]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/sunrpc/clnt.c
Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[mirror_ubuntu-artful-kernel.git] / net / sunrpc / clnt.c
1 /*
2 * linux/net/sunrpc/clnt.c
3 *
4 * This file contains the high-level RPC interface.
5 * It is modeled as a finite state machine to support both synchronous
6 * and asynchronous requests.
7 *
8 * - RPC header generation and argument serialization.
9 * - Credential refresh.
10 * - TCP connect handling.
11 * - Retry of operation when it is suspected the operation failed because
12 * of uid squashing on the server, or when the credentials were stale
13 * and need to be refreshed, or when a packet was damaged in transit.
14 * This may be have to be moved to the VFS layer.
15 *
16 * Copyright (C) 1992,1993 Rick Sladkey <jrs@world.std.com>
17 * Copyright (C) 1995,1996 Olaf Kirch <okir@monad.swb.de>
18 */
19
20
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/kallsyms.h>
24 #include <linux/mm.h>
25 #include <linux/namei.h>
26 #include <linux/mount.h>
27 #include <linux/slab.h>
28 #include <linux/rcupdate.h>
29 #include <linux/utsname.h>
30 #include <linux/workqueue.h>
31 #include <linux/in.h>
32 #include <linux/in6.h>
33 #include <linux/un.h>
34
35 #include <linux/sunrpc/clnt.h>
36 #include <linux/sunrpc/addr.h>
37 #include <linux/sunrpc/rpc_pipe_fs.h>
38 #include <linux/sunrpc/metrics.h>
39 #include <linux/sunrpc/bc_xprt.h>
40 #include <trace/events/sunrpc.h>
41
42 #include "sunrpc.h"
43 #include "netns.h"
44
45 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
46 # define RPCDBG_FACILITY RPCDBG_CALL
47 #endif
48
49 #define dprint_status(t) \
50 dprintk("RPC: %5u %s (status %d)\n", t->tk_pid, \
51 __func__, t->tk_status)
52
53 /*
54 * All RPC clients are linked into this list
55 */
56
57 static DECLARE_WAIT_QUEUE_HEAD(destroy_wait);
58
59
60 static void call_start(struct rpc_task *task);
61 static void call_reserve(struct rpc_task *task);
62 static void call_reserveresult(struct rpc_task *task);
63 static void call_allocate(struct rpc_task *task);
64 static void call_decode(struct rpc_task *task);
65 static void call_bind(struct rpc_task *task);
66 static void call_bind_status(struct rpc_task *task);
67 static void call_transmit(struct rpc_task *task);
68 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
69 static void call_bc_transmit(struct rpc_task *task);
70 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
71 static void call_status(struct rpc_task *task);
72 static void call_transmit_status(struct rpc_task *task);
73 static void call_refresh(struct rpc_task *task);
74 static void call_refreshresult(struct rpc_task *task);
75 static void call_timeout(struct rpc_task *task);
76 static void call_connect(struct rpc_task *task);
77 static void call_connect_status(struct rpc_task *task);
78
79 static __be32 *rpc_encode_header(struct rpc_task *task);
80 static __be32 *rpc_verify_header(struct rpc_task *task);
81 static int rpc_ping(struct rpc_clnt *clnt);
82
83 static void rpc_register_client(struct rpc_clnt *clnt)
84 {
85 struct net *net = rpc_net_ns(clnt);
86 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
87
88 spin_lock(&sn->rpc_client_lock);
89 list_add(&clnt->cl_clients, &sn->all_clients);
90 spin_unlock(&sn->rpc_client_lock);
91 }
92
93 static void rpc_unregister_client(struct rpc_clnt *clnt)
94 {
95 struct net *net = rpc_net_ns(clnt);
96 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
97
98 spin_lock(&sn->rpc_client_lock);
99 list_del(&clnt->cl_clients);
100 spin_unlock(&sn->rpc_client_lock);
101 }
102
103 static void __rpc_clnt_remove_pipedir(struct rpc_clnt *clnt)
104 {
105 rpc_remove_client_dir(clnt);
106 }
107
108 static void rpc_clnt_remove_pipedir(struct rpc_clnt *clnt)
109 {
110 struct net *net = rpc_net_ns(clnt);
111 struct super_block *pipefs_sb;
112
113 pipefs_sb = rpc_get_sb_net(net);
114 if (pipefs_sb) {
115 __rpc_clnt_remove_pipedir(clnt);
116 rpc_put_sb_net(net);
117 }
118 }
119
120 static struct dentry *rpc_setup_pipedir_sb(struct super_block *sb,
121 struct rpc_clnt *clnt)
122 {
123 static uint32_t clntid;
124 const char *dir_name = clnt->cl_program->pipe_dir_name;
125 char name[15];
126 struct dentry *dir, *dentry;
127
128 dir = rpc_d_lookup_sb(sb, dir_name);
129 if (dir == NULL) {
130 pr_info("RPC: pipefs directory doesn't exist: %s\n", dir_name);
131 return dir;
132 }
133 for (;;) {
134 snprintf(name, sizeof(name), "clnt%x", (unsigned int)clntid++);
135 name[sizeof(name) - 1] = '\0';
136 dentry = rpc_create_client_dir(dir, name, clnt);
137 if (!IS_ERR(dentry))
138 break;
139 if (dentry == ERR_PTR(-EEXIST))
140 continue;
141 printk(KERN_INFO "RPC: Couldn't create pipefs entry"
142 " %s/%s, error %ld\n",
143 dir_name, name, PTR_ERR(dentry));
144 break;
145 }
146 dput(dir);
147 return dentry;
148 }
149
150 static int
151 rpc_setup_pipedir(struct super_block *pipefs_sb, struct rpc_clnt *clnt)
152 {
153 struct dentry *dentry;
154
155 if (clnt->cl_program->pipe_dir_name != NULL) {
156 dentry = rpc_setup_pipedir_sb(pipefs_sb, clnt);
157 if (IS_ERR(dentry))
158 return PTR_ERR(dentry);
159 }
160 return 0;
161 }
162
163 static int rpc_clnt_skip_event(struct rpc_clnt *clnt, unsigned long event)
164 {
165 if (clnt->cl_program->pipe_dir_name == NULL)
166 return 1;
167
168 switch (event) {
169 case RPC_PIPEFS_MOUNT:
170 if (clnt->cl_pipedir_objects.pdh_dentry != NULL)
171 return 1;
172 if (atomic_read(&clnt->cl_count) == 0)
173 return 1;
174 break;
175 case RPC_PIPEFS_UMOUNT:
176 if (clnt->cl_pipedir_objects.pdh_dentry == NULL)
177 return 1;
178 break;
179 }
180 return 0;
181 }
182
183 static int __rpc_clnt_handle_event(struct rpc_clnt *clnt, unsigned long event,
184 struct super_block *sb)
185 {
186 struct dentry *dentry;
187
188 switch (event) {
189 case RPC_PIPEFS_MOUNT:
190 dentry = rpc_setup_pipedir_sb(sb, clnt);
191 if (!dentry)
192 return -ENOENT;
193 if (IS_ERR(dentry))
194 return PTR_ERR(dentry);
195 break;
196 case RPC_PIPEFS_UMOUNT:
197 __rpc_clnt_remove_pipedir(clnt);
198 break;
199 default:
200 printk(KERN_ERR "%s: unknown event: %ld\n", __func__, event);
201 return -ENOTSUPP;
202 }
203 return 0;
204 }
205
206 static int __rpc_pipefs_event(struct rpc_clnt *clnt, unsigned long event,
207 struct super_block *sb)
208 {
209 int error = 0;
210
211 for (;; clnt = clnt->cl_parent) {
212 if (!rpc_clnt_skip_event(clnt, event))
213 error = __rpc_clnt_handle_event(clnt, event, sb);
214 if (error || clnt == clnt->cl_parent)
215 break;
216 }
217 return error;
218 }
219
220 static struct rpc_clnt *rpc_get_client_for_event(struct net *net, int event)
221 {
222 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
223 struct rpc_clnt *clnt;
224
225 spin_lock(&sn->rpc_client_lock);
226 list_for_each_entry(clnt, &sn->all_clients, cl_clients) {
227 if (rpc_clnt_skip_event(clnt, event))
228 continue;
229 spin_unlock(&sn->rpc_client_lock);
230 return clnt;
231 }
232 spin_unlock(&sn->rpc_client_lock);
233 return NULL;
234 }
235
236 static int rpc_pipefs_event(struct notifier_block *nb, unsigned long event,
237 void *ptr)
238 {
239 struct super_block *sb = ptr;
240 struct rpc_clnt *clnt;
241 int error = 0;
242
243 while ((clnt = rpc_get_client_for_event(sb->s_fs_info, event))) {
244 error = __rpc_pipefs_event(clnt, event, sb);
245 if (error)
246 break;
247 }
248 return error;
249 }
250
251 static struct notifier_block rpc_clients_block = {
252 .notifier_call = rpc_pipefs_event,
253 .priority = SUNRPC_PIPEFS_RPC_PRIO,
254 };
255
256 int rpc_clients_notifier_register(void)
257 {
258 return rpc_pipefs_notifier_register(&rpc_clients_block);
259 }
260
261 void rpc_clients_notifier_unregister(void)
262 {
263 return rpc_pipefs_notifier_unregister(&rpc_clients_block);
264 }
265
266 static struct rpc_xprt *rpc_clnt_set_transport(struct rpc_clnt *clnt,
267 struct rpc_xprt *xprt,
268 const struct rpc_timeout *timeout)
269 {
270 struct rpc_xprt *old;
271
272 spin_lock(&clnt->cl_lock);
273 old = rcu_dereference_protected(clnt->cl_xprt,
274 lockdep_is_held(&clnt->cl_lock));
275
276 if (!xprt_bound(xprt))
277 clnt->cl_autobind = 1;
278
279 clnt->cl_timeout = timeout;
280 rcu_assign_pointer(clnt->cl_xprt, xprt);
281 spin_unlock(&clnt->cl_lock);
282
283 return old;
284 }
285
286 static void rpc_clnt_set_nodename(struct rpc_clnt *clnt, const char *nodename)
287 {
288 clnt->cl_nodelen = strlcpy(clnt->cl_nodename,
289 nodename, sizeof(clnt->cl_nodename));
290 }
291
292 static int rpc_client_register(struct rpc_clnt *clnt,
293 rpc_authflavor_t pseudoflavor,
294 const char *client_name)
295 {
296 struct rpc_auth_create_args auth_args = {
297 .pseudoflavor = pseudoflavor,
298 .target_name = client_name,
299 };
300 struct rpc_auth *auth;
301 struct net *net = rpc_net_ns(clnt);
302 struct super_block *pipefs_sb;
303 int err;
304
305 rpc_clnt_debugfs_register(clnt);
306
307 pipefs_sb = rpc_get_sb_net(net);
308 if (pipefs_sb) {
309 err = rpc_setup_pipedir(pipefs_sb, clnt);
310 if (err)
311 goto out;
312 }
313
314 rpc_register_client(clnt);
315 if (pipefs_sb)
316 rpc_put_sb_net(net);
317
318 auth = rpcauth_create(&auth_args, clnt);
319 if (IS_ERR(auth)) {
320 dprintk("RPC: Couldn't create auth handle (flavor %u)\n",
321 pseudoflavor);
322 err = PTR_ERR(auth);
323 goto err_auth;
324 }
325 return 0;
326 err_auth:
327 pipefs_sb = rpc_get_sb_net(net);
328 rpc_unregister_client(clnt);
329 __rpc_clnt_remove_pipedir(clnt);
330 out:
331 if (pipefs_sb)
332 rpc_put_sb_net(net);
333 rpc_clnt_debugfs_unregister(clnt);
334 return err;
335 }
336
337 static DEFINE_IDA(rpc_clids);
338
339 void rpc_cleanup_clids(void)
340 {
341 ida_destroy(&rpc_clids);
342 }
343
344 static int rpc_alloc_clid(struct rpc_clnt *clnt)
345 {
346 int clid;
347
348 clid = ida_simple_get(&rpc_clids, 0, 0, GFP_KERNEL);
349 if (clid < 0)
350 return clid;
351 clnt->cl_clid = clid;
352 return 0;
353 }
354
355 static void rpc_free_clid(struct rpc_clnt *clnt)
356 {
357 ida_simple_remove(&rpc_clids, clnt->cl_clid);
358 }
359
360 static struct rpc_clnt * rpc_new_client(const struct rpc_create_args *args,
361 struct rpc_xprt_switch *xps,
362 struct rpc_xprt *xprt,
363 struct rpc_clnt *parent)
364 {
365 const struct rpc_program *program = args->program;
366 const struct rpc_version *version;
367 struct rpc_clnt *clnt = NULL;
368 const struct rpc_timeout *timeout;
369 const char *nodename = args->nodename;
370 int err;
371
372 /* sanity check the name before trying to print it */
373 dprintk("RPC: creating %s client for %s (xprt %p)\n",
374 program->name, args->servername, xprt);
375
376 err = rpciod_up();
377 if (err)
378 goto out_no_rpciod;
379
380 err = -EINVAL;
381 if (args->version >= program->nrvers)
382 goto out_err;
383 version = program->version[args->version];
384 if (version == NULL)
385 goto out_err;
386
387 err = -ENOMEM;
388 clnt = kzalloc(sizeof(*clnt), GFP_KERNEL);
389 if (!clnt)
390 goto out_err;
391 clnt->cl_parent = parent ? : clnt;
392
393 err = rpc_alloc_clid(clnt);
394 if (err)
395 goto out_no_clid;
396
397 clnt->cl_procinfo = version->procs;
398 clnt->cl_maxproc = version->nrprocs;
399 clnt->cl_prog = args->prognumber ? : program->number;
400 clnt->cl_vers = version->number;
401 clnt->cl_stats = program->stats;
402 clnt->cl_metrics = rpc_alloc_iostats(clnt);
403 rpc_init_pipe_dir_head(&clnt->cl_pipedir_objects);
404 err = -ENOMEM;
405 if (clnt->cl_metrics == NULL)
406 goto out_no_stats;
407 clnt->cl_program = program;
408 INIT_LIST_HEAD(&clnt->cl_tasks);
409 spin_lock_init(&clnt->cl_lock);
410
411 timeout = xprt->timeout;
412 if (args->timeout != NULL) {
413 memcpy(&clnt->cl_timeout_default, args->timeout,
414 sizeof(clnt->cl_timeout_default));
415 timeout = &clnt->cl_timeout_default;
416 }
417
418 rpc_clnt_set_transport(clnt, xprt, timeout);
419 xprt_iter_init(&clnt->cl_xpi, xps);
420 xprt_switch_put(xps);
421
422 clnt->cl_rtt = &clnt->cl_rtt_default;
423 rpc_init_rtt(&clnt->cl_rtt_default, clnt->cl_timeout->to_initval);
424
425 atomic_set(&clnt->cl_count, 1);
426
427 if (nodename == NULL)
428 nodename = utsname()->nodename;
429 /* save the nodename */
430 rpc_clnt_set_nodename(clnt, nodename);
431
432 err = rpc_client_register(clnt, args->authflavor, args->client_name);
433 if (err)
434 goto out_no_path;
435 if (parent)
436 atomic_inc(&parent->cl_count);
437 return clnt;
438
439 out_no_path:
440 rpc_free_iostats(clnt->cl_metrics);
441 out_no_stats:
442 rpc_free_clid(clnt);
443 out_no_clid:
444 kfree(clnt);
445 out_err:
446 rpciod_down();
447 out_no_rpciod:
448 xprt_switch_put(xps);
449 xprt_put(xprt);
450 return ERR_PTR(err);
451 }
452
453 static struct rpc_clnt *rpc_create_xprt(struct rpc_create_args *args,
454 struct rpc_xprt *xprt)
455 {
456 struct rpc_clnt *clnt = NULL;
457 struct rpc_xprt_switch *xps;
458
459 if (args->bc_xprt && args->bc_xprt->xpt_bc_xps) {
460 WARN_ON_ONCE(!(args->protocol & XPRT_TRANSPORT_BC));
461 xps = args->bc_xprt->xpt_bc_xps;
462 xprt_switch_get(xps);
463 } else {
464 xps = xprt_switch_alloc(xprt, GFP_KERNEL);
465 if (xps == NULL) {
466 xprt_put(xprt);
467 return ERR_PTR(-ENOMEM);
468 }
469 if (xprt->bc_xprt) {
470 xprt_switch_get(xps);
471 xprt->bc_xprt->xpt_bc_xps = xps;
472 }
473 }
474 clnt = rpc_new_client(args, xps, xprt, NULL);
475 if (IS_ERR(clnt))
476 return clnt;
477
478 if (!(args->flags & RPC_CLNT_CREATE_NOPING)) {
479 int err = rpc_ping(clnt);
480 if (err != 0) {
481 rpc_shutdown_client(clnt);
482 return ERR_PTR(err);
483 }
484 }
485
486 clnt->cl_softrtry = 1;
487 if (args->flags & RPC_CLNT_CREATE_HARDRTRY)
488 clnt->cl_softrtry = 0;
489
490 if (args->flags & RPC_CLNT_CREATE_AUTOBIND)
491 clnt->cl_autobind = 1;
492 if (args->flags & RPC_CLNT_CREATE_NO_RETRANS_TIMEOUT)
493 clnt->cl_noretranstimeo = 1;
494 if (args->flags & RPC_CLNT_CREATE_DISCRTRY)
495 clnt->cl_discrtry = 1;
496 if (!(args->flags & RPC_CLNT_CREATE_QUIET))
497 clnt->cl_chatty = 1;
498
499 return clnt;
500 }
501
502 /**
503 * rpc_create - create an RPC client and transport with one call
504 * @args: rpc_clnt create argument structure
505 *
506 * Creates and initializes an RPC transport and an RPC client.
507 *
508 * It can ping the server in order to determine if it is up, and to see if
509 * it supports this program and version. RPC_CLNT_CREATE_NOPING disables
510 * this behavior so asynchronous tasks can also use rpc_create.
511 */
512 struct rpc_clnt *rpc_create(struct rpc_create_args *args)
513 {
514 struct rpc_xprt *xprt;
515 struct xprt_create xprtargs = {
516 .net = args->net,
517 .ident = args->protocol,
518 .srcaddr = args->saddress,
519 .dstaddr = args->address,
520 .addrlen = args->addrsize,
521 .servername = args->servername,
522 .bc_xprt = args->bc_xprt,
523 };
524 char servername[48];
525
526 if (args->bc_xprt) {
527 WARN_ON_ONCE(!(args->protocol & XPRT_TRANSPORT_BC));
528 xprt = args->bc_xprt->xpt_bc_xprt;
529 if (xprt) {
530 xprt_get(xprt);
531 return rpc_create_xprt(args, xprt);
532 }
533 }
534
535 if (args->flags & RPC_CLNT_CREATE_INFINITE_SLOTS)
536 xprtargs.flags |= XPRT_CREATE_INFINITE_SLOTS;
537 if (args->flags & RPC_CLNT_CREATE_NO_IDLE_TIMEOUT)
538 xprtargs.flags |= XPRT_CREATE_NO_IDLE_TIMEOUT;
539 /*
540 * If the caller chooses not to specify a hostname, whip
541 * up a string representation of the passed-in address.
542 */
543 if (xprtargs.servername == NULL) {
544 struct sockaddr_un *sun =
545 (struct sockaddr_un *)args->address;
546 struct sockaddr_in *sin =
547 (struct sockaddr_in *)args->address;
548 struct sockaddr_in6 *sin6 =
549 (struct sockaddr_in6 *)args->address;
550
551 servername[0] = '\0';
552 switch (args->address->sa_family) {
553 case AF_LOCAL:
554 snprintf(servername, sizeof(servername), "%s",
555 sun->sun_path);
556 break;
557 case AF_INET:
558 snprintf(servername, sizeof(servername), "%pI4",
559 &sin->sin_addr.s_addr);
560 break;
561 case AF_INET6:
562 snprintf(servername, sizeof(servername), "%pI6",
563 &sin6->sin6_addr);
564 break;
565 default:
566 /* caller wants default server name, but
567 * address family isn't recognized. */
568 return ERR_PTR(-EINVAL);
569 }
570 xprtargs.servername = servername;
571 }
572
573 xprt = xprt_create_transport(&xprtargs);
574 if (IS_ERR(xprt))
575 return (struct rpc_clnt *)xprt;
576
577 /*
578 * By default, kernel RPC client connects from a reserved port.
579 * CAP_NET_BIND_SERVICE will not be set for unprivileged requesters,
580 * but it is always enabled for rpciod, which handles the connect
581 * operation.
582 */
583 xprt->resvport = 1;
584 if (args->flags & RPC_CLNT_CREATE_NONPRIVPORT)
585 xprt->resvport = 0;
586
587 return rpc_create_xprt(args, xprt);
588 }
589 EXPORT_SYMBOL_GPL(rpc_create);
590
591 /*
592 * This function clones the RPC client structure. It allows us to share the
593 * same transport while varying parameters such as the authentication
594 * flavour.
595 */
596 static struct rpc_clnt *__rpc_clone_client(struct rpc_create_args *args,
597 struct rpc_clnt *clnt)
598 {
599 struct rpc_xprt_switch *xps;
600 struct rpc_xprt *xprt;
601 struct rpc_clnt *new;
602 int err;
603
604 err = -ENOMEM;
605 rcu_read_lock();
606 xprt = xprt_get(rcu_dereference(clnt->cl_xprt));
607 xps = xprt_switch_get(rcu_dereference(clnt->cl_xpi.xpi_xpswitch));
608 rcu_read_unlock();
609 if (xprt == NULL || xps == NULL) {
610 xprt_put(xprt);
611 xprt_switch_put(xps);
612 goto out_err;
613 }
614 args->servername = xprt->servername;
615 args->nodename = clnt->cl_nodename;
616
617 new = rpc_new_client(args, xps, xprt, clnt);
618 if (IS_ERR(new)) {
619 err = PTR_ERR(new);
620 goto out_err;
621 }
622
623 /* Turn off autobind on clones */
624 new->cl_autobind = 0;
625 new->cl_softrtry = clnt->cl_softrtry;
626 new->cl_noretranstimeo = clnt->cl_noretranstimeo;
627 new->cl_discrtry = clnt->cl_discrtry;
628 new->cl_chatty = clnt->cl_chatty;
629 return new;
630
631 out_err:
632 dprintk("RPC: %s: returned error %d\n", __func__, err);
633 return ERR_PTR(err);
634 }
635
636 /**
637 * rpc_clone_client - Clone an RPC client structure
638 *
639 * @clnt: RPC client whose parameters are copied
640 *
641 * Returns a fresh RPC client or an ERR_PTR.
642 */
643 struct rpc_clnt *rpc_clone_client(struct rpc_clnt *clnt)
644 {
645 struct rpc_create_args args = {
646 .program = clnt->cl_program,
647 .prognumber = clnt->cl_prog,
648 .version = clnt->cl_vers,
649 .authflavor = clnt->cl_auth->au_flavor,
650 };
651 return __rpc_clone_client(&args, clnt);
652 }
653 EXPORT_SYMBOL_GPL(rpc_clone_client);
654
655 /**
656 * rpc_clone_client_set_auth - Clone an RPC client structure and set its auth
657 *
658 * @clnt: RPC client whose parameters are copied
659 * @flavor: security flavor for new client
660 *
661 * Returns a fresh RPC client or an ERR_PTR.
662 */
663 struct rpc_clnt *
664 rpc_clone_client_set_auth(struct rpc_clnt *clnt, rpc_authflavor_t flavor)
665 {
666 struct rpc_create_args args = {
667 .program = clnt->cl_program,
668 .prognumber = clnt->cl_prog,
669 .version = clnt->cl_vers,
670 .authflavor = flavor,
671 };
672 return __rpc_clone_client(&args, clnt);
673 }
674 EXPORT_SYMBOL_GPL(rpc_clone_client_set_auth);
675
676 /**
677 * rpc_switch_client_transport: switch the RPC transport on the fly
678 * @clnt: pointer to a struct rpc_clnt
679 * @args: pointer to the new transport arguments
680 * @timeout: pointer to the new timeout parameters
681 *
682 * This function allows the caller to switch the RPC transport for the
683 * rpc_clnt structure 'clnt' to allow it to connect to a mirrored NFS
684 * server, for instance. It assumes that the caller has ensured that
685 * there are no active RPC tasks by using some form of locking.
686 *
687 * Returns zero if "clnt" is now using the new xprt. Otherwise a
688 * negative errno is returned, and "clnt" continues to use the old
689 * xprt.
690 */
691 int rpc_switch_client_transport(struct rpc_clnt *clnt,
692 struct xprt_create *args,
693 const struct rpc_timeout *timeout)
694 {
695 const struct rpc_timeout *old_timeo;
696 rpc_authflavor_t pseudoflavor;
697 struct rpc_xprt_switch *xps, *oldxps;
698 struct rpc_xprt *xprt, *old;
699 struct rpc_clnt *parent;
700 int err;
701
702 xprt = xprt_create_transport(args);
703 if (IS_ERR(xprt)) {
704 dprintk("RPC: failed to create new xprt for clnt %p\n",
705 clnt);
706 return PTR_ERR(xprt);
707 }
708
709 xps = xprt_switch_alloc(xprt, GFP_KERNEL);
710 if (xps == NULL) {
711 xprt_put(xprt);
712 return -ENOMEM;
713 }
714
715 pseudoflavor = clnt->cl_auth->au_flavor;
716
717 old_timeo = clnt->cl_timeout;
718 old = rpc_clnt_set_transport(clnt, xprt, timeout);
719 oldxps = xprt_iter_xchg_switch(&clnt->cl_xpi, xps);
720
721 rpc_unregister_client(clnt);
722 __rpc_clnt_remove_pipedir(clnt);
723 rpc_clnt_debugfs_unregister(clnt);
724
725 /*
726 * A new transport was created. "clnt" therefore
727 * becomes the root of a new cl_parent tree. clnt's
728 * children, if it has any, still point to the old xprt.
729 */
730 parent = clnt->cl_parent;
731 clnt->cl_parent = clnt;
732
733 /*
734 * The old rpc_auth cache cannot be re-used. GSS
735 * contexts in particular are between a single
736 * client and server.
737 */
738 err = rpc_client_register(clnt, pseudoflavor, NULL);
739 if (err)
740 goto out_revert;
741
742 synchronize_rcu();
743 if (parent != clnt)
744 rpc_release_client(parent);
745 xprt_switch_put(oldxps);
746 xprt_put(old);
747 dprintk("RPC: replaced xprt for clnt %p\n", clnt);
748 return 0;
749
750 out_revert:
751 xps = xprt_iter_xchg_switch(&clnt->cl_xpi, oldxps);
752 rpc_clnt_set_transport(clnt, old, old_timeo);
753 clnt->cl_parent = parent;
754 rpc_client_register(clnt, pseudoflavor, NULL);
755 xprt_switch_put(xps);
756 xprt_put(xprt);
757 dprintk("RPC: failed to switch xprt for clnt %p\n", clnt);
758 return err;
759 }
760 EXPORT_SYMBOL_GPL(rpc_switch_client_transport);
761
762 static
763 int rpc_clnt_xprt_iter_init(struct rpc_clnt *clnt, struct rpc_xprt_iter *xpi)
764 {
765 struct rpc_xprt_switch *xps;
766
767 rcu_read_lock();
768 xps = xprt_switch_get(rcu_dereference(clnt->cl_xpi.xpi_xpswitch));
769 rcu_read_unlock();
770 if (xps == NULL)
771 return -EAGAIN;
772 xprt_iter_init_listall(xpi, xps);
773 xprt_switch_put(xps);
774 return 0;
775 }
776
777 /**
778 * rpc_clnt_iterate_for_each_xprt - Apply a function to all transports
779 * @clnt: pointer to client
780 * @fn: function to apply
781 * @data: void pointer to function data
782 *
783 * Iterates through the list of RPC transports currently attached to the
784 * client and applies the function fn(clnt, xprt, data).
785 *
786 * On error, the iteration stops, and the function returns the error value.
787 */
788 int rpc_clnt_iterate_for_each_xprt(struct rpc_clnt *clnt,
789 int (*fn)(struct rpc_clnt *, struct rpc_xprt *, void *),
790 void *data)
791 {
792 struct rpc_xprt_iter xpi;
793 int ret;
794
795 ret = rpc_clnt_xprt_iter_init(clnt, &xpi);
796 if (ret)
797 return ret;
798 for (;;) {
799 struct rpc_xprt *xprt = xprt_iter_get_next(&xpi);
800
801 if (!xprt)
802 break;
803 ret = fn(clnt, xprt, data);
804 xprt_put(xprt);
805 if (ret < 0)
806 break;
807 }
808 xprt_iter_destroy(&xpi);
809 return ret;
810 }
811 EXPORT_SYMBOL_GPL(rpc_clnt_iterate_for_each_xprt);
812
813 /*
814 * Kill all tasks for the given client.
815 * XXX: kill their descendants as well?
816 */
817 void rpc_killall_tasks(struct rpc_clnt *clnt)
818 {
819 struct rpc_task *rovr;
820
821
822 if (list_empty(&clnt->cl_tasks))
823 return;
824 dprintk("RPC: killing all tasks for client %p\n", clnt);
825 /*
826 * Spin lock all_tasks to prevent changes...
827 */
828 spin_lock(&clnt->cl_lock);
829 list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
830 if (!RPC_IS_ACTIVATED(rovr))
831 continue;
832 if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
833 rovr->tk_flags |= RPC_TASK_KILLED;
834 rpc_exit(rovr, -EIO);
835 if (RPC_IS_QUEUED(rovr))
836 rpc_wake_up_queued_task(rovr->tk_waitqueue,
837 rovr);
838 }
839 }
840 spin_unlock(&clnt->cl_lock);
841 }
842 EXPORT_SYMBOL_GPL(rpc_killall_tasks);
843
844 /*
845 * Properly shut down an RPC client, terminating all outstanding
846 * requests.
847 */
848 void rpc_shutdown_client(struct rpc_clnt *clnt)
849 {
850 might_sleep();
851
852 dprintk_rcu("RPC: shutting down %s client for %s\n",
853 clnt->cl_program->name,
854 rcu_dereference(clnt->cl_xprt)->servername);
855
856 while (!list_empty(&clnt->cl_tasks)) {
857 rpc_killall_tasks(clnt);
858 wait_event_timeout(destroy_wait,
859 list_empty(&clnt->cl_tasks), 1*HZ);
860 }
861
862 rpc_release_client(clnt);
863 }
864 EXPORT_SYMBOL_GPL(rpc_shutdown_client);
865
866 /*
867 * Free an RPC client
868 */
869 static struct rpc_clnt *
870 rpc_free_client(struct rpc_clnt *clnt)
871 {
872 struct rpc_clnt *parent = NULL;
873
874 dprintk_rcu("RPC: destroying %s client for %s\n",
875 clnt->cl_program->name,
876 rcu_dereference(clnt->cl_xprt)->servername);
877 if (clnt->cl_parent != clnt)
878 parent = clnt->cl_parent;
879 rpc_clnt_debugfs_unregister(clnt);
880 rpc_clnt_remove_pipedir(clnt);
881 rpc_unregister_client(clnt);
882 rpc_free_iostats(clnt->cl_metrics);
883 clnt->cl_metrics = NULL;
884 xprt_put(rcu_dereference_raw(clnt->cl_xprt));
885 xprt_iter_destroy(&clnt->cl_xpi);
886 rpciod_down();
887 rpc_free_clid(clnt);
888 kfree(clnt);
889 return parent;
890 }
891
892 /*
893 * Free an RPC client
894 */
895 static struct rpc_clnt *
896 rpc_free_auth(struct rpc_clnt *clnt)
897 {
898 if (clnt->cl_auth == NULL)
899 return rpc_free_client(clnt);
900
901 /*
902 * Note: RPCSEC_GSS may need to send NULL RPC calls in order to
903 * release remaining GSS contexts. This mechanism ensures
904 * that it can do so safely.
905 */
906 atomic_inc(&clnt->cl_count);
907 rpcauth_release(clnt->cl_auth);
908 clnt->cl_auth = NULL;
909 if (atomic_dec_and_test(&clnt->cl_count))
910 return rpc_free_client(clnt);
911 return NULL;
912 }
913
914 /*
915 * Release reference to the RPC client
916 */
917 void
918 rpc_release_client(struct rpc_clnt *clnt)
919 {
920 dprintk("RPC: rpc_release_client(%p)\n", clnt);
921
922 do {
923 if (list_empty(&clnt->cl_tasks))
924 wake_up(&destroy_wait);
925 if (!atomic_dec_and_test(&clnt->cl_count))
926 break;
927 clnt = rpc_free_auth(clnt);
928 } while (clnt != NULL);
929 }
930 EXPORT_SYMBOL_GPL(rpc_release_client);
931
932 /**
933 * rpc_bind_new_program - bind a new RPC program to an existing client
934 * @old: old rpc_client
935 * @program: rpc program to set
936 * @vers: rpc program version
937 *
938 * Clones the rpc client and sets up a new RPC program. This is mainly
939 * of use for enabling different RPC programs to share the same transport.
940 * The Sun NFSv2/v3 ACL protocol can do this.
941 */
942 struct rpc_clnt *rpc_bind_new_program(struct rpc_clnt *old,
943 const struct rpc_program *program,
944 u32 vers)
945 {
946 struct rpc_create_args args = {
947 .program = program,
948 .prognumber = program->number,
949 .version = vers,
950 .authflavor = old->cl_auth->au_flavor,
951 };
952 struct rpc_clnt *clnt;
953 int err;
954
955 clnt = __rpc_clone_client(&args, old);
956 if (IS_ERR(clnt))
957 goto out;
958 err = rpc_ping(clnt);
959 if (err != 0) {
960 rpc_shutdown_client(clnt);
961 clnt = ERR_PTR(err);
962 }
963 out:
964 return clnt;
965 }
966 EXPORT_SYMBOL_GPL(rpc_bind_new_program);
967
968 void rpc_task_release_client(struct rpc_task *task)
969 {
970 struct rpc_clnt *clnt = task->tk_client;
971 struct rpc_xprt *xprt = task->tk_xprt;
972
973 if (clnt != NULL) {
974 /* Remove from client task list */
975 spin_lock(&clnt->cl_lock);
976 list_del(&task->tk_task);
977 spin_unlock(&clnt->cl_lock);
978 task->tk_client = NULL;
979
980 rpc_release_client(clnt);
981 }
982
983 if (xprt != NULL) {
984 task->tk_xprt = NULL;
985
986 xprt_put(xprt);
987 }
988 }
989
990 static
991 void rpc_task_set_client(struct rpc_task *task, struct rpc_clnt *clnt)
992 {
993
994 if (clnt != NULL) {
995 if (task->tk_xprt == NULL)
996 task->tk_xprt = xprt_iter_get_next(&clnt->cl_xpi);
997 task->tk_client = clnt;
998 atomic_inc(&clnt->cl_count);
999 if (clnt->cl_softrtry)
1000 task->tk_flags |= RPC_TASK_SOFT;
1001 if (clnt->cl_noretranstimeo)
1002 task->tk_flags |= RPC_TASK_NO_RETRANS_TIMEOUT;
1003 if (atomic_read(&clnt->cl_swapper))
1004 task->tk_flags |= RPC_TASK_SWAPPER;
1005 /* Add to the client's list of all tasks */
1006 spin_lock(&clnt->cl_lock);
1007 list_add_tail(&task->tk_task, &clnt->cl_tasks);
1008 spin_unlock(&clnt->cl_lock);
1009 }
1010 }
1011
1012 static void
1013 rpc_task_set_rpc_message(struct rpc_task *task, const struct rpc_message *msg)
1014 {
1015 if (msg != NULL) {
1016 task->tk_msg.rpc_proc = msg->rpc_proc;
1017 task->tk_msg.rpc_argp = msg->rpc_argp;
1018 task->tk_msg.rpc_resp = msg->rpc_resp;
1019 if (msg->rpc_cred != NULL)
1020 task->tk_msg.rpc_cred = get_rpccred(msg->rpc_cred);
1021 }
1022 }
1023
1024 /*
1025 * Default callback for async RPC calls
1026 */
1027 static void
1028 rpc_default_callback(struct rpc_task *task, void *data)
1029 {
1030 }
1031
1032 static const struct rpc_call_ops rpc_default_ops = {
1033 .rpc_call_done = rpc_default_callback,
1034 };
1035
1036 /**
1037 * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
1038 * @task_setup_data: pointer to task initialisation data
1039 */
1040 struct rpc_task *rpc_run_task(const struct rpc_task_setup *task_setup_data)
1041 {
1042 struct rpc_task *task;
1043
1044 task = rpc_new_task(task_setup_data);
1045
1046 rpc_task_set_client(task, task_setup_data->rpc_client);
1047 rpc_task_set_rpc_message(task, task_setup_data->rpc_message);
1048
1049 if (task->tk_action == NULL)
1050 rpc_call_start(task);
1051
1052 atomic_inc(&task->tk_count);
1053 rpc_execute(task);
1054 return task;
1055 }
1056 EXPORT_SYMBOL_GPL(rpc_run_task);
1057
1058 /**
1059 * rpc_call_sync - Perform a synchronous RPC call
1060 * @clnt: pointer to RPC client
1061 * @msg: RPC call parameters
1062 * @flags: RPC call flags
1063 */
1064 int rpc_call_sync(struct rpc_clnt *clnt, const struct rpc_message *msg, int flags)
1065 {
1066 struct rpc_task *task;
1067 struct rpc_task_setup task_setup_data = {
1068 .rpc_client = clnt,
1069 .rpc_message = msg,
1070 .callback_ops = &rpc_default_ops,
1071 .flags = flags,
1072 };
1073 int status;
1074
1075 WARN_ON_ONCE(flags & RPC_TASK_ASYNC);
1076 if (flags & RPC_TASK_ASYNC) {
1077 rpc_release_calldata(task_setup_data.callback_ops,
1078 task_setup_data.callback_data);
1079 return -EINVAL;
1080 }
1081
1082 task = rpc_run_task(&task_setup_data);
1083 if (IS_ERR(task))
1084 return PTR_ERR(task);
1085 status = task->tk_status;
1086 rpc_put_task(task);
1087 return status;
1088 }
1089 EXPORT_SYMBOL_GPL(rpc_call_sync);
1090
1091 /**
1092 * rpc_call_async - Perform an asynchronous RPC call
1093 * @clnt: pointer to RPC client
1094 * @msg: RPC call parameters
1095 * @flags: RPC call flags
1096 * @tk_ops: RPC call ops
1097 * @data: user call data
1098 */
1099 int
1100 rpc_call_async(struct rpc_clnt *clnt, const struct rpc_message *msg, int flags,
1101 const struct rpc_call_ops *tk_ops, void *data)
1102 {
1103 struct rpc_task *task;
1104 struct rpc_task_setup task_setup_data = {
1105 .rpc_client = clnt,
1106 .rpc_message = msg,
1107 .callback_ops = tk_ops,
1108 .callback_data = data,
1109 .flags = flags|RPC_TASK_ASYNC,
1110 };
1111
1112 task = rpc_run_task(&task_setup_data);
1113 if (IS_ERR(task))
1114 return PTR_ERR(task);
1115 rpc_put_task(task);
1116 return 0;
1117 }
1118 EXPORT_SYMBOL_GPL(rpc_call_async);
1119
1120 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1121 /**
1122 * rpc_run_bc_task - Allocate a new RPC task for backchannel use, then run
1123 * rpc_execute against it
1124 * @req: RPC request
1125 */
1126 struct rpc_task *rpc_run_bc_task(struct rpc_rqst *req)
1127 {
1128 struct rpc_task *task;
1129 struct xdr_buf *xbufp = &req->rq_snd_buf;
1130 struct rpc_task_setup task_setup_data = {
1131 .callback_ops = &rpc_default_ops,
1132 .flags = RPC_TASK_SOFTCONN,
1133 };
1134
1135 dprintk("RPC: rpc_run_bc_task req= %p\n", req);
1136 /*
1137 * Create an rpc_task to send the data
1138 */
1139 task = rpc_new_task(&task_setup_data);
1140 task->tk_rqstp = req;
1141
1142 /*
1143 * Set up the xdr_buf length.
1144 * This also indicates that the buffer is XDR encoded already.
1145 */
1146 xbufp->len = xbufp->head[0].iov_len + xbufp->page_len +
1147 xbufp->tail[0].iov_len;
1148
1149 task->tk_action = call_bc_transmit;
1150 atomic_inc(&task->tk_count);
1151 WARN_ON_ONCE(atomic_read(&task->tk_count) != 2);
1152 rpc_execute(task);
1153
1154 dprintk("RPC: rpc_run_bc_task: task= %p\n", task);
1155 return task;
1156 }
1157 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1158
1159 void
1160 rpc_call_start(struct rpc_task *task)
1161 {
1162 task->tk_action = call_start;
1163 }
1164 EXPORT_SYMBOL_GPL(rpc_call_start);
1165
1166 /**
1167 * rpc_peeraddr - extract remote peer address from clnt's xprt
1168 * @clnt: RPC client structure
1169 * @buf: target buffer
1170 * @bufsize: length of target buffer
1171 *
1172 * Returns the number of bytes that are actually in the stored address.
1173 */
1174 size_t rpc_peeraddr(struct rpc_clnt *clnt, struct sockaddr *buf, size_t bufsize)
1175 {
1176 size_t bytes;
1177 struct rpc_xprt *xprt;
1178
1179 rcu_read_lock();
1180 xprt = rcu_dereference(clnt->cl_xprt);
1181
1182 bytes = xprt->addrlen;
1183 if (bytes > bufsize)
1184 bytes = bufsize;
1185 memcpy(buf, &xprt->addr, bytes);
1186 rcu_read_unlock();
1187
1188 return bytes;
1189 }
1190 EXPORT_SYMBOL_GPL(rpc_peeraddr);
1191
1192 /**
1193 * rpc_peeraddr2str - return remote peer address in printable format
1194 * @clnt: RPC client structure
1195 * @format: address format
1196 *
1197 * NB: the lifetime of the memory referenced by the returned pointer is
1198 * the same as the rpc_xprt itself. As long as the caller uses this
1199 * pointer, it must hold the RCU read lock.
1200 */
1201 const char *rpc_peeraddr2str(struct rpc_clnt *clnt,
1202 enum rpc_display_format_t format)
1203 {
1204 struct rpc_xprt *xprt;
1205
1206 xprt = rcu_dereference(clnt->cl_xprt);
1207
1208 if (xprt->address_strings[format] != NULL)
1209 return xprt->address_strings[format];
1210 else
1211 return "unprintable";
1212 }
1213 EXPORT_SYMBOL_GPL(rpc_peeraddr2str);
1214
1215 static const struct sockaddr_in rpc_inaddr_loopback = {
1216 .sin_family = AF_INET,
1217 .sin_addr.s_addr = htonl(INADDR_ANY),
1218 };
1219
1220 static const struct sockaddr_in6 rpc_in6addr_loopback = {
1221 .sin6_family = AF_INET6,
1222 .sin6_addr = IN6ADDR_ANY_INIT,
1223 };
1224
1225 /*
1226 * Try a getsockname() on a connected datagram socket. Using a
1227 * connected datagram socket prevents leaving a socket in TIME_WAIT.
1228 * This conserves the ephemeral port number space.
1229 *
1230 * Returns zero and fills in "buf" if successful; otherwise, a
1231 * negative errno is returned.
1232 */
1233 static int rpc_sockname(struct net *net, struct sockaddr *sap, size_t salen,
1234 struct sockaddr *buf, int buflen)
1235 {
1236 struct socket *sock;
1237 int err;
1238
1239 err = __sock_create(net, sap->sa_family,
1240 SOCK_DGRAM, IPPROTO_UDP, &sock, 1);
1241 if (err < 0) {
1242 dprintk("RPC: can't create UDP socket (%d)\n", err);
1243 goto out;
1244 }
1245
1246 switch (sap->sa_family) {
1247 case AF_INET:
1248 err = kernel_bind(sock,
1249 (struct sockaddr *)&rpc_inaddr_loopback,
1250 sizeof(rpc_inaddr_loopback));
1251 break;
1252 case AF_INET6:
1253 err = kernel_bind(sock,
1254 (struct sockaddr *)&rpc_in6addr_loopback,
1255 sizeof(rpc_in6addr_loopback));
1256 break;
1257 default:
1258 err = -EAFNOSUPPORT;
1259 goto out;
1260 }
1261 if (err < 0) {
1262 dprintk("RPC: can't bind UDP socket (%d)\n", err);
1263 goto out_release;
1264 }
1265
1266 err = kernel_connect(sock, sap, salen, 0);
1267 if (err < 0) {
1268 dprintk("RPC: can't connect UDP socket (%d)\n", err);
1269 goto out_release;
1270 }
1271
1272 err = kernel_getsockname(sock, buf, &buflen);
1273 if (err < 0) {
1274 dprintk("RPC: getsockname failed (%d)\n", err);
1275 goto out_release;
1276 }
1277
1278 err = 0;
1279 if (buf->sa_family == AF_INET6) {
1280 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)buf;
1281 sin6->sin6_scope_id = 0;
1282 }
1283 dprintk("RPC: %s succeeded\n", __func__);
1284
1285 out_release:
1286 sock_release(sock);
1287 out:
1288 return err;
1289 }
1290
1291 /*
1292 * Scraping a connected socket failed, so we don't have a useable
1293 * local address. Fallback: generate an address that will prevent
1294 * the server from calling us back.
1295 *
1296 * Returns zero and fills in "buf" if successful; otherwise, a
1297 * negative errno is returned.
1298 */
1299 static int rpc_anyaddr(int family, struct sockaddr *buf, size_t buflen)
1300 {
1301 switch (family) {
1302 case AF_INET:
1303 if (buflen < sizeof(rpc_inaddr_loopback))
1304 return -EINVAL;
1305 memcpy(buf, &rpc_inaddr_loopback,
1306 sizeof(rpc_inaddr_loopback));
1307 break;
1308 case AF_INET6:
1309 if (buflen < sizeof(rpc_in6addr_loopback))
1310 return -EINVAL;
1311 memcpy(buf, &rpc_in6addr_loopback,
1312 sizeof(rpc_in6addr_loopback));
1313 break;
1314 default:
1315 dprintk("RPC: %s: address family not supported\n",
1316 __func__);
1317 return -EAFNOSUPPORT;
1318 }
1319 dprintk("RPC: %s: succeeded\n", __func__);
1320 return 0;
1321 }
1322
1323 /**
1324 * rpc_localaddr - discover local endpoint address for an RPC client
1325 * @clnt: RPC client structure
1326 * @buf: target buffer
1327 * @buflen: size of target buffer, in bytes
1328 *
1329 * Returns zero and fills in "buf" and "buflen" if successful;
1330 * otherwise, a negative errno is returned.
1331 *
1332 * This works even if the underlying transport is not currently connected,
1333 * or if the upper layer never previously provided a source address.
1334 *
1335 * The result of this function call is transient: multiple calls in
1336 * succession may give different results, depending on how local
1337 * networking configuration changes over time.
1338 */
1339 int rpc_localaddr(struct rpc_clnt *clnt, struct sockaddr *buf, size_t buflen)
1340 {
1341 struct sockaddr_storage address;
1342 struct sockaddr *sap = (struct sockaddr *)&address;
1343 struct rpc_xprt *xprt;
1344 struct net *net;
1345 size_t salen;
1346 int err;
1347
1348 rcu_read_lock();
1349 xprt = rcu_dereference(clnt->cl_xprt);
1350 salen = xprt->addrlen;
1351 memcpy(sap, &xprt->addr, salen);
1352 net = get_net(xprt->xprt_net);
1353 rcu_read_unlock();
1354
1355 rpc_set_port(sap, 0);
1356 err = rpc_sockname(net, sap, salen, buf, buflen);
1357 put_net(net);
1358 if (err != 0)
1359 /* Couldn't discover local address, return ANYADDR */
1360 return rpc_anyaddr(sap->sa_family, buf, buflen);
1361 return 0;
1362 }
1363 EXPORT_SYMBOL_GPL(rpc_localaddr);
1364
1365 void
1366 rpc_setbufsize(struct rpc_clnt *clnt, unsigned int sndsize, unsigned int rcvsize)
1367 {
1368 struct rpc_xprt *xprt;
1369
1370 rcu_read_lock();
1371 xprt = rcu_dereference(clnt->cl_xprt);
1372 if (xprt->ops->set_buffer_size)
1373 xprt->ops->set_buffer_size(xprt, sndsize, rcvsize);
1374 rcu_read_unlock();
1375 }
1376 EXPORT_SYMBOL_GPL(rpc_setbufsize);
1377
1378 /**
1379 * rpc_protocol - Get transport protocol number for an RPC client
1380 * @clnt: RPC client to query
1381 *
1382 */
1383 int rpc_protocol(struct rpc_clnt *clnt)
1384 {
1385 int protocol;
1386
1387 rcu_read_lock();
1388 protocol = rcu_dereference(clnt->cl_xprt)->prot;
1389 rcu_read_unlock();
1390 return protocol;
1391 }
1392 EXPORT_SYMBOL_GPL(rpc_protocol);
1393
1394 /**
1395 * rpc_net_ns - Get the network namespace for this RPC client
1396 * @clnt: RPC client to query
1397 *
1398 */
1399 struct net *rpc_net_ns(struct rpc_clnt *clnt)
1400 {
1401 struct net *ret;
1402
1403 rcu_read_lock();
1404 ret = rcu_dereference(clnt->cl_xprt)->xprt_net;
1405 rcu_read_unlock();
1406 return ret;
1407 }
1408 EXPORT_SYMBOL_GPL(rpc_net_ns);
1409
1410 /**
1411 * rpc_max_payload - Get maximum payload size for a transport, in bytes
1412 * @clnt: RPC client to query
1413 *
1414 * For stream transports, this is one RPC record fragment (see RFC
1415 * 1831), as we don't support multi-record requests yet. For datagram
1416 * transports, this is the size of an IP packet minus the IP, UDP, and
1417 * RPC header sizes.
1418 */
1419 size_t rpc_max_payload(struct rpc_clnt *clnt)
1420 {
1421 size_t ret;
1422
1423 rcu_read_lock();
1424 ret = rcu_dereference(clnt->cl_xprt)->max_payload;
1425 rcu_read_unlock();
1426 return ret;
1427 }
1428 EXPORT_SYMBOL_GPL(rpc_max_payload);
1429
1430 /**
1431 * rpc_max_bc_payload - Get maximum backchannel payload size, in bytes
1432 * @clnt: RPC client to query
1433 */
1434 size_t rpc_max_bc_payload(struct rpc_clnt *clnt)
1435 {
1436 struct rpc_xprt *xprt;
1437 size_t ret;
1438
1439 rcu_read_lock();
1440 xprt = rcu_dereference(clnt->cl_xprt);
1441 ret = xprt->ops->bc_maxpayload(xprt);
1442 rcu_read_unlock();
1443 return ret;
1444 }
1445 EXPORT_SYMBOL_GPL(rpc_max_bc_payload);
1446
1447 /**
1448 * rpc_force_rebind - force transport to check that remote port is unchanged
1449 * @clnt: client to rebind
1450 *
1451 */
1452 void rpc_force_rebind(struct rpc_clnt *clnt)
1453 {
1454 if (clnt->cl_autobind) {
1455 rcu_read_lock();
1456 xprt_clear_bound(rcu_dereference(clnt->cl_xprt));
1457 rcu_read_unlock();
1458 }
1459 }
1460 EXPORT_SYMBOL_GPL(rpc_force_rebind);
1461
1462 /*
1463 * Restart an (async) RPC call from the call_prepare state.
1464 * Usually called from within the exit handler.
1465 */
1466 int
1467 rpc_restart_call_prepare(struct rpc_task *task)
1468 {
1469 if (RPC_ASSASSINATED(task))
1470 return 0;
1471 task->tk_action = call_start;
1472 task->tk_status = 0;
1473 if (task->tk_ops->rpc_call_prepare != NULL)
1474 task->tk_action = rpc_prepare_task;
1475 return 1;
1476 }
1477 EXPORT_SYMBOL_GPL(rpc_restart_call_prepare);
1478
1479 /*
1480 * Restart an (async) RPC call. Usually called from within the
1481 * exit handler.
1482 */
1483 int
1484 rpc_restart_call(struct rpc_task *task)
1485 {
1486 if (RPC_ASSASSINATED(task))
1487 return 0;
1488 task->tk_action = call_start;
1489 task->tk_status = 0;
1490 return 1;
1491 }
1492 EXPORT_SYMBOL_GPL(rpc_restart_call);
1493
1494 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
1495 const char
1496 *rpc_proc_name(const struct rpc_task *task)
1497 {
1498 const struct rpc_procinfo *proc = task->tk_msg.rpc_proc;
1499
1500 if (proc) {
1501 if (proc->p_name)
1502 return proc->p_name;
1503 else
1504 return "NULL";
1505 } else
1506 return "no proc";
1507 }
1508 #endif
1509
1510 /*
1511 * 0. Initial state
1512 *
1513 * Other FSM states can be visited zero or more times, but
1514 * this state is visited exactly once for each RPC.
1515 */
1516 static void
1517 call_start(struct rpc_task *task)
1518 {
1519 struct rpc_clnt *clnt = task->tk_client;
1520
1521 dprintk("RPC: %5u call_start %s%d proc %s (%s)\n", task->tk_pid,
1522 clnt->cl_program->name, clnt->cl_vers,
1523 rpc_proc_name(task),
1524 (RPC_IS_ASYNC(task) ? "async" : "sync"));
1525
1526 /* Increment call count */
1527 task->tk_msg.rpc_proc->p_count++;
1528 clnt->cl_stats->rpccnt++;
1529 task->tk_action = call_reserve;
1530 }
1531
1532 /*
1533 * 1. Reserve an RPC call slot
1534 */
1535 static void
1536 call_reserve(struct rpc_task *task)
1537 {
1538 dprint_status(task);
1539
1540 task->tk_status = 0;
1541 task->tk_action = call_reserveresult;
1542 xprt_reserve(task);
1543 }
1544
1545 static void call_retry_reserve(struct rpc_task *task);
1546
1547 /*
1548 * 1b. Grok the result of xprt_reserve()
1549 */
1550 static void
1551 call_reserveresult(struct rpc_task *task)
1552 {
1553 int status = task->tk_status;
1554
1555 dprint_status(task);
1556
1557 /*
1558 * After a call to xprt_reserve(), we must have either
1559 * a request slot or else an error status.
1560 */
1561 task->tk_status = 0;
1562 if (status >= 0) {
1563 if (task->tk_rqstp) {
1564 task->tk_action = call_refresh;
1565 return;
1566 }
1567
1568 printk(KERN_ERR "%s: status=%d, but no request slot, exiting\n",
1569 __func__, status);
1570 rpc_exit(task, -EIO);
1571 return;
1572 }
1573
1574 /*
1575 * Even though there was an error, we may have acquired
1576 * a request slot somehow. Make sure not to leak it.
1577 */
1578 if (task->tk_rqstp) {
1579 printk(KERN_ERR "%s: status=%d, request allocated anyway\n",
1580 __func__, status);
1581 xprt_release(task);
1582 }
1583
1584 switch (status) {
1585 case -ENOMEM:
1586 rpc_delay(task, HZ >> 2);
1587 case -EAGAIN: /* woken up; retry */
1588 task->tk_action = call_retry_reserve;
1589 return;
1590 case -EIO: /* probably a shutdown */
1591 break;
1592 default:
1593 printk(KERN_ERR "%s: unrecognized error %d, exiting\n",
1594 __func__, status);
1595 break;
1596 }
1597 rpc_exit(task, status);
1598 }
1599
1600 /*
1601 * 1c. Retry reserving an RPC call slot
1602 */
1603 static void
1604 call_retry_reserve(struct rpc_task *task)
1605 {
1606 dprint_status(task);
1607
1608 task->tk_status = 0;
1609 task->tk_action = call_reserveresult;
1610 xprt_retry_reserve(task);
1611 }
1612
1613 /*
1614 * 2. Bind and/or refresh the credentials
1615 */
1616 static void
1617 call_refresh(struct rpc_task *task)
1618 {
1619 dprint_status(task);
1620
1621 task->tk_action = call_refreshresult;
1622 task->tk_status = 0;
1623 task->tk_client->cl_stats->rpcauthrefresh++;
1624 rpcauth_refreshcred(task);
1625 }
1626
1627 /*
1628 * 2a. Process the results of a credential refresh
1629 */
1630 static void
1631 call_refreshresult(struct rpc_task *task)
1632 {
1633 int status = task->tk_status;
1634
1635 dprint_status(task);
1636
1637 task->tk_status = 0;
1638 task->tk_action = call_refresh;
1639 switch (status) {
1640 case 0:
1641 if (rpcauth_uptodatecred(task)) {
1642 task->tk_action = call_allocate;
1643 return;
1644 }
1645 /* Use rate-limiting and a max number of retries if refresh
1646 * had status 0 but failed to update the cred.
1647 */
1648 case -ETIMEDOUT:
1649 rpc_delay(task, 3*HZ);
1650 case -EAGAIN:
1651 status = -EACCES;
1652 case -EKEYEXPIRED:
1653 if (!task->tk_cred_retry)
1654 break;
1655 task->tk_cred_retry--;
1656 dprintk("RPC: %5u %s: retry refresh creds\n",
1657 task->tk_pid, __func__);
1658 return;
1659 }
1660 dprintk("RPC: %5u %s: refresh creds failed with error %d\n",
1661 task->tk_pid, __func__, status);
1662 rpc_exit(task, status);
1663 }
1664
1665 /*
1666 * 2b. Allocate the buffer. For details, see sched.c:rpc_malloc.
1667 * (Note: buffer memory is freed in xprt_release).
1668 */
1669 static void
1670 call_allocate(struct rpc_task *task)
1671 {
1672 unsigned int slack = task->tk_rqstp->rq_cred->cr_auth->au_cslack;
1673 struct rpc_rqst *req = task->tk_rqstp;
1674 struct rpc_xprt *xprt = req->rq_xprt;
1675 struct rpc_procinfo *proc = task->tk_msg.rpc_proc;
1676 int status;
1677
1678 dprint_status(task);
1679
1680 task->tk_status = 0;
1681 task->tk_action = call_bind;
1682
1683 if (req->rq_buffer)
1684 return;
1685
1686 if (proc->p_proc != 0) {
1687 BUG_ON(proc->p_arglen == 0);
1688 if (proc->p_decode != NULL)
1689 BUG_ON(proc->p_replen == 0);
1690 }
1691
1692 /*
1693 * Calculate the size (in quads) of the RPC call
1694 * and reply headers, and convert both values
1695 * to byte sizes.
1696 */
1697 req->rq_callsize = RPC_CALLHDRSIZE + (slack << 1) + proc->p_arglen;
1698 req->rq_callsize <<= 2;
1699 req->rq_rcvsize = RPC_REPHDRSIZE + slack + proc->p_replen;
1700 req->rq_rcvsize <<= 2;
1701
1702 status = xprt->ops->buf_alloc(task);
1703 xprt_inject_disconnect(xprt);
1704 if (status == 0)
1705 return;
1706 if (status != -ENOMEM) {
1707 rpc_exit(task, status);
1708 return;
1709 }
1710
1711 dprintk("RPC: %5u rpc_buffer allocation failed\n", task->tk_pid);
1712
1713 if (RPC_IS_ASYNC(task) || !fatal_signal_pending(current)) {
1714 task->tk_action = call_allocate;
1715 rpc_delay(task, HZ>>4);
1716 return;
1717 }
1718
1719 rpc_exit(task, -ERESTARTSYS);
1720 }
1721
1722 static inline int
1723 rpc_task_need_encode(struct rpc_task *task)
1724 {
1725 return task->tk_rqstp->rq_snd_buf.len == 0;
1726 }
1727
1728 static inline void
1729 rpc_task_force_reencode(struct rpc_task *task)
1730 {
1731 task->tk_rqstp->rq_snd_buf.len = 0;
1732 task->tk_rqstp->rq_bytes_sent = 0;
1733 }
1734
1735 /*
1736 * 3. Encode arguments of an RPC call
1737 */
1738 static void
1739 rpc_xdr_encode(struct rpc_task *task)
1740 {
1741 struct rpc_rqst *req = task->tk_rqstp;
1742 kxdreproc_t encode;
1743 __be32 *p;
1744
1745 dprint_status(task);
1746
1747 xdr_buf_init(&req->rq_snd_buf,
1748 req->rq_buffer,
1749 req->rq_callsize);
1750 xdr_buf_init(&req->rq_rcv_buf,
1751 req->rq_rbuffer,
1752 req->rq_rcvsize);
1753
1754 p = rpc_encode_header(task);
1755 if (p == NULL) {
1756 printk(KERN_INFO "RPC: couldn't encode RPC header, exit EIO\n");
1757 rpc_exit(task, -EIO);
1758 return;
1759 }
1760
1761 encode = task->tk_msg.rpc_proc->p_encode;
1762 if (encode == NULL)
1763 return;
1764
1765 task->tk_status = rpcauth_wrap_req(task, encode, req, p,
1766 task->tk_msg.rpc_argp);
1767 }
1768
1769 /*
1770 * 4. Get the server port number if not yet set
1771 */
1772 static void
1773 call_bind(struct rpc_task *task)
1774 {
1775 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
1776
1777 dprint_status(task);
1778
1779 task->tk_action = call_connect;
1780 if (!xprt_bound(xprt)) {
1781 task->tk_action = call_bind_status;
1782 task->tk_timeout = xprt->bind_timeout;
1783 xprt->ops->rpcbind(task);
1784 }
1785 }
1786
1787 /*
1788 * 4a. Sort out bind result
1789 */
1790 static void
1791 call_bind_status(struct rpc_task *task)
1792 {
1793 int status = -EIO;
1794
1795 if (task->tk_status >= 0) {
1796 dprint_status(task);
1797 task->tk_status = 0;
1798 task->tk_action = call_connect;
1799 return;
1800 }
1801
1802 trace_rpc_bind_status(task);
1803 switch (task->tk_status) {
1804 case -ENOMEM:
1805 dprintk("RPC: %5u rpcbind out of memory\n", task->tk_pid);
1806 rpc_delay(task, HZ >> 2);
1807 goto retry_timeout;
1808 case -EACCES:
1809 dprintk("RPC: %5u remote rpcbind: RPC program/version "
1810 "unavailable\n", task->tk_pid);
1811 /* fail immediately if this is an RPC ping */
1812 if (task->tk_msg.rpc_proc->p_proc == 0) {
1813 status = -EOPNOTSUPP;
1814 break;
1815 }
1816 if (task->tk_rebind_retry == 0)
1817 break;
1818 task->tk_rebind_retry--;
1819 rpc_delay(task, 3*HZ);
1820 goto retry_timeout;
1821 case -ETIMEDOUT:
1822 dprintk("RPC: %5u rpcbind request timed out\n",
1823 task->tk_pid);
1824 goto retry_timeout;
1825 case -EPFNOSUPPORT:
1826 /* server doesn't support any rpcbind version we know of */
1827 dprintk("RPC: %5u unrecognized remote rpcbind service\n",
1828 task->tk_pid);
1829 break;
1830 case -EPROTONOSUPPORT:
1831 dprintk("RPC: %5u remote rpcbind version unavailable, retrying\n",
1832 task->tk_pid);
1833 goto retry_timeout;
1834 case -ECONNREFUSED: /* connection problems */
1835 case -ECONNRESET:
1836 case -ECONNABORTED:
1837 case -ENOTCONN:
1838 case -EHOSTDOWN:
1839 case -EHOSTUNREACH:
1840 case -ENETUNREACH:
1841 case -ENOBUFS:
1842 case -EPIPE:
1843 dprintk("RPC: %5u remote rpcbind unreachable: %d\n",
1844 task->tk_pid, task->tk_status);
1845 if (!RPC_IS_SOFTCONN(task)) {
1846 rpc_delay(task, 5*HZ);
1847 goto retry_timeout;
1848 }
1849 status = task->tk_status;
1850 break;
1851 default:
1852 dprintk("RPC: %5u unrecognized rpcbind error (%d)\n",
1853 task->tk_pid, -task->tk_status);
1854 }
1855
1856 rpc_exit(task, status);
1857 return;
1858
1859 retry_timeout:
1860 task->tk_status = 0;
1861 task->tk_action = call_timeout;
1862 }
1863
1864 /*
1865 * 4b. Connect to the RPC server
1866 */
1867 static void
1868 call_connect(struct rpc_task *task)
1869 {
1870 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
1871
1872 dprintk("RPC: %5u call_connect xprt %p %s connected\n",
1873 task->tk_pid, xprt,
1874 (xprt_connected(xprt) ? "is" : "is not"));
1875
1876 task->tk_action = call_transmit;
1877 if (!xprt_connected(xprt)) {
1878 task->tk_action = call_connect_status;
1879 if (task->tk_status < 0)
1880 return;
1881 if (task->tk_flags & RPC_TASK_NOCONNECT) {
1882 rpc_exit(task, -ENOTCONN);
1883 return;
1884 }
1885 xprt_connect(task);
1886 }
1887 }
1888
1889 /*
1890 * 4c. Sort out connect result
1891 */
1892 static void
1893 call_connect_status(struct rpc_task *task)
1894 {
1895 struct rpc_clnt *clnt = task->tk_client;
1896 int status = task->tk_status;
1897
1898 dprint_status(task);
1899
1900 trace_rpc_connect_status(task, status);
1901 task->tk_status = 0;
1902 switch (status) {
1903 case -ECONNREFUSED:
1904 case -ECONNRESET:
1905 case -ECONNABORTED:
1906 case -ENETUNREACH:
1907 case -EHOSTUNREACH:
1908 case -EADDRINUSE:
1909 case -ENOBUFS:
1910 case -EPIPE:
1911 xprt_conditional_disconnect(task->tk_rqstp->rq_xprt,
1912 task->tk_rqstp->rq_connect_cookie);
1913 if (RPC_IS_SOFTCONN(task))
1914 break;
1915 /* retry with existing socket, after a delay */
1916 rpc_delay(task, 3*HZ);
1917 case -EAGAIN:
1918 /* Check for timeouts before looping back to call_bind */
1919 case -ETIMEDOUT:
1920 task->tk_action = call_timeout;
1921 return;
1922 case 0:
1923 clnt->cl_stats->netreconn++;
1924 task->tk_action = call_transmit;
1925 return;
1926 }
1927 rpc_exit(task, status);
1928 }
1929
1930 /*
1931 * 5. Transmit the RPC request, and wait for reply
1932 */
1933 static void
1934 call_transmit(struct rpc_task *task)
1935 {
1936 int is_retrans = RPC_WAS_SENT(task);
1937
1938 dprint_status(task);
1939
1940 task->tk_action = call_status;
1941 if (task->tk_status < 0)
1942 return;
1943 if (!xprt_prepare_transmit(task))
1944 return;
1945 task->tk_action = call_transmit_status;
1946 /* Encode here so that rpcsec_gss can use correct sequence number. */
1947 if (rpc_task_need_encode(task)) {
1948 rpc_xdr_encode(task);
1949 /* Did the encode result in an error condition? */
1950 if (task->tk_status != 0) {
1951 /* Was the error nonfatal? */
1952 if (task->tk_status == -EAGAIN)
1953 rpc_delay(task, HZ >> 4);
1954 else
1955 rpc_exit(task, task->tk_status);
1956 return;
1957 }
1958 }
1959 xprt_transmit(task);
1960 if (task->tk_status < 0)
1961 return;
1962 if (is_retrans)
1963 task->tk_client->cl_stats->rpcretrans++;
1964 /*
1965 * On success, ensure that we call xprt_end_transmit() before sleeping
1966 * in order to allow access to the socket to other RPC requests.
1967 */
1968 call_transmit_status(task);
1969 if (rpc_reply_expected(task))
1970 return;
1971 task->tk_action = rpc_exit_task;
1972 rpc_wake_up_queued_task(&task->tk_rqstp->rq_xprt->pending, task);
1973 }
1974
1975 /*
1976 * 5a. Handle cleanup after a transmission
1977 */
1978 static void
1979 call_transmit_status(struct rpc_task *task)
1980 {
1981 task->tk_action = call_status;
1982
1983 /*
1984 * Common case: success. Force the compiler to put this
1985 * test first.
1986 */
1987 if (task->tk_status == 0) {
1988 xprt_end_transmit(task);
1989 rpc_task_force_reencode(task);
1990 return;
1991 }
1992
1993 switch (task->tk_status) {
1994 case -EAGAIN:
1995 case -ENOBUFS:
1996 break;
1997 default:
1998 dprint_status(task);
1999 xprt_end_transmit(task);
2000 rpc_task_force_reencode(task);
2001 break;
2002 /*
2003 * Special cases: if we've been waiting on the
2004 * socket's write_space() callback, or if the
2005 * socket just returned a connection error,
2006 * then hold onto the transport lock.
2007 */
2008 case -ECONNREFUSED:
2009 case -EHOSTDOWN:
2010 case -EHOSTUNREACH:
2011 case -ENETUNREACH:
2012 case -EPERM:
2013 if (RPC_IS_SOFTCONN(task)) {
2014 xprt_end_transmit(task);
2015 rpc_exit(task, task->tk_status);
2016 break;
2017 }
2018 case -ECONNRESET:
2019 case -ECONNABORTED:
2020 case -EADDRINUSE:
2021 case -ENOTCONN:
2022 case -EPIPE:
2023 rpc_task_force_reencode(task);
2024 }
2025 }
2026
2027 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
2028 /*
2029 * 5b. Send the backchannel RPC reply. On error, drop the reply. In
2030 * addition, disconnect on connectivity errors.
2031 */
2032 static void
2033 call_bc_transmit(struct rpc_task *task)
2034 {
2035 struct rpc_rqst *req = task->tk_rqstp;
2036
2037 if (!xprt_prepare_transmit(task))
2038 goto out_retry;
2039
2040 if (task->tk_status < 0) {
2041 printk(KERN_NOTICE "RPC: Could not send backchannel reply "
2042 "error: %d\n", task->tk_status);
2043 goto out_done;
2044 }
2045 if (req->rq_connect_cookie != req->rq_xprt->connect_cookie)
2046 req->rq_bytes_sent = 0;
2047
2048 xprt_transmit(task);
2049
2050 if (task->tk_status == -EAGAIN)
2051 goto out_nospace;
2052
2053 xprt_end_transmit(task);
2054 dprint_status(task);
2055 switch (task->tk_status) {
2056 case 0:
2057 /* Success */
2058 case -EHOSTDOWN:
2059 case -EHOSTUNREACH:
2060 case -ENETUNREACH:
2061 case -ECONNRESET:
2062 case -ECONNREFUSED:
2063 case -EADDRINUSE:
2064 case -ENOTCONN:
2065 case -EPIPE:
2066 break;
2067 case -ETIMEDOUT:
2068 /*
2069 * Problem reaching the server. Disconnect and let the
2070 * forechannel reestablish the connection. The server will
2071 * have to retransmit the backchannel request and we'll
2072 * reprocess it. Since these ops are idempotent, there's no
2073 * need to cache our reply at this time.
2074 */
2075 printk(KERN_NOTICE "RPC: Could not send backchannel reply "
2076 "error: %d\n", task->tk_status);
2077 xprt_conditional_disconnect(req->rq_xprt,
2078 req->rq_connect_cookie);
2079 break;
2080 default:
2081 /*
2082 * We were unable to reply and will have to drop the
2083 * request. The server should reconnect and retransmit.
2084 */
2085 WARN_ON_ONCE(task->tk_status == -EAGAIN);
2086 printk(KERN_NOTICE "RPC: Could not send backchannel reply "
2087 "error: %d\n", task->tk_status);
2088 break;
2089 }
2090 rpc_wake_up_queued_task(&req->rq_xprt->pending, task);
2091 out_done:
2092 task->tk_action = rpc_exit_task;
2093 return;
2094 out_nospace:
2095 req->rq_connect_cookie = req->rq_xprt->connect_cookie;
2096 out_retry:
2097 task->tk_status = 0;
2098 }
2099 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
2100
2101 /*
2102 * 6. Sort out the RPC call status
2103 */
2104 static void
2105 call_status(struct rpc_task *task)
2106 {
2107 struct rpc_clnt *clnt = task->tk_client;
2108 struct rpc_rqst *req = task->tk_rqstp;
2109 int status;
2110
2111 if (req->rq_reply_bytes_recvd > 0 && !req->rq_bytes_sent)
2112 task->tk_status = req->rq_reply_bytes_recvd;
2113
2114 dprint_status(task);
2115
2116 status = task->tk_status;
2117 if (status >= 0) {
2118 task->tk_action = call_decode;
2119 return;
2120 }
2121
2122 trace_rpc_call_status(task);
2123 task->tk_status = 0;
2124 switch(status) {
2125 case -EHOSTDOWN:
2126 case -EHOSTUNREACH:
2127 case -ENETUNREACH:
2128 case -EPERM:
2129 if (RPC_IS_SOFTCONN(task)) {
2130 rpc_exit(task, status);
2131 break;
2132 }
2133 /*
2134 * Delay any retries for 3 seconds, then handle as if it
2135 * were a timeout.
2136 */
2137 rpc_delay(task, 3*HZ);
2138 case -ETIMEDOUT:
2139 task->tk_action = call_timeout;
2140 if (!(task->tk_flags & RPC_TASK_NO_RETRANS_TIMEOUT)
2141 && task->tk_client->cl_discrtry)
2142 xprt_conditional_disconnect(req->rq_xprt,
2143 req->rq_connect_cookie);
2144 break;
2145 case -ECONNREFUSED:
2146 case -ECONNRESET:
2147 case -ECONNABORTED:
2148 rpc_force_rebind(clnt);
2149 case -EADDRINUSE:
2150 rpc_delay(task, 3*HZ);
2151 case -EPIPE:
2152 case -ENOTCONN:
2153 task->tk_action = call_bind;
2154 break;
2155 case -ENOBUFS:
2156 rpc_delay(task, HZ>>2);
2157 case -EAGAIN:
2158 task->tk_action = call_transmit;
2159 break;
2160 case -EIO:
2161 /* shutdown or soft timeout */
2162 rpc_exit(task, status);
2163 break;
2164 default:
2165 if (clnt->cl_chatty)
2166 printk("%s: RPC call returned error %d\n",
2167 clnt->cl_program->name, -status);
2168 rpc_exit(task, status);
2169 }
2170 }
2171
2172 /*
2173 * 6a. Handle RPC timeout
2174 * We do not release the request slot, so we keep using the
2175 * same XID for all retransmits.
2176 */
2177 static void
2178 call_timeout(struct rpc_task *task)
2179 {
2180 struct rpc_clnt *clnt = task->tk_client;
2181
2182 if (xprt_adjust_timeout(task->tk_rqstp) == 0) {
2183 dprintk("RPC: %5u call_timeout (minor)\n", task->tk_pid);
2184 goto retry;
2185 }
2186
2187 dprintk("RPC: %5u call_timeout (major)\n", task->tk_pid);
2188 task->tk_timeouts++;
2189
2190 if (RPC_IS_SOFTCONN(task)) {
2191 rpc_exit(task, -ETIMEDOUT);
2192 return;
2193 }
2194 if (RPC_IS_SOFT(task)) {
2195 if (clnt->cl_chatty) {
2196 printk(KERN_NOTICE "%s: server %s not responding, timed out\n",
2197 clnt->cl_program->name,
2198 task->tk_xprt->servername);
2199 }
2200 if (task->tk_flags & RPC_TASK_TIMEOUT)
2201 rpc_exit(task, -ETIMEDOUT);
2202 else
2203 rpc_exit(task, -EIO);
2204 return;
2205 }
2206
2207 if (!(task->tk_flags & RPC_CALL_MAJORSEEN)) {
2208 task->tk_flags |= RPC_CALL_MAJORSEEN;
2209 if (clnt->cl_chatty) {
2210 printk(KERN_NOTICE "%s: server %s not responding, still trying\n",
2211 clnt->cl_program->name,
2212 task->tk_xprt->servername);
2213 }
2214 }
2215 rpc_force_rebind(clnt);
2216 /*
2217 * Did our request time out due to an RPCSEC_GSS out-of-sequence
2218 * event? RFC2203 requires the server to drop all such requests.
2219 */
2220 rpcauth_invalcred(task);
2221
2222 retry:
2223 task->tk_action = call_bind;
2224 task->tk_status = 0;
2225 }
2226
2227 /*
2228 * 7. Decode the RPC reply
2229 */
2230 static void
2231 call_decode(struct rpc_task *task)
2232 {
2233 struct rpc_clnt *clnt = task->tk_client;
2234 struct rpc_rqst *req = task->tk_rqstp;
2235 kxdrdproc_t decode = task->tk_msg.rpc_proc->p_decode;
2236 __be32 *p;
2237
2238 dprint_status(task);
2239
2240 if (task->tk_flags & RPC_CALL_MAJORSEEN) {
2241 if (clnt->cl_chatty) {
2242 printk(KERN_NOTICE "%s: server %s OK\n",
2243 clnt->cl_program->name,
2244 task->tk_xprt->servername);
2245 }
2246 task->tk_flags &= ~RPC_CALL_MAJORSEEN;
2247 }
2248
2249 /*
2250 * Ensure that we see all writes made by xprt_complete_rqst()
2251 * before it changed req->rq_reply_bytes_recvd.
2252 */
2253 smp_rmb();
2254 req->rq_rcv_buf.len = req->rq_private_buf.len;
2255
2256 /* Check that the softirq receive buffer is valid */
2257 WARN_ON(memcmp(&req->rq_rcv_buf, &req->rq_private_buf,
2258 sizeof(req->rq_rcv_buf)) != 0);
2259
2260 if (req->rq_rcv_buf.len < 12) {
2261 if (!RPC_IS_SOFT(task)) {
2262 task->tk_action = call_bind;
2263 goto out_retry;
2264 }
2265 dprintk("RPC: %s: too small RPC reply size (%d bytes)\n",
2266 clnt->cl_program->name, task->tk_status);
2267 task->tk_action = call_timeout;
2268 goto out_retry;
2269 }
2270
2271 p = rpc_verify_header(task);
2272 if (IS_ERR(p)) {
2273 if (p == ERR_PTR(-EAGAIN))
2274 goto out_retry;
2275 return;
2276 }
2277
2278 task->tk_action = rpc_exit_task;
2279
2280 if (decode) {
2281 task->tk_status = rpcauth_unwrap_resp(task, decode, req, p,
2282 task->tk_msg.rpc_resp);
2283 }
2284 dprintk("RPC: %5u call_decode result %d\n", task->tk_pid,
2285 task->tk_status);
2286 return;
2287 out_retry:
2288 task->tk_status = 0;
2289 /* Note: rpc_verify_header() may have freed the RPC slot */
2290 if (task->tk_rqstp == req) {
2291 req->rq_reply_bytes_recvd = req->rq_rcv_buf.len = 0;
2292 if (task->tk_client->cl_discrtry)
2293 xprt_conditional_disconnect(req->rq_xprt,
2294 req->rq_connect_cookie);
2295 }
2296 }
2297
2298 static __be32 *
2299 rpc_encode_header(struct rpc_task *task)
2300 {
2301 struct rpc_clnt *clnt = task->tk_client;
2302 struct rpc_rqst *req = task->tk_rqstp;
2303 __be32 *p = req->rq_svec[0].iov_base;
2304
2305 /* FIXME: check buffer size? */
2306
2307 p = xprt_skip_transport_header(req->rq_xprt, p);
2308 *p++ = req->rq_xid; /* XID */
2309 *p++ = htonl(RPC_CALL); /* CALL */
2310 *p++ = htonl(RPC_VERSION); /* RPC version */
2311 *p++ = htonl(clnt->cl_prog); /* program number */
2312 *p++ = htonl(clnt->cl_vers); /* program version */
2313 *p++ = htonl(task->tk_msg.rpc_proc->p_proc); /* procedure */
2314 p = rpcauth_marshcred(task, p);
2315 req->rq_slen = xdr_adjust_iovec(&req->rq_svec[0], p);
2316 return p;
2317 }
2318
2319 static __be32 *
2320 rpc_verify_header(struct rpc_task *task)
2321 {
2322 struct rpc_clnt *clnt = task->tk_client;
2323 struct kvec *iov = &task->tk_rqstp->rq_rcv_buf.head[0];
2324 int len = task->tk_rqstp->rq_rcv_buf.len >> 2;
2325 __be32 *p = iov->iov_base;
2326 u32 n;
2327 int error = -EACCES;
2328
2329 if ((task->tk_rqstp->rq_rcv_buf.len & 3) != 0) {
2330 /* RFC-1014 says that the representation of XDR data must be a
2331 * multiple of four bytes
2332 * - if it isn't pointer subtraction in the NFS client may give
2333 * undefined results
2334 */
2335 dprintk("RPC: %5u %s: XDR representation not a multiple of"
2336 " 4 bytes: 0x%x\n", task->tk_pid, __func__,
2337 task->tk_rqstp->rq_rcv_buf.len);
2338 error = -EIO;
2339 goto out_err;
2340 }
2341 if ((len -= 3) < 0)
2342 goto out_overflow;
2343
2344 p += 1; /* skip XID */
2345 if ((n = ntohl(*p++)) != RPC_REPLY) {
2346 dprintk("RPC: %5u %s: not an RPC reply: %x\n",
2347 task->tk_pid, __func__, n);
2348 error = -EIO;
2349 goto out_garbage;
2350 }
2351
2352 if ((n = ntohl(*p++)) != RPC_MSG_ACCEPTED) {
2353 if (--len < 0)
2354 goto out_overflow;
2355 switch ((n = ntohl(*p++))) {
2356 case RPC_AUTH_ERROR:
2357 break;
2358 case RPC_MISMATCH:
2359 dprintk("RPC: %5u %s: RPC call version mismatch!\n",
2360 task->tk_pid, __func__);
2361 error = -EPROTONOSUPPORT;
2362 goto out_err;
2363 default:
2364 dprintk("RPC: %5u %s: RPC call rejected, "
2365 "unknown error: %x\n",
2366 task->tk_pid, __func__, n);
2367 error = -EIO;
2368 goto out_err;
2369 }
2370 if (--len < 0)
2371 goto out_overflow;
2372 switch ((n = ntohl(*p++))) {
2373 case RPC_AUTH_REJECTEDCRED:
2374 case RPC_AUTH_REJECTEDVERF:
2375 case RPCSEC_GSS_CREDPROBLEM:
2376 case RPCSEC_GSS_CTXPROBLEM:
2377 if (!task->tk_cred_retry)
2378 break;
2379 task->tk_cred_retry--;
2380 dprintk("RPC: %5u %s: retry stale creds\n",
2381 task->tk_pid, __func__);
2382 rpcauth_invalcred(task);
2383 /* Ensure we obtain a new XID! */
2384 xprt_release(task);
2385 task->tk_action = call_reserve;
2386 goto out_retry;
2387 case RPC_AUTH_BADCRED:
2388 case RPC_AUTH_BADVERF:
2389 /* possibly garbled cred/verf? */
2390 if (!task->tk_garb_retry)
2391 break;
2392 task->tk_garb_retry--;
2393 dprintk("RPC: %5u %s: retry garbled creds\n",
2394 task->tk_pid, __func__);
2395 task->tk_action = call_bind;
2396 goto out_retry;
2397 case RPC_AUTH_TOOWEAK:
2398 printk(KERN_NOTICE "RPC: server %s requires stronger "
2399 "authentication.\n",
2400 task->tk_xprt->servername);
2401 break;
2402 default:
2403 dprintk("RPC: %5u %s: unknown auth error: %x\n",
2404 task->tk_pid, __func__, n);
2405 error = -EIO;
2406 }
2407 dprintk("RPC: %5u %s: call rejected %d\n",
2408 task->tk_pid, __func__, n);
2409 goto out_err;
2410 }
2411 p = rpcauth_checkverf(task, p);
2412 if (IS_ERR(p)) {
2413 error = PTR_ERR(p);
2414 dprintk("RPC: %5u %s: auth check failed with %d\n",
2415 task->tk_pid, __func__, error);
2416 goto out_garbage; /* bad verifier, retry */
2417 }
2418 len = p - (__be32 *)iov->iov_base - 1;
2419 if (len < 0)
2420 goto out_overflow;
2421 switch ((n = ntohl(*p++))) {
2422 case RPC_SUCCESS:
2423 return p;
2424 case RPC_PROG_UNAVAIL:
2425 dprintk("RPC: %5u %s: program %u is unsupported "
2426 "by server %s\n", task->tk_pid, __func__,
2427 (unsigned int)clnt->cl_prog,
2428 task->tk_xprt->servername);
2429 error = -EPFNOSUPPORT;
2430 goto out_err;
2431 case RPC_PROG_MISMATCH:
2432 dprintk("RPC: %5u %s: program %u, version %u unsupported "
2433 "by server %s\n", task->tk_pid, __func__,
2434 (unsigned int)clnt->cl_prog,
2435 (unsigned int)clnt->cl_vers,
2436 task->tk_xprt->servername);
2437 error = -EPROTONOSUPPORT;
2438 goto out_err;
2439 case RPC_PROC_UNAVAIL:
2440 dprintk("RPC: %5u %s: proc %s unsupported by program %u, "
2441 "version %u on server %s\n",
2442 task->tk_pid, __func__,
2443 rpc_proc_name(task),
2444 clnt->cl_prog, clnt->cl_vers,
2445 task->tk_xprt->servername);
2446 error = -EOPNOTSUPP;
2447 goto out_err;
2448 case RPC_GARBAGE_ARGS:
2449 dprintk("RPC: %5u %s: server saw garbage\n",
2450 task->tk_pid, __func__);
2451 break; /* retry */
2452 default:
2453 dprintk("RPC: %5u %s: server accept status: %x\n",
2454 task->tk_pid, __func__, n);
2455 /* Also retry */
2456 }
2457
2458 out_garbage:
2459 clnt->cl_stats->rpcgarbage++;
2460 if (task->tk_garb_retry) {
2461 task->tk_garb_retry--;
2462 dprintk("RPC: %5u %s: retrying\n",
2463 task->tk_pid, __func__);
2464 task->tk_action = call_bind;
2465 out_retry:
2466 return ERR_PTR(-EAGAIN);
2467 }
2468 out_err:
2469 rpc_exit(task, error);
2470 dprintk("RPC: %5u %s: call failed with error %d\n", task->tk_pid,
2471 __func__, error);
2472 return ERR_PTR(error);
2473 out_overflow:
2474 dprintk("RPC: %5u %s: server reply was truncated.\n", task->tk_pid,
2475 __func__);
2476 goto out_garbage;
2477 }
2478
2479 static void rpcproc_encode_null(void *rqstp, struct xdr_stream *xdr, void *obj)
2480 {
2481 }
2482
2483 static int rpcproc_decode_null(void *rqstp, struct xdr_stream *xdr, void *obj)
2484 {
2485 return 0;
2486 }
2487
2488 static struct rpc_procinfo rpcproc_null = {
2489 .p_encode = rpcproc_encode_null,
2490 .p_decode = rpcproc_decode_null,
2491 };
2492
2493 static int rpc_ping(struct rpc_clnt *clnt)
2494 {
2495 struct rpc_message msg = {
2496 .rpc_proc = &rpcproc_null,
2497 };
2498 int err;
2499 msg.rpc_cred = authnull_ops.lookup_cred(NULL, NULL, 0);
2500 err = rpc_call_sync(clnt, &msg, RPC_TASK_SOFT | RPC_TASK_SOFTCONN);
2501 put_rpccred(msg.rpc_cred);
2502 return err;
2503 }
2504
2505 static
2506 struct rpc_task *rpc_call_null_helper(struct rpc_clnt *clnt,
2507 struct rpc_xprt *xprt, struct rpc_cred *cred, int flags,
2508 const struct rpc_call_ops *ops, void *data)
2509 {
2510 struct rpc_message msg = {
2511 .rpc_proc = &rpcproc_null,
2512 .rpc_cred = cred,
2513 };
2514 struct rpc_task_setup task_setup_data = {
2515 .rpc_client = clnt,
2516 .rpc_xprt = xprt,
2517 .rpc_message = &msg,
2518 .callback_ops = (ops != NULL) ? ops : &rpc_default_ops,
2519 .callback_data = data,
2520 .flags = flags,
2521 };
2522
2523 return rpc_run_task(&task_setup_data);
2524 }
2525
2526 struct rpc_task *rpc_call_null(struct rpc_clnt *clnt, struct rpc_cred *cred, int flags)
2527 {
2528 return rpc_call_null_helper(clnt, NULL, cred, flags, NULL, NULL);
2529 }
2530 EXPORT_SYMBOL_GPL(rpc_call_null);
2531
2532 struct rpc_cb_add_xprt_calldata {
2533 struct rpc_xprt_switch *xps;
2534 struct rpc_xprt *xprt;
2535 };
2536
2537 static void rpc_cb_add_xprt_done(struct rpc_task *task, void *calldata)
2538 {
2539 struct rpc_cb_add_xprt_calldata *data = calldata;
2540
2541 if (task->tk_status == 0)
2542 rpc_xprt_switch_add_xprt(data->xps, data->xprt);
2543 }
2544
2545 static void rpc_cb_add_xprt_release(void *calldata)
2546 {
2547 struct rpc_cb_add_xprt_calldata *data = calldata;
2548
2549 xprt_put(data->xprt);
2550 xprt_switch_put(data->xps);
2551 kfree(data);
2552 }
2553
2554 static const struct rpc_call_ops rpc_cb_add_xprt_call_ops = {
2555 .rpc_call_done = rpc_cb_add_xprt_done,
2556 .rpc_release = rpc_cb_add_xprt_release,
2557 };
2558
2559 /**
2560 * rpc_clnt_test_and_add_xprt - Test and add a new transport to a rpc_clnt
2561 * @clnt: pointer to struct rpc_clnt
2562 * @xps: pointer to struct rpc_xprt_switch,
2563 * @xprt: pointer struct rpc_xprt
2564 * @dummy: unused
2565 */
2566 int rpc_clnt_test_and_add_xprt(struct rpc_clnt *clnt,
2567 struct rpc_xprt_switch *xps, struct rpc_xprt *xprt,
2568 void *dummy)
2569 {
2570 struct rpc_cb_add_xprt_calldata *data;
2571 struct rpc_cred *cred;
2572 struct rpc_task *task;
2573
2574 data = kmalloc(sizeof(*data), GFP_NOFS);
2575 if (!data)
2576 return -ENOMEM;
2577 data->xps = xprt_switch_get(xps);
2578 data->xprt = xprt_get(xprt);
2579
2580 cred = authnull_ops.lookup_cred(NULL, NULL, 0);
2581 task = rpc_call_null_helper(clnt, xprt, cred,
2582 RPC_TASK_SOFT|RPC_TASK_SOFTCONN|RPC_TASK_ASYNC,
2583 &rpc_cb_add_xprt_call_ops, data);
2584 put_rpccred(cred);
2585 if (IS_ERR(task))
2586 return PTR_ERR(task);
2587 rpc_put_task(task);
2588 return 1;
2589 }
2590 EXPORT_SYMBOL_GPL(rpc_clnt_test_and_add_xprt);
2591
2592 /**
2593 * rpc_clnt_setup_test_and_add_xprt()
2594 *
2595 * This is an rpc_clnt_add_xprt setup() function which returns 1 so:
2596 * 1) caller of the test function must dereference the rpc_xprt_switch
2597 * and the rpc_xprt.
2598 * 2) test function must call rpc_xprt_switch_add_xprt, usually in
2599 * the rpc_call_done routine.
2600 *
2601 * Upon success (return of 1), the test function adds the new
2602 * transport to the rpc_clnt xprt switch
2603 *
2604 * @clnt: struct rpc_clnt to get the new transport
2605 * @xps: the rpc_xprt_switch to hold the new transport
2606 * @xprt: the rpc_xprt to test
2607 * @data: a struct rpc_add_xprt_test pointer that holds the test function
2608 * and test function call data
2609 */
2610 int rpc_clnt_setup_test_and_add_xprt(struct rpc_clnt *clnt,
2611 struct rpc_xprt_switch *xps,
2612 struct rpc_xprt *xprt,
2613 void *data)
2614 {
2615 struct rpc_cred *cred;
2616 struct rpc_task *task;
2617 struct rpc_add_xprt_test *xtest = (struct rpc_add_xprt_test *)data;
2618 int status = -EADDRINUSE;
2619
2620 xprt = xprt_get(xprt);
2621 xprt_switch_get(xps);
2622
2623 if (rpc_xprt_switch_has_addr(xps, (struct sockaddr *)&xprt->addr))
2624 goto out_err;
2625
2626 /* Test the connection */
2627 cred = authnull_ops.lookup_cred(NULL, NULL, 0);
2628 task = rpc_call_null_helper(clnt, xprt, cred,
2629 RPC_TASK_SOFT | RPC_TASK_SOFTCONN,
2630 NULL, NULL);
2631 put_rpccred(cred);
2632 if (IS_ERR(task)) {
2633 status = PTR_ERR(task);
2634 goto out_err;
2635 }
2636 status = task->tk_status;
2637 rpc_put_task(task);
2638
2639 if (status < 0)
2640 goto out_err;
2641
2642 /* rpc_xprt_switch and rpc_xprt are deferrenced by add_xprt_test() */
2643 xtest->add_xprt_test(clnt, xprt, xtest->data);
2644
2645 /* so that rpc_clnt_add_xprt does not call rpc_xprt_switch_add_xprt */
2646 return 1;
2647 out_err:
2648 xprt_put(xprt);
2649 xprt_switch_put(xps);
2650 pr_info("RPC: rpc_clnt_test_xprt failed: %d addr %s not added\n",
2651 status, xprt->address_strings[RPC_DISPLAY_ADDR]);
2652 return status;
2653 }
2654 EXPORT_SYMBOL_GPL(rpc_clnt_setup_test_and_add_xprt);
2655
2656 /**
2657 * rpc_clnt_add_xprt - Add a new transport to a rpc_clnt
2658 * @clnt: pointer to struct rpc_clnt
2659 * @xprtargs: pointer to struct xprt_create
2660 * @setup: callback to test and/or set up the connection
2661 * @data: pointer to setup function data
2662 *
2663 * Creates a new transport using the parameters set in args and
2664 * adds it to clnt.
2665 * If ping is set, then test that connectivity succeeds before
2666 * adding the new transport.
2667 *
2668 */
2669 int rpc_clnt_add_xprt(struct rpc_clnt *clnt,
2670 struct xprt_create *xprtargs,
2671 int (*setup)(struct rpc_clnt *,
2672 struct rpc_xprt_switch *,
2673 struct rpc_xprt *,
2674 void *),
2675 void *data)
2676 {
2677 struct rpc_xprt_switch *xps;
2678 struct rpc_xprt *xprt;
2679 unsigned long connect_timeout;
2680 unsigned long reconnect_timeout;
2681 unsigned char resvport;
2682 int ret = 0;
2683
2684 rcu_read_lock();
2685 xps = xprt_switch_get(rcu_dereference(clnt->cl_xpi.xpi_xpswitch));
2686 xprt = xprt_iter_xprt(&clnt->cl_xpi);
2687 if (xps == NULL || xprt == NULL) {
2688 rcu_read_unlock();
2689 return -EAGAIN;
2690 }
2691 resvport = xprt->resvport;
2692 connect_timeout = xprt->connect_timeout;
2693 reconnect_timeout = xprt->max_reconnect_timeout;
2694 rcu_read_unlock();
2695
2696 xprt = xprt_create_transport(xprtargs);
2697 if (IS_ERR(xprt)) {
2698 ret = PTR_ERR(xprt);
2699 goto out_put_switch;
2700 }
2701 xprt->resvport = resvport;
2702 if (xprt->ops->set_connect_timeout != NULL)
2703 xprt->ops->set_connect_timeout(xprt,
2704 connect_timeout,
2705 reconnect_timeout);
2706
2707 rpc_xprt_switch_set_roundrobin(xps);
2708 if (setup) {
2709 ret = setup(clnt, xps, xprt, data);
2710 if (ret != 0)
2711 goto out_put_xprt;
2712 }
2713 rpc_xprt_switch_add_xprt(xps, xprt);
2714 out_put_xprt:
2715 xprt_put(xprt);
2716 out_put_switch:
2717 xprt_switch_put(xps);
2718 return ret;
2719 }
2720 EXPORT_SYMBOL_GPL(rpc_clnt_add_xprt);
2721
2722 struct connect_timeout_data {
2723 unsigned long connect_timeout;
2724 unsigned long reconnect_timeout;
2725 };
2726
2727 static int
2728 rpc_xprt_set_connect_timeout(struct rpc_clnt *clnt,
2729 struct rpc_xprt *xprt,
2730 void *data)
2731 {
2732 struct connect_timeout_data *timeo = data;
2733
2734 if (xprt->ops->set_connect_timeout)
2735 xprt->ops->set_connect_timeout(xprt,
2736 timeo->connect_timeout,
2737 timeo->reconnect_timeout);
2738 return 0;
2739 }
2740
2741 void
2742 rpc_set_connect_timeout(struct rpc_clnt *clnt,
2743 unsigned long connect_timeout,
2744 unsigned long reconnect_timeout)
2745 {
2746 struct connect_timeout_data timeout = {
2747 .connect_timeout = connect_timeout,
2748 .reconnect_timeout = reconnect_timeout,
2749 };
2750 rpc_clnt_iterate_for_each_xprt(clnt,
2751 rpc_xprt_set_connect_timeout,
2752 &timeout);
2753 }
2754 EXPORT_SYMBOL_GPL(rpc_set_connect_timeout);
2755
2756 void rpc_clnt_xprt_switch_put(struct rpc_clnt *clnt)
2757 {
2758 rcu_read_lock();
2759 xprt_switch_put(rcu_dereference(clnt->cl_xpi.xpi_xpswitch));
2760 rcu_read_unlock();
2761 }
2762 EXPORT_SYMBOL_GPL(rpc_clnt_xprt_switch_put);
2763
2764 void rpc_clnt_xprt_switch_add_xprt(struct rpc_clnt *clnt, struct rpc_xprt *xprt)
2765 {
2766 rcu_read_lock();
2767 rpc_xprt_switch_add_xprt(rcu_dereference(clnt->cl_xpi.xpi_xpswitch),
2768 xprt);
2769 rcu_read_unlock();
2770 }
2771 EXPORT_SYMBOL_GPL(rpc_clnt_xprt_switch_add_xprt);
2772
2773 bool rpc_clnt_xprt_switch_has_addr(struct rpc_clnt *clnt,
2774 const struct sockaddr *sap)
2775 {
2776 struct rpc_xprt_switch *xps;
2777 bool ret;
2778
2779 rcu_read_lock();
2780 xps = rcu_dereference(clnt->cl_xpi.xpi_xpswitch);
2781 ret = rpc_xprt_switch_has_addr(xps, sap);
2782 rcu_read_unlock();
2783 return ret;
2784 }
2785 EXPORT_SYMBOL_GPL(rpc_clnt_xprt_switch_has_addr);
2786
2787 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
2788 static void rpc_show_header(void)
2789 {
2790 printk(KERN_INFO "-pid- flgs status -client- --rqstp- "
2791 "-timeout ---ops--\n");
2792 }
2793
2794 static void rpc_show_task(const struct rpc_clnt *clnt,
2795 const struct rpc_task *task)
2796 {
2797 const char *rpc_waitq = "none";
2798
2799 if (RPC_IS_QUEUED(task))
2800 rpc_waitq = rpc_qname(task->tk_waitqueue);
2801
2802 printk(KERN_INFO "%5u %04x %6d %8p %8p %8ld %8p %sv%u %s a:%ps q:%s\n",
2803 task->tk_pid, task->tk_flags, task->tk_status,
2804 clnt, task->tk_rqstp, task->tk_timeout, task->tk_ops,
2805 clnt->cl_program->name, clnt->cl_vers, rpc_proc_name(task),
2806 task->tk_action, rpc_waitq);
2807 }
2808
2809 void rpc_show_tasks(struct net *net)
2810 {
2811 struct rpc_clnt *clnt;
2812 struct rpc_task *task;
2813 int header = 0;
2814 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
2815
2816 spin_lock(&sn->rpc_client_lock);
2817 list_for_each_entry(clnt, &sn->all_clients, cl_clients) {
2818 spin_lock(&clnt->cl_lock);
2819 list_for_each_entry(task, &clnt->cl_tasks, tk_task) {
2820 if (!header) {
2821 rpc_show_header();
2822 header++;
2823 }
2824 rpc_show_task(clnt, task);
2825 }
2826 spin_unlock(&clnt->cl_lock);
2827 }
2828 spin_unlock(&sn->rpc_client_lock);
2829 }
2830 #endif
2831
2832 #if IS_ENABLED(CONFIG_SUNRPC_SWAP)
2833 static int
2834 rpc_clnt_swap_activate_callback(struct rpc_clnt *clnt,
2835 struct rpc_xprt *xprt,
2836 void *dummy)
2837 {
2838 return xprt_enable_swap(xprt);
2839 }
2840
2841 int
2842 rpc_clnt_swap_activate(struct rpc_clnt *clnt)
2843 {
2844 if (atomic_inc_return(&clnt->cl_swapper) == 1)
2845 return rpc_clnt_iterate_for_each_xprt(clnt,
2846 rpc_clnt_swap_activate_callback, NULL);
2847 return 0;
2848 }
2849 EXPORT_SYMBOL_GPL(rpc_clnt_swap_activate);
2850
2851 static int
2852 rpc_clnt_swap_deactivate_callback(struct rpc_clnt *clnt,
2853 struct rpc_xprt *xprt,
2854 void *dummy)
2855 {
2856 xprt_disable_swap(xprt);
2857 return 0;
2858 }
2859
2860 void
2861 rpc_clnt_swap_deactivate(struct rpc_clnt *clnt)
2862 {
2863 if (atomic_dec_if_positive(&clnt->cl_swapper) == 0)
2864 rpc_clnt_iterate_for_each_xprt(clnt,
2865 rpc_clnt_swap_deactivate_callback, NULL);
2866 }
2867 EXPORT_SYMBOL_GPL(rpc_clnt_swap_deactivate);
2868 #endif /* CONFIG_SUNRPC_SWAP */