]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/sunrpc/auth_gss/auth_gss.c
spi: s3c64xx: Let spi core handle validating transfer length
[mirror_ubuntu-jammy-kernel.git] / net / sunrpc / auth_gss / auth_gss.c
1 /*
2 * linux/net/sunrpc/auth_gss/auth_gss.c
3 *
4 * RPCSEC_GSS client authentication.
5 *
6 * Copyright (c) 2000 The Regents of the University of Michigan.
7 * All rights reserved.
8 *
9 * Dug Song <dugsong@monkey.org>
10 * Andy Adamson <andros@umich.edu>
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/types.h>
42 #include <linux/slab.h>
43 #include <linux/sched.h>
44 #include <linux/pagemap.h>
45 #include <linux/sunrpc/clnt.h>
46 #include <linux/sunrpc/auth.h>
47 #include <linux/sunrpc/auth_gss.h>
48 #include <linux/sunrpc/svcauth_gss.h>
49 #include <linux/sunrpc/gss_err.h>
50 #include <linux/workqueue.h>
51 #include <linux/sunrpc/rpc_pipe_fs.h>
52 #include <linux/sunrpc/gss_api.h>
53 #include <asm/uaccess.h>
54 #include <linux/hashtable.h>
55
56 #include "../netns.h"
57
58 static const struct rpc_authops authgss_ops;
59
60 static const struct rpc_credops gss_credops;
61 static const struct rpc_credops gss_nullops;
62
63 #define GSS_RETRY_EXPIRED 5
64 static unsigned int gss_expired_cred_retry_delay = GSS_RETRY_EXPIRED;
65
66 #define GSS_KEY_EXPIRE_TIMEO 240
67 static unsigned int gss_key_expire_timeo = GSS_KEY_EXPIRE_TIMEO;
68
69 #ifdef RPC_DEBUG
70 # define RPCDBG_FACILITY RPCDBG_AUTH
71 #endif
72
73 #define GSS_CRED_SLACK (RPC_MAX_AUTH_SIZE * 2)
74 /* length of a krb5 verifier (48), plus data added before arguments when
75 * using integrity (two 4-byte integers): */
76 #define GSS_VERF_SLACK 100
77
78 static DEFINE_HASHTABLE(gss_auth_hash_table, 4);
79 static DEFINE_SPINLOCK(gss_auth_hash_lock);
80
81 struct gss_pipe {
82 struct rpc_pipe_dir_object pdo;
83 struct rpc_pipe *pipe;
84 struct rpc_clnt *clnt;
85 const char *name;
86 struct kref kref;
87 };
88
89 struct gss_auth {
90 struct kref kref;
91 struct hlist_node hash;
92 struct rpc_auth rpc_auth;
93 struct gss_api_mech *mech;
94 enum rpc_gss_svc service;
95 struct rpc_clnt *client;
96 struct net *net;
97 /*
98 * There are two upcall pipes; dentry[1], named "gssd", is used
99 * for the new text-based upcall; dentry[0] is named after the
100 * mechanism (for example, "krb5") and exists for
101 * backwards-compatibility with older gssd's.
102 */
103 struct gss_pipe *gss_pipe[2];
104 const char *target_name;
105 };
106
107 /* pipe_version >= 0 if and only if someone has a pipe open. */
108 static DEFINE_SPINLOCK(pipe_version_lock);
109 static struct rpc_wait_queue pipe_version_rpc_waitqueue;
110 static DECLARE_WAIT_QUEUE_HEAD(pipe_version_waitqueue);
111
112 static void gss_free_ctx(struct gss_cl_ctx *);
113 static const struct rpc_pipe_ops gss_upcall_ops_v0;
114 static const struct rpc_pipe_ops gss_upcall_ops_v1;
115
116 static inline struct gss_cl_ctx *
117 gss_get_ctx(struct gss_cl_ctx *ctx)
118 {
119 atomic_inc(&ctx->count);
120 return ctx;
121 }
122
123 static inline void
124 gss_put_ctx(struct gss_cl_ctx *ctx)
125 {
126 if (atomic_dec_and_test(&ctx->count))
127 gss_free_ctx(ctx);
128 }
129
130 /* gss_cred_set_ctx:
131 * called by gss_upcall_callback and gss_create_upcall in order
132 * to set the gss context. The actual exchange of an old context
133 * and a new one is protected by the pipe->lock.
134 */
135 static void
136 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx)
137 {
138 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
139
140 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
141 return;
142 gss_get_ctx(ctx);
143 rcu_assign_pointer(gss_cred->gc_ctx, ctx);
144 set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
145 smp_mb__before_clear_bit();
146 clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags);
147 }
148
149 static const void *
150 simple_get_bytes(const void *p, const void *end, void *res, size_t len)
151 {
152 const void *q = (const void *)((const char *)p + len);
153 if (unlikely(q > end || q < p))
154 return ERR_PTR(-EFAULT);
155 memcpy(res, p, len);
156 return q;
157 }
158
159 static inline const void *
160 simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest)
161 {
162 const void *q;
163 unsigned int len;
164
165 p = simple_get_bytes(p, end, &len, sizeof(len));
166 if (IS_ERR(p))
167 return p;
168 q = (const void *)((const char *)p + len);
169 if (unlikely(q > end || q < p))
170 return ERR_PTR(-EFAULT);
171 dest->data = kmemdup(p, len, GFP_NOFS);
172 if (unlikely(dest->data == NULL))
173 return ERR_PTR(-ENOMEM);
174 dest->len = len;
175 return q;
176 }
177
178 static struct gss_cl_ctx *
179 gss_cred_get_ctx(struct rpc_cred *cred)
180 {
181 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
182 struct gss_cl_ctx *ctx = NULL;
183
184 rcu_read_lock();
185 if (gss_cred->gc_ctx)
186 ctx = gss_get_ctx(gss_cred->gc_ctx);
187 rcu_read_unlock();
188 return ctx;
189 }
190
191 static struct gss_cl_ctx *
192 gss_alloc_context(void)
193 {
194 struct gss_cl_ctx *ctx;
195
196 ctx = kzalloc(sizeof(*ctx), GFP_NOFS);
197 if (ctx != NULL) {
198 ctx->gc_proc = RPC_GSS_PROC_DATA;
199 ctx->gc_seq = 1; /* NetApp 6.4R1 doesn't accept seq. no. 0 */
200 spin_lock_init(&ctx->gc_seq_lock);
201 atomic_set(&ctx->count,1);
202 }
203 return ctx;
204 }
205
206 #define GSSD_MIN_TIMEOUT (60 * 60)
207 static const void *
208 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm)
209 {
210 const void *q;
211 unsigned int seclen;
212 unsigned int timeout;
213 unsigned long now = jiffies;
214 u32 window_size;
215 int ret;
216
217 /* First unsigned int gives the remaining lifetime in seconds of the
218 * credential - e.g. the remaining TGT lifetime for Kerberos or
219 * the -t value passed to GSSD.
220 */
221 p = simple_get_bytes(p, end, &timeout, sizeof(timeout));
222 if (IS_ERR(p))
223 goto err;
224 if (timeout == 0)
225 timeout = GSSD_MIN_TIMEOUT;
226 ctx->gc_expiry = now + ((unsigned long)timeout * HZ);
227 /* Sequence number window. Determines the maximum number of
228 * simultaneous requests
229 */
230 p = simple_get_bytes(p, end, &window_size, sizeof(window_size));
231 if (IS_ERR(p))
232 goto err;
233 ctx->gc_win = window_size;
234 /* gssd signals an error by passing ctx->gc_win = 0: */
235 if (ctx->gc_win == 0) {
236 /*
237 * in which case, p points to an error code. Anything other
238 * than -EKEYEXPIRED gets converted to -EACCES.
239 */
240 p = simple_get_bytes(p, end, &ret, sizeof(ret));
241 if (!IS_ERR(p))
242 p = (ret == -EKEYEXPIRED) ? ERR_PTR(-EKEYEXPIRED) :
243 ERR_PTR(-EACCES);
244 goto err;
245 }
246 /* copy the opaque wire context */
247 p = simple_get_netobj(p, end, &ctx->gc_wire_ctx);
248 if (IS_ERR(p))
249 goto err;
250 /* import the opaque security context */
251 p = simple_get_bytes(p, end, &seclen, sizeof(seclen));
252 if (IS_ERR(p))
253 goto err;
254 q = (const void *)((const char *)p + seclen);
255 if (unlikely(q > end || q < p)) {
256 p = ERR_PTR(-EFAULT);
257 goto err;
258 }
259 ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx, NULL, GFP_NOFS);
260 if (ret < 0) {
261 p = ERR_PTR(ret);
262 goto err;
263 }
264 dprintk("RPC: %s Success. gc_expiry %lu now %lu timeout %u\n",
265 __func__, ctx->gc_expiry, now, timeout);
266 return q;
267 err:
268 dprintk("RPC: %s returns error %ld\n", __func__, -PTR_ERR(p));
269 return p;
270 }
271
272 #define UPCALL_BUF_LEN 128
273
274 struct gss_upcall_msg {
275 atomic_t count;
276 kuid_t uid;
277 struct rpc_pipe_msg msg;
278 struct list_head list;
279 struct gss_auth *auth;
280 struct rpc_pipe *pipe;
281 struct rpc_wait_queue rpc_waitqueue;
282 wait_queue_head_t waitqueue;
283 struct gss_cl_ctx *ctx;
284 char databuf[UPCALL_BUF_LEN];
285 };
286
287 static int get_pipe_version(struct net *net)
288 {
289 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
290 int ret;
291
292 spin_lock(&pipe_version_lock);
293 if (sn->pipe_version >= 0) {
294 atomic_inc(&sn->pipe_users);
295 ret = sn->pipe_version;
296 } else
297 ret = -EAGAIN;
298 spin_unlock(&pipe_version_lock);
299 return ret;
300 }
301
302 static void put_pipe_version(struct net *net)
303 {
304 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
305
306 if (atomic_dec_and_lock(&sn->pipe_users, &pipe_version_lock)) {
307 sn->pipe_version = -1;
308 spin_unlock(&pipe_version_lock);
309 }
310 }
311
312 static void
313 gss_release_msg(struct gss_upcall_msg *gss_msg)
314 {
315 struct net *net = gss_msg->auth->net;
316 if (!atomic_dec_and_test(&gss_msg->count))
317 return;
318 put_pipe_version(net);
319 BUG_ON(!list_empty(&gss_msg->list));
320 if (gss_msg->ctx != NULL)
321 gss_put_ctx(gss_msg->ctx);
322 rpc_destroy_wait_queue(&gss_msg->rpc_waitqueue);
323 kfree(gss_msg);
324 }
325
326 static struct gss_upcall_msg *
327 __gss_find_upcall(struct rpc_pipe *pipe, kuid_t uid)
328 {
329 struct gss_upcall_msg *pos;
330 list_for_each_entry(pos, &pipe->in_downcall, list) {
331 if (!uid_eq(pos->uid, uid))
332 continue;
333 atomic_inc(&pos->count);
334 dprintk("RPC: %s found msg %p\n", __func__, pos);
335 return pos;
336 }
337 dprintk("RPC: %s found nothing\n", __func__);
338 return NULL;
339 }
340
341 /* Try to add an upcall to the pipefs queue.
342 * If an upcall owned by our uid already exists, then we return a reference
343 * to that upcall instead of adding the new upcall.
344 */
345 static inline struct gss_upcall_msg *
346 gss_add_msg(struct gss_upcall_msg *gss_msg)
347 {
348 struct rpc_pipe *pipe = gss_msg->pipe;
349 struct gss_upcall_msg *old;
350
351 spin_lock(&pipe->lock);
352 old = __gss_find_upcall(pipe, gss_msg->uid);
353 if (old == NULL) {
354 atomic_inc(&gss_msg->count);
355 list_add(&gss_msg->list, &pipe->in_downcall);
356 } else
357 gss_msg = old;
358 spin_unlock(&pipe->lock);
359 return gss_msg;
360 }
361
362 static void
363 __gss_unhash_msg(struct gss_upcall_msg *gss_msg)
364 {
365 list_del_init(&gss_msg->list);
366 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
367 wake_up_all(&gss_msg->waitqueue);
368 atomic_dec(&gss_msg->count);
369 }
370
371 static void
372 gss_unhash_msg(struct gss_upcall_msg *gss_msg)
373 {
374 struct rpc_pipe *pipe = gss_msg->pipe;
375
376 if (list_empty(&gss_msg->list))
377 return;
378 spin_lock(&pipe->lock);
379 if (!list_empty(&gss_msg->list))
380 __gss_unhash_msg(gss_msg);
381 spin_unlock(&pipe->lock);
382 }
383
384 static void
385 gss_handle_downcall_result(struct gss_cred *gss_cred, struct gss_upcall_msg *gss_msg)
386 {
387 switch (gss_msg->msg.errno) {
388 case 0:
389 if (gss_msg->ctx == NULL)
390 break;
391 clear_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags);
392 gss_cred_set_ctx(&gss_cred->gc_base, gss_msg->ctx);
393 break;
394 case -EKEYEXPIRED:
395 set_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags);
396 }
397 gss_cred->gc_upcall_timestamp = jiffies;
398 gss_cred->gc_upcall = NULL;
399 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
400 }
401
402 static void
403 gss_upcall_callback(struct rpc_task *task)
404 {
405 struct gss_cred *gss_cred = container_of(task->tk_rqstp->rq_cred,
406 struct gss_cred, gc_base);
407 struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall;
408 struct rpc_pipe *pipe = gss_msg->pipe;
409
410 spin_lock(&pipe->lock);
411 gss_handle_downcall_result(gss_cred, gss_msg);
412 spin_unlock(&pipe->lock);
413 task->tk_status = gss_msg->msg.errno;
414 gss_release_msg(gss_msg);
415 }
416
417 static void gss_encode_v0_msg(struct gss_upcall_msg *gss_msg)
418 {
419 uid_t uid = from_kuid(&init_user_ns, gss_msg->uid);
420 memcpy(gss_msg->databuf, &uid, sizeof(uid));
421 gss_msg->msg.data = gss_msg->databuf;
422 gss_msg->msg.len = sizeof(uid);
423
424 BUILD_BUG_ON(sizeof(uid) > sizeof(gss_msg->databuf));
425 }
426
427 static int gss_encode_v1_msg(struct gss_upcall_msg *gss_msg,
428 const char *service_name,
429 const char *target_name)
430 {
431 struct gss_api_mech *mech = gss_msg->auth->mech;
432 char *p = gss_msg->databuf;
433 size_t buflen = sizeof(gss_msg->databuf);
434 int len;
435
436 len = scnprintf(p, buflen, "mech=%s uid=%d ", mech->gm_name,
437 from_kuid(&init_user_ns, gss_msg->uid));
438 buflen -= len;
439 p += len;
440 gss_msg->msg.len = len;
441 if (target_name) {
442 len = scnprintf(p, buflen, "target=%s ", target_name);
443 buflen -= len;
444 p += len;
445 gss_msg->msg.len += len;
446 }
447 if (service_name != NULL) {
448 len = scnprintf(p, buflen, "service=%s ", service_name);
449 buflen -= len;
450 p += len;
451 gss_msg->msg.len += len;
452 }
453 if (mech->gm_upcall_enctypes) {
454 len = scnprintf(p, buflen, "enctypes=%s ",
455 mech->gm_upcall_enctypes);
456 buflen -= len;
457 p += len;
458 gss_msg->msg.len += len;
459 }
460 len = scnprintf(p, buflen, "\n");
461 if (len == 0)
462 goto out_overflow;
463 gss_msg->msg.len += len;
464
465 gss_msg->msg.data = gss_msg->databuf;
466 return 0;
467 out_overflow:
468 WARN_ON_ONCE(1);
469 return -ENOMEM;
470 }
471
472 static struct gss_upcall_msg *
473 gss_alloc_msg(struct gss_auth *gss_auth,
474 kuid_t uid, const char *service_name)
475 {
476 struct gss_upcall_msg *gss_msg;
477 int vers;
478 int err = -ENOMEM;
479
480 gss_msg = kzalloc(sizeof(*gss_msg), GFP_NOFS);
481 if (gss_msg == NULL)
482 goto err;
483 vers = get_pipe_version(gss_auth->net);
484 err = vers;
485 if (err < 0)
486 goto err_free_msg;
487 gss_msg->pipe = gss_auth->gss_pipe[vers]->pipe;
488 INIT_LIST_HEAD(&gss_msg->list);
489 rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq");
490 init_waitqueue_head(&gss_msg->waitqueue);
491 atomic_set(&gss_msg->count, 1);
492 gss_msg->uid = uid;
493 gss_msg->auth = gss_auth;
494 switch (vers) {
495 case 0:
496 gss_encode_v0_msg(gss_msg);
497 break;
498 default:
499 err = gss_encode_v1_msg(gss_msg, service_name, gss_auth->target_name);
500 if (err)
501 goto err_free_msg;
502 };
503 return gss_msg;
504 err_free_msg:
505 kfree(gss_msg);
506 err:
507 return ERR_PTR(err);
508 }
509
510 static struct gss_upcall_msg *
511 gss_setup_upcall(struct gss_auth *gss_auth, struct rpc_cred *cred)
512 {
513 struct gss_cred *gss_cred = container_of(cred,
514 struct gss_cred, gc_base);
515 struct gss_upcall_msg *gss_new, *gss_msg;
516 kuid_t uid = cred->cr_uid;
517
518 gss_new = gss_alloc_msg(gss_auth, uid, gss_cred->gc_principal);
519 if (IS_ERR(gss_new))
520 return gss_new;
521 gss_msg = gss_add_msg(gss_new);
522 if (gss_msg == gss_new) {
523 int res = rpc_queue_upcall(gss_new->pipe, &gss_new->msg);
524 if (res) {
525 gss_unhash_msg(gss_new);
526 gss_msg = ERR_PTR(res);
527 }
528 } else
529 gss_release_msg(gss_new);
530 return gss_msg;
531 }
532
533 static void warn_gssd(void)
534 {
535 dprintk("AUTH_GSS upcall failed. Please check user daemon is running.\n");
536 }
537
538 static inline int
539 gss_refresh_upcall(struct rpc_task *task)
540 {
541 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
542 struct gss_auth *gss_auth = container_of(cred->cr_auth,
543 struct gss_auth, rpc_auth);
544 struct gss_cred *gss_cred = container_of(cred,
545 struct gss_cred, gc_base);
546 struct gss_upcall_msg *gss_msg;
547 struct rpc_pipe *pipe;
548 int err = 0;
549
550 dprintk("RPC: %5u %s for uid %u\n",
551 task->tk_pid, __func__, from_kuid(&init_user_ns, cred->cr_uid));
552 gss_msg = gss_setup_upcall(gss_auth, cred);
553 if (PTR_ERR(gss_msg) == -EAGAIN) {
554 /* XXX: warning on the first, under the assumption we
555 * shouldn't normally hit this case on a refresh. */
556 warn_gssd();
557 task->tk_timeout = 15*HZ;
558 rpc_sleep_on(&pipe_version_rpc_waitqueue, task, NULL);
559 return -EAGAIN;
560 }
561 if (IS_ERR(gss_msg)) {
562 err = PTR_ERR(gss_msg);
563 goto out;
564 }
565 pipe = gss_msg->pipe;
566 spin_lock(&pipe->lock);
567 if (gss_cred->gc_upcall != NULL)
568 rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL);
569 else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) {
570 task->tk_timeout = 0;
571 gss_cred->gc_upcall = gss_msg;
572 /* gss_upcall_callback will release the reference to gss_upcall_msg */
573 atomic_inc(&gss_msg->count);
574 rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback);
575 } else {
576 gss_handle_downcall_result(gss_cred, gss_msg);
577 err = gss_msg->msg.errno;
578 }
579 spin_unlock(&pipe->lock);
580 gss_release_msg(gss_msg);
581 out:
582 dprintk("RPC: %5u %s for uid %u result %d\n",
583 task->tk_pid, __func__,
584 from_kuid(&init_user_ns, cred->cr_uid), err);
585 return err;
586 }
587
588 static inline int
589 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred)
590 {
591 struct net *net = gss_auth->net;
592 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
593 struct rpc_pipe *pipe;
594 struct rpc_cred *cred = &gss_cred->gc_base;
595 struct gss_upcall_msg *gss_msg;
596 DEFINE_WAIT(wait);
597 int err;
598
599 dprintk("RPC: %s for uid %u\n",
600 __func__, from_kuid(&init_user_ns, cred->cr_uid));
601 retry:
602 err = 0;
603 /* if gssd is down, just skip upcalling altogether */
604 if (!gssd_running(net)) {
605 warn_gssd();
606 return -EACCES;
607 }
608 gss_msg = gss_setup_upcall(gss_auth, cred);
609 if (PTR_ERR(gss_msg) == -EAGAIN) {
610 err = wait_event_interruptible_timeout(pipe_version_waitqueue,
611 sn->pipe_version >= 0, 15 * HZ);
612 if (sn->pipe_version < 0) {
613 warn_gssd();
614 err = -EACCES;
615 }
616 if (err < 0)
617 goto out;
618 goto retry;
619 }
620 if (IS_ERR(gss_msg)) {
621 err = PTR_ERR(gss_msg);
622 goto out;
623 }
624 pipe = gss_msg->pipe;
625 for (;;) {
626 prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_KILLABLE);
627 spin_lock(&pipe->lock);
628 if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) {
629 break;
630 }
631 spin_unlock(&pipe->lock);
632 if (fatal_signal_pending(current)) {
633 err = -ERESTARTSYS;
634 goto out_intr;
635 }
636 schedule();
637 }
638 if (gss_msg->ctx)
639 gss_cred_set_ctx(cred, gss_msg->ctx);
640 else
641 err = gss_msg->msg.errno;
642 spin_unlock(&pipe->lock);
643 out_intr:
644 finish_wait(&gss_msg->waitqueue, &wait);
645 gss_release_msg(gss_msg);
646 out:
647 dprintk("RPC: %s for uid %u result %d\n",
648 __func__, from_kuid(&init_user_ns, cred->cr_uid), err);
649 return err;
650 }
651
652 #define MSG_BUF_MAXSIZE 1024
653
654 static ssize_t
655 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen)
656 {
657 const void *p, *end;
658 void *buf;
659 struct gss_upcall_msg *gss_msg;
660 struct rpc_pipe *pipe = RPC_I(file_inode(filp))->pipe;
661 struct gss_cl_ctx *ctx;
662 uid_t id;
663 kuid_t uid;
664 ssize_t err = -EFBIG;
665
666 if (mlen > MSG_BUF_MAXSIZE)
667 goto out;
668 err = -ENOMEM;
669 buf = kmalloc(mlen, GFP_NOFS);
670 if (!buf)
671 goto out;
672
673 err = -EFAULT;
674 if (copy_from_user(buf, src, mlen))
675 goto err;
676
677 end = (const void *)((char *)buf + mlen);
678 p = simple_get_bytes(buf, end, &id, sizeof(id));
679 if (IS_ERR(p)) {
680 err = PTR_ERR(p);
681 goto err;
682 }
683
684 uid = make_kuid(&init_user_ns, id);
685 if (!uid_valid(uid)) {
686 err = -EINVAL;
687 goto err;
688 }
689
690 err = -ENOMEM;
691 ctx = gss_alloc_context();
692 if (ctx == NULL)
693 goto err;
694
695 err = -ENOENT;
696 /* Find a matching upcall */
697 spin_lock(&pipe->lock);
698 gss_msg = __gss_find_upcall(pipe, uid);
699 if (gss_msg == NULL) {
700 spin_unlock(&pipe->lock);
701 goto err_put_ctx;
702 }
703 list_del_init(&gss_msg->list);
704 spin_unlock(&pipe->lock);
705
706 p = gss_fill_context(p, end, ctx, gss_msg->auth->mech);
707 if (IS_ERR(p)) {
708 err = PTR_ERR(p);
709 switch (err) {
710 case -EACCES:
711 case -EKEYEXPIRED:
712 gss_msg->msg.errno = err;
713 err = mlen;
714 break;
715 case -EFAULT:
716 case -ENOMEM:
717 case -EINVAL:
718 case -ENOSYS:
719 gss_msg->msg.errno = -EAGAIN;
720 break;
721 default:
722 printk(KERN_CRIT "%s: bad return from "
723 "gss_fill_context: %zd\n", __func__, err);
724 BUG();
725 }
726 goto err_release_msg;
727 }
728 gss_msg->ctx = gss_get_ctx(ctx);
729 err = mlen;
730
731 err_release_msg:
732 spin_lock(&pipe->lock);
733 __gss_unhash_msg(gss_msg);
734 spin_unlock(&pipe->lock);
735 gss_release_msg(gss_msg);
736 err_put_ctx:
737 gss_put_ctx(ctx);
738 err:
739 kfree(buf);
740 out:
741 dprintk("RPC: %s returning %Zd\n", __func__, err);
742 return err;
743 }
744
745 static int gss_pipe_open(struct inode *inode, int new_version)
746 {
747 struct net *net = inode->i_sb->s_fs_info;
748 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
749 int ret = 0;
750
751 spin_lock(&pipe_version_lock);
752 if (sn->pipe_version < 0) {
753 /* First open of any gss pipe determines the version: */
754 sn->pipe_version = new_version;
755 rpc_wake_up(&pipe_version_rpc_waitqueue);
756 wake_up(&pipe_version_waitqueue);
757 } else if (sn->pipe_version != new_version) {
758 /* Trying to open a pipe of a different version */
759 ret = -EBUSY;
760 goto out;
761 }
762 atomic_inc(&sn->pipe_users);
763 out:
764 spin_unlock(&pipe_version_lock);
765 return ret;
766
767 }
768
769 static int gss_pipe_open_v0(struct inode *inode)
770 {
771 return gss_pipe_open(inode, 0);
772 }
773
774 static int gss_pipe_open_v1(struct inode *inode)
775 {
776 return gss_pipe_open(inode, 1);
777 }
778
779 static void
780 gss_pipe_release(struct inode *inode)
781 {
782 struct net *net = inode->i_sb->s_fs_info;
783 struct rpc_pipe *pipe = RPC_I(inode)->pipe;
784 struct gss_upcall_msg *gss_msg;
785
786 restart:
787 spin_lock(&pipe->lock);
788 list_for_each_entry(gss_msg, &pipe->in_downcall, list) {
789
790 if (!list_empty(&gss_msg->msg.list))
791 continue;
792 gss_msg->msg.errno = -EPIPE;
793 atomic_inc(&gss_msg->count);
794 __gss_unhash_msg(gss_msg);
795 spin_unlock(&pipe->lock);
796 gss_release_msg(gss_msg);
797 goto restart;
798 }
799 spin_unlock(&pipe->lock);
800
801 put_pipe_version(net);
802 }
803
804 static void
805 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg)
806 {
807 struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg);
808
809 if (msg->errno < 0) {
810 dprintk("RPC: %s releasing msg %p\n",
811 __func__, gss_msg);
812 atomic_inc(&gss_msg->count);
813 gss_unhash_msg(gss_msg);
814 if (msg->errno == -ETIMEDOUT)
815 warn_gssd();
816 gss_release_msg(gss_msg);
817 }
818 }
819
820 static void gss_pipe_dentry_destroy(struct dentry *dir,
821 struct rpc_pipe_dir_object *pdo)
822 {
823 struct gss_pipe *gss_pipe = pdo->pdo_data;
824 struct rpc_pipe *pipe = gss_pipe->pipe;
825
826 if (pipe->dentry != NULL) {
827 rpc_unlink(pipe->dentry);
828 pipe->dentry = NULL;
829 }
830 }
831
832 static int gss_pipe_dentry_create(struct dentry *dir,
833 struct rpc_pipe_dir_object *pdo)
834 {
835 struct gss_pipe *p = pdo->pdo_data;
836 struct dentry *dentry;
837
838 dentry = rpc_mkpipe_dentry(dir, p->name, p->clnt, p->pipe);
839 if (IS_ERR(dentry))
840 return PTR_ERR(dentry);
841 p->pipe->dentry = dentry;
842 return 0;
843 }
844
845 static const struct rpc_pipe_dir_object_ops gss_pipe_dir_object_ops = {
846 .create = gss_pipe_dentry_create,
847 .destroy = gss_pipe_dentry_destroy,
848 };
849
850 static struct gss_pipe *gss_pipe_alloc(struct rpc_clnt *clnt,
851 const char *name,
852 const struct rpc_pipe_ops *upcall_ops)
853 {
854 struct gss_pipe *p;
855 int err = -ENOMEM;
856
857 p = kmalloc(sizeof(*p), GFP_KERNEL);
858 if (p == NULL)
859 goto err;
860 p->pipe = rpc_mkpipe_data(upcall_ops, RPC_PIPE_WAIT_FOR_OPEN);
861 if (IS_ERR(p->pipe)) {
862 err = PTR_ERR(p->pipe);
863 goto err_free_gss_pipe;
864 }
865 p->name = name;
866 p->clnt = clnt;
867 kref_init(&p->kref);
868 rpc_init_pipe_dir_object(&p->pdo,
869 &gss_pipe_dir_object_ops,
870 p);
871 return p;
872 err_free_gss_pipe:
873 kfree(p);
874 err:
875 return ERR_PTR(err);
876 }
877
878 struct gss_alloc_pdo {
879 struct rpc_clnt *clnt;
880 const char *name;
881 const struct rpc_pipe_ops *upcall_ops;
882 };
883
884 static int gss_pipe_match_pdo(struct rpc_pipe_dir_object *pdo, void *data)
885 {
886 struct gss_pipe *gss_pipe;
887 struct gss_alloc_pdo *args = data;
888
889 if (pdo->pdo_ops != &gss_pipe_dir_object_ops)
890 return 0;
891 gss_pipe = container_of(pdo, struct gss_pipe, pdo);
892 if (strcmp(gss_pipe->name, args->name) != 0)
893 return 0;
894 if (!kref_get_unless_zero(&gss_pipe->kref))
895 return 0;
896 return 1;
897 }
898
899 static struct rpc_pipe_dir_object *gss_pipe_alloc_pdo(void *data)
900 {
901 struct gss_pipe *gss_pipe;
902 struct gss_alloc_pdo *args = data;
903
904 gss_pipe = gss_pipe_alloc(args->clnt, args->name, args->upcall_ops);
905 if (!IS_ERR(gss_pipe))
906 return &gss_pipe->pdo;
907 return NULL;
908 }
909
910 static struct gss_pipe *gss_pipe_get(struct rpc_clnt *clnt,
911 const char *name,
912 const struct rpc_pipe_ops *upcall_ops)
913 {
914 struct net *net = rpc_net_ns(clnt);
915 struct rpc_pipe_dir_object *pdo;
916 struct gss_alloc_pdo args = {
917 .clnt = clnt,
918 .name = name,
919 .upcall_ops = upcall_ops,
920 };
921
922 pdo = rpc_find_or_alloc_pipe_dir_object(net,
923 &clnt->cl_pipedir_objects,
924 gss_pipe_match_pdo,
925 gss_pipe_alloc_pdo,
926 &args);
927 if (pdo != NULL)
928 return container_of(pdo, struct gss_pipe, pdo);
929 return ERR_PTR(-ENOMEM);
930 }
931
932 static void __gss_pipe_free(struct gss_pipe *p)
933 {
934 struct rpc_clnt *clnt = p->clnt;
935 struct net *net = rpc_net_ns(clnt);
936
937 rpc_remove_pipe_dir_object(net,
938 &clnt->cl_pipedir_objects,
939 &p->pdo);
940 rpc_destroy_pipe_data(p->pipe);
941 kfree(p);
942 }
943
944 static void __gss_pipe_release(struct kref *kref)
945 {
946 struct gss_pipe *p = container_of(kref, struct gss_pipe, kref);
947
948 __gss_pipe_free(p);
949 }
950
951 static void gss_pipe_free(struct gss_pipe *p)
952 {
953 if (p != NULL)
954 kref_put(&p->kref, __gss_pipe_release);
955 }
956
957 /*
958 * NOTE: we have the opportunity to use different
959 * parameters based on the input flavor (which must be a pseudoflavor)
960 */
961 static struct gss_auth *
962 gss_create_new(struct rpc_auth_create_args *args, struct rpc_clnt *clnt)
963 {
964 rpc_authflavor_t flavor = args->pseudoflavor;
965 struct gss_auth *gss_auth;
966 struct gss_pipe *gss_pipe;
967 struct rpc_auth * auth;
968 int err = -ENOMEM; /* XXX? */
969
970 dprintk("RPC: creating GSS authenticator for client %p\n", clnt);
971
972 if (!try_module_get(THIS_MODULE))
973 return ERR_PTR(err);
974 if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL)))
975 goto out_dec;
976 INIT_HLIST_NODE(&gss_auth->hash);
977 gss_auth->target_name = NULL;
978 if (args->target_name) {
979 gss_auth->target_name = kstrdup(args->target_name, GFP_KERNEL);
980 if (gss_auth->target_name == NULL)
981 goto err_free;
982 }
983 gss_auth->client = clnt;
984 gss_auth->net = get_net(rpc_net_ns(clnt));
985 err = -EINVAL;
986 gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor);
987 if (!gss_auth->mech) {
988 dprintk("RPC: Pseudoflavor %d not found!\n", flavor);
989 goto err_put_net;
990 }
991 gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor);
992 if (gss_auth->service == 0)
993 goto err_put_mech;
994 auth = &gss_auth->rpc_auth;
995 auth->au_cslack = GSS_CRED_SLACK >> 2;
996 auth->au_rslack = GSS_VERF_SLACK >> 2;
997 auth->au_ops = &authgss_ops;
998 auth->au_flavor = flavor;
999 atomic_set(&auth->au_count, 1);
1000 kref_init(&gss_auth->kref);
1001
1002 err = rpcauth_init_credcache(auth);
1003 if (err)
1004 goto err_put_mech;
1005 /*
1006 * Note: if we created the old pipe first, then someone who
1007 * examined the directory at the right moment might conclude
1008 * that we supported only the old pipe. So we instead create
1009 * the new pipe first.
1010 */
1011 gss_pipe = gss_pipe_get(clnt, "gssd", &gss_upcall_ops_v1);
1012 if (IS_ERR(gss_pipe)) {
1013 err = PTR_ERR(gss_pipe);
1014 goto err_destroy_credcache;
1015 }
1016 gss_auth->gss_pipe[1] = gss_pipe;
1017
1018 gss_pipe = gss_pipe_get(clnt, gss_auth->mech->gm_name,
1019 &gss_upcall_ops_v0);
1020 if (IS_ERR(gss_pipe)) {
1021 err = PTR_ERR(gss_pipe);
1022 goto err_destroy_pipe_1;
1023 }
1024 gss_auth->gss_pipe[0] = gss_pipe;
1025
1026 return gss_auth;
1027 err_destroy_pipe_1:
1028 gss_pipe_free(gss_auth->gss_pipe[1]);
1029 err_destroy_credcache:
1030 rpcauth_destroy_credcache(auth);
1031 err_put_mech:
1032 gss_mech_put(gss_auth->mech);
1033 err_put_net:
1034 put_net(gss_auth->net);
1035 err_free:
1036 kfree(gss_auth->target_name);
1037 kfree(gss_auth);
1038 out_dec:
1039 module_put(THIS_MODULE);
1040 return ERR_PTR(err);
1041 }
1042
1043 static void
1044 gss_free(struct gss_auth *gss_auth)
1045 {
1046 gss_pipe_free(gss_auth->gss_pipe[0]);
1047 gss_pipe_free(gss_auth->gss_pipe[1]);
1048 gss_mech_put(gss_auth->mech);
1049 put_net(gss_auth->net);
1050 kfree(gss_auth->target_name);
1051
1052 kfree(gss_auth);
1053 module_put(THIS_MODULE);
1054 }
1055
1056 static void
1057 gss_free_callback(struct kref *kref)
1058 {
1059 struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref);
1060
1061 gss_free(gss_auth);
1062 }
1063
1064 static void
1065 gss_destroy(struct rpc_auth *auth)
1066 {
1067 struct gss_auth *gss_auth = container_of(auth,
1068 struct gss_auth, rpc_auth);
1069
1070 dprintk("RPC: destroying GSS authenticator %p flavor %d\n",
1071 auth, auth->au_flavor);
1072
1073 if (hash_hashed(&gss_auth->hash)) {
1074 spin_lock(&gss_auth_hash_lock);
1075 hash_del(&gss_auth->hash);
1076 spin_unlock(&gss_auth_hash_lock);
1077 }
1078
1079 gss_pipe_free(gss_auth->gss_pipe[0]);
1080 gss_auth->gss_pipe[0] = NULL;
1081 gss_pipe_free(gss_auth->gss_pipe[1]);
1082 gss_auth->gss_pipe[1] = NULL;
1083 rpcauth_destroy_credcache(auth);
1084
1085 kref_put(&gss_auth->kref, gss_free_callback);
1086 }
1087
1088 /*
1089 * Auths may be shared between rpc clients that were cloned from a
1090 * common client with the same xprt, if they also share the flavor and
1091 * target_name.
1092 *
1093 * The auth is looked up from the oldest parent sharing the same
1094 * cl_xprt, and the auth itself references only that common parent
1095 * (which is guaranteed to last as long as any of its descendants).
1096 */
1097 static struct gss_auth *
1098 gss_auth_find_or_add_hashed(struct rpc_auth_create_args *args,
1099 struct rpc_clnt *clnt,
1100 struct gss_auth *new)
1101 {
1102 struct gss_auth *gss_auth;
1103 unsigned long hashval = (unsigned long)clnt;
1104
1105 spin_lock(&gss_auth_hash_lock);
1106 hash_for_each_possible(gss_auth_hash_table,
1107 gss_auth,
1108 hash,
1109 hashval) {
1110 if (gss_auth->client != clnt)
1111 continue;
1112 if (gss_auth->rpc_auth.au_flavor != args->pseudoflavor)
1113 continue;
1114 if (gss_auth->target_name != args->target_name) {
1115 if (gss_auth->target_name == NULL)
1116 continue;
1117 if (args->target_name == NULL)
1118 continue;
1119 if (strcmp(gss_auth->target_name, args->target_name))
1120 continue;
1121 }
1122 if (!atomic_inc_not_zero(&gss_auth->rpc_auth.au_count))
1123 continue;
1124 goto out;
1125 }
1126 if (new)
1127 hash_add(gss_auth_hash_table, &new->hash, hashval);
1128 gss_auth = new;
1129 out:
1130 spin_unlock(&gss_auth_hash_lock);
1131 return gss_auth;
1132 }
1133
1134 static struct gss_auth *
1135 gss_create_hashed(struct rpc_auth_create_args *args, struct rpc_clnt *clnt)
1136 {
1137 struct gss_auth *gss_auth;
1138 struct gss_auth *new;
1139
1140 gss_auth = gss_auth_find_or_add_hashed(args, clnt, NULL);
1141 if (gss_auth != NULL)
1142 goto out;
1143 new = gss_create_new(args, clnt);
1144 if (IS_ERR(new))
1145 return new;
1146 gss_auth = gss_auth_find_or_add_hashed(args, clnt, new);
1147 if (gss_auth != new)
1148 gss_destroy(&new->rpc_auth);
1149 out:
1150 return gss_auth;
1151 }
1152
1153 static struct rpc_auth *
1154 gss_create(struct rpc_auth_create_args *args, struct rpc_clnt *clnt)
1155 {
1156 struct gss_auth *gss_auth;
1157 struct rpc_xprt *xprt = rcu_access_pointer(clnt->cl_xprt);
1158
1159 while (clnt != clnt->cl_parent) {
1160 struct rpc_clnt *parent = clnt->cl_parent;
1161 /* Find the original parent for this transport */
1162 if (rcu_access_pointer(parent->cl_xprt) != xprt)
1163 break;
1164 clnt = parent;
1165 }
1166
1167 gss_auth = gss_create_hashed(args, clnt);
1168 if (IS_ERR(gss_auth))
1169 return ERR_CAST(gss_auth);
1170 return &gss_auth->rpc_auth;
1171 }
1172
1173 /*
1174 * gss_destroying_context will cause the RPCSEC_GSS to send a NULL RPC call
1175 * to the server with the GSS control procedure field set to
1176 * RPC_GSS_PROC_DESTROY. This should normally cause the server to release
1177 * all RPCSEC_GSS state associated with that context.
1178 */
1179 static int
1180 gss_destroying_context(struct rpc_cred *cred)
1181 {
1182 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
1183 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
1184 struct rpc_task *task;
1185
1186 if (gss_cred->gc_ctx == NULL ||
1187 test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) == 0)
1188 return 0;
1189
1190 gss_cred->gc_ctx->gc_proc = RPC_GSS_PROC_DESTROY;
1191 cred->cr_ops = &gss_nullops;
1192
1193 /* Take a reference to ensure the cred will be destroyed either
1194 * by the RPC call or by the put_rpccred() below */
1195 get_rpccred(cred);
1196
1197 task = rpc_call_null(gss_auth->client, cred, RPC_TASK_ASYNC|RPC_TASK_SOFT);
1198 if (!IS_ERR(task))
1199 rpc_put_task(task);
1200
1201 put_rpccred(cred);
1202 return 1;
1203 }
1204
1205 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure
1206 * to create a new cred or context, so they check that things have been
1207 * allocated before freeing them. */
1208 static void
1209 gss_do_free_ctx(struct gss_cl_ctx *ctx)
1210 {
1211 dprintk("RPC: %s\n", __func__);
1212
1213 gss_delete_sec_context(&ctx->gc_gss_ctx);
1214 kfree(ctx->gc_wire_ctx.data);
1215 kfree(ctx);
1216 }
1217
1218 static void
1219 gss_free_ctx_callback(struct rcu_head *head)
1220 {
1221 struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu);
1222 gss_do_free_ctx(ctx);
1223 }
1224
1225 static void
1226 gss_free_ctx(struct gss_cl_ctx *ctx)
1227 {
1228 call_rcu(&ctx->gc_rcu, gss_free_ctx_callback);
1229 }
1230
1231 static void
1232 gss_free_cred(struct gss_cred *gss_cred)
1233 {
1234 dprintk("RPC: %s cred=%p\n", __func__, gss_cred);
1235 kfree(gss_cred);
1236 }
1237
1238 static void
1239 gss_free_cred_callback(struct rcu_head *head)
1240 {
1241 struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu);
1242 gss_free_cred(gss_cred);
1243 }
1244
1245 static void
1246 gss_destroy_nullcred(struct rpc_cred *cred)
1247 {
1248 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
1249 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
1250 struct gss_cl_ctx *ctx = gss_cred->gc_ctx;
1251
1252 RCU_INIT_POINTER(gss_cred->gc_ctx, NULL);
1253 call_rcu(&cred->cr_rcu, gss_free_cred_callback);
1254 if (ctx)
1255 gss_put_ctx(ctx);
1256 kref_put(&gss_auth->kref, gss_free_callback);
1257 }
1258
1259 static void
1260 gss_destroy_cred(struct rpc_cred *cred)
1261 {
1262
1263 if (gss_destroying_context(cred))
1264 return;
1265 gss_destroy_nullcred(cred);
1266 }
1267
1268 /*
1269 * Lookup RPCSEC_GSS cred for the current process
1270 */
1271 static struct rpc_cred *
1272 gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
1273 {
1274 return rpcauth_lookup_credcache(auth, acred, flags);
1275 }
1276
1277 static struct rpc_cred *
1278 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
1279 {
1280 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
1281 struct gss_cred *cred = NULL;
1282 int err = -ENOMEM;
1283
1284 dprintk("RPC: %s for uid %d, flavor %d\n",
1285 __func__, from_kuid(&init_user_ns, acred->uid),
1286 auth->au_flavor);
1287
1288 if (!(cred = kzalloc(sizeof(*cred), GFP_NOFS)))
1289 goto out_err;
1290
1291 rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops);
1292 /*
1293 * Note: in order to force a call to call_refresh(), we deliberately
1294 * fail to flag the credential as RPCAUTH_CRED_UPTODATE.
1295 */
1296 cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW;
1297 cred->gc_service = gss_auth->service;
1298 cred->gc_principal = NULL;
1299 if (acred->machine_cred)
1300 cred->gc_principal = acred->principal;
1301 kref_get(&gss_auth->kref);
1302 return &cred->gc_base;
1303
1304 out_err:
1305 dprintk("RPC: %s failed with error %d\n", __func__, err);
1306 return ERR_PTR(err);
1307 }
1308
1309 static int
1310 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred)
1311 {
1312 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
1313 struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base);
1314 int err;
1315
1316 do {
1317 err = gss_create_upcall(gss_auth, gss_cred);
1318 } while (err == -EAGAIN);
1319 return err;
1320 }
1321
1322 /*
1323 * Returns -EACCES if GSS context is NULL or will expire within the
1324 * timeout (miliseconds)
1325 */
1326 static int
1327 gss_key_timeout(struct rpc_cred *rc)
1328 {
1329 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
1330 unsigned long now = jiffies;
1331 unsigned long expire;
1332
1333 if (gss_cred->gc_ctx == NULL)
1334 return -EACCES;
1335
1336 expire = gss_cred->gc_ctx->gc_expiry - (gss_key_expire_timeo * HZ);
1337
1338 if (time_after(now, expire))
1339 return -EACCES;
1340 return 0;
1341 }
1342
1343 static int
1344 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags)
1345 {
1346 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
1347 int ret;
1348
1349 if (test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags))
1350 goto out;
1351 /* Don't match with creds that have expired. */
1352 if (time_after(jiffies, gss_cred->gc_ctx->gc_expiry))
1353 return 0;
1354 if (!test_bit(RPCAUTH_CRED_UPTODATE, &rc->cr_flags))
1355 return 0;
1356 out:
1357 if (acred->principal != NULL) {
1358 if (gss_cred->gc_principal == NULL)
1359 return 0;
1360 ret = strcmp(acred->principal, gss_cred->gc_principal) == 0;
1361 goto check_expire;
1362 }
1363 if (gss_cred->gc_principal != NULL)
1364 return 0;
1365 ret = uid_eq(rc->cr_uid, acred->uid);
1366
1367 check_expire:
1368 if (ret == 0)
1369 return ret;
1370
1371 /* Notify acred users of GSS context expiration timeout */
1372 if (test_bit(RPC_CRED_NOTIFY_TIMEOUT, &acred->ac_flags) &&
1373 (gss_key_timeout(rc) != 0)) {
1374 /* test will now be done from generic cred */
1375 test_and_clear_bit(RPC_CRED_NOTIFY_TIMEOUT, &acred->ac_flags);
1376 /* tell NFS layer that key will expire soon */
1377 set_bit(RPC_CRED_KEY_EXPIRE_SOON, &acred->ac_flags);
1378 }
1379 return ret;
1380 }
1381
1382 /*
1383 * Marshal credentials.
1384 * Maybe we should keep a cached credential for performance reasons.
1385 */
1386 static __be32 *
1387 gss_marshal(struct rpc_task *task, __be32 *p)
1388 {
1389 struct rpc_rqst *req = task->tk_rqstp;
1390 struct rpc_cred *cred = req->rq_cred;
1391 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1392 gc_base);
1393 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1394 __be32 *cred_len;
1395 u32 maj_stat = 0;
1396 struct xdr_netobj mic;
1397 struct kvec iov;
1398 struct xdr_buf verf_buf;
1399
1400 dprintk("RPC: %5u %s\n", task->tk_pid, __func__);
1401
1402 *p++ = htonl(RPC_AUTH_GSS);
1403 cred_len = p++;
1404
1405 spin_lock(&ctx->gc_seq_lock);
1406 req->rq_seqno = ctx->gc_seq++;
1407 spin_unlock(&ctx->gc_seq_lock);
1408
1409 *p++ = htonl((u32) RPC_GSS_VERSION);
1410 *p++ = htonl((u32) ctx->gc_proc);
1411 *p++ = htonl((u32) req->rq_seqno);
1412 *p++ = htonl((u32) gss_cred->gc_service);
1413 p = xdr_encode_netobj(p, &ctx->gc_wire_ctx);
1414 *cred_len = htonl((p - (cred_len + 1)) << 2);
1415
1416 /* We compute the checksum for the verifier over the xdr-encoded bytes
1417 * starting with the xid and ending at the end of the credential: */
1418 iov.iov_base = xprt_skip_transport_header(req->rq_xprt,
1419 req->rq_snd_buf.head[0].iov_base);
1420 iov.iov_len = (u8 *)p - (u8 *)iov.iov_base;
1421 xdr_buf_from_iov(&iov, &verf_buf);
1422
1423 /* set verifier flavor*/
1424 *p++ = htonl(RPC_AUTH_GSS);
1425
1426 mic.data = (u8 *)(p + 1);
1427 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1428 if (maj_stat == GSS_S_CONTEXT_EXPIRED) {
1429 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1430 } else if (maj_stat != 0) {
1431 printk("gss_marshal: gss_get_mic FAILED (%d)\n", maj_stat);
1432 goto out_put_ctx;
1433 }
1434 p = xdr_encode_opaque(p, NULL, mic.len);
1435 gss_put_ctx(ctx);
1436 return p;
1437 out_put_ctx:
1438 gss_put_ctx(ctx);
1439 return NULL;
1440 }
1441
1442 static int gss_renew_cred(struct rpc_task *task)
1443 {
1444 struct rpc_cred *oldcred = task->tk_rqstp->rq_cred;
1445 struct gss_cred *gss_cred = container_of(oldcred,
1446 struct gss_cred,
1447 gc_base);
1448 struct rpc_auth *auth = oldcred->cr_auth;
1449 struct auth_cred acred = {
1450 .uid = oldcred->cr_uid,
1451 .principal = gss_cred->gc_principal,
1452 .machine_cred = (gss_cred->gc_principal != NULL ? 1 : 0),
1453 };
1454 struct rpc_cred *new;
1455
1456 new = gss_lookup_cred(auth, &acred, RPCAUTH_LOOKUP_NEW);
1457 if (IS_ERR(new))
1458 return PTR_ERR(new);
1459 task->tk_rqstp->rq_cred = new;
1460 put_rpccred(oldcred);
1461 return 0;
1462 }
1463
1464 static int gss_cred_is_negative_entry(struct rpc_cred *cred)
1465 {
1466 if (test_bit(RPCAUTH_CRED_NEGATIVE, &cred->cr_flags)) {
1467 unsigned long now = jiffies;
1468 unsigned long begin, expire;
1469 struct gss_cred *gss_cred;
1470
1471 gss_cred = container_of(cred, struct gss_cred, gc_base);
1472 begin = gss_cred->gc_upcall_timestamp;
1473 expire = begin + gss_expired_cred_retry_delay * HZ;
1474
1475 if (time_in_range_open(now, begin, expire))
1476 return 1;
1477 }
1478 return 0;
1479 }
1480
1481 /*
1482 * Refresh credentials. XXX - finish
1483 */
1484 static int
1485 gss_refresh(struct rpc_task *task)
1486 {
1487 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1488 int ret = 0;
1489
1490 if (gss_cred_is_negative_entry(cred))
1491 return -EKEYEXPIRED;
1492
1493 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags) &&
1494 !test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags)) {
1495 ret = gss_renew_cred(task);
1496 if (ret < 0)
1497 goto out;
1498 cred = task->tk_rqstp->rq_cred;
1499 }
1500
1501 if (test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
1502 ret = gss_refresh_upcall(task);
1503 out:
1504 return ret;
1505 }
1506
1507 /* Dummy refresh routine: used only when destroying the context */
1508 static int
1509 gss_refresh_null(struct rpc_task *task)
1510 {
1511 return 0;
1512 }
1513
1514 static __be32 *
1515 gss_validate(struct rpc_task *task, __be32 *p)
1516 {
1517 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1518 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1519 __be32 seq;
1520 struct kvec iov;
1521 struct xdr_buf verf_buf;
1522 struct xdr_netobj mic;
1523 u32 flav,len;
1524 u32 maj_stat;
1525 __be32 *ret = ERR_PTR(-EIO);
1526
1527 dprintk("RPC: %5u %s\n", task->tk_pid, __func__);
1528
1529 flav = ntohl(*p++);
1530 if ((len = ntohl(*p++)) > RPC_MAX_AUTH_SIZE)
1531 goto out_bad;
1532 if (flav != RPC_AUTH_GSS)
1533 goto out_bad;
1534 seq = htonl(task->tk_rqstp->rq_seqno);
1535 iov.iov_base = &seq;
1536 iov.iov_len = sizeof(seq);
1537 xdr_buf_from_iov(&iov, &verf_buf);
1538 mic.data = (u8 *)p;
1539 mic.len = len;
1540
1541 ret = ERR_PTR(-EACCES);
1542 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1543 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1544 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1545 if (maj_stat) {
1546 dprintk("RPC: %5u %s: gss_verify_mic returned error 0x%08x\n",
1547 task->tk_pid, __func__, maj_stat);
1548 goto out_bad;
1549 }
1550 /* We leave it to unwrap to calculate au_rslack. For now we just
1551 * calculate the length of the verifier: */
1552 cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2;
1553 gss_put_ctx(ctx);
1554 dprintk("RPC: %5u %s: gss_verify_mic succeeded.\n",
1555 task->tk_pid, __func__);
1556 return p + XDR_QUADLEN(len);
1557 out_bad:
1558 gss_put_ctx(ctx);
1559 dprintk("RPC: %5u %s failed ret %ld.\n", task->tk_pid, __func__,
1560 PTR_ERR(ret));
1561 return ret;
1562 }
1563
1564 static void gss_wrap_req_encode(kxdreproc_t encode, struct rpc_rqst *rqstp,
1565 __be32 *p, void *obj)
1566 {
1567 struct xdr_stream xdr;
1568
1569 xdr_init_encode(&xdr, &rqstp->rq_snd_buf, p);
1570 encode(rqstp, &xdr, obj);
1571 }
1572
1573 static inline int
1574 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1575 kxdreproc_t encode, struct rpc_rqst *rqstp,
1576 __be32 *p, void *obj)
1577 {
1578 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1579 struct xdr_buf integ_buf;
1580 __be32 *integ_len = NULL;
1581 struct xdr_netobj mic;
1582 u32 offset;
1583 __be32 *q;
1584 struct kvec *iov;
1585 u32 maj_stat = 0;
1586 int status = -EIO;
1587
1588 integ_len = p++;
1589 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1590 *p++ = htonl(rqstp->rq_seqno);
1591
1592 gss_wrap_req_encode(encode, rqstp, p, obj);
1593
1594 if (xdr_buf_subsegment(snd_buf, &integ_buf,
1595 offset, snd_buf->len - offset))
1596 return status;
1597 *integ_len = htonl(integ_buf.len);
1598
1599 /* guess whether we're in the head or the tail: */
1600 if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1601 iov = snd_buf->tail;
1602 else
1603 iov = snd_buf->head;
1604 p = iov->iov_base + iov->iov_len;
1605 mic.data = (u8 *)(p + 1);
1606
1607 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1608 status = -EIO; /* XXX? */
1609 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1610 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1611 else if (maj_stat)
1612 return status;
1613 q = xdr_encode_opaque(p, NULL, mic.len);
1614
1615 offset = (u8 *)q - (u8 *)p;
1616 iov->iov_len += offset;
1617 snd_buf->len += offset;
1618 return 0;
1619 }
1620
1621 static void
1622 priv_release_snd_buf(struct rpc_rqst *rqstp)
1623 {
1624 int i;
1625
1626 for (i=0; i < rqstp->rq_enc_pages_num; i++)
1627 __free_page(rqstp->rq_enc_pages[i]);
1628 kfree(rqstp->rq_enc_pages);
1629 }
1630
1631 static int
1632 alloc_enc_pages(struct rpc_rqst *rqstp)
1633 {
1634 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1635 int first, last, i;
1636
1637 if (snd_buf->page_len == 0) {
1638 rqstp->rq_enc_pages_num = 0;
1639 return 0;
1640 }
1641
1642 first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1643 last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_CACHE_SHIFT;
1644 rqstp->rq_enc_pages_num = last - first + 1 + 1;
1645 rqstp->rq_enc_pages
1646 = kmalloc(rqstp->rq_enc_pages_num * sizeof(struct page *),
1647 GFP_NOFS);
1648 if (!rqstp->rq_enc_pages)
1649 goto out;
1650 for (i=0; i < rqstp->rq_enc_pages_num; i++) {
1651 rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS);
1652 if (rqstp->rq_enc_pages[i] == NULL)
1653 goto out_free;
1654 }
1655 rqstp->rq_release_snd_buf = priv_release_snd_buf;
1656 return 0;
1657 out_free:
1658 rqstp->rq_enc_pages_num = i;
1659 priv_release_snd_buf(rqstp);
1660 out:
1661 return -EAGAIN;
1662 }
1663
1664 static inline int
1665 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1666 kxdreproc_t encode, struct rpc_rqst *rqstp,
1667 __be32 *p, void *obj)
1668 {
1669 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1670 u32 offset;
1671 u32 maj_stat;
1672 int status;
1673 __be32 *opaque_len;
1674 struct page **inpages;
1675 int first;
1676 int pad;
1677 struct kvec *iov;
1678 char *tmp;
1679
1680 opaque_len = p++;
1681 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1682 *p++ = htonl(rqstp->rq_seqno);
1683
1684 gss_wrap_req_encode(encode, rqstp, p, obj);
1685
1686 status = alloc_enc_pages(rqstp);
1687 if (status)
1688 return status;
1689 first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1690 inpages = snd_buf->pages + first;
1691 snd_buf->pages = rqstp->rq_enc_pages;
1692 snd_buf->page_base -= first << PAGE_CACHE_SHIFT;
1693 /*
1694 * Give the tail its own page, in case we need extra space in the
1695 * head when wrapping:
1696 *
1697 * call_allocate() allocates twice the slack space required
1698 * by the authentication flavor to rq_callsize.
1699 * For GSS, slack is GSS_CRED_SLACK.
1700 */
1701 if (snd_buf->page_len || snd_buf->tail[0].iov_len) {
1702 tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]);
1703 memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len);
1704 snd_buf->tail[0].iov_base = tmp;
1705 }
1706 maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages);
1707 /* slack space should prevent this ever happening: */
1708 BUG_ON(snd_buf->len > snd_buf->buflen);
1709 status = -EIO;
1710 /* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was
1711 * done anyway, so it's safe to put the request on the wire: */
1712 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1713 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1714 else if (maj_stat)
1715 return status;
1716
1717 *opaque_len = htonl(snd_buf->len - offset);
1718 /* guess whether we're in the head or the tail: */
1719 if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1720 iov = snd_buf->tail;
1721 else
1722 iov = snd_buf->head;
1723 p = iov->iov_base + iov->iov_len;
1724 pad = 3 - ((snd_buf->len - offset - 1) & 3);
1725 memset(p, 0, pad);
1726 iov->iov_len += pad;
1727 snd_buf->len += pad;
1728
1729 return 0;
1730 }
1731
1732 static int
1733 gss_wrap_req(struct rpc_task *task,
1734 kxdreproc_t encode, void *rqstp, __be32 *p, void *obj)
1735 {
1736 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1737 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1738 gc_base);
1739 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1740 int status = -EIO;
1741
1742 dprintk("RPC: %5u %s\n", task->tk_pid, __func__);
1743 if (ctx->gc_proc != RPC_GSS_PROC_DATA) {
1744 /* The spec seems a little ambiguous here, but I think that not
1745 * wrapping context destruction requests makes the most sense.
1746 */
1747 gss_wrap_req_encode(encode, rqstp, p, obj);
1748 status = 0;
1749 goto out;
1750 }
1751 switch (gss_cred->gc_service) {
1752 case RPC_GSS_SVC_NONE:
1753 gss_wrap_req_encode(encode, rqstp, p, obj);
1754 status = 0;
1755 break;
1756 case RPC_GSS_SVC_INTEGRITY:
1757 status = gss_wrap_req_integ(cred, ctx, encode, rqstp, p, obj);
1758 break;
1759 case RPC_GSS_SVC_PRIVACY:
1760 status = gss_wrap_req_priv(cred, ctx, encode, rqstp, p, obj);
1761 break;
1762 }
1763 out:
1764 gss_put_ctx(ctx);
1765 dprintk("RPC: %5u %s returning %d\n", task->tk_pid, __func__, status);
1766 return status;
1767 }
1768
1769 static inline int
1770 gss_unwrap_resp_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1771 struct rpc_rqst *rqstp, __be32 **p)
1772 {
1773 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf;
1774 struct xdr_buf integ_buf;
1775 struct xdr_netobj mic;
1776 u32 data_offset, mic_offset;
1777 u32 integ_len;
1778 u32 maj_stat;
1779 int status = -EIO;
1780
1781 integ_len = ntohl(*(*p)++);
1782 if (integ_len & 3)
1783 return status;
1784 data_offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1785 mic_offset = integ_len + data_offset;
1786 if (mic_offset > rcv_buf->len)
1787 return status;
1788 if (ntohl(*(*p)++) != rqstp->rq_seqno)
1789 return status;
1790
1791 if (xdr_buf_subsegment(rcv_buf, &integ_buf, data_offset,
1792 mic_offset - data_offset))
1793 return status;
1794
1795 if (xdr_buf_read_netobj(rcv_buf, &mic, mic_offset))
1796 return status;
1797
1798 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1799 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1800 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1801 if (maj_stat != GSS_S_COMPLETE)
1802 return status;
1803 return 0;
1804 }
1805
1806 static inline int
1807 gss_unwrap_resp_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1808 struct rpc_rqst *rqstp, __be32 **p)
1809 {
1810 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf;
1811 u32 offset;
1812 u32 opaque_len;
1813 u32 maj_stat;
1814 int status = -EIO;
1815
1816 opaque_len = ntohl(*(*p)++);
1817 offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1818 if (offset + opaque_len > rcv_buf->len)
1819 return status;
1820 /* remove padding: */
1821 rcv_buf->len = offset + opaque_len;
1822
1823 maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, rcv_buf);
1824 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1825 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1826 if (maj_stat != GSS_S_COMPLETE)
1827 return status;
1828 if (ntohl(*(*p)++) != rqstp->rq_seqno)
1829 return status;
1830
1831 return 0;
1832 }
1833
1834 static int
1835 gss_unwrap_req_decode(kxdrdproc_t decode, struct rpc_rqst *rqstp,
1836 __be32 *p, void *obj)
1837 {
1838 struct xdr_stream xdr;
1839
1840 xdr_init_decode(&xdr, &rqstp->rq_rcv_buf, p);
1841 return decode(rqstp, &xdr, obj);
1842 }
1843
1844 static int
1845 gss_unwrap_resp(struct rpc_task *task,
1846 kxdrdproc_t decode, void *rqstp, __be32 *p, void *obj)
1847 {
1848 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1849 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1850 gc_base);
1851 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1852 __be32 *savedp = p;
1853 struct kvec *head = ((struct rpc_rqst *)rqstp)->rq_rcv_buf.head;
1854 int savedlen = head->iov_len;
1855 int status = -EIO;
1856
1857 if (ctx->gc_proc != RPC_GSS_PROC_DATA)
1858 goto out_decode;
1859 switch (gss_cred->gc_service) {
1860 case RPC_GSS_SVC_NONE:
1861 break;
1862 case RPC_GSS_SVC_INTEGRITY:
1863 status = gss_unwrap_resp_integ(cred, ctx, rqstp, &p);
1864 if (status)
1865 goto out;
1866 break;
1867 case RPC_GSS_SVC_PRIVACY:
1868 status = gss_unwrap_resp_priv(cred, ctx, rqstp, &p);
1869 if (status)
1870 goto out;
1871 break;
1872 }
1873 /* take into account extra slack for integrity and privacy cases: */
1874 cred->cr_auth->au_rslack = cred->cr_auth->au_verfsize + (p - savedp)
1875 + (savedlen - head->iov_len);
1876 out_decode:
1877 status = gss_unwrap_req_decode(decode, rqstp, p, obj);
1878 out:
1879 gss_put_ctx(ctx);
1880 dprintk("RPC: %5u %s returning %d\n",
1881 task->tk_pid, __func__, status);
1882 return status;
1883 }
1884
1885 static const struct rpc_authops authgss_ops = {
1886 .owner = THIS_MODULE,
1887 .au_flavor = RPC_AUTH_GSS,
1888 .au_name = "RPCSEC_GSS",
1889 .create = gss_create,
1890 .destroy = gss_destroy,
1891 .lookup_cred = gss_lookup_cred,
1892 .crcreate = gss_create_cred,
1893 .list_pseudoflavors = gss_mech_list_pseudoflavors,
1894 .info2flavor = gss_mech_info2flavor,
1895 .flavor2info = gss_mech_flavor2info,
1896 };
1897
1898 static const struct rpc_credops gss_credops = {
1899 .cr_name = "AUTH_GSS",
1900 .crdestroy = gss_destroy_cred,
1901 .cr_init = gss_cred_init,
1902 .crbind = rpcauth_generic_bind_cred,
1903 .crmatch = gss_match,
1904 .crmarshal = gss_marshal,
1905 .crrefresh = gss_refresh,
1906 .crvalidate = gss_validate,
1907 .crwrap_req = gss_wrap_req,
1908 .crunwrap_resp = gss_unwrap_resp,
1909 .crkey_timeout = gss_key_timeout,
1910 };
1911
1912 static const struct rpc_credops gss_nullops = {
1913 .cr_name = "AUTH_GSS",
1914 .crdestroy = gss_destroy_nullcred,
1915 .crbind = rpcauth_generic_bind_cred,
1916 .crmatch = gss_match,
1917 .crmarshal = gss_marshal,
1918 .crrefresh = gss_refresh_null,
1919 .crvalidate = gss_validate,
1920 .crwrap_req = gss_wrap_req,
1921 .crunwrap_resp = gss_unwrap_resp,
1922 };
1923
1924 static const struct rpc_pipe_ops gss_upcall_ops_v0 = {
1925 .upcall = rpc_pipe_generic_upcall,
1926 .downcall = gss_pipe_downcall,
1927 .destroy_msg = gss_pipe_destroy_msg,
1928 .open_pipe = gss_pipe_open_v0,
1929 .release_pipe = gss_pipe_release,
1930 };
1931
1932 static const struct rpc_pipe_ops gss_upcall_ops_v1 = {
1933 .upcall = rpc_pipe_generic_upcall,
1934 .downcall = gss_pipe_downcall,
1935 .destroy_msg = gss_pipe_destroy_msg,
1936 .open_pipe = gss_pipe_open_v1,
1937 .release_pipe = gss_pipe_release,
1938 };
1939
1940 static __net_init int rpcsec_gss_init_net(struct net *net)
1941 {
1942 return gss_svc_init_net(net);
1943 }
1944
1945 static __net_exit void rpcsec_gss_exit_net(struct net *net)
1946 {
1947 gss_svc_shutdown_net(net);
1948 }
1949
1950 static struct pernet_operations rpcsec_gss_net_ops = {
1951 .init = rpcsec_gss_init_net,
1952 .exit = rpcsec_gss_exit_net,
1953 };
1954
1955 /*
1956 * Initialize RPCSEC_GSS module
1957 */
1958 static int __init init_rpcsec_gss(void)
1959 {
1960 int err = 0;
1961
1962 err = rpcauth_register(&authgss_ops);
1963 if (err)
1964 goto out;
1965 err = gss_svc_init();
1966 if (err)
1967 goto out_unregister;
1968 err = register_pernet_subsys(&rpcsec_gss_net_ops);
1969 if (err)
1970 goto out_svc_exit;
1971 rpc_init_wait_queue(&pipe_version_rpc_waitqueue, "gss pipe version");
1972 return 0;
1973 out_svc_exit:
1974 gss_svc_shutdown();
1975 out_unregister:
1976 rpcauth_unregister(&authgss_ops);
1977 out:
1978 return err;
1979 }
1980
1981 static void __exit exit_rpcsec_gss(void)
1982 {
1983 unregister_pernet_subsys(&rpcsec_gss_net_ops);
1984 gss_svc_shutdown();
1985 rpcauth_unregister(&authgss_ops);
1986 rcu_barrier(); /* Wait for completion of call_rcu()'s */
1987 }
1988
1989 MODULE_ALIAS("rpc-auth-6");
1990 MODULE_LICENSE("GPL");
1991 module_param_named(expired_cred_retry_delay,
1992 gss_expired_cred_retry_delay,
1993 uint, 0644);
1994 MODULE_PARM_DESC(expired_cred_retry_delay, "Timeout (in seconds) until "
1995 "the RPC engine retries an expired credential");
1996
1997 module_param_named(key_expire_timeo,
1998 gss_key_expire_timeo,
1999 uint, 0644);
2000 MODULE_PARM_DESC(key_expire_timeo, "Time (in seconds) at the end of a "
2001 "credential keys lifetime where the NFS layer cleans up "
2002 "prior to key expiration");
2003
2004 module_init(init_rpcsec_gss)
2005 module_exit(exit_rpcsec_gss)