]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/sunrpc/cache.c
Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-zesty-kernel.git] / net / sunrpc / cache.c
1 /*
2 * net/sunrpc/cache.c
3 *
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
6 *
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8 *
9 * Released under terms in GPL version 2. See COPYING.
10 *
11 */
12
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <linux/pagemap.h>
31 #include <asm/ioctls.h>
32 #include <linux/sunrpc/types.h>
33 #include <linux/sunrpc/cache.h>
34 #include <linux/sunrpc/stats.h>
35 #include <linux/sunrpc/rpc_pipe_fs.h>
36 #include "netns.h"
37
38 #define RPCDBG_FACILITY RPCDBG_CACHE
39
40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
41 static void cache_revisit_request(struct cache_head *item);
42
43 static void cache_init(struct cache_head *h)
44 {
45 time_t now = seconds_since_boot();
46 h->next = NULL;
47 h->flags = 0;
48 kref_init(&h->ref);
49 h->expiry_time = now + CACHE_NEW_EXPIRY;
50 h->last_refresh = now;
51 }
52
53 static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h)
54 {
55 return (h->expiry_time < seconds_since_boot()) ||
56 (detail->flush_time > h->last_refresh);
57 }
58
59 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
60 struct cache_head *key, int hash)
61 {
62 struct cache_head **head, **hp;
63 struct cache_head *new = NULL, *freeme = NULL;
64
65 head = &detail->hash_table[hash];
66
67 read_lock(&detail->hash_lock);
68
69 for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
70 struct cache_head *tmp = *hp;
71 if (detail->match(tmp, key)) {
72 if (cache_is_expired(detail, tmp))
73 /* This entry is expired, we will discard it. */
74 break;
75 cache_get(tmp);
76 read_unlock(&detail->hash_lock);
77 return tmp;
78 }
79 }
80 read_unlock(&detail->hash_lock);
81 /* Didn't find anything, insert an empty entry */
82
83 new = detail->alloc();
84 if (!new)
85 return NULL;
86 /* must fully initialise 'new', else
87 * we might get lose if we need to
88 * cache_put it soon.
89 */
90 cache_init(new);
91 detail->init(new, key);
92
93 write_lock(&detail->hash_lock);
94
95 /* check if entry appeared while we slept */
96 for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
97 struct cache_head *tmp = *hp;
98 if (detail->match(tmp, key)) {
99 if (cache_is_expired(detail, tmp)) {
100 *hp = tmp->next;
101 tmp->next = NULL;
102 detail->entries --;
103 freeme = tmp;
104 break;
105 }
106 cache_get(tmp);
107 write_unlock(&detail->hash_lock);
108 cache_put(new, detail);
109 return tmp;
110 }
111 }
112 new->next = *head;
113 *head = new;
114 detail->entries++;
115 cache_get(new);
116 write_unlock(&detail->hash_lock);
117
118 if (freeme)
119 cache_put(freeme, detail);
120 return new;
121 }
122 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
123
124
125 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
126
127 static void cache_fresh_locked(struct cache_head *head, time_t expiry)
128 {
129 head->expiry_time = expiry;
130 head->last_refresh = seconds_since_boot();
131 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
132 set_bit(CACHE_VALID, &head->flags);
133 }
134
135 static void cache_fresh_unlocked(struct cache_head *head,
136 struct cache_detail *detail)
137 {
138 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
139 cache_revisit_request(head);
140 cache_dequeue(detail, head);
141 }
142 }
143
144 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
145 struct cache_head *new, struct cache_head *old, int hash)
146 {
147 /* The 'old' entry is to be replaced by 'new'.
148 * If 'old' is not VALID, we update it directly,
149 * otherwise we need to replace it
150 */
151 struct cache_head **head;
152 struct cache_head *tmp;
153
154 if (!test_bit(CACHE_VALID, &old->flags)) {
155 write_lock(&detail->hash_lock);
156 if (!test_bit(CACHE_VALID, &old->flags)) {
157 if (test_bit(CACHE_NEGATIVE, &new->flags))
158 set_bit(CACHE_NEGATIVE, &old->flags);
159 else
160 detail->update(old, new);
161 cache_fresh_locked(old, new->expiry_time);
162 write_unlock(&detail->hash_lock);
163 cache_fresh_unlocked(old, detail);
164 return old;
165 }
166 write_unlock(&detail->hash_lock);
167 }
168 /* We need to insert a new entry */
169 tmp = detail->alloc();
170 if (!tmp) {
171 cache_put(old, detail);
172 return NULL;
173 }
174 cache_init(tmp);
175 detail->init(tmp, old);
176 head = &detail->hash_table[hash];
177
178 write_lock(&detail->hash_lock);
179 if (test_bit(CACHE_NEGATIVE, &new->flags))
180 set_bit(CACHE_NEGATIVE, &tmp->flags);
181 else
182 detail->update(tmp, new);
183 tmp->next = *head;
184 *head = tmp;
185 detail->entries++;
186 cache_get(tmp);
187 cache_fresh_locked(tmp, new->expiry_time);
188 cache_fresh_locked(old, 0);
189 write_unlock(&detail->hash_lock);
190 cache_fresh_unlocked(tmp, detail);
191 cache_fresh_unlocked(old, detail);
192 cache_put(old, detail);
193 return tmp;
194 }
195 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
196
197 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
198 {
199 if (!cd->cache_upcall)
200 return -EINVAL;
201 return cd->cache_upcall(cd, h);
202 }
203
204 static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
205 {
206 if (!test_bit(CACHE_VALID, &h->flags))
207 return -EAGAIN;
208 else {
209 /* entry is valid */
210 if (test_bit(CACHE_NEGATIVE, &h->flags))
211 return -ENOENT;
212 else {
213 /*
214 * In combination with write barrier in
215 * sunrpc_cache_update, ensures that anyone
216 * using the cache entry after this sees the
217 * updated contents:
218 */
219 smp_rmb();
220 return 0;
221 }
222 }
223 }
224
225 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
226 {
227 int rv;
228
229 write_lock(&detail->hash_lock);
230 rv = cache_is_valid(detail, h);
231 if (rv != -EAGAIN) {
232 write_unlock(&detail->hash_lock);
233 return rv;
234 }
235 set_bit(CACHE_NEGATIVE, &h->flags);
236 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
237 write_unlock(&detail->hash_lock);
238 cache_fresh_unlocked(h, detail);
239 return -ENOENT;
240 }
241
242 /*
243 * This is the generic cache management routine for all
244 * the authentication caches.
245 * It checks the currency of a cache item and will (later)
246 * initiate an upcall to fill it if needed.
247 *
248 *
249 * Returns 0 if the cache_head can be used, or cache_puts it and returns
250 * -EAGAIN if upcall is pending and request has been queued
251 * -ETIMEDOUT if upcall failed or request could not be queue or
252 * upcall completed but item is still invalid (implying that
253 * the cache item has been replaced with a newer one).
254 * -ENOENT if cache entry was negative
255 */
256 int cache_check(struct cache_detail *detail,
257 struct cache_head *h, struct cache_req *rqstp)
258 {
259 int rv;
260 long refresh_age, age;
261
262 /* First decide return status as best we can */
263 rv = cache_is_valid(detail, h);
264
265 /* now see if we want to start an upcall */
266 refresh_age = (h->expiry_time - h->last_refresh);
267 age = seconds_since_boot() - h->last_refresh;
268
269 if (rqstp == NULL) {
270 if (rv == -EAGAIN)
271 rv = -ENOENT;
272 } else if (rv == -EAGAIN || age > refresh_age/2) {
273 dprintk("RPC: Want update, refage=%ld, age=%ld\n",
274 refresh_age, age);
275 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
276 switch (cache_make_upcall(detail, h)) {
277 case -EINVAL:
278 clear_bit(CACHE_PENDING, &h->flags);
279 cache_revisit_request(h);
280 rv = try_to_negate_entry(detail, h);
281 break;
282 case -EAGAIN:
283 clear_bit(CACHE_PENDING, &h->flags);
284 cache_revisit_request(h);
285 break;
286 }
287 }
288 }
289
290 if (rv == -EAGAIN) {
291 if (!cache_defer_req(rqstp, h)) {
292 /*
293 * Request was not deferred; handle it as best
294 * we can ourselves:
295 */
296 rv = cache_is_valid(detail, h);
297 if (rv == -EAGAIN)
298 rv = -ETIMEDOUT;
299 }
300 }
301 if (rv)
302 cache_put(h, detail);
303 return rv;
304 }
305 EXPORT_SYMBOL_GPL(cache_check);
306
307 /*
308 * caches need to be periodically cleaned.
309 * For this we maintain a list of cache_detail and
310 * a current pointer into that list and into the table
311 * for that entry.
312 *
313 * Each time clean_cache is called it finds the next non-empty entry
314 * in the current table and walks the list in that entry
315 * looking for entries that can be removed.
316 *
317 * An entry gets removed if:
318 * - The expiry is before current time
319 * - The last_refresh time is before the flush_time for that cache
320 *
321 * later we might drop old entries with non-NEVER expiry if that table
322 * is getting 'full' for some definition of 'full'
323 *
324 * The question of "how often to scan a table" is an interesting one
325 * and is answered in part by the use of the "nextcheck" field in the
326 * cache_detail.
327 * When a scan of a table begins, the nextcheck field is set to a time
328 * that is well into the future.
329 * While scanning, if an expiry time is found that is earlier than the
330 * current nextcheck time, nextcheck is set to that expiry time.
331 * If the flush_time is ever set to a time earlier than the nextcheck
332 * time, the nextcheck time is then set to that flush_time.
333 *
334 * A table is then only scanned if the current time is at least
335 * the nextcheck time.
336 *
337 */
338
339 static LIST_HEAD(cache_list);
340 static DEFINE_SPINLOCK(cache_list_lock);
341 static struct cache_detail *current_detail;
342 static int current_index;
343
344 static void do_cache_clean(struct work_struct *work);
345 static struct delayed_work cache_cleaner;
346
347 void sunrpc_init_cache_detail(struct cache_detail *cd)
348 {
349 rwlock_init(&cd->hash_lock);
350 INIT_LIST_HEAD(&cd->queue);
351 spin_lock(&cache_list_lock);
352 cd->nextcheck = 0;
353 cd->entries = 0;
354 atomic_set(&cd->readers, 0);
355 cd->last_close = 0;
356 cd->last_warn = -1;
357 list_add(&cd->others, &cache_list);
358 spin_unlock(&cache_list_lock);
359
360 /* start the cleaning process */
361 schedule_delayed_work(&cache_cleaner, 0);
362 }
363 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
364
365 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
366 {
367 cache_purge(cd);
368 spin_lock(&cache_list_lock);
369 write_lock(&cd->hash_lock);
370 if (cd->entries || atomic_read(&cd->inuse)) {
371 write_unlock(&cd->hash_lock);
372 spin_unlock(&cache_list_lock);
373 goto out;
374 }
375 if (current_detail == cd)
376 current_detail = NULL;
377 list_del_init(&cd->others);
378 write_unlock(&cd->hash_lock);
379 spin_unlock(&cache_list_lock);
380 if (list_empty(&cache_list)) {
381 /* module must be being unloaded so its safe to kill the worker */
382 cancel_delayed_work_sync(&cache_cleaner);
383 }
384 return;
385 out:
386 printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
387 }
388 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
389
390 /* clean cache tries to find something to clean
391 * and cleans it.
392 * It returns 1 if it cleaned something,
393 * 0 if it didn't find anything this time
394 * -1 if it fell off the end of the list.
395 */
396 static int cache_clean(void)
397 {
398 int rv = 0;
399 struct list_head *next;
400
401 spin_lock(&cache_list_lock);
402
403 /* find a suitable table if we don't already have one */
404 while (current_detail == NULL ||
405 current_index >= current_detail->hash_size) {
406 if (current_detail)
407 next = current_detail->others.next;
408 else
409 next = cache_list.next;
410 if (next == &cache_list) {
411 current_detail = NULL;
412 spin_unlock(&cache_list_lock);
413 return -1;
414 }
415 current_detail = list_entry(next, struct cache_detail, others);
416 if (current_detail->nextcheck > seconds_since_boot())
417 current_index = current_detail->hash_size;
418 else {
419 current_index = 0;
420 current_detail->nextcheck = seconds_since_boot()+30*60;
421 }
422 }
423
424 /* find a non-empty bucket in the table */
425 while (current_detail &&
426 current_index < current_detail->hash_size &&
427 current_detail->hash_table[current_index] == NULL)
428 current_index++;
429
430 /* find a cleanable entry in the bucket and clean it, or set to next bucket */
431
432 if (current_detail && current_index < current_detail->hash_size) {
433 struct cache_head *ch, **cp;
434 struct cache_detail *d;
435
436 write_lock(&current_detail->hash_lock);
437
438 /* Ok, now to clean this strand */
439
440 cp = & current_detail->hash_table[current_index];
441 for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
442 if (current_detail->nextcheck > ch->expiry_time)
443 current_detail->nextcheck = ch->expiry_time+1;
444 if (!cache_is_expired(current_detail, ch))
445 continue;
446
447 *cp = ch->next;
448 ch->next = NULL;
449 current_detail->entries--;
450 rv = 1;
451 break;
452 }
453
454 write_unlock(&current_detail->hash_lock);
455 d = current_detail;
456 if (!ch)
457 current_index ++;
458 spin_unlock(&cache_list_lock);
459 if (ch) {
460 if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
461 cache_dequeue(current_detail, ch);
462 cache_revisit_request(ch);
463 cache_put(ch, d);
464 }
465 } else
466 spin_unlock(&cache_list_lock);
467
468 return rv;
469 }
470
471 /*
472 * We want to regularly clean the cache, so we need to schedule some work ...
473 */
474 static void do_cache_clean(struct work_struct *work)
475 {
476 int delay = 5;
477 if (cache_clean() == -1)
478 delay = round_jiffies_relative(30*HZ);
479
480 if (list_empty(&cache_list))
481 delay = 0;
482
483 if (delay)
484 schedule_delayed_work(&cache_cleaner, delay);
485 }
486
487
488 /*
489 * Clean all caches promptly. This just calls cache_clean
490 * repeatedly until we are sure that every cache has had a chance to
491 * be fully cleaned
492 */
493 void cache_flush(void)
494 {
495 while (cache_clean() != -1)
496 cond_resched();
497 while (cache_clean() != -1)
498 cond_resched();
499 }
500 EXPORT_SYMBOL_GPL(cache_flush);
501
502 void cache_purge(struct cache_detail *detail)
503 {
504 detail->flush_time = LONG_MAX;
505 detail->nextcheck = seconds_since_boot();
506 cache_flush();
507 detail->flush_time = 1;
508 }
509 EXPORT_SYMBOL_GPL(cache_purge);
510
511
512 /*
513 * Deferral and Revisiting of Requests.
514 *
515 * If a cache lookup finds a pending entry, we
516 * need to defer the request and revisit it later.
517 * All deferred requests are stored in a hash table,
518 * indexed by "struct cache_head *".
519 * As it may be wasteful to store a whole request
520 * structure, we allow the request to provide a
521 * deferred form, which must contain a
522 * 'struct cache_deferred_req'
523 * This cache_deferred_req contains a method to allow
524 * it to be revisited when cache info is available
525 */
526
527 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
528 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
529
530 #define DFR_MAX 300 /* ??? */
531
532 static DEFINE_SPINLOCK(cache_defer_lock);
533 static LIST_HEAD(cache_defer_list);
534 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
535 static int cache_defer_cnt;
536
537 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
538 {
539 hlist_del_init(&dreq->hash);
540 if (!list_empty(&dreq->recent)) {
541 list_del_init(&dreq->recent);
542 cache_defer_cnt--;
543 }
544 }
545
546 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
547 {
548 int hash = DFR_HASH(item);
549
550 INIT_LIST_HEAD(&dreq->recent);
551 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
552 }
553
554 static void setup_deferral(struct cache_deferred_req *dreq,
555 struct cache_head *item,
556 int count_me)
557 {
558
559 dreq->item = item;
560
561 spin_lock(&cache_defer_lock);
562
563 __hash_deferred_req(dreq, item);
564
565 if (count_me) {
566 cache_defer_cnt++;
567 list_add(&dreq->recent, &cache_defer_list);
568 }
569
570 spin_unlock(&cache_defer_lock);
571
572 }
573
574 struct thread_deferred_req {
575 struct cache_deferred_req handle;
576 struct completion completion;
577 };
578
579 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
580 {
581 struct thread_deferred_req *dr =
582 container_of(dreq, struct thread_deferred_req, handle);
583 complete(&dr->completion);
584 }
585
586 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
587 {
588 struct thread_deferred_req sleeper;
589 struct cache_deferred_req *dreq = &sleeper.handle;
590
591 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
592 dreq->revisit = cache_restart_thread;
593
594 setup_deferral(dreq, item, 0);
595
596 if (!test_bit(CACHE_PENDING, &item->flags) ||
597 wait_for_completion_interruptible_timeout(
598 &sleeper.completion, req->thread_wait) <= 0) {
599 /* The completion wasn't completed, so we need
600 * to clean up
601 */
602 spin_lock(&cache_defer_lock);
603 if (!hlist_unhashed(&sleeper.handle.hash)) {
604 __unhash_deferred_req(&sleeper.handle);
605 spin_unlock(&cache_defer_lock);
606 } else {
607 /* cache_revisit_request already removed
608 * this from the hash table, but hasn't
609 * called ->revisit yet. It will very soon
610 * and we need to wait for it.
611 */
612 spin_unlock(&cache_defer_lock);
613 wait_for_completion(&sleeper.completion);
614 }
615 }
616 }
617
618 static void cache_limit_defers(void)
619 {
620 /* Make sure we haven't exceed the limit of allowed deferred
621 * requests.
622 */
623 struct cache_deferred_req *discard = NULL;
624
625 if (cache_defer_cnt <= DFR_MAX)
626 return;
627
628 spin_lock(&cache_defer_lock);
629
630 /* Consider removing either the first or the last */
631 if (cache_defer_cnt > DFR_MAX) {
632 if (net_random() & 1)
633 discard = list_entry(cache_defer_list.next,
634 struct cache_deferred_req, recent);
635 else
636 discard = list_entry(cache_defer_list.prev,
637 struct cache_deferred_req, recent);
638 __unhash_deferred_req(discard);
639 }
640 spin_unlock(&cache_defer_lock);
641 if (discard)
642 discard->revisit(discard, 1);
643 }
644
645 /* Return true if and only if a deferred request is queued. */
646 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
647 {
648 struct cache_deferred_req *dreq;
649
650 if (req->thread_wait) {
651 cache_wait_req(req, item);
652 if (!test_bit(CACHE_PENDING, &item->flags))
653 return false;
654 }
655 dreq = req->defer(req);
656 if (dreq == NULL)
657 return false;
658 setup_deferral(dreq, item, 1);
659 if (!test_bit(CACHE_PENDING, &item->flags))
660 /* Bit could have been cleared before we managed to
661 * set up the deferral, so need to revisit just in case
662 */
663 cache_revisit_request(item);
664
665 cache_limit_defers();
666 return true;
667 }
668
669 static void cache_revisit_request(struct cache_head *item)
670 {
671 struct cache_deferred_req *dreq;
672 struct list_head pending;
673 struct hlist_node *lp, *tmp;
674 int hash = DFR_HASH(item);
675
676 INIT_LIST_HEAD(&pending);
677 spin_lock(&cache_defer_lock);
678
679 hlist_for_each_entry_safe(dreq, lp, tmp, &cache_defer_hash[hash], hash)
680 if (dreq->item == item) {
681 __unhash_deferred_req(dreq);
682 list_add(&dreq->recent, &pending);
683 }
684
685 spin_unlock(&cache_defer_lock);
686
687 while (!list_empty(&pending)) {
688 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
689 list_del_init(&dreq->recent);
690 dreq->revisit(dreq, 0);
691 }
692 }
693
694 void cache_clean_deferred(void *owner)
695 {
696 struct cache_deferred_req *dreq, *tmp;
697 struct list_head pending;
698
699
700 INIT_LIST_HEAD(&pending);
701 spin_lock(&cache_defer_lock);
702
703 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
704 if (dreq->owner == owner) {
705 __unhash_deferred_req(dreq);
706 list_add(&dreq->recent, &pending);
707 }
708 }
709 spin_unlock(&cache_defer_lock);
710
711 while (!list_empty(&pending)) {
712 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
713 list_del_init(&dreq->recent);
714 dreq->revisit(dreq, 1);
715 }
716 }
717
718 /*
719 * communicate with user-space
720 *
721 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
722 * On read, you get a full request, or block.
723 * On write, an update request is processed.
724 * Poll works if anything to read, and always allows write.
725 *
726 * Implemented by linked list of requests. Each open file has
727 * a ->private that also exists in this list. New requests are added
728 * to the end and may wakeup and preceding readers.
729 * New readers are added to the head. If, on read, an item is found with
730 * CACHE_UPCALLING clear, we free it from the list.
731 *
732 */
733
734 static DEFINE_SPINLOCK(queue_lock);
735 static DEFINE_MUTEX(queue_io_mutex);
736
737 struct cache_queue {
738 struct list_head list;
739 int reader; /* if 0, then request */
740 };
741 struct cache_request {
742 struct cache_queue q;
743 struct cache_head *item;
744 char * buf;
745 int len;
746 int readers;
747 };
748 struct cache_reader {
749 struct cache_queue q;
750 int offset; /* if non-0, we have a refcnt on next request */
751 };
752
753 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
754 loff_t *ppos, struct cache_detail *cd)
755 {
756 struct cache_reader *rp = filp->private_data;
757 struct cache_request *rq;
758 struct inode *inode = filp->f_path.dentry->d_inode;
759 int err;
760
761 if (count == 0)
762 return 0;
763
764 mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
765 * readers on this file */
766 again:
767 spin_lock(&queue_lock);
768 /* need to find next request */
769 while (rp->q.list.next != &cd->queue &&
770 list_entry(rp->q.list.next, struct cache_queue, list)
771 ->reader) {
772 struct list_head *next = rp->q.list.next;
773 list_move(&rp->q.list, next);
774 }
775 if (rp->q.list.next == &cd->queue) {
776 spin_unlock(&queue_lock);
777 mutex_unlock(&inode->i_mutex);
778 BUG_ON(rp->offset);
779 return 0;
780 }
781 rq = container_of(rp->q.list.next, struct cache_request, q.list);
782 BUG_ON(rq->q.reader);
783 if (rp->offset == 0)
784 rq->readers++;
785 spin_unlock(&queue_lock);
786
787 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
788 err = -EAGAIN;
789 spin_lock(&queue_lock);
790 list_move(&rp->q.list, &rq->q.list);
791 spin_unlock(&queue_lock);
792 } else {
793 if (rp->offset + count > rq->len)
794 count = rq->len - rp->offset;
795 err = -EFAULT;
796 if (copy_to_user(buf, rq->buf + rp->offset, count))
797 goto out;
798 rp->offset += count;
799 if (rp->offset >= rq->len) {
800 rp->offset = 0;
801 spin_lock(&queue_lock);
802 list_move(&rp->q.list, &rq->q.list);
803 spin_unlock(&queue_lock);
804 }
805 err = 0;
806 }
807 out:
808 if (rp->offset == 0) {
809 /* need to release rq */
810 spin_lock(&queue_lock);
811 rq->readers--;
812 if (rq->readers == 0 &&
813 !test_bit(CACHE_PENDING, &rq->item->flags)) {
814 list_del(&rq->q.list);
815 spin_unlock(&queue_lock);
816 cache_put(rq->item, cd);
817 kfree(rq->buf);
818 kfree(rq);
819 } else
820 spin_unlock(&queue_lock);
821 }
822 if (err == -EAGAIN)
823 goto again;
824 mutex_unlock(&inode->i_mutex);
825 return err ? err : count;
826 }
827
828 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
829 size_t count, struct cache_detail *cd)
830 {
831 ssize_t ret;
832
833 if (copy_from_user(kaddr, buf, count))
834 return -EFAULT;
835 kaddr[count] = '\0';
836 ret = cd->cache_parse(cd, kaddr, count);
837 if (!ret)
838 ret = count;
839 return ret;
840 }
841
842 static ssize_t cache_slow_downcall(const char __user *buf,
843 size_t count, struct cache_detail *cd)
844 {
845 static char write_buf[8192]; /* protected by queue_io_mutex */
846 ssize_t ret = -EINVAL;
847
848 if (count >= sizeof(write_buf))
849 goto out;
850 mutex_lock(&queue_io_mutex);
851 ret = cache_do_downcall(write_buf, buf, count, cd);
852 mutex_unlock(&queue_io_mutex);
853 out:
854 return ret;
855 }
856
857 static ssize_t cache_downcall(struct address_space *mapping,
858 const char __user *buf,
859 size_t count, struct cache_detail *cd)
860 {
861 struct page *page;
862 char *kaddr;
863 ssize_t ret = -ENOMEM;
864
865 if (count >= PAGE_CACHE_SIZE)
866 goto out_slow;
867
868 page = find_or_create_page(mapping, 0, GFP_KERNEL);
869 if (!page)
870 goto out_slow;
871
872 kaddr = kmap(page);
873 ret = cache_do_downcall(kaddr, buf, count, cd);
874 kunmap(page);
875 unlock_page(page);
876 page_cache_release(page);
877 return ret;
878 out_slow:
879 return cache_slow_downcall(buf, count, cd);
880 }
881
882 static ssize_t cache_write(struct file *filp, const char __user *buf,
883 size_t count, loff_t *ppos,
884 struct cache_detail *cd)
885 {
886 struct address_space *mapping = filp->f_mapping;
887 struct inode *inode = filp->f_path.dentry->d_inode;
888 ssize_t ret = -EINVAL;
889
890 if (!cd->cache_parse)
891 goto out;
892
893 mutex_lock(&inode->i_mutex);
894 ret = cache_downcall(mapping, buf, count, cd);
895 mutex_unlock(&inode->i_mutex);
896 out:
897 return ret;
898 }
899
900 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
901
902 static unsigned int cache_poll(struct file *filp, poll_table *wait,
903 struct cache_detail *cd)
904 {
905 unsigned int mask;
906 struct cache_reader *rp = filp->private_data;
907 struct cache_queue *cq;
908
909 poll_wait(filp, &queue_wait, wait);
910
911 /* alway allow write */
912 mask = POLL_OUT | POLLWRNORM;
913
914 if (!rp)
915 return mask;
916
917 spin_lock(&queue_lock);
918
919 for (cq= &rp->q; &cq->list != &cd->queue;
920 cq = list_entry(cq->list.next, struct cache_queue, list))
921 if (!cq->reader) {
922 mask |= POLLIN | POLLRDNORM;
923 break;
924 }
925 spin_unlock(&queue_lock);
926 return mask;
927 }
928
929 static int cache_ioctl(struct inode *ino, struct file *filp,
930 unsigned int cmd, unsigned long arg,
931 struct cache_detail *cd)
932 {
933 int len = 0;
934 struct cache_reader *rp = filp->private_data;
935 struct cache_queue *cq;
936
937 if (cmd != FIONREAD || !rp)
938 return -EINVAL;
939
940 spin_lock(&queue_lock);
941
942 /* only find the length remaining in current request,
943 * or the length of the next request
944 */
945 for (cq= &rp->q; &cq->list != &cd->queue;
946 cq = list_entry(cq->list.next, struct cache_queue, list))
947 if (!cq->reader) {
948 struct cache_request *cr =
949 container_of(cq, struct cache_request, q);
950 len = cr->len - rp->offset;
951 break;
952 }
953 spin_unlock(&queue_lock);
954
955 return put_user(len, (int __user *)arg);
956 }
957
958 static int cache_open(struct inode *inode, struct file *filp,
959 struct cache_detail *cd)
960 {
961 struct cache_reader *rp = NULL;
962
963 if (!cd || !try_module_get(cd->owner))
964 return -EACCES;
965 nonseekable_open(inode, filp);
966 if (filp->f_mode & FMODE_READ) {
967 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
968 if (!rp)
969 return -ENOMEM;
970 rp->offset = 0;
971 rp->q.reader = 1;
972 atomic_inc(&cd->readers);
973 spin_lock(&queue_lock);
974 list_add(&rp->q.list, &cd->queue);
975 spin_unlock(&queue_lock);
976 }
977 filp->private_data = rp;
978 return 0;
979 }
980
981 static int cache_release(struct inode *inode, struct file *filp,
982 struct cache_detail *cd)
983 {
984 struct cache_reader *rp = filp->private_data;
985
986 if (rp) {
987 spin_lock(&queue_lock);
988 if (rp->offset) {
989 struct cache_queue *cq;
990 for (cq= &rp->q; &cq->list != &cd->queue;
991 cq = list_entry(cq->list.next, struct cache_queue, list))
992 if (!cq->reader) {
993 container_of(cq, struct cache_request, q)
994 ->readers--;
995 break;
996 }
997 rp->offset = 0;
998 }
999 list_del(&rp->q.list);
1000 spin_unlock(&queue_lock);
1001
1002 filp->private_data = NULL;
1003 kfree(rp);
1004
1005 cd->last_close = seconds_since_boot();
1006 atomic_dec(&cd->readers);
1007 }
1008 module_put(cd->owner);
1009 return 0;
1010 }
1011
1012
1013
1014 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1015 {
1016 struct cache_queue *cq;
1017 spin_lock(&queue_lock);
1018 list_for_each_entry(cq, &detail->queue, list)
1019 if (!cq->reader) {
1020 struct cache_request *cr = container_of(cq, struct cache_request, q);
1021 if (cr->item != ch)
1022 continue;
1023 if (cr->readers != 0)
1024 continue;
1025 list_del(&cr->q.list);
1026 spin_unlock(&queue_lock);
1027 cache_put(cr->item, detail);
1028 kfree(cr->buf);
1029 kfree(cr);
1030 return;
1031 }
1032 spin_unlock(&queue_lock);
1033 }
1034
1035 /*
1036 * Support routines for text-based upcalls.
1037 * Fields are separated by spaces.
1038 * Fields are either mangled to quote space tab newline slosh with slosh
1039 * or a hexified with a leading \x
1040 * Record is terminated with newline.
1041 *
1042 */
1043
1044 void qword_add(char **bpp, int *lp, char *str)
1045 {
1046 char *bp = *bpp;
1047 int len = *lp;
1048 char c;
1049
1050 if (len < 0) return;
1051
1052 while ((c=*str++) && len)
1053 switch(c) {
1054 case ' ':
1055 case '\t':
1056 case '\n':
1057 case '\\':
1058 if (len >= 4) {
1059 *bp++ = '\\';
1060 *bp++ = '0' + ((c & 0300)>>6);
1061 *bp++ = '0' + ((c & 0070)>>3);
1062 *bp++ = '0' + ((c & 0007)>>0);
1063 }
1064 len -= 4;
1065 break;
1066 default:
1067 *bp++ = c;
1068 len--;
1069 }
1070 if (c || len <1) len = -1;
1071 else {
1072 *bp++ = ' ';
1073 len--;
1074 }
1075 *bpp = bp;
1076 *lp = len;
1077 }
1078 EXPORT_SYMBOL_GPL(qword_add);
1079
1080 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1081 {
1082 char *bp = *bpp;
1083 int len = *lp;
1084
1085 if (len < 0) return;
1086
1087 if (len > 2) {
1088 *bp++ = '\\';
1089 *bp++ = 'x';
1090 len -= 2;
1091 while (blen && len >= 2) {
1092 unsigned char c = *buf++;
1093 *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1094 *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1095 len -= 2;
1096 blen--;
1097 }
1098 }
1099 if (blen || len<1) len = -1;
1100 else {
1101 *bp++ = ' ';
1102 len--;
1103 }
1104 *bpp = bp;
1105 *lp = len;
1106 }
1107 EXPORT_SYMBOL_GPL(qword_addhex);
1108
1109 static void warn_no_listener(struct cache_detail *detail)
1110 {
1111 if (detail->last_warn != detail->last_close) {
1112 detail->last_warn = detail->last_close;
1113 if (detail->warn_no_listener)
1114 detail->warn_no_listener(detail, detail->last_close != 0);
1115 }
1116 }
1117
1118 static bool cache_listeners_exist(struct cache_detail *detail)
1119 {
1120 if (atomic_read(&detail->readers))
1121 return true;
1122 if (detail->last_close == 0)
1123 /* This cache was never opened */
1124 return false;
1125 if (detail->last_close < seconds_since_boot() - 30)
1126 /*
1127 * We allow for the possibility that someone might
1128 * restart a userspace daemon without restarting the
1129 * server; but after 30 seconds, we give up.
1130 */
1131 return false;
1132 return true;
1133 }
1134
1135 /*
1136 * register an upcall request to user-space and queue it up for read() by the
1137 * upcall daemon.
1138 *
1139 * Each request is at most one page long.
1140 */
1141 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1142 void (*cache_request)(struct cache_detail *,
1143 struct cache_head *,
1144 char **,
1145 int *))
1146 {
1147
1148 char *buf;
1149 struct cache_request *crq;
1150 char *bp;
1151 int len;
1152
1153 if (!cache_listeners_exist(detail)) {
1154 warn_no_listener(detail);
1155 return -EINVAL;
1156 }
1157
1158 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1159 if (!buf)
1160 return -EAGAIN;
1161
1162 crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1163 if (!crq) {
1164 kfree(buf);
1165 return -EAGAIN;
1166 }
1167
1168 bp = buf; len = PAGE_SIZE;
1169
1170 cache_request(detail, h, &bp, &len);
1171
1172 if (len < 0) {
1173 kfree(buf);
1174 kfree(crq);
1175 return -EAGAIN;
1176 }
1177 crq->q.reader = 0;
1178 crq->item = cache_get(h);
1179 crq->buf = buf;
1180 crq->len = PAGE_SIZE - len;
1181 crq->readers = 0;
1182 spin_lock(&queue_lock);
1183 list_add_tail(&crq->q.list, &detail->queue);
1184 spin_unlock(&queue_lock);
1185 wake_up(&queue_wait);
1186 return 0;
1187 }
1188 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1189
1190 /*
1191 * parse a message from user-space and pass it
1192 * to an appropriate cache
1193 * Messages are, like requests, separated into fields by
1194 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1195 *
1196 * Message is
1197 * reply cachename expiry key ... content....
1198 *
1199 * key and content are both parsed by cache
1200 */
1201
1202 #define isodigit(c) (isdigit(c) && c <= '7')
1203 int qword_get(char **bpp, char *dest, int bufsize)
1204 {
1205 /* return bytes copied, or -1 on error */
1206 char *bp = *bpp;
1207 int len = 0;
1208
1209 while (*bp == ' ') bp++;
1210
1211 if (bp[0] == '\\' && bp[1] == 'x') {
1212 /* HEX STRING */
1213 bp += 2;
1214 while (len < bufsize) {
1215 int h, l;
1216
1217 h = hex_to_bin(bp[0]);
1218 if (h < 0)
1219 break;
1220
1221 l = hex_to_bin(bp[1]);
1222 if (l < 0)
1223 break;
1224
1225 *dest++ = (h << 4) | l;
1226 bp += 2;
1227 len++;
1228 }
1229 } else {
1230 /* text with \nnn octal quoting */
1231 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1232 if (*bp == '\\' &&
1233 isodigit(bp[1]) && (bp[1] <= '3') &&
1234 isodigit(bp[2]) &&
1235 isodigit(bp[3])) {
1236 int byte = (*++bp -'0');
1237 bp++;
1238 byte = (byte << 3) | (*bp++ - '0');
1239 byte = (byte << 3) | (*bp++ - '0');
1240 *dest++ = byte;
1241 len++;
1242 } else {
1243 *dest++ = *bp++;
1244 len++;
1245 }
1246 }
1247 }
1248
1249 if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1250 return -1;
1251 while (*bp == ' ') bp++;
1252 *bpp = bp;
1253 *dest = '\0';
1254 return len;
1255 }
1256 EXPORT_SYMBOL_GPL(qword_get);
1257
1258
1259 /*
1260 * support /proc/sunrpc/cache/$CACHENAME/content
1261 * as a seqfile.
1262 * We call ->cache_show passing NULL for the item to
1263 * get a header, then pass each real item in the cache
1264 */
1265
1266 struct handle {
1267 struct cache_detail *cd;
1268 };
1269
1270 static void *c_start(struct seq_file *m, loff_t *pos)
1271 __acquires(cd->hash_lock)
1272 {
1273 loff_t n = *pos;
1274 unsigned hash, entry;
1275 struct cache_head *ch;
1276 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1277
1278
1279 read_lock(&cd->hash_lock);
1280 if (!n--)
1281 return SEQ_START_TOKEN;
1282 hash = n >> 32;
1283 entry = n & ((1LL<<32) - 1);
1284
1285 for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1286 if (!entry--)
1287 return ch;
1288 n &= ~((1LL<<32) - 1);
1289 do {
1290 hash++;
1291 n += 1LL<<32;
1292 } while(hash < cd->hash_size &&
1293 cd->hash_table[hash]==NULL);
1294 if (hash >= cd->hash_size)
1295 return NULL;
1296 *pos = n+1;
1297 return cd->hash_table[hash];
1298 }
1299
1300 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1301 {
1302 struct cache_head *ch = p;
1303 int hash = (*pos >> 32);
1304 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1305
1306 if (p == SEQ_START_TOKEN)
1307 hash = 0;
1308 else if (ch->next == NULL) {
1309 hash++;
1310 *pos += 1LL<<32;
1311 } else {
1312 ++*pos;
1313 return ch->next;
1314 }
1315 *pos &= ~((1LL<<32) - 1);
1316 while (hash < cd->hash_size &&
1317 cd->hash_table[hash] == NULL) {
1318 hash++;
1319 *pos += 1LL<<32;
1320 }
1321 if (hash >= cd->hash_size)
1322 return NULL;
1323 ++*pos;
1324 return cd->hash_table[hash];
1325 }
1326
1327 static void c_stop(struct seq_file *m, void *p)
1328 __releases(cd->hash_lock)
1329 {
1330 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1331 read_unlock(&cd->hash_lock);
1332 }
1333
1334 static int c_show(struct seq_file *m, void *p)
1335 {
1336 struct cache_head *cp = p;
1337 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1338
1339 if (p == SEQ_START_TOKEN)
1340 return cd->cache_show(m, cd, NULL);
1341
1342 ifdebug(CACHE)
1343 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1344 convert_to_wallclock(cp->expiry_time),
1345 atomic_read(&cp->ref.refcount), cp->flags);
1346 cache_get(cp);
1347 if (cache_check(cd, cp, NULL))
1348 /* cache_check does a cache_put on failure */
1349 seq_printf(m, "# ");
1350 else
1351 cache_put(cp, cd);
1352
1353 return cd->cache_show(m, cd, cp);
1354 }
1355
1356 static const struct seq_operations cache_content_op = {
1357 .start = c_start,
1358 .next = c_next,
1359 .stop = c_stop,
1360 .show = c_show,
1361 };
1362
1363 static int content_open(struct inode *inode, struct file *file,
1364 struct cache_detail *cd)
1365 {
1366 struct handle *han;
1367
1368 if (!cd || !try_module_get(cd->owner))
1369 return -EACCES;
1370 han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1371 if (han == NULL) {
1372 module_put(cd->owner);
1373 return -ENOMEM;
1374 }
1375
1376 han->cd = cd;
1377 return 0;
1378 }
1379
1380 static int content_release(struct inode *inode, struct file *file,
1381 struct cache_detail *cd)
1382 {
1383 int ret = seq_release_private(inode, file);
1384 module_put(cd->owner);
1385 return ret;
1386 }
1387
1388 static int open_flush(struct inode *inode, struct file *file,
1389 struct cache_detail *cd)
1390 {
1391 if (!cd || !try_module_get(cd->owner))
1392 return -EACCES;
1393 return nonseekable_open(inode, file);
1394 }
1395
1396 static int release_flush(struct inode *inode, struct file *file,
1397 struct cache_detail *cd)
1398 {
1399 module_put(cd->owner);
1400 return 0;
1401 }
1402
1403 static ssize_t read_flush(struct file *file, char __user *buf,
1404 size_t count, loff_t *ppos,
1405 struct cache_detail *cd)
1406 {
1407 char tbuf[20];
1408 unsigned long p = *ppos;
1409 size_t len;
1410
1411 sprintf(tbuf, "%lu\n", convert_to_wallclock(cd->flush_time));
1412 len = strlen(tbuf);
1413 if (p >= len)
1414 return 0;
1415 len -= p;
1416 if (len > count)
1417 len = count;
1418 if (copy_to_user(buf, (void*)(tbuf+p), len))
1419 return -EFAULT;
1420 *ppos += len;
1421 return len;
1422 }
1423
1424 static ssize_t write_flush(struct file *file, const char __user *buf,
1425 size_t count, loff_t *ppos,
1426 struct cache_detail *cd)
1427 {
1428 char tbuf[20];
1429 char *bp, *ep;
1430
1431 if (*ppos || count > sizeof(tbuf)-1)
1432 return -EINVAL;
1433 if (copy_from_user(tbuf, buf, count))
1434 return -EFAULT;
1435 tbuf[count] = 0;
1436 simple_strtoul(tbuf, &ep, 0);
1437 if (*ep && *ep != '\n')
1438 return -EINVAL;
1439
1440 bp = tbuf;
1441 cd->flush_time = get_expiry(&bp);
1442 cd->nextcheck = seconds_since_boot();
1443 cache_flush();
1444
1445 *ppos += count;
1446 return count;
1447 }
1448
1449 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1450 size_t count, loff_t *ppos)
1451 {
1452 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1453
1454 return cache_read(filp, buf, count, ppos, cd);
1455 }
1456
1457 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1458 size_t count, loff_t *ppos)
1459 {
1460 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1461
1462 return cache_write(filp, buf, count, ppos, cd);
1463 }
1464
1465 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1466 {
1467 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1468
1469 return cache_poll(filp, wait, cd);
1470 }
1471
1472 static long cache_ioctl_procfs(struct file *filp,
1473 unsigned int cmd, unsigned long arg)
1474 {
1475 struct inode *inode = filp->f_path.dentry->d_inode;
1476 struct cache_detail *cd = PDE(inode)->data;
1477
1478 return cache_ioctl(inode, filp, cmd, arg, cd);
1479 }
1480
1481 static int cache_open_procfs(struct inode *inode, struct file *filp)
1482 {
1483 struct cache_detail *cd = PDE(inode)->data;
1484
1485 return cache_open(inode, filp, cd);
1486 }
1487
1488 static int cache_release_procfs(struct inode *inode, struct file *filp)
1489 {
1490 struct cache_detail *cd = PDE(inode)->data;
1491
1492 return cache_release(inode, filp, cd);
1493 }
1494
1495 static const struct file_operations cache_file_operations_procfs = {
1496 .owner = THIS_MODULE,
1497 .llseek = no_llseek,
1498 .read = cache_read_procfs,
1499 .write = cache_write_procfs,
1500 .poll = cache_poll_procfs,
1501 .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1502 .open = cache_open_procfs,
1503 .release = cache_release_procfs,
1504 };
1505
1506 static int content_open_procfs(struct inode *inode, struct file *filp)
1507 {
1508 struct cache_detail *cd = PDE(inode)->data;
1509
1510 return content_open(inode, filp, cd);
1511 }
1512
1513 static int content_release_procfs(struct inode *inode, struct file *filp)
1514 {
1515 struct cache_detail *cd = PDE(inode)->data;
1516
1517 return content_release(inode, filp, cd);
1518 }
1519
1520 static const struct file_operations content_file_operations_procfs = {
1521 .open = content_open_procfs,
1522 .read = seq_read,
1523 .llseek = seq_lseek,
1524 .release = content_release_procfs,
1525 };
1526
1527 static int open_flush_procfs(struct inode *inode, struct file *filp)
1528 {
1529 struct cache_detail *cd = PDE(inode)->data;
1530
1531 return open_flush(inode, filp, cd);
1532 }
1533
1534 static int release_flush_procfs(struct inode *inode, struct file *filp)
1535 {
1536 struct cache_detail *cd = PDE(inode)->data;
1537
1538 return release_flush(inode, filp, cd);
1539 }
1540
1541 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1542 size_t count, loff_t *ppos)
1543 {
1544 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1545
1546 return read_flush(filp, buf, count, ppos, cd);
1547 }
1548
1549 static ssize_t write_flush_procfs(struct file *filp,
1550 const char __user *buf,
1551 size_t count, loff_t *ppos)
1552 {
1553 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1554
1555 return write_flush(filp, buf, count, ppos, cd);
1556 }
1557
1558 static const struct file_operations cache_flush_operations_procfs = {
1559 .open = open_flush_procfs,
1560 .read = read_flush_procfs,
1561 .write = write_flush_procfs,
1562 .release = release_flush_procfs,
1563 .llseek = no_llseek,
1564 };
1565
1566 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1567 {
1568 struct sunrpc_net *sn;
1569
1570 if (cd->u.procfs.proc_ent == NULL)
1571 return;
1572 if (cd->u.procfs.flush_ent)
1573 remove_proc_entry("flush", cd->u.procfs.proc_ent);
1574 if (cd->u.procfs.channel_ent)
1575 remove_proc_entry("channel", cd->u.procfs.proc_ent);
1576 if (cd->u.procfs.content_ent)
1577 remove_proc_entry("content", cd->u.procfs.proc_ent);
1578 cd->u.procfs.proc_ent = NULL;
1579 sn = net_generic(net, sunrpc_net_id);
1580 remove_proc_entry(cd->name, sn->proc_net_rpc);
1581 }
1582
1583 #ifdef CONFIG_PROC_FS
1584 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1585 {
1586 struct proc_dir_entry *p;
1587 struct sunrpc_net *sn;
1588
1589 sn = net_generic(net, sunrpc_net_id);
1590 cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1591 if (cd->u.procfs.proc_ent == NULL)
1592 goto out_nomem;
1593 cd->u.procfs.channel_ent = NULL;
1594 cd->u.procfs.content_ent = NULL;
1595
1596 p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1597 cd->u.procfs.proc_ent,
1598 &cache_flush_operations_procfs, cd);
1599 cd->u.procfs.flush_ent = p;
1600 if (p == NULL)
1601 goto out_nomem;
1602
1603 if (cd->cache_upcall || cd->cache_parse) {
1604 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1605 cd->u.procfs.proc_ent,
1606 &cache_file_operations_procfs, cd);
1607 cd->u.procfs.channel_ent = p;
1608 if (p == NULL)
1609 goto out_nomem;
1610 }
1611 if (cd->cache_show) {
1612 p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1613 cd->u.procfs.proc_ent,
1614 &content_file_operations_procfs, cd);
1615 cd->u.procfs.content_ent = p;
1616 if (p == NULL)
1617 goto out_nomem;
1618 }
1619 return 0;
1620 out_nomem:
1621 remove_cache_proc_entries(cd, net);
1622 return -ENOMEM;
1623 }
1624 #else /* CONFIG_PROC_FS */
1625 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1626 {
1627 return 0;
1628 }
1629 #endif
1630
1631 void __init cache_initialize(void)
1632 {
1633 INIT_DELAYED_WORK_DEFERRABLE(&cache_cleaner, do_cache_clean);
1634 }
1635
1636 int cache_register_net(struct cache_detail *cd, struct net *net)
1637 {
1638 int ret;
1639
1640 sunrpc_init_cache_detail(cd);
1641 ret = create_cache_proc_entries(cd, net);
1642 if (ret)
1643 sunrpc_destroy_cache_detail(cd);
1644 return ret;
1645 }
1646 EXPORT_SYMBOL_GPL(cache_register_net);
1647
1648 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1649 {
1650 remove_cache_proc_entries(cd, net);
1651 sunrpc_destroy_cache_detail(cd);
1652 }
1653 EXPORT_SYMBOL_GPL(cache_unregister_net);
1654
1655 struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net)
1656 {
1657 struct cache_detail *cd;
1658
1659 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1660 if (cd == NULL)
1661 return ERR_PTR(-ENOMEM);
1662
1663 cd->hash_table = kzalloc(cd->hash_size * sizeof(struct cache_head *),
1664 GFP_KERNEL);
1665 if (cd->hash_table == NULL) {
1666 kfree(cd);
1667 return ERR_PTR(-ENOMEM);
1668 }
1669 cd->net = net;
1670 return cd;
1671 }
1672 EXPORT_SYMBOL_GPL(cache_create_net);
1673
1674 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1675 {
1676 kfree(cd->hash_table);
1677 kfree(cd);
1678 }
1679 EXPORT_SYMBOL_GPL(cache_destroy_net);
1680
1681 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1682 size_t count, loff_t *ppos)
1683 {
1684 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1685
1686 return cache_read(filp, buf, count, ppos, cd);
1687 }
1688
1689 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1690 size_t count, loff_t *ppos)
1691 {
1692 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1693
1694 return cache_write(filp, buf, count, ppos, cd);
1695 }
1696
1697 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1698 {
1699 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1700
1701 return cache_poll(filp, wait, cd);
1702 }
1703
1704 static long cache_ioctl_pipefs(struct file *filp,
1705 unsigned int cmd, unsigned long arg)
1706 {
1707 struct inode *inode = filp->f_dentry->d_inode;
1708 struct cache_detail *cd = RPC_I(inode)->private;
1709
1710 return cache_ioctl(inode, filp, cmd, arg, cd);
1711 }
1712
1713 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1714 {
1715 struct cache_detail *cd = RPC_I(inode)->private;
1716
1717 return cache_open(inode, filp, cd);
1718 }
1719
1720 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1721 {
1722 struct cache_detail *cd = RPC_I(inode)->private;
1723
1724 return cache_release(inode, filp, cd);
1725 }
1726
1727 const struct file_operations cache_file_operations_pipefs = {
1728 .owner = THIS_MODULE,
1729 .llseek = no_llseek,
1730 .read = cache_read_pipefs,
1731 .write = cache_write_pipefs,
1732 .poll = cache_poll_pipefs,
1733 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1734 .open = cache_open_pipefs,
1735 .release = cache_release_pipefs,
1736 };
1737
1738 static int content_open_pipefs(struct inode *inode, struct file *filp)
1739 {
1740 struct cache_detail *cd = RPC_I(inode)->private;
1741
1742 return content_open(inode, filp, cd);
1743 }
1744
1745 static int content_release_pipefs(struct inode *inode, struct file *filp)
1746 {
1747 struct cache_detail *cd = RPC_I(inode)->private;
1748
1749 return content_release(inode, filp, cd);
1750 }
1751
1752 const struct file_operations content_file_operations_pipefs = {
1753 .open = content_open_pipefs,
1754 .read = seq_read,
1755 .llseek = seq_lseek,
1756 .release = content_release_pipefs,
1757 };
1758
1759 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1760 {
1761 struct cache_detail *cd = RPC_I(inode)->private;
1762
1763 return open_flush(inode, filp, cd);
1764 }
1765
1766 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1767 {
1768 struct cache_detail *cd = RPC_I(inode)->private;
1769
1770 return release_flush(inode, filp, cd);
1771 }
1772
1773 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1774 size_t count, loff_t *ppos)
1775 {
1776 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1777
1778 return read_flush(filp, buf, count, ppos, cd);
1779 }
1780
1781 static ssize_t write_flush_pipefs(struct file *filp,
1782 const char __user *buf,
1783 size_t count, loff_t *ppos)
1784 {
1785 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1786
1787 return write_flush(filp, buf, count, ppos, cd);
1788 }
1789
1790 const struct file_operations cache_flush_operations_pipefs = {
1791 .open = open_flush_pipefs,
1792 .read = read_flush_pipefs,
1793 .write = write_flush_pipefs,
1794 .release = release_flush_pipefs,
1795 .llseek = no_llseek,
1796 };
1797
1798 int sunrpc_cache_register_pipefs(struct dentry *parent,
1799 const char *name, umode_t umode,
1800 struct cache_detail *cd)
1801 {
1802 struct qstr q;
1803 struct dentry *dir;
1804 int ret = 0;
1805
1806 q.name = name;
1807 q.len = strlen(name);
1808 q.hash = full_name_hash(q.name, q.len);
1809 dir = rpc_create_cache_dir(parent, &q, umode, cd);
1810 if (!IS_ERR(dir))
1811 cd->u.pipefs.dir = dir;
1812 else
1813 ret = PTR_ERR(dir);
1814 return ret;
1815 }
1816 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1817
1818 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1819 {
1820 rpc_remove_cache_dir(cd->u.pipefs.dir);
1821 cd->u.pipefs.dir = NULL;
1822 }
1823 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1824