxnfc->fs.m_ext) !=
2847 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2848 sizeof(rxnfc->fs.m_ext));
2849 BUILD_BUG_ON(
2850 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2851 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2852 offsetof(struct ethtool_rxnfc, fs.location) -
2853 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2854
2855 if (copy_in_user(rxnfc, compat_rxnfc,
2856 (void __user *)(&rxnfc->fs.m_ext + 1) -
2857 (void __user *)rxnfc) ||
2858 copy_in_user(&rxnfc->fs.ring_cookie,
2859 &compat_rxnfc->fs.ring_cookie,
2860 (void __user *)(&rxnfc->fs.location + 1) -
2861 (void __user *)&rxnfc->fs.ring_cookie) ||
2862 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2863 sizeof(rxnfc->rule_cnt)))
2864 return -EFAULT;
2865 }
2866
2867 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2868 if (ret)
2869 return ret;
2870
2871 if (convert_out) {
2872 if (copy_in_user(compat_rxnfc, rxnfc,
2873 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2874 (const void __user *)rxnfc) ||
2875 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2876 &rxnfc->fs.ring_cookie,
2877 (const void __user *)(&rxnfc->fs.location + 1) -
2878 (const void __user *)&rxnfc->fs.ring_cookie) ||
2879 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2880 sizeof(rxnfc->rule_cnt)))
2881 return -EFAULT;
2882
2883 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2884 /* As an optimisation, we only copy the actual
2885 * number of rules that the underlying
2886 * function returned. Since Mallory might
2887 * change the rule count in user memory, we
2888 * check that it is less than the rule count
2889 * originally given (as the user buffer size),
2890 * which has been range-checked.
2891 */
2892 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2893 return -EFAULT;
2894 if (actual_rule_cnt < rule_cnt)
2895 rule_cnt = actual_rule_cnt;
2896 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2897 &rxnfc->rule_locs[0],
2898 rule_cnt * sizeof(u32)))
2899 return -EFAULT;
2900 }
2901 }
2902
2903 return 0;
2904 }
2905
2906 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2907 {
2908 void __user *uptr;
2909 compat_uptr_t uptr32;
2910 struct ifreq __user *uifr;
2911
2912 uifr = compat_alloc_user_space(sizeof(*uifr));
2913 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2914 return -EFAULT;
2915
2916 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2917 return -EFAULT;
2918
2919 uptr = compat_ptr(uptr32);
2920
2921 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2922 return -EFAULT;
2923
2924 return dev_ioctl(net, SIOCWANDEV, uifr);
2925 }
2926
2927 static int bond_ioctl(struct net *net, unsigned int cmd,
2928 struct compat_ifreq __user *ifr32)
2929 {
2930 struct ifreq kifr;
2931 mm_segment_t old_fs;
2932 int err;
2933
2934 switch (cmd) {
2935 case SIOCBONDENSLAVE:
2936 case SIOCBONDRELEASE:
2937 case SIOCBONDSETHWADDR:
2938 case SIOCBONDCHANGEACTIVE:
2939 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2940 return -EFAULT;
2941
2942 old_fs = get_fs();
2943 set_fs(KERNEL_DS);
2944 err = dev_ioctl(net, cmd,
2945 (struct ifreq __user __force *) &kifr);
2946 set_fs(old_fs);
2947
2948 return err;
2949 default:
2950 return -ENOIOCTLCMD;
2951 }
2952 }
2953
2954 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2955 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2956 struct compat_ifreq __user *u_ifreq32)
2957 {
2958 struct ifreq __user *u_ifreq64;
2959 char tmp_buf[IFNAMSIZ];
2960 void __user *data64;
2961 u32 data32;
2962
2963 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2964 IFNAMSIZ))
2965 return -EFAULT;
2966 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2967 return -EFAULT;
2968 data64 = compat_ptr(data32);
2969
2970 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2971
2972 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2973 IFNAMSIZ))
2974 return -EFAULT;
2975 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2976 return -EFAULT;
2977
2978 return dev_ioctl(net, cmd, u_ifreq64);
2979 }
2980
2981 static int dev_ifsioc(struct net *net, struct socket *sock,
2982 unsigned int cmd, struct compat_ifreq __user *uifr32)
2983 {
2984 struct ifreq __user *uifr;
2985 int err;
2986
2987 uifr = compat_alloc_user_space(sizeof(*uifr));
2988 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2989 return -EFAULT;
2990
2991 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2992
2993 if (!err) {
2994 switch (cmd) {
2995 case SIOCGIFFLAGS:
2996 case SIOCGIFMETRIC:
2997 case SIOCGIFMTU:
2998 case SIOCGIFMEM:
2999 case SIOCGIFHWADDR:
3000 case SIOCGIFINDEX:
3001 case SIOCGIFADDR:
3002 case SIOCGIFBRDADDR:
3003 case SIOCGIFDSTADDR:
3004 case SIOCGIFNETMASK:
3005 case SIOCGIFPFLAGS:
3006 case SIOCGIFTXQLEN:
3007 case SIOCGMIIPHY:
3008 case SIOCGMIIREG:
3009 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3010 err = -EFAULT;
3011 break;
3012 }
3013 }
3014 return err;
3015 }
3016
3017 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3018 struct compat_ifreq __user *uifr32)
3019 {
3020 struct ifreq ifr;
3021 struct compat_ifmap __user *uifmap32;
3022 mm_segment_t old_fs;
3023 int err;
3024
3025 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3026 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3027 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3028 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3029 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3030 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3031 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3032 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3033 if (err)
3034 return -EFAULT;
3035
3036 old_fs = get_fs();
3037 set_fs(KERNEL_DS);
3038 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3039 set_fs(old_fs);
3040
3041 if (cmd == SIOCGIFMAP && !err) {
3042 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3043 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3044 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3045 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3046 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3047 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3048 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3049 if (err)
3050 err = -EFAULT;
3051 }
3052 return err;
3053 }
3054
3055 struct rtentry32 {
3056 u32 rt_pad1;
3057 struct sockaddr rt_dst; /* target address */
3058 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3059 struct sockaddr rt_genmask; /* target network mask (IP) */
3060 unsigned short rt_flags;
3061 short rt_pad2;
3062 u32 rt_pad3;
3063 unsigned char rt_tos;
3064 unsigned char rt_class;
3065 short rt_pad4;
3066 short rt_metric; /* +1 for binary compatibility! */
3067 /* char * */ u32 rt_dev; /* forcing the device at add */
3068 u32 rt_mtu; /* per route MTU/Window */
3069 u32 rt_window; /* Window clamping */
3070 unsigned short rt_irtt; /* Initial RTT */
3071 };
3072
3073 struct in6_rtmsg32 {
3074 struct in6_addr rtmsg_dst;
3075 struct in6_addr rtmsg_src;
3076 struct in6_addr rtmsg_gateway;
3077 u32 rtmsg_type;
3078 u16 rtmsg_dst_len;
3079 u16 rtmsg_src_len;
3080 u32 rtmsg_metric;
3081 u32 rtmsg_info;
3082 u32 rtmsg_flags;
3083 s32 rtmsg_ifindex;
3084 };
3085
3086 static int routing_ioctl(struct net *net, struct socket *sock,
3087 unsigned int cmd, void __user *argp)
3088 {
3089 int ret;
3090 void *r = NULL;
3091 struct in6_rtmsg r6;
3092 struct rtentry r4;
3093 char devname[16];
3094 u32 rtdev;
3095 mm_segment_t old_fs = get_fs();
3096
3097 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3098 struct in6_rtmsg32 __user *ur6 = argp;
3099 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3100 3 * sizeof(struct in6_addr));
3101 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3102 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3103 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3104 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3105 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3106 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3107 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3108
3109 r = (void *) &r6;
3110 } else { /* ipv4 */
3111 struct rtentry32 __user *ur4 = argp;
3112 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3113 3 * sizeof(struct sockaddr));
3114 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3115 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3116 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3117 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3118 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3119 ret |= get_user(rtdev, &(ur4->rt_dev));
3120 if (rtdev) {
3121 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3122 r4.rt_dev = (char __user __force *)devname;
3123 devname[15] = 0;
3124 } else
3125 r4.rt_dev = NULL;
3126
3127 r = (void *) &r4;
3128 }
3129
3130 if (ret) {
3131 ret = -EFAULT;
3132 goto out;
3133 }
3134
3135 set_fs(KERNEL_DS);
3136 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3137 set_fs(old_fs);
3138
3139 out:
3140 return ret;
3141 }
3142
3143 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3144 * for some operations; this forces use of the newer bridge-utils that
3145 * use compatible ioctls
3146 */
3147 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3148 {
3149 compat_ulong_t tmp;
3150
3151 if (get_user(tmp, argp))
3152 return -EFAULT;
3153 if (tmp == BRCTL_GET_VERSION)
3154 return BRCTL_VERSION + 1;
3155 return -EINVAL;
3156 }
3157
3158 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3159 unsigned int cmd, unsigned long arg)
3160 {
3161 void __user *argp = compat_ptr(arg);
3162 struct sock *sk = sock->sk;
3163 struct net *net = sock_net(sk);
3164
3165 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3166 return compat_ifr_data_ioctl(net, cmd, argp);
3167
3168 switch (cmd) {
3169 case SIOCSIFBR:
3170 case SIOCGIFBR:
3171 return old_bridge_ioctl(argp);
3172 case SIOCGIFNAME:
3173 return dev_ifname32(net, argp);
3174 case SIOCGIFCONF:
3175 return dev_ifconf(net, argp);
3176 case SIOCETHTOOL:
3177 return ethtool_ioctl(net, argp);
3178 case SIOCWANDEV:
3179 return compat_siocwandev(net, argp);
3180 case SIOCGIFMAP:
3181 case SIOCSIFMAP:
3182 return compat_sioc_ifmap(net, cmd, argp);
3183 case SIOCBONDENSLAVE:
3184 case SIOCBONDRELEASE:
3185 case SIOCBONDSETHWADDR:
3186 case SIOCBONDCHANGEACTIVE:
3187 return bond_ioctl(net, cmd, argp);
3188 case SIOCADDRT:
3189 case SIOCDELRT:
3190 return routing_ioctl(net, sock, cmd, argp);
3191 case SIOCGSTAMP:
3192 return do_siocgstamp(net, sock, cmd, argp);
3193 case SIOCGSTAMPNS:
3194 return do_siocgstampns(net, sock, cmd, argp);
3195 case SIOCBONDSLAVEINFOQUERY:
3196 case SIOCBONDINFOQUERY:
3197 case SIOCSHWTSTAMP:
3198 case SIOCGHWTSTAMP:
3199 return compat_ifr_data_ioctl(net, cmd, argp);
3200
3201 case FIOSETOWN:
3202 case SIOCSPGRP:
3203 case FIOGETOWN:
3204 case SIOCGPGRP:
3205 case SIOCBRADDBR:
3206 case SIOCBRDELBR:
3207 case SIOCGIFVLAN:
3208 case SIOCSIFVLAN:
3209 case SIOCADDDLCI:
3210 case SIOCDELDLCI:
3211 case SIOCGSKNS:
3212 return sock_ioctl(file, cmd, arg);
3213
3214 case SIOCGIFFLAGS:
3215 case SIOCSIFFLAGS:
3216 case SIOCGIFMETRIC:
3217 case SIOCSIFMETRIC:
3218 case SIOCGIFMTU:
3219 case SIOCSIFMTU:
3220 case SIOCGIFMEM:
3221 case SIOCSIFMEM:
3222 case SIOCGIFHWADDR:
3223 case SIOCSIFHWADDR:
3224 case SIOCADDMULTI:
3225 case SIOCDELMULTI:
3226 case SIOCGIFINDEX:
3227 case SIOCGIFADDR:
3228 case SIOCSIFADDR:
3229 case SIOCSIFHWBROADCAST:
3230 case SIOCDIFADDR:
3231 case SIOCGIFBRDADDR:
3232 case SIOCSIFBRDADDR:
3233 case SIOCGIFDSTADDR:
3234 case SIOCSIFDSTADDR:
3235 case SIOCGIFNETMASK:
3236 case SIOCSIFNETMASK:
3237 case SIOCSIFPFLAGS:
3238 case SIOCGIFPFLAGS:
3239 case SIOCGIFTXQLEN:
3240 case SIOCSIFTXQLEN:
3241 case SIOCBRADDIF:
3242 case SIOCBRDELIF:
3243 case SIOCSIFNAME:
3244 case SIOCGMIIPHY:
3245 case SIOCGMIIREG:
3246 case SIOCSMIIREG:
3247 return dev_ifsioc(net, sock, cmd, argp);
3248
3249 case SIOCSARP:
3250 case SIOCGARP:
3251 case SIOCDARP:
3252 case SIOCATMARK:
3253 return sock_do_ioctl(net, sock, cmd, arg);
3254 }
3255
3256 return -ENOIOCTLCMD;
3257 }
3258
3259 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3260 unsigned long arg)
3261 {
3262 struct socket *sock = file->private_data;
3263 int ret = -ENOIOCTLCMD;
3264 struct sock *sk;
3265 struct net *net;
3266
3267 sk = sock->sk;
3268 net = sock_net(sk);
3269
3270 if (sock->ops->compat_ioctl)
3271 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3272
3273 if (ret == -ENOIOCTLCMD &&
3274 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3275 ret = compat_wext_handle_ioctl(net, cmd, arg);
3276
3277 if (ret == -ENOIOCTLCMD)
3278 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3279
3280 return ret;
3281 }
3282 #endif
3283
3284 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3285 {
3286 return sock->ops->bind(sock, addr, addrlen);
3287 }
3288 EXPORT_SYMBOL(kernel_bind);
3289
3290 int kernel_listen(struct socket *sock, int backlog)
3291 {
3292 return sock->ops->listen(sock, backlog);
3293 }
3294 EXPORT_SYMBOL(kernel_listen);
3295
3296 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3297 {
3298 struct sock *sk = sock->sk;
3299 int err;
3300
3301 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3302 newsock);
3303 if (err < 0)
3304 goto done;
3305
3306 err = sock->ops->accept(sock, *newsock, flags, true);
3307 if (err < 0) {
3308 sock_release(*newsock);
3309 *newsock = NULL;
3310 goto done;
3311 }
3312
3313 (*newsock)->ops = sock->ops;
3314 __module_get((*newsock)->ops->owner);
3315
3316 done:
3317 return err;
3318 }
3319 EXPORT_SYMBOL(kernel_accept);
3320
3321 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3322 int flags)
3323 {
3324 return sock->ops->connect(sock, addr, addrlen, flags);
3325 }
3326 EXPORT_SYMBOL(kernel_connect);
3327
3328 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3329 int *addrlen)
3330 {
3331 return sock->ops->getname(sock, addr, addrlen, 0);
3332 }
3333 EXPORT_SYMBOL(kernel_getsockname);
3334
3335 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3336 int *addrlen)
3337 {
3338 return sock->ops->getname(sock, addr, addrlen, 1);
3339 }
3340 EXPORT_SYMBOL(kernel_getpeername);
3341
3342 int kernel_getsockopt(struct socket *sock, int level, int optname,
3343 char *optval, int *optlen)
3344 {
3345 mm_segment_t oldfs = get_fs();
3346 char __user *uoptval;
3347 int __user *uoptlen;
3348 int err;
3349
3350 uoptval = (char __user __force *) optval;
3351 uoptlen = (int __user __force *) optlen;
3352
3353 set_fs(KERNEL_DS);
3354 if (level == SOL_SOCKET)
3355 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3356 else
3357 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3358 uoptlen);
3359 set_fs(oldfs);
3360 return err;
3361 }
3362 EXPORT_SYMBOL(kernel_getsockopt);
3363
3364 int kernel_setsockopt(struct socket *sock, int level, int optname,
3365 char *optval, unsigned int optlen)
3366 {
3367 mm_segment_t oldfs = get_fs();
3368 char __user *uoptval;
3369 int err;
3370
3371 uoptval = (char __user __force *) optval;
3372
3373 set_fs(KERNEL_DS);
3374 if (level == SOL_SOCKET)
3375 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3376 else
3377 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3378 optlen);
3379 set_fs(oldfs);
3380 return err;
3381 }
3382 EXPORT_SYMBOL(kernel_setsockopt);
3383
3384 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3385 size_t size, int flags)
3386 {
3387 if (sock->ops->sendpage)
3388 return sock->ops->sendpage(sock, page, offset, size, flags);
3389
3390 return sock_no_sendpage(sock, page, offset, size, flags);
3391 }
3392 EXPORT_SYMBOL(kernel_sendpage);
3393
3394 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3395 size_t size, int flags)
3396 {
3397 struct socket *sock = sk->sk_socket;
3398
3399 if (sock->ops->sendpage_locked)
3400 return sock->ops->sendpage_locked(sk, page, offset, size,
3401 flags);
3402
3403 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3404 }
3405 EXPORT_SYMBOL(kernel_sendpage_locked);
3406
3407 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3408 {
3409 mm_segment_t oldfs = get_fs();
3410 int err;
3411
3412 set_fs(KERNEL_DS);
3413 err = sock->ops->ioctl(sock, cmd, arg);
3414 set_fs(oldfs);
3415
3416 return err;
3417 }
3418 EXPORT_SYMBOL(kernel_sock_ioctl);
3419
3420 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3421 {
3422 return sock->ops->shutdown(sock, how);
3423 }
3424 EXPORT_SYMBOL(kernel_sock_shutdown);
3425
3426 /* This routine returns the IP overhead imposed by a socket i.e.
3427 * the length of the underlying IP header, depending on whether
3428 * this is an IPv4 or IPv6 socket and the length from IP options turned
3429 * on at the socket. Assumes that the caller has a lock on the socket.
3430 */
3431 u32 kernel_sock_ip_overhead(struct sock *sk)
3432 {
3433 struct inet_sock *inet;
3434 struct ip_options_rcu *opt;
3435 u32 overhead = 0;
3436 #if IS_ENABLED(CONFIG_IPV6)
3437 struct ipv6_pinfo *np;
3438 struct ipv6_txoptions *optv6 = NULL;
3439 #endif /* IS_ENABLED(CONFIG_IPV6) */
3440
3441 if (!sk)
3442 return overhead;
3443
3444 switch (sk->sk_family) {
3445 case AF_INET:
3446 inet = inet_sk(sk);
3447 overhead += sizeof(struct iphdr);
3448 opt = rcu_dereference_protected(inet->inet_opt,
3449 sock_owned_by_user(sk));
3450 if (opt)
3451 overhead += opt->opt.optlen;
3452 return overhead;
3453 #if IS_ENABLED(CONFIG_IPV6)
3454 case AF_INET6:
3455 np = inet6_sk(sk);
3456 overhead += sizeof(struct ipv6hdr);
3457 if (np)
3458 optv6 = rcu_dereference_protected(np->opt,
3459 sock_owned_by_user(sk));
3460 if (optv6)
3461 overhead += (optv6->opt_flen + optv6->opt_nflen);
3462 return overhead;
3463 #endif /* IS_ENABLED(CONFIG_IPV6) */
3464 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3465 return overhead;
3466 }
3467 }
3468 EXPORT_SYMBOL(kernel_sock_ip_overhead);