]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/sunrpc/auth_gss/gss_krb5_crypto.c
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
[mirror_ubuntu-hirsute-kernel.git] / net / sunrpc / auth_gss / gss_krb5_crypto.c
1 /*
2 * linux/net/sunrpc/gss_krb5_crypto.c
3 *
4 * Copyright (c) 2000-2008 The Regents of the University of Michigan.
5 * All rights reserved.
6 *
7 * Andy Adamson <andros@umich.edu>
8 * Bruce Fields <bfields@umich.edu>
9 */
10
11 /*
12 * Copyright (C) 1998 by the FundsXpress, INC.
13 *
14 * All rights reserved.
15 *
16 * Export of this software from the United States of America may require
17 * a specific license from the United States Government. It is the
18 * responsibility of any person or organization contemplating export to
19 * obtain such a license before exporting.
20 *
21 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
22 * distribute this software and its documentation for any purpose and
23 * without fee is hereby granted, provided that the above copyright
24 * notice appear in all copies and that both that copyright notice and
25 * this permission notice appear in supporting documentation, and that
26 * the name of FundsXpress. not be used in advertising or publicity pertaining
27 * to distribution of the software without specific, written prior
28 * permission. FundsXpress makes no representations about the suitability of
29 * this software for any purpose. It is provided "as is" without express
30 * or implied warranty.
31 *
32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
33 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
34 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
35 */
36
37 #include <crypto/hash.h>
38 #include <crypto/skcipher.h>
39 #include <linux/err.h>
40 #include <linux/types.h>
41 #include <linux/mm.h>
42 #include <linux/scatterlist.h>
43 #include <linux/highmem.h>
44 #include <linux/pagemap.h>
45 #include <linux/random.h>
46 #include <linux/sunrpc/gss_krb5.h>
47 #include <linux/sunrpc/xdr.h>
48
49 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
50 # define RPCDBG_FACILITY RPCDBG_AUTH
51 #endif
52
53 u32
54 krb5_encrypt(
55 struct crypto_skcipher *tfm,
56 void * iv,
57 void * in,
58 void * out,
59 int length)
60 {
61 u32 ret = -EINVAL;
62 struct scatterlist sg[1];
63 u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
64 SKCIPHER_REQUEST_ON_STACK(req, tfm);
65
66 if (length % crypto_skcipher_blocksize(tfm) != 0)
67 goto out;
68
69 if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
70 dprintk("RPC: gss_k5encrypt: tfm iv size too large %d\n",
71 crypto_skcipher_ivsize(tfm));
72 goto out;
73 }
74
75 if (iv)
76 memcpy(local_iv, iv, crypto_skcipher_ivsize(tfm));
77
78 memcpy(out, in, length);
79 sg_init_one(sg, out, length);
80
81 skcipher_request_set_callback(req, 0, NULL, NULL);
82 skcipher_request_set_crypt(req, sg, sg, length, local_iv);
83
84 ret = crypto_skcipher_encrypt(req);
85 skcipher_request_zero(req);
86 out:
87 dprintk("RPC: krb5_encrypt returns %d\n", ret);
88 return ret;
89 }
90
91 u32
92 krb5_decrypt(
93 struct crypto_skcipher *tfm,
94 void * iv,
95 void * in,
96 void * out,
97 int length)
98 {
99 u32 ret = -EINVAL;
100 struct scatterlist sg[1];
101 u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
102 SKCIPHER_REQUEST_ON_STACK(req, tfm);
103
104 if (length % crypto_skcipher_blocksize(tfm) != 0)
105 goto out;
106
107 if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
108 dprintk("RPC: gss_k5decrypt: tfm iv size too large %d\n",
109 crypto_skcipher_ivsize(tfm));
110 goto out;
111 }
112 if (iv)
113 memcpy(local_iv,iv, crypto_skcipher_ivsize(tfm));
114
115 memcpy(out, in, length);
116 sg_init_one(sg, out, length);
117
118 skcipher_request_set_callback(req, 0, NULL, NULL);
119 skcipher_request_set_crypt(req, sg, sg, length, local_iv);
120
121 ret = crypto_skcipher_decrypt(req);
122 skcipher_request_zero(req);
123 out:
124 dprintk("RPC: gss_k5decrypt returns %d\n",ret);
125 return ret;
126 }
127
128 static int
129 checksummer(struct scatterlist *sg, void *data)
130 {
131 struct ahash_request *req = data;
132
133 ahash_request_set_crypt(req, sg, NULL, sg->length);
134
135 return crypto_ahash_update(req);
136 }
137
138 static int
139 arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
140 {
141 unsigned int ms_usage;
142
143 switch (usage) {
144 case KG_USAGE_SIGN:
145 ms_usage = 15;
146 break;
147 case KG_USAGE_SEAL:
148 ms_usage = 13;
149 break;
150 default:
151 return -EINVAL;
152 }
153 salt[0] = (ms_usage >> 0) & 0xff;
154 salt[1] = (ms_usage >> 8) & 0xff;
155 salt[2] = (ms_usage >> 16) & 0xff;
156 salt[3] = (ms_usage >> 24) & 0xff;
157
158 return 0;
159 }
160
161 static u32
162 make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
163 struct xdr_buf *body, int body_offset, u8 *cksumkey,
164 unsigned int usage, struct xdr_netobj *cksumout)
165 {
166 struct scatterlist sg[1];
167 int err;
168 u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
169 u8 rc4salt[4];
170 struct crypto_ahash *md5;
171 struct crypto_ahash *hmac_md5;
172 struct ahash_request *req;
173
174 if (cksumkey == NULL)
175 return GSS_S_FAILURE;
176
177 if (cksumout->len < kctx->gk5e->cksumlength) {
178 dprintk("%s: checksum buffer length, %u, too small for %s\n",
179 __func__, cksumout->len, kctx->gk5e->name);
180 return GSS_S_FAILURE;
181 }
182
183 if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
184 dprintk("%s: invalid usage value %u\n", __func__, usage);
185 return GSS_S_FAILURE;
186 }
187
188 md5 = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
189 if (IS_ERR(md5))
190 return GSS_S_FAILURE;
191
192 hmac_md5 = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0,
193 CRYPTO_ALG_ASYNC);
194 if (IS_ERR(hmac_md5)) {
195 crypto_free_ahash(md5);
196 return GSS_S_FAILURE;
197 }
198
199 req = ahash_request_alloc(md5, GFP_KERNEL);
200 if (!req) {
201 crypto_free_ahash(hmac_md5);
202 crypto_free_ahash(md5);
203 return GSS_S_FAILURE;
204 }
205
206 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
207
208 err = crypto_ahash_init(req);
209 if (err)
210 goto out;
211 sg_init_one(sg, rc4salt, 4);
212 ahash_request_set_crypt(req, sg, NULL, 4);
213 err = crypto_ahash_update(req);
214 if (err)
215 goto out;
216
217 sg_init_one(sg, header, hdrlen);
218 ahash_request_set_crypt(req, sg, NULL, hdrlen);
219 err = crypto_ahash_update(req);
220 if (err)
221 goto out;
222 err = xdr_process_buf(body, body_offset, body->len - body_offset,
223 checksummer, req);
224 if (err)
225 goto out;
226 ahash_request_set_crypt(req, NULL, checksumdata, 0);
227 err = crypto_ahash_final(req);
228 if (err)
229 goto out;
230
231 ahash_request_free(req);
232 req = ahash_request_alloc(hmac_md5, GFP_KERNEL);
233 if (!req) {
234 crypto_free_ahash(hmac_md5);
235 crypto_free_ahash(md5);
236 return GSS_S_FAILURE;
237 }
238
239 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
240
241 err = crypto_ahash_init(req);
242 if (err)
243 goto out;
244 err = crypto_ahash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
245 if (err)
246 goto out;
247
248 sg_init_one(sg, checksumdata, crypto_ahash_digestsize(md5));
249 ahash_request_set_crypt(req, sg, checksumdata,
250 crypto_ahash_digestsize(md5));
251 err = crypto_ahash_digest(req);
252 if (err)
253 goto out;
254
255 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
256 cksumout->len = kctx->gk5e->cksumlength;
257 out:
258 ahash_request_free(req);
259 crypto_free_ahash(md5);
260 crypto_free_ahash(hmac_md5);
261 return err ? GSS_S_FAILURE : 0;
262 }
263
264 /*
265 * checksum the plaintext data and hdrlen bytes of the token header
266 * The checksum is performed over the first 8 bytes of the
267 * gss token header and then over the data body
268 */
269 u32
270 make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
271 struct xdr_buf *body, int body_offset, u8 *cksumkey,
272 unsigned int usage, struct xdr_netobj *cksumout)
273 {
274 struct crypto_ahash *tfm;
275 struct ahash_request *req;
276 struct scatterlist sg[1];
277 int err;
278 u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
279 unsigned int checksumlen;
280
281 if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
282 return make_checksum_hmac_md5(kctx, header, hdrlen,
283 body, body_offset,
284 cksumkey, usage, cksumout);
285
286 if (cksumout->len < kctx->gk5e->cksumlength) {
287 dprintk("%s: checksum buffer length, %u, too small for %s\n",
288 __func__, cksumout->len, kctx->gk5e->name);
289 return GSS_S_FAILURE;
290 }
291
292 tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
293 if (IS_ERR(tfm))
294 return GSS_S_FAILURE;
295
296 req = ahash_request_alloc(tfm, GFP_KERNEL);
297 if (!req) {
298 crypto_free_ahash(tfm);
299 return GSS_S_FAILURE;
300 }
301
302 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
303
304 checksumlen = crypto_ahash_digestsize(tfm);
305
306 if (cksumkey != NULL) {
307 err = crypto_ahash_setkey(tfm, cksumkey,
308 kctx->gk5e->keylength);
309 if (err)
310 goto out;
311 }
312
313 err = crypto_ahash_init(req);
314 if (err)
315 goto out;
316 sg_init_one(sg, header, hdrlen);
317 ahash_request_set_crypt(req, sg, NULL, hdrlen);
318 err = crypto_ahash_update(req);
319 if (err)
320 goto out;
321 err = xdr_process_buf(body, body_offset, body->len - body_offset,
322 checksummer, req);
323 if (err)
324 goto out;
325 ahash_request_set_crypt(req, NULL, checksumdata, 0);
326 err = crypto_ahash_final(req);
327 if (err)
328 goto out;
329
330 switch (kctx->gk5e->ctype) {
331 case CKSUMTYPE_RSA_MD5:
332 err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
333 checksumdata, checksumlen);
334 if (err)
335 goto out;
336 memcpy(cksumout->data,
337 checksumdata + checksumlen - kctx->gk5e->cksumlength,
338 kctx->gk5e->cksumlength);
339 break;
340 case CKSUMTYPE_HMAC_SHA1_DES3:
341 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
342 break;
343 default:
344 BUG();
345 break;
346 }
347 cksumout->len = kctx->gk5e->cksumlength;
348 out:
349 ahash_request_free(req);
350 crypto_free_ahash(tfm);
351 return err ? GSS_S_FAILURE : 0;
352 }
353
354 /*
355 * checksum the plaintext data and hdrlen bytes of the token header
356 * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
357 * body then over the first 16 octets of the MIC token
358 * Inclusion of the header data in the calculation of the
359 * checksum is optional.
360 */
361 u32
362 make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
363 struct xdr_buf *body, int body_offset, u8 *cksumkey,
364 unsigned int usage, struct xdr_netobj *cksumout)
365 {
366 struct crypto_ahash *tfm;
367 struct ahash_request *req;
368 struct scatterlist sg[1];
369 int err;
370 u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
371 unsigned int checksumlen;
372
373 if (kctx->gk5e->keyed_cksum == 0) {
374 dprintk("%s: expected keyed hash for %s\n",
375 __func__, kctx->gk5e->name);
376 return GSS_S_FAILURE;
377 }
378 if (cksumkey == NULL) {
379 dprintk("%s: no key supplied for %s\n",
380 __func__, kctx->gk5e->name);
381 return GSS_S_FAILURE;
382 }
383
384 tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
385 if (IS_ERR(tfm))
386 return GSS_S_FAILURE;
387 checksumlen = crypto_ahash_digestsize(tfm);
388
389 req = ahash_request_alloc(tfm, GFP_KERNEL);
390 if (!req) {
391 crypto_free_ahash(tfm);
392 return GSS_S_FAILURE;
393 }
394
395 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
396
397 err = crypto_ahash_setkey(tfm, cksumkey, kctx->gk5e->keylength);
398 if (err)
399 goto out;
400
401 err = crypto_ahash_init(req);
402 if (err)
403 goto out;
404 err = xdr_process_buf(body, body_offset, body->len - body_offset,
405 checksummer, req);
406 if (err)
407 goto out;
408 if (header != NULL) {
409 sg_init_one(sg, header, hdrlen);
410 ahash_request_set_crypt(req, sg, NULL, hdrlen);
411 err = crypto_ahash_update(req);
412 if (err)
413 goto out;
414 }
415 ahash_request_set_crypt(req, NULL, checksumdata, 0);
416 err = crypto_ahash_final(req);
417 if (err)
418 goto out;
419
420 cksumout->len = kctx->gk5e->cksumlength;
421
422 switch (kctx->gk5e->ctype) {
423 case CKSUMTYPE_HMAC_SHA1_96_AES128:
424 case CKSUMTYPE_HMAC_SHA1_96_AES256:
425 /* note that this truncates the hash */
426 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
427 break;
428 default:
429 BUG();
430 break;
431 }
432 out:
433 ahash_request_free(req);
434 crypto_free_ahash(tfm);
435 return err ? GSS_S_FAILURE : 0;
436 }
437
438 struct encryptor_desc {
439 u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
440 struct skcipher_request *req;
441 int pos;
442 struct xdr_buf *outbuf;
443 struct page **pages;
444 struct scatterlist infrags[4];
445 struct scatterlist outfrags[4];
446 int fragno;
447 int fraglen;
448 };
449
450 static int
451 encryptor(struct scatterlist *sg, void *data)
452 {
453 struct encryptor_desc *desc = data;
454 struct xdr_buf *outbuf = desc->outbuf;
455 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
456 struct page *in_page;
457 int thislen = desc->fraglen + sg->length;
458 int fraglen, ret;
459 int page_pos;
460
461 /* Worst case is 4 fragments: head, end of page 1, start
462 * of page 2, tail. Anything more is a bug. */
463 BUG_ON(desc->fragno > 3);
464
465 page_pos = desc->pos - outbuf->head[0].iov_len;
466 if (page_pos >= 0 && page_pos < outbuf->page_len) {
467 /* pages are not in place: */
468 int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
469 in_page = desc->pages[i];
470 } else {
471 in_page = sg_page(sg);
472 }
473 sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
474 sg->offset);
475 sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
476 sg->offset);
477 desc->fragno++;
478 desc->fraglen += sg->length;
479 desc->pos += sg->length;
480
481 fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
482 thislen -= fraglen;
483
484 if (thislen == 0)
485 return 0;
486
487 sg_mark_end(&desc->infrags[desc->fragno - 1]);
488 sg_mark_end(&desc->outfrags[desc->fragno - 1]);
489
490 skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
491 thislen, desc->iv);
492
493 ret = crypto_skcipher_encrypt(desc->req);
494 if (ret)
495 return ret;
496
497 sg_init_table(desc->infrags, 4);
498 sg_init_table(desc->outfrags, 4);
499
500 if (fraglen) {
501 sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
502 sg->offset + sg->length - fraglen);
503 desc->infrags[0] = desc->outfrags[0];
504 sg_assign_page(&desc->infrags[0], in_page);
505 desc->fragno = 1;
506 desc->fraglen = fraglen;
507 } else {
508 desc->fragno = 0;
509 desc->fraglen = 0;
510 }
511 return 0;
512 }
513
514 int
515 gss_encrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
516 int offset, struct page **pages)
517 {
518 int ret;
519 struct encryptor_desc desc;
520 SKCIPHER_REQUEST_ON_STACK(req, tfm);
521
522 BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
523
524 skcipher_request_set_tfm(req, tfm);
525 skcipher_request_set_callback(req, 0, NULL, NULL);
526
527 memset(desc.iv, 0, sizeof(desc.iv));
528 desc.req = req;
529 desc.pos = offset;
530 desc.outbuf = buf;
531 desc.pages = pages;
532 desc.fragno = 0;
533 desc.fraglen = 0;
534
535 sg_init_table(desc.infrags, 4);
536 sg_init_table(desc.outfrags, 4);
537
538 ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
539 skcipher_request_zero(req);
540 return ret;
541 }
542
543 struct decryptor_desc {
544 u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
545 struct skcipher_request *req;
546 struct scatterlist frags[4];
547 int fragno;
548 int fraglen;
549 };
550
551 static int
552 decryptor(struct scatterlist *sg, void *data)
553 {
554 struct decryptor_desc *desc = data;
555 int thislen = desc->fraglen + sg->length;
556 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
557 int fraglen, ret;
558
559 /* Worst case is 4 fragments: head, end of page 1, start
560 * of page 2, tail. Anything more is a bug. */
561 BUG_ON(desc->fragno > 3);
562 sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
563 sg->offset);
564 desc->fragno++;
565 desc->fraglen += sg->length;
566
567 fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
568 thislen -= fraglen;
569
570 if (thislen == 0)
571 return 0;
572
573 sg_mark_end(&desc->frags[desc->fragno - 1]);
574
575 skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
576 thislen, desc->iv);
577
578 ret = crypto_skcipher_decrypt(desc->req);
579 if (ret)
580 return ret;
581
582 sg_init_table(desc->frags, 4);
583
584 if (fraglen) {
585 sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
586 sg->offset + sg->length - fraglen);
587 desc->fragno = 1;
588 desc->fraglen = fraglen;
589 } else {
590 desc->fragno = 0;
591 desc->fraglen = 0;
592 }
593 return 0;
594 }
595
596 int
597 gss_decrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
598 int offset)
599 {
600 int ret;
601 struct decryptor_desc desc;
602 SKCIPHER_REQUEST_ON_STACK(req, tfm);
603
604 /* XXXJBF: */
605 BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
606
607 skcipher_request_set_tfm(req, tfm);
608 skcipher_request_set_callback(req, 0, NULL, NULL);
609
610 memset(desc.iv, 0, sizeof(desc.iv));
611 desc.req = req;
612 desc.fragno = 0;
613 desc.fraglen = 0;
614
615 sg_init_table(desc.frags, 4);
616
617 ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
618 skcipher_request_zero(req);
619 return ret;
620 }
621
622 /*
623 * This function makes the assumption that it was ultimately called
624 * from gss_wrap().
625 *
626 * The client auth_gss code moves any existing tail data into a
627 * separate page before calling gss_wrap.
628 * The server svcauth_gss code ensures that both the head and the
629 * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
630 *
631 * Even with that guarantee, this function may be called more than
632 * once in the processing of gss_wrap(). The best we can do is
633 * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
634 * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
635 * At run-time we can verify that a single invocation of this
636 * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
637 */
638
639 int
640 xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
641 {
642 u8 *p;
643
644 if (shiftlen == 0)
645 return 0;
646
647 BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
648 BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
649
650 p = buf->head[0].iov_base + base;
651
652 memmove(p + shiftlen, p, buf->head[0].iov_len - base);
653
654 buf->head[0].iov_len += shiftlen;
655 buf->len += shiftlen;
656
657 return 0;
658 }
659
660 static u32
661 gss_krb5_cts_crypt(struct crypto_skcipher *cipher, struct xdr_buf *buf,
662 u32 offset, u8 *iv, struct page **pages, int encrypt)
663 {
664 u32 ret;
665 struct scatterlist sg[1];
666 SKCIPHER_REQUEST_ON_STACK(req, cipher);
667 u8 data[GSS_KRB5_MAX_BLOCKSIZE * 2];
668 struct page **save_pages;
669 u32 len = buf->len - offset;
670
671 if (len > ARRAY_SIZE(data)) {
672 WARN_ON(0);
673 return -ENOMEM;
674 }
675
676 /*
677 * For encryption, we want to read from the cleartext
678 * page cache pages, and write the encrypted data to
679 * the supplied xdr_buf pages.
680 */
681 save_pages = buf->pages;
682 if (encrypt)
683 buf->pages = pages;
684
685 ret = read_bytes_from_xdr_buf(buf, offset, data, len);
686 buf->pages = save_pages;
687 if (ret)
688 goto out;
689
690 sg_init_one(sg, data, len);
691
692 skcipher_request_set_tfm(req, cipher);
693 skcipher_request_set_callback(req, 0, NULL, NULL);
694 skcipher_request_set_crypt(req, sg, sg, len, iv);
695
696 if (encrypt)
697 ret = crypto_skcipher_encrypt(req);
698 else
699 ret = crypto_skcipher_decrypt(req);
700
701 skcipher_request_zero(req);
702
703 if (ret)
704 goto out;
705
706 ret = write_bytes_to_xdr_buf(buf, offset, data, len);
707
708 out:
709 return ret;
710 }
711
712 u32
713 gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
714 struct xdr_buf *buf, struct page **pages)
715 {
716 u32 err;
717 struct xdr_netobj hmac;
718 u8 *cksumkey;
719 u8 *ecptr;
720 struct crypto_skcipher *cipher, *aux_cipher;
721 int blocksize;
722 struct page **save_pages;
723 int nblocks, nbytes;
724 struct encryptor_desc desc;
725 u32 cbcbytes;
726 unsigned int usage;
727
728 if (kctx->initiate) {
729 cipher = kctx->initiator_enc;
730 aux_cipher = kctx->initiator_enc_aux;
731 cksumkey = kctx->initiator_integ;
732 usage = KG_USAGE_INITIATOR_SEAL;
733 } else {
734 cipher = kctx->acceptor_enc;
735 aux_cipher = kctx->acceptor_enc_aux;
736 cksumkey = kctx->acceptor_integ;
737 usage = KG_USAGE_ACCEPTOR_SEAL;
738 }
739 blocksize = crypto_skcipher_blocksize(cipher);
740
741 /* hide the gss token header and insert the confounder */
742 offset += GSS_KRB5_TOK_HDR_LEN;
743 if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
744 return GSS_S_FAILURE;
745 gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
746 offset -= GSS_KRB5_TOK_HDR_LEN;
747
748 if (buf->tail[0].iov_base != NULL) {
749 ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
750 } else {
751 buf->tail[0].iov_base = buf->head[0].iov_base
752 + buf->head[0].iov_len;
753 buf->tail[0].iov_len = 0;
754 ecptr = buf->tail[0].iov_base;
755 }
756
757 /* copy plaintext gss token header after filler (if any) */
758 memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
759 buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
760 buf->len += GSS_KRB5_TOK_HDR_LEN;
761
762 /* Do the HMAC */
763 hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
764 hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
765
766 /*
767 * When we are called, pages points to the real page cache
768 * data -- which we can't go and encrypt! buf->pages points
769 * to scratch pages which we are going to send off to the
770 * client/server. Swap in the plaintext pages to calculate
771 * the hmac.
772 */
773 save_pages = buf->pages;
774 buf->pages = pages;
775
776 err = make_checksum_v2(kctx, NULL, 0, buf,
777 offset + GSS_KRB5_TOK_HDR_LEN,
778 cksumkey, usage, &hmac);
779 buf->pages = save_pages;
780 if (err)
781 return GSS_S_FAILURE;
782
783 nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
784 nblocks = (nbytes + blocksize - 1) / blocksize;
785 cbcbytes = 0;
786 if (nblocks > 2)
787 cbcbytes = (nblocks - 2) * blocksize;
788
789 memset(desc.iv, 0, sizeof(desc.iv));
790
791 if (cbcbytes) {
792 SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
793
794 desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
795 desc.fragno = 0;
796 desc.fraglen = 0;
797 desc.pages = pages;
798 desc.outbuf = buf;
799 desc.req = req;
800
801 skcipher_request_set_tfm(req, aux_cipher);
802 skcipher_request_set_callback(req, 0, NULL, NULL);
803
804 sg_init_table(desc.infrags, 4);
805 sg_init_table(desc.outfrags, 4);
806
807 err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
808 cbcbytes, encryptor, &desc);
809 skcipher_request_zero(req);
810 if (err)
811 goto out_err;
812 }
813
814 /* Make sure IV carries forward from any CBC results. */
815 err = gss_krb5_cts_crypt(cipher, buf,
816 offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
817 desc.iv, pages, 1);
818 if (err) {
819 err = GSS_S_FAILURE;
820 goto out_err;
821 }
822
823 /* Now update buf to account for HMAC */
824 buf->tail[0].iov_len += kctx->gk5e->cksumlength;
825 buf->len += kctx->gk5e->cksumlength;
826
827 out_err:
828 if (err)
829 err = GSS_S_FAILURE;
830 return err;
831 }
832
833 u32
834 gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf,
835 u32 *headskip, u32 *tailskip)
836 {
837 struct xdr_buf subbuf;
838 u32 ret = 0;
839 u8 *cksum_key;
840 struct crypto_skcipher *cipher, *aux_cipher;
841 struct xdr_netobj our_hmac_obj;
842 u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
843 u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
844 int nblocks, blocksize, cbcbytes;
845 struct decryptor_desc desc;
846 unsigned int usage;
847
848 if (kctx->initiate) {
849 cipher = kctx->acceptor_enc;
850 aux_cipher = kctx->acceptor_enc_aux;
851 cksum_key = kctx->acceptor_integ;
852 usage = KG_USAGE_ACCEPTOR_SEAL;
853 } else {
854 cipher = kctx->initiator_enc;
855 aux_cipher = kctx->initiator_enc_aux;
856 cksum_key = kctx->initiator_integ;
857 usage = KG_USAGE_INITIATOR_SEAL;
858 }
859 blocksize = crypto_skcipher_blocksize(cipher);
860
861
862 /* create a segment skipping the header and leaving out the checksum */
863 xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
864 (buf->len - offset - GSS_KRB5_TOK_HDR_LEN -
865 kctx->gk5e->cksumlength));
866
867 nblocks = (subbuf.len + blocksize - 1) / blocksize;
868
869 cbcbytes = 0;
870 if (nblocks > 2)
871 cbcbytes = (nblocks - 2) * blocksize;
872
873 memset(desc.iv, 0, sizeof(desc.iv));
874
875 if (cbcbytes) {
876 SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
877
878 desc.fragno = 0;
879 desc.fraglen = 0;
880 desc.req = req;
881
882 skcipher_request_set_tfm(req, aux_cipher);
883 skcipher_request_set_callback(req, 0, NULL, NULL);
884
885 sg_init_table(desc.frags, 4);
886
887 ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
888 skcipher_request_zero(req);
889 if (ret)
890 goto out_err;
891 }
892
893 /* Make sure IV carries forward from any CBC results. */
894 ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
895 if (ret)
896 goto out_err;
897
898
899 /* Calculate our hmac over the plaintext data */
900 our_hmac_obj.len = sizeof(our_hmac);
901 our_hmac_obj.data = our_hmac;
902
903 ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
904 cksum_key, usage, &our_hmac_obj);
905 if (ret)
906 goto out_err;
907
908 /* Get the packet's hmac value */
909 ret = read_bytes_from_xdr_buf(buf, buf->len - kctx->gk5e->cksumlength,
910 pkt_hmac, kctx->gk5e->cksumlength);
911 if (ret)
912 goto out_err;
913
914 if (memcmp(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
915 ret = GSS_S_BAD_SIG;
916 goto out_err;
917 }
918 *headskip = kctx->gk5e->conflen;
919 *tailskip = kctx->gk5e->cksumlength;
920 out_err:
921 if (ret && ret != GSS_S_BAD_SIG)
922 ret = GSS_S_FAILURE;
923 return ret;
924 }
925
926 /*
927 * Compute Kseq given the initial session key and the checksum.
928 * Set the key of the given cipher.
929 */
930 int
931 krb5_rc4_setup_seq_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
932 unsigned char *cksum)
933 {
934 struct crypto_shash *hmac;
935 struct shash_desc *desc;
936 u8 Kseq[GSS_KRB5_MAX_KEYLEN];
937 u32 zeroconstant = 0;
938 int err;
939
940 dprintk("%s: entered\n", __func__);
941
942 hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
943 if (IS_ERR(hmac)) {
944 dprintk("%s: error %ld, allocating hash '%s'\n",
945 __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
946 return PTR_ERR(hmac);
947 }
948
949 desc = kmalloc(sizeof(*desc), GFP_KERNEL);
950 if (!desc) {
951 dprintk("%s: failed to allocate shash descriptor for '%s'\n",
952 __func__, kctx->gk5e->cksum_name);
953 crypto_free_shash(hmac);
954 return -ENOMEM;
955 }
956
957 desc->tfm = hmac;
958 desc->flags = 0;
959
960 /* Compute intermediate Kseq from session key */
961 err = crypto_shash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
962 if (err)
963 goto out_err;
964
965 err = crypto_shash_digest(desc, (u8 *)&zeroconstant, 4, Kseq);
966 if (err)
967 goto out_err;
968
969 /* Compute final Kseq from the checksum and intermediate Kseq */
970 err = crypto_shash_setkey(hmac, Kseq, kctx->gk5e->keylength);
971 if (err)
972 goto out_err;
973
974 err = crypto_shash_digest(desc, cksum, 8, Kseq);
975 if (err)
976 goto out_err;
977
978 err = crypto_skcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
979 if (err)
980 goto out_err;
981
982 err = 0;
983
984 out_err:
985 kzfree(desc);
986 crypto_free_shash(hmac);
987 dprintk("%s: returning %d\n", __func__, err);
988 return err;
989 }
990
991 /*
992 * Compute Kcrypt given the initial session key and the plaintext seqnum.
993 * Set the key of cipher kctx->enc.
994 */
995 int
996 krb5_rc4_setup_enc_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
997 s32 seqnum)
998 {
999 struct crypto_shash *hmac;
1000 struct shash_desc *desc;
1001 u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
1002 u8 zeroconstant[4] = {0};
1003 u8 seqnumarray[4];
1004 int err, i;
1005
1006 dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
1007
1008 hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
1009 if (IS_ERR(hmac)) {
1010 dprintk("%s: error %ld, allocating hash '%s'\n",
1011 __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
1012 return PTR_ERR(hmac);
1013 }
1014
1015 desc = kmalloc(sizeof(*desc), GFP_KERNEL);
1016 if (!desc) {
1017 dprintk("%s: failed to allocate shash descriptor for '%s'\n",
1018 __func__, kctx->gk5e->cksum_name);
1019 crypto_free_shash(hmac);
1020 return -ENOMEM;
1021 }
1022
1023 desc->tfm = hmac;
1024 desc->flags = 0;
1025
1026 /* Compute intermediate Kcrypt from session key */
1027 for (i = 0; i < kctx->gk5e->keylength; i++)
1028 Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
1029
1030 err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1031 if (err)
1032 goto out_err;
1033
1034 err = crypto_shash_digest(desc, zeroconstant, 4, Kcrypt);
1035 if (err)
1036 goto out_err;
1037
1038 /* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
1039 err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1040 if (err)
1041 goto out_err;
1042
1043 seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
1044 seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
1045 seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
1046 seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
1047
1048 err = crypto_shash_digest(desc, seqnumarray, 4, Kcrypt);
1049 if (err)
1050 goto out_err;
1051
1052 err = crypto_skcipher_setkey(cipher, Kcrypt, kctx->gk5e->keylength);
1053 if (err)
1054 goto out_err;
1055
1056 err = 0;
1057
1058 out_err:
1059 kzfree(desc);
1060 crypto_free_shash(hmac);
1061 dprintk("%s: returning %d\n", __func__, err);
1062 return err;
1063 }
1064