]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/sunrpc/sched.c
8a0779e963f972e92a3fcca8b8fafa9de8d9ac24
[mirror_ubuntu-hirsute-kernel.git] / net / sunrpc / sched.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/net/sunrpc/sched.c
4 *
5 * Scheduling for synchronous and asynchronous RPC requests.
6 *
7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 *
9 * TCP NFS related read + write fixes
10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11 */
12
13 #include <linux/module.h>
14
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
27
28 #include "sunrpc.h"
29
30 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
31 #define RPCDBG_FACILITY RPCDBG_SCHED
32 #endif
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/sunrpc.h>
36
37 /*
38 * RPC slabs and memory pools
39 */
40 #define RPC_BUFFER_MAXSIZE (2048)
41 #define RPC_BUFFER_POOLSIZE (8)
42 #define RPC_TASK_POOLSIZE (8)
43 static struct kmem_cache *rpc_task_slabp __read_mostly;
44 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
45 static mempool_t *rpc_task_mempool __read_mostly;
46 static mempool_t *rpc_buffer_mempool __read_mostly;
47
48 static void rpc_async_schedule(struct work_struct *);
49 static void rpc_release_task(struct rpc_task *task);
50 static void __rpc_queue_timer_fn(struct work_struct *);
51
52 /*
53 * RPC tasks sit here while waiting for conditions to improve.
54 */
55 static struct rpc_wait_queue delay_queue;
56
57 /*
58 * rpciod-related stuff
59 */
60 struct workqueue_struct *rpciod_workqueue __read_mostly;
61 struct workqueue_struct *xprtiod_workqueue __read_mostly;
62 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
63
64 unsigned long
65 rpc_task_timeout(const struct rpc_task *task)
66 {
67 unsigned long timeout = READ_ONCE(task->tk_timeout);
68
69 if (timeout != 0) {
70 unsigned long now = jiffies;
71 if (time_before(now, timeout))
72 return timeout - now;
73 }
74 return 0;
75 }
76 EXPORT_SYMBOL_GPL(rpc_task_timeout);
77
78 /*
79 * Disable the timer for a given RPC task. Should be called with
80 * queue->lock and bh_disabled in order to avoid races within
81 * rpc_run_timer().
82 */
83 static void
84 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
85 {
86 if (list_empty(&task->u.tk_wait.timer_list))
87 return;
88 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
89 task->tk_timeout = 0;
90 list_del(&task->u.tk_wait.timer_list);
91 if (list_empty(&queue->timer_list.list))
92 cancel_delayed_work(&queue->timer_list.dwork);
93 }
94
95 static void
96 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
97 {
98 unsigned long now = jiffies;
99 queue->timer_list.expires = expires;
100 if (time_before_eq(expires, now))
101 expires = 0;
102 else
103 expires -= now;
104 mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
105 }
106
107 /*
108 * Set up a timer for the current task.
109 */
110 static void
111 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
112 unsigned long timeout)
113 {
114 dprintk("RPC: %5u setting alarm for %u ms\n",
115 task->tk_pid, jiffies_to_msecs(timeout - jiffies));
116
117 task->tk_timeout = timeout;
118 if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
119 rpc_set_queue_timer(queue, timeout);
120 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
121 }
122
123 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
124 {
125 if (queue->priority != priority) {
126 queue->priority = priority;
127 queue->nr = 1U << priority;
128 }
129 }
130
131 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
132 {
133 rpc_set_waitqueue_priority(queue, queue->maxpriority);
134 }
135
136 /*
137 * Add a request to a queue list
138 */
139 static void
140 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
141 {
142 struct rpc_task *t;
143
144 list_for_each_entry(t, q, u.tk_wait.list) {
145 if (t->tk_owner == task->tk_owner) {
146 list_add_tail(&task->u.tk_wait.links,
147 &t->u.tk_wait.links);
148 /* Cache the queue head in task->u.tk_wait.list */
149 task->u.tk_wait.list.next = q;
150 task->u.tk_wait.list.prev = NULL;
151 return;
152 }
153 }
154 INIT_LIST_HEAD(&task->u.tk_wait.links);
155 list_add_tail(&task->u.tk_wait.list, q);
156 }
157
158 /*
159 * Remove request from a queue list
160 */
161 static void
162 __rpc_list_dequeue_task(struct rpc_task *task)
163 {
164 struct list_head *q;
165 struct rpc_task *t;
166
167 if (task->u.tk_wait.list.prev == NULL) {
168 list_del(&task->u.tk_wait.links);
169 return;
170 }
171 if (!list_empty(&task->u.tk_wait.links)) {
172 t = list_first_entry(&task->u.tk_wait.links,
173 struct rpc_task,
174 u.tk_wait.links);
175 /* Assume __rpc_list_enqueue_task() cached the queue head */
176 q = t->u.tk_wait.list.next;
177 list_add_tail(&t->u.tk_wait.list, q);
178 list_del(&task->u.tk_wait.links);
179 }
180 list_del(&task->u.tk_wait.list);
181 }
182
183 /*
184 * Add new request to a priority queue.
185 */
186 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
187 struct rpc_task *task,
188 unsigned char queue_priority)
189 {
190 if (unlikely(queue_priority > queue->maxpriority))
191 queue_priority = queue->maxpriority;
192 __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
193 }
194
195 /*
196 * Add new request to wait queue.
197 *
198 * Swapper tasks always get inserted at the head of the queue.
199 * This should avoid many nasty memory deadlocks and hopefully
200 * improve overall performance.
201 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
202 */
203 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
204 struct rpc_task *task,
205 unsigned char queue_priority)
206 {
207 WARN_ON_ONCE(RPC_IS_QUEUED(task));
208 if (RPC_IS_QUEUED(task))
209 return;
210
211 INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
212 if (RPC_IS_PRIORITY(queue))
213 __rpc_add_wait_queue_priority(queue, task, queue_priority);
214 else if (RPC_IS_SWAPPER(task))
215 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
216 else
217 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
218 task->tk_waitqueue = queue;
219 queue->qlen++;
220 /* barrier matches the read in rpc_wake_up_task_queue_locked() */
221 smp_wmb();
222 rpc_set_queued(task);
223
224 dprintk("RPC: %5u added to queue %p \"%s\"\n",
225 task->tk_pid, queue, rpc_qname(queue));
226 }
227
228 /*
229 * Remove request from a priority queue.
230 */
231 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
232 {
233 __rpc_list_dequeue_task(task);
234 }
235
236 /*
237 * Remove request from queue.
238 * Note: must be called with spin lock held.
239 */
240 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
241 {
242 __rpc_disable_timer(queue, task);
243 if (RPC_IS_PRIORITY(queue))
244 __rpc_remove_wait_queue_priority(task);
245 else
246 list_del(&task->u.tk_wait.list);
247 queue->qlen--;
248 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
249 task->tk_pid, queue, rpc_qname(queue));
250 }
251
252 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
253 {
254 int i;
255
256 spin_lock_init(&queue->lock);
257 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
258 INIT_LIST_HEAD(&queue->tasks[i]);
259 queue->maxpriority = nr_queues - 1;
260 rpc_reset_waitqueue_priority(queue);
261 queue->qlen = 0;
262 queue->timer_list.expires = 0;
263 INIT_DEFERRABLE_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
264 INIT_LIST_HEAD(&queue->timer_list.list);
265 rpc_assign_waitqueue_name(queue, qname);
266 }
267
268 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
269 {
270 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
271 }
272 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
273
274 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
275 {
276 __rpc_init_priority_wait_queue(queue, qname, 1);
277 }
278 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
279
280 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
281 {
282 cancel_delayed_work_sync(&queue->timer_list.dwork);
283 }
284 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
285
286 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
287 {
288 freezable_schedule_unsafe();
289 if (signal_pending_state(mode, current))
290 return -ERESTARTSYS;
291 return 0;
292 }
293
294 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
295 static void rpc_task_set_debuginfo(struct rpc_task *task)
296 {
297 static atomic_t rpc_pid;
298
299 task->tk_pid = atomic_inc_return(&rpc_pid);
300 }
301 #else
302 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
303 {
304 }
305 #endif
306
307 static void rpc_set_active(struct rpc_task *task)
308 {
309 rpc_task_set_debuginfo(task);
310 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
311 trace_rpc_task_begin(task, NULL);
312 }
313
314 /*
315 * Mark an RPC call as having completed by clearing the 'active' bit
316 * and then waking up all tasks that were sleeping.
317 */
318 static int rpc_complete_task(struct rpc_task *task)
319 {
320 void *m = &task->tk_runstate;
321 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
322 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
323 unsigned long flags;
324 int ret;
325
326 trace_rpc_task_complete(task, NULL);
327
328 spin_lock_irqsave(&wq->lock, flags);
329 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
330 ret = atomic_dec_and_test(&task->tk_count);
331 if (waitqueue_active(wq))
332 __wake_up_locked_key(wq, TASK_NORMAL, &k);
333 spin_unlock_irqrestore(&wq->lock, flags);
334 return ret;
335 }
336
337 /*
338 * Allow callers to wait for completion of an RPC call
339 *
340 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
341 * to enforce taking of the wq->lock and hence avoid races with
342 * rpc_complete_task().
343 */
344 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
345 {
346 if (action == NULL)
347 action = rpc_wait_bit_killable;
348 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
349 action, TASK_KILLABLE);
350 }
351 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
352
353 /*
354 * Make an RPC task runnable.
355 *
356 * Note: If the task is ASYNC, and is being made runnable after sitting on an
357 * rpc_wait_queue, this must be called with the queue spinlock held to protect
358 * the wait queue operation.
359 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
360 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
361 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
362 * the RPC_TASK_RUNNING flag.
363 */
364 static void rpc_make_runnable(struct workqueue_struct *wq,
365 struct rpc_task *task)
366 {
367 bool need_wakeup = !rpc_test_and_set_running(task);
368
369 rpc_clear_queued(task);
370 if (!need_wakeup)
371 return;
372 if (RPC_IS_ASYNC(task)) {
373 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
374 queue_work(wq, &task->u.tk_work);
375 } else
376 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
377 }
378
379 /*
380 * Prepare for sleeping on a wait queue.
381 * By always appending tasks to the list we ensure FIFO behavior.
382 * NB: An RPC task will only receive interrupt-driven events as long
383 * as it's on a wait queue.
384 */
385 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
386 struct rpc_task *task,
387 unsigned char queue_priority)
388 {
389 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
390 task->tk_pid, rpc_qname(q), jiffies);
391
392 trace_rpc_task_sleep(task, q);
393
394 __rpc_add_wait_queue(q, task, queue_priority);
395
396 }
397
398 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
399 struct rpc_task *task, unsigned long timeout,
400 unsigned char queue_priority)
401 {
402 if (time_is_after_jiffies(timeout)) {
403 __rpc_sleep_on_priority(q, task, queue_priority);
404 __rpc_add_timer(q, task, timeout);
405 } else
406 task->tk_status = -ETIMEDOUT;
407 }
408
409 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
410 {
411 if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
412 task->tk_callback = action;
413 }
414
415 static bool rpc_sleep_check_activated(struct rpc_task *task)
416 {
417 /* We shouldn't ever put an inactive task to sleep */
418 if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
419 task->tk_status = -EIO;
420 rpc_put_task_async(task);
421 return false;
422 }
423 return true;
424 }
425
426 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
427 rpc_action action, unsigned long timeout)
428 {
429 if (!rpc_sleep_check_activated(task))
430 return;
431
432 rpc_set_tk_callback(task, action);
433
434 /*
435 * Protect the queue operations.
436 */
437 spin_lock(&q->lock);
438 __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
439 spin_unlock(&q->lock);
440 }
441 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
442
443 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
444 rpc_action action)
445 {
446 if (!rpc_sleep_check_activated(task))
447 return;
448
449 rpc_set_tk_callback(task, action);
450
451 WARN_ON_ONCE(task->tk_timeout != 0);
452 /*
453 * Protect the queue operations.
454 */
455 spin_lock(&q->lock);
456 __rpc_sleep_on_priority(q, task, task->tk_priority);
457 spin_unlock(&q->lock);
458 }
459 EXPORT_SYMBOL_GPL(rpc_sleep_on);
460
461 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
462 struct rpc_task *task, unsigned long timeout, int priority)
463 {
464 if (!rpc_sleep_check_activated(task))
465 return;
466
467 priority -= RPC_PRIORITY_LOW;
468 /*
469 * Protect the queue operations.
470 */
471 spin_lock(&q->lock);
472 __rpc_sleep_on_priority_timeout(q, task, timeout, priority);
473 spin_unlock(&q->lock);
474 }
475 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
476
477 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
478 int priority)
479 {
480 if (!rpc_sleep_check_activated(task))
481 return;
482
483 WARN_ON_ONCE(task->tk_timeout != 0);
484 priority -= RPC_PRIORITY_LOW;
485 /*
486 * Protect the queue operations.
487 */
488 spin_lock(&q->lock);
489 __rpc_sleep_on_priority(q, task, priority);
490 spin_unlock(&q->lock);
491 }
492 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
493
494 /**
495 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
496 * @wq: workqueue on which to run task
497 * @queue: wait queue
498 * @task: task to be woken up
499 *
500 * Caller must hold queue->lock, and have cleared the task queued flag.
501 */
502 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
503 struct rpc_wait_queue *queue,
504 struct rpc_task *task)
505 {
506 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
507 task->tk_pid, jiffies);
508
509 /* Has the task been executed yet? If not, we cannot wake it up! */
510 if (!RPC_IS_ACTIVATED(task)) {
511 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
512 return;
513 }
514
515 trace_rpc_task_wakeup(task, queue);
516
517 __rpc_remove_wait_queue(queue, task);
518
519 rpc_make_runnable(wq, task);
520
521 dprintk("RPC: __rpc_wake_up_task done\n");
522 }
523
524 /*
525 * Wake up a queued task while the queue lock is being held
526 */
527 static struct rpc_task *
528 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
529 struct rpc_wait_queue *queue, struct rpc_task *task,
530 bool (*action)(struct rpc_task *, void *), void *data)
531 {
532 if (RPC_IS_QUEUED(task)) {
533 smp_rmb();
534 if (task->tk_waitqueue == queue) {
535 if (action == NULL || action(task, data)) {
536 __rpc_do_wake_up_task_on_wq(wq, queue, task);
537 return task;
538 }
539 }
540 }
541 return NULL;
542 }
543
544 static void
545 rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq,
546 struct rpc_wait_queue *queue, struct rpc_task *task)
547 {
548 rpc_wake_up_task_on_wq_queue_action_locked(wq, queue, task, NULL, NULL);
549 }
550
551 /*
552 * Wake up a queued task while the queue lock is being held
553 */
554 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
555 {
556 rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task);
557 }
558
559 /*
560 * Wake up a task on a specific queue
561 */
562 void rpc_wake_up_queued_task_on_wq(struct workqueue_struct *wq,
563 struct rpc_wait_queue *queue,
564 struct rpc_task *task)
565 {
566 if (!RPC_IS_QUEUED(task))
567 return;
568 spin_lock(&queue->lock);
569 rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
570 spin_unlock(&queue->lock);
571 }
572
573 /*
574 * Wake up a task on a specific queue
575 */
576 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
577 {
578 if (!RPC_IS_QUEUED(task))
579 return;
580 spin_lock(&queue->lock);
581 rpc_wake_up_task_queue_locked(queue, task);
582 spin_unlock(&queue->lock);
583 }
584 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
585
586 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
587 {
588 task->tk_status = *(int *)status;
589 return true;
590 }
591
592 static void
593 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
594 struct rpc_task *task, int status)
595 {
596 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
597 task, rpc_task_action_set_status, &status);
598 }
599
600 /**
601 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
602 * @queue: pointer to rpc_wait_queue
603 * @task: pointer to rpc_task
604 * @status: integer error value
605 *
606 * If @task is queued on @queue, then it is woken up, and @task->tk_status is
607 * set to the value of @status.
608 */
609 void
610 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
611 struct rpc_task *task, int status)
612 {
613 if (!RPC_IS_QUEUED(task))
614 return;
615 spin_lock(&queue->lock);
616 rpc_wake_up_task_queue_set_status_locked(queue, task, status);
617 spin_unlock(&queue->lock);
618 }
619
620 /*
621 * Wake up the next task on a priority queue.
622 */
623 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
624 {
625 struct list_head *q;
626 struct rpc_task *task;
627
628 /*
629 * Service a batch of tasks from a single owner.
630 */
631 q = &queue->tasks[queue->priority];
632 if (!list_empty(q) && --queue->nr) {
633 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
634 goto out;
635 }
636
637 /*
638 * Service the next queue.
639 */
640 do {
641 if (q == &queue->tasks[0])
642 q = &queue->tasks[queue->maxpriority];
643 else
644 q = q - 1;
645 if (!list_empty(q)) {
646 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
647 goto new_queue;
648 }
649 } while (q != &queue->tasks[queue->priority]);
650
651 rpc_reset_waitqueue_priority(queue);
652 return NULL;
653
654 new_queue:
655 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
656 out:
657 return task;
658 }
659
660 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
661 {
662 if (RPC_IS_PRIORITY(queue))
663 return __rpc_find_next_queued_priority(queue);
664 if (!list_empty(&queue->tasks[0]))
665 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
666 return NULL;
667 }
668
669 /*
670 * Wake up the first task on the wait queue.
671 */
672 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
673 struct rpc_wait_queue *queue,
674 bool (*func)(struct rpc_task *, void *), void *data)
675 {
676 struct rpc_task *task = NULL;
677
678 dprintk("RPC: wake_up_first(%p \"%s\")\n",
679 queue, rpc_qname(queue));
680 spin_lock(&queue->lock);
681 task = __rpc_find_next_queued(queue);
682 if (task != NULL)
683 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
684 task, func, data);
685 spin_unlock(&queue->lock);
686
687 return task;
688 }
689
690 /*
691 * Wake up the first task on the wait queue.
692 */
693 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
694 bool (*func)(struct rpc_task *, void *), void *data)
695 {
696 return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
697 }
698 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
699
700 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
701 {
702 return true;
703 }
704
705 /*
706 * Wake up the next task on the wait queue.
707 */
708 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
709 {
710 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
711 }
712 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
713
714 /**
715 * rpc_wake_up - wake up all rpc_tasks
716 * @queue: rpc_wait_queue on which the tasks are sleeping
717 *
718 * Grabs queue->lock
719 */
720 void rpc_wake_up(struct rpc_wait_queue *queue)
721 {
722 struct list_head *head;
723
724 spin_lock(&queue->lock);
725 head = &queue->tasks[queue->maxpriority];
726 for (;;) {
727 while (!list_empty(head)) {
728 struct rpc_task *task;
729 task = list_first_entry(head,
730 struct rpc_task,
731 u.tk_wait.list);
732 rpc_wake_up_task_queue_locked(queue, task);
733 }
734 if (head == &queue->tasks[0])
735 break;
736 head--;
737 }
738 spin_unlock(&queue->lock);
739 }
740 EXPORT_SYMBOL_GPL(rpc_wake_up);
741
742 /**
743 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
744 * @queue: rpc_wait_queue on which the tasks are sleeping
745 * @status: status value to set
746 *
747 * Grabs queue->lock
748 */
749 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
750 {
751 struct list_head *head;
752
753 spin_lock(&queue->lock);
754 head = &queue->tasks[queue->maxpriority];
755 for (;;) {
756 while (!list_empty(head)) {
757 struct rpc_task *task;
758 task = list_first_entry(head,
759 struct rpc_task,
760 u.tk_wait.list);
761 task->tk_status = status;
762 rpc_wake_up_task_queue_locked(queue, task);
763 }
764 if (head == &queue->tasks[0])
765 break;
766 head--;
767 }
768 spin_unlock(&queue->lock);
769 }
770 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
771
772 static void __rpc_queue_timer_fn(struct work_struct *work)
773 {
774 struct rpc_wait_queue *queue = container_of(work,
775 struct rpc_wait_queue,
776 timer_list.dwork.work);
777 struct rpc_task *task, *n;
778 unsigned long expires, now, timeo;
779
780 spin_lock(&queue->lock);
781 expires = now = jiffies;
782 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
783 timeo = task->tk_timeout;
784 if (time_after_eq(now, timeo)) {
785 dprintk("RPC: %5u timeout\n", task->tk_pid);
786 task->tk_status = -ETIMEDOUT;
787 rpc_wake_up_task_queue_locked(queue, task);
788 continue;
789 }
790 if (expires == now || time_after(expires, timeo))
791 expires = timeo;
792 }
793 if (!list_empty(&queue->timer_list.list))
794 rpc_set_queue_timer(queue, expires);
795 spin_unlock(&queue->lock);
796 }
797
798 static void __rpc_atrun(struct rpc_task *task)
799 {
800 if (task->tk_status == -ETIMEDOUT)
801 task->tk_status = 0;
802 }
803
804 /*
805 * Run a task at a later time
806 */
807 void rpc_delay(struct rpc_task *task, unsigned long delay)
808 {
809 rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
810 }
811 EXPORT_SYMBOL_GPL(rpc_delay);
812
813 /*
814 * Helper to call task->tk_ops->rpc_call_prepare
815 */
816 void rpc_prepare_task(struct rpc_task *task)
817 {
818 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
819 }
820
821 static void
822 rpc_init_task_statistics(struct rpc_task *task)
823 {
824 /* Initialize retry counters */
825 task->tk_garb_retry = 2;
826 task->tk_cred_retry = 2;
827 task->tk_rebind_retry = 2;
828
829 /* starting timestamp */
830 task->tk_start = ktime_get();
831 }
832
833 static void
834 rpc_reset_task_statistics(struct rpc_task *task)
835 {
836 task->tk_timeouts = 0;
837 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
838 rpc_init_task_statistics(task);
839 }
840
841 /*
842 * Helper that calls task->tk_ops->rpc_call_done if it exists
843 */
844 void rpc_exit_task(struct rpc_task *task)
845 {
846 task->tk_action = NULL;
847 if (task->tk_ops->rpc_count_stats)
848 task->tk_ops->rpc_count_stats(task, task->tk_calldata);
849 else if (task->tk_client)
850 rpc_count_iostats(task, task->tk_client->cl_metrics);
851 if (task->tk_ops->rpc_call_done != NULL) {
852 task->tk_ops->rpc_call_done(task, task->tk_calldata);
853 if (task->tk_action != NULL) {
854 /* Always release the RPC slot and buffer memory */
855 xprt_release(task);
856 rpc_reset_task_statistics(task);
857 }
858 }
859 }
860
861 void rpc_signal_task(struct rpc_task *task)
862 {
863 struct rpc_wait_queue *queue;
864
865 if (!RPC_IS_ACTIVATED(task))
866 return;
867 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
868 smp_mb__after_atomic();
869 queue = READ_ONCE(task->tk_waitqueue);
870 if (queue)
871 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
872 }
873
874 void rpc_exit(struct rpc_task *task, int status)
875 {
876 task->tk_status = status;
877 task->tk_action = rpc_exit_task;
878 rpc_wake_up_queued_task(task->tk_waitqueue, task);
879 }
880 EXPORT_SYMBOL_GPL(rpc_exit);
881
882 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
883 {
884 if (ops->rpc_release != NULL)
885 ops->rpc_release(calldata);
886 }
887
888 /*
889 * This is the RPC `scheduler' (or rather, the finite state machine).
890 */
891 static void __rpc_execute(struct rpc_task *task)
892 {
893 struct rpc_wait_queue *queue;
894 int task_is_async = RPC_IS_ASYNC(task);
895 int status = 0;
896
897 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
898 task->tk_pid, task->tk_flags);
899
900 WARN_ON_ONCE(RPC_IS_QUEUED(task));
901 if (RPC_IS_QUEUED(task))
902 return;
903
904 for (;;) {
905 void (*do_action)(struct rpc_task *);
906
907 /*
908 * Perform the next FSM step or a pending callback.
909 *
910 * tk_action may be NULL if the task has been killed.
911 * In particular, note that rpc_killall_tasks may
912 * do this at any time, so beware when dereferencing.
913 */
914 do_action = task->tk_action;
915 if (task->tk_callback) {
916 do_action = task->tk_callback;
917 task->tk_callback = NULL;
918 }
919 if (!do_action)
920 break;
921 trace_rpc_task_run_action(task, do_action);
922 do_action(task);
923
924 /*
925 * Lockless check for whether task is sleeping or not.
926 */
927 if (!RPC_IS_QUEUED(task))
928 continue;
929
930 /*
931 * Signalled tasks should exit rather than sleep.
932 */
933 if (RPC_SIGNALLED(task))
934 rpc_exit(task, -ERESTARTSYS);
935
936 /*
937 * The queue->lock protects against races with
938 * rpc_make_runnable().
939 *
940 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
941 * rpc_task, rpc_make_runnable() can assign it to a
942 * different workqueue. We therefore cannot assume that the
943 * rpc_task pointer may still be dereferenced.
944 */
945 queue = task->tk_waitqueue;
946 spin_lock(&queue->lock);
947 if (!RPC_IS_QUEUED(task)) {
948 spin_unlock(&queue->lock);
949 continue;
950 }
951 rpc_clear_running(task);
952 spin_unlock(&queue->lock);
953 if (task_is_async)
954 return;
955
956 /* sync task: sleep here */
957 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
958 status = out_of_line_wait_on_bit(&task->tk_runstate,
959 RPC_TASK_QUEUED, rpc_wait_bit_killable,
960 TASK_KILLABLE);
961 if (status < 0) {
962 /*
963 * When a sync task receives a signal, it exits with
964 * -ERESTARTSYS. In order to catch any callbacks that
965 * clean up after sleeping on some queue, we don't
966 * break the loop here, but go around once more.
967 */
968 dprintk("RPC: %5u got signal\n", task->tk_pid);
969 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
970 rpc_exit(task, -ERESTARTSYS);
971 }
972 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
973 }
974
975 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
976 task->tk_status);
977 /* Release all resources associated with the task */
978 rpc_release_task(task);
979 }
980
981 /*
982 * User-visible entry point to the scheduler.
983 *
984 * This may be called recursively if e.g. an async NFS task updates
985 * the attributes and finds that dirty pages must be flushed.
986 * NOTE: Upon exit of this function the task is guaranteed to be
987 * released. In particular note that tk_release() will have
988 * been called, so your task memory may have been freed.
989 */
990 void rpc_execute(struct rpc_task *task)
991 {
992 bool is_async = RPC_IS_ASYNC(task);
993
994 rpc_set_active(task);
995 rpc_make_runnable(rpciod_workqueue, task);
996 if (!is_async)
997 __rpc_execute(task);
998 }
999
1000 static void rpc_async_schedule(struct work_struct *work)
1001 {
1002 unsigned int pflags = memalloc_nofs_save();
1003
1004 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
1005 memalloc_nofs_restore(pflags);
1006 }
1007
1008 /**
1009 * rpc_malloc - allocate RPC buffer resources
1010 * @task: RPC task
1011 *
1012 * A single memory region is allocated, which is split between the
1013 * RPC call and RPC reply that this task is being used for. When
1014 * this RPC is retired, the memory is released by calling rpc_free.
1015 *
1016 * To prevent rpciod from hanging, this allocator never sleeps,
1017 * returning -ENOMEM and suppressing warning if the request cannot
1018 * be serviced immediately. The caller can arrange to sleep in a
1019 * way that is safe for rpciod.
1020 *
1021 * Most requests are 'small' (under 2KiB) and can be serviced from a
1022 * mempool, ensuring that NFS reads and writes can always proceed,
1023 * and that there is good locality of reference for these buffers.
1024 */
1025 int rpc_malloc(struct rpc_task *task)
1026 {
1027 struct rpc_rqst *rqst = task->tk_rqstp;
1028 size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1029 struct rpc_buffer *buf;
1030 gfp_t gfp = GFP_NOFS;
1031
1032 if (RPC_IS_SWAPPER(task))
1033 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1034
1035 size += sizeof(struct rpc_buffer);
1036 if (size <= RPC_BUFFER_MAXSIZE)
1037 buf = mempool_alloc(rpc_buffer_mempool, gfp);
1038 else
1039 buf = kmalloc(size, gfp);
1040
1041 if (!buf)
1042 return -ENOMEM;
1043
1044 buf->len = size;
1045 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
1046 task->tk_pid, size, buf);
1047 rqst->rq_buffer = buf->data;
1048 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1049 return 0;
1050 }
1051 EXPORT_SYMBOL_GPL(rpc_malloc);
1052
1053 /**
1054 * rpc_free - free RPC buffer resources allocated via rpc_malloc
1055 * @task: RPC task
1056 *
1057 */
1058 void rpc_free(struct rpc_task *task)
1059 {
1060 void *buffer = task->tk_rqstp->rq_buffer;
1061 size_t size;
1062 struct rpc_buffer *buf;
1063
1064 buf = container_of(buffer, struct rpc_buffer, data);
1065 size = buf->len;
1066
1067 dprintk("RPC: freeing buffer of size %zu at %p\n",
1068 size, buf);
1069
1070 if (size <= RPC_BUFFER_MAXSIZE)
1071 mempool_free(buf, rpc_buffer_mempool);
1072 else
1073 kfree(buf);
1074 }
1075 EXPORT_SYMBOL_GPL(rpc_free);
1076
1077 /*
1078 * Creation and deletion of RPC task structures
1079 */
1080 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1081 {
1082 memset(task, 0, sizeof(*task));
1083 atomic_set(&task->tk_count, 1);
1084 task->tk_flags = task_setup_data->flags;
1085 task->tk_ops = task_setup_data->callback_ops;
1086 task->tk_calldata = task_setup_data->callback_data;
1087 INIT_LIST_HEAD(&task->tk_task);
1088
1089 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1090 task->tk_owner = current->tgid;
1091
1092 /* Initialize workqueue for async tasks */
1093 task->tk_workqueue = task_setup_data->workqueue;
1094
1095 task->tk_xprt = xprt_get(task_setup_data->rpc_xprt);
1096
1097 task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1098
1099 if (task->tk_ops->rpc_call_prepare != NULL)
1100 task->tk_action = rpc_prepare_task;
1101
1102 rpc_init_task_statistics(task);
1103
1104 dprintk("RPC: new task initialized, procpid %u\n",
1105 task_pid_nr(current));
1106 }
1107
1108 static struct rpc_task *
1109 rpc_alloc_task(void)
1110 {
1111 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1112 }
1113
1114 /*
1115 * Create a new task for the specified client.
1116 */
1117 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1118 {
1119 struct rpc_task *task = setup_data->task;
1120 unsigned short flags = 0;
1121
1122 if (task == NULL) {
1123 task = rpc_alloc_task();
1124 flags = RPC_TASK_DYNAMIC;
1125 }
1126
1127 rpc_init_task(task, setup_data);
1128 task->tk_flags |= flags;
1129 dprintk("RPC: allocated task %p\n", task);
1130 return task;
1131 }
1132
1133 /*
1134 * rpc_free_task - release rpc task and perform cleanups
1135 *
1136 * Note that we free up the rpc_task _after_ rpc_release_calldata()
1137 * in order to work around a workqueue dependency issue.
1138 *
1139 * Tejun Heo states:
1140 * "Workqueue currently considers two work items to be the same if they're
1141 * on the same address and won't execute them concurrently - ie. it
1142 * makes a work item which is queued again while being executed wait
1143 * for the previous execution to complete.
1144 *
1145 * If a work function frees the work item, and then waits for an event
1146 * which should be performed by another work item and *that* work item
1147 * recycles the freed work item, it can create a false dependency loop.
1148 * There really is no reliable way to detect this short of verifying
1149 * every memory free."
1150 *
1151 */
1152 static void rpc_free_task(struct rpc_task *task)
1153 {
1154 unsigned short tk_flags = task->tk_flags;
1155
1156 put_rpccred(task->tk_op_cred);
1157 rpc_release_calldata(task->tk_ops, task->tk_calldata);
1158
1159 if (tk_flags & RPC_TASK_DYNAMIC) {
1160 dprintk("RPC: %5u freeing task\n", task->tk_pid);
1161 mempool_free(task, rpc_task_mempool);
1162 }
1163 }
1164
1165 static void rpc_async_release(struct work_struct *work)
1166 {
1167 unsigned int pflags = memalloc_nofs_save();
1168
1169 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1170 memalloc_nofs_restore(pflags);
1171 }
1172
1173 static void rpc_release_resources_task(struct rpc_task *task)
1174 {
1175 xprt_release(task);
1176 if (task->tk_msg.rpc_cred) {
1177 put_cred(task->tk_msg.rpc_cred);
1178 task->tk_msg.rpc_cred = NULL;
1179 }
1180 rpc_task_release_client(task);
1181 }
1182
1183 static void rpc_final_put_task(struct rpc_task *task,
1184 struct workqueue_struct *q)
1185 {
1186 if (q != NULL) {
1187 INIT_WORK(&task->u.tk_work, rpc_async_release);
1188 queue_work(q, &task->u.tk_work);
1189 } else
1190 rpc_free_task(task);
1191 }
1192
1193 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1194 {
1195 if (atomic_dec_and_test(&task->tk_count)) {
1196 rpc_release_resources_task(task);
1197 rpc_final_put_task(task, q);
1198 }
1199 }
1200
1201 void rpc_put_task(struct rpc_task *task)
1202 {
1203 rpc_do_put_task(task, NULL);
1204 }
1205 EXPORT_SYMBOL_GPL(rpc_put_task);
1206
1207 void rpc_put_task_async(struct rpc_task *task)
1208 {
1209 rpc_do_put_task(task, task->tk_workqueue);
1210 }
1211 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1212
1213 static void rpc_release_task(struct rpc_task *task)
1214 {
1215 dprintk("RPC: %5u release task\n", task->tk_pid);
1216
1217 WARN_ON_ONCE(RPC_IS_QUEUED(task));
1218
1219 rpc_release_resources_task(task);
1220
1221 /*
1222 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1223 * so it should be safe to use task->tk_count as a test for whether
1224 * or not any other processes still hold references to our rpc_task.
1225 */
1226 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1227 /* Wake up anyone who may be waiting for task completion */
1228 if (!rpc_complete_task(task))
1229 return;
1230 } else {
1231 if (!atomic_dec_and_test(&task->tk_count))
1232 return;
1233 }
1234 rpc_final_put_task(task, task->tk_workqueue);
1235 }
1236
1237 int rpciod_up(void)
1238 {
1239 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1240 }
1241
1242 void rpciod_down(void)
1243 {
1244 module_put(THIS_MODULE);
1245 }
1246
1247 /*
1248 * Start up the rpciod workqueue.
1249 */
1250 static int rpciod_start(void)
1251 {
1252 struct workqueue_struct *wq;
1253
1254 /*
1255 * Create the rpciod thread and wait for it to start.
1256 */
1257 dprintk("RPC: creating workqueue rpciod\n");
1258 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1259 if (!wq)
1260 goto out_failed;
1261 rpciod_workqueue = wq;
1262 /* Note: highpri because network receive is latency sensitive */
1263 wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1264 if (!wq)
1265 goto free_rpciod;
1266 xprtiod_workqueue = wq;
1267 return 1;
1268 free_rpciod:
1269 wq = rpciod_workqueue;
1270 rpciod_workqueue = NULL;
1271 destroy_workqueue(wq);
1272 out_failed:
1273 return 0;
1274 }
1275
1276 static void rpciod_stop(void)
1277 {
1278 struct workqueue_struct *wq = NULL;
1279
1280 if (rpciod_workqueue == NULL)
1281 return;
1282 dprintk("RPC: destroying workqueue rpciod\n");
1283
1284 wq = rpciod_workqueue;
1285 rpciod_workqueue = NULL;
1286 destroy_workqueue(wq);
1287 wq = xprtiod_workqueue;
1288 xprtiod_workqueue = NULL;
1289 destroy_workqueue(wq);
1290 }
1291
1292 void
1293 rpc_destroy_mempool(void)
1294 {
1295 rpciod_stop();
1296 mempool_destroy(rpc_buffer_mempool);
1297 mempool_destroy(rpc_task_mempool);
1298 kmem_cache_destroy(rpc_task_slabp);
1299 kmem_cache_destroy(rpc_buffer_slabp);
1300 rpc_destroy_wait_queue(&delay_queue);
1301 }
1302
1303 int
1304 rpc_init_mempool(void)
1305 {
1306 /*
1307 * The following is not strictly a mempool initialisation,
1308 * but there is no harm in doing it here
1309 */
1310 rpc_init_wait_queue(&delay_queue, "delayq");
1311 if (!rpciod_start())
1312 goto err_nomem;
1313
1314 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1315 sizeof(struct rpc_task),
1316 0, SLAB_HWCACHE_ALIGN,
1317 NULL);
1318 if (!rpc_task_slabp)
1319 goto err_nomem;
1320 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1321 RPC_BUFFER_MAXSIZE,
1322 0, SLAB_HWCACHE_ALIGN,
1323 NULL);
1324 if (!rpc_buffer_slabp)
1325 goto err_nomem;
1326 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1327 rpc_task_slabp);
1328 if (!rpc_task_mempool)
1329 goto err_nomem;
1330 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1331 rpc_buffer_slabp);
1332 if (!rpc_buffer_mempool)
1333 goto err_nomem;
1334 return 0;
1335 err_nomem:
1336 rpc_destroy_mempool();
1337 return -ENOMEM;
1338 }