]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sunrpc/sched.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging-2.6
[mirror_ubuntu-bionic-kernel.git] / net / sunrpc / sched.c
1 /*
2 * linux/net/sunrpc/sched.c
3 *
4 * Scheduling for synchronous and asynchronous RPC requests.
5 *
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7 *
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10 */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21
22 #include <linux/sunrpc/clnt.h>
23
24 #include "sunrpc.h"
25
26 #ifdef RPC_DEBUG
27 #define RPCDBG_FACILITY RPCDBG_SCHED
28 #define RPC_TASK_MAGIC_ID 0xf00baa
29 #endif
30
31 /*
32 * RPC slabs and memory pools
33 */
34 #define RPC_BUFFER_MAXSIZE (2048)
35 #define RPC_BUFFER_POOLSIZE (8)
36 #define RPC_TASK_POOLSIZE (8)
37 static struct kmem_cache *rpc_task_slabp __read_mostly;
38 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
39 static mempool_t *rpc_task_mempool __read_mostly;
40 static mempool_t *rpc_buffer_mempool __read_mostly;
41
42 static void rpc_async_schedule(struct work_struct *);
43 static void rpc_release_task(struct rpc_task *task);
44 static void __rpc_queue_timer_fn(unsigned long ptr);
45
46 /*
47 * RPC tasks sit here while waiting for conditions to improve.
48 */
49 static struct rpc_wait_queue delay_queue;
50
51 /*
52 * rpciod-related stuff
53 */
54 struct workqueue_struct *rpciod_workqueue;
55
56 /*
57 * Disable the timer for a given RPC task. Should be called with
58 * queue->lock and bh_disabled in order to avoid races within
59 * rpc_run_timer().
60 */
61 static void
62 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
63 {
64 if (task->tk_timeout == 0)
65 return;
66 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
67 task->tk_timeout = 0;
68 list_del(&task->u.tk_wait.timer_list);
69 if (list_empty(&queue->timer_list.list))
70 del_timer(&queue->timer_list.timer);
71 }
72
73 static void
74 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
75 {
76 queue->timer_list.expires = expires;
77 mod_timer(&queue->timer_list.timer, expires);
78 }
79
80 /*
81 * Set up a timer for the current task.
82 */
83 static void
84 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
85 {
86 if (!task->tk_timeout)
87 return;
88
89 dprintk("RPC: %5u setting alarm for %lu ms\n",
90 task->tk_pid, task->tk_timeout * 1000 / HZ);
91
92 task->u.tk_wait.expires = jiffies + task->tk_timeout;
93 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
94 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
95 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
96 }
97
98 /*
99 * Add new request to a priority queue.
100 */
101 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
102 {
103 struct list_head *q;
104 struct rpc_task *t;
105
106 INIT_LIST_HEAD(&task->u.tk_wait.links);
107 q = &queue->tasks[task->tk_priority];
108 if (unlikely(task->tk_priority > queue->maxpriority))
109 q = &queue->tasks[queue->maxpriority];
110 list_for_each_entry(t, q, u.tk_wait.list) {
111 if (t->tk_owner == task->tk_owner) {
112 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
113 return;
114 }
115 }
116 list_add_tail(&task->u.tk_wait.list, q);
117 }
118
119 /*
120 * Add new request to wait queue.
121 *
122 * Swapper tasks always get inserted at the head of the queue.
123 * This should avoid many nasty memory deadlocks and hopefully
124 * improve overall performance.
125 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
126 */
127 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
128 {
129 BUG_ON (RPC_IS_QUEUED(task));
130
131 if (RPC_IS_PRIORITY(queue))
132 __rpc_add_wait_queue_priority(queue, task);
133 else if (RPC_IS_SWAPPER(task))
134 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
135 else
136 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
137 task->tk_waitqueue = queue;
138 queue->qlen++;
139 rpc_set_queued(task);
140
141 dprintk("RPC: %5u added to queue %p \"%s\"\n",
142 task->tk_pid, queue, rpc_qname(queue));
143 }
144
145 /*
146 * Remove request from a priority queue.
147 */
148 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
149 {
150 struct rpc_task *t;
151
152 if (!list_empty(&task->u.tk_wait.links)) {
153 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
154 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
155 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
156 }
157 }
158
159 /*
160 * Remove request from queue.
161 * Note: must be called with spin lock held.
162 */
163 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
164 {
165 __rpc_disable_timer(queue, task);
166 if (RPC_IS_PRIORITY(queue))
167 __rpc_remove_wait_queue_priority(task);
168 list_del(&task->u.tk_wait.list);
169 queue->qlen--;
170 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
171 task->tk_pid, queue, rpc_qname(queue));
172 }
173
174 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
175 {
176 queue->priority = priority;
177 queue->count = 1 << (priority * 2);
178 }
179
180 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
181 {
182 queue->owner = pid;
183 queue->nr = RPC_BATCH_COUNT;
184 }
185
186 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
187 {
188 rpc_set_waitqueue_priority(queue, queue->maxpriority);
189 rpc_set_waitqueue_owner(queue, 0);
190 }
191
192 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
193 {
194 int i;
195
196 spin_lock_init(&queue->lock);
197 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
198 INIT_LIST_HEAD(&queue->tasks[i]);
199 queue->maxpriority = nr_queues - 1;
200 rpc_reset_waitqueue_priority(queue);
201 queue->qlen = 0;
202 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
203 INIT_LIST_HEAD(&queue->timer_list.list);
204 #ifdef RPC_DEBUG
205 queue->name = qname;
206 #endif
207 }
208
209 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
210 {
211 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
212 }
213 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
214
215 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
216 {
217 __rpc_init_priority_wait_queue(queue, qname, 1);
218 }
219 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
220
221 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
222 {
223 del_timer_sync(&queue->timer_list.timer);
224 }
225 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
226
227 static int rpc_wait_bit_killable(void *word)
228 {
229 if (fatal_signal_pending(current))
230 return -ERESTARTSYS;
231 schedule();
232 return 0;
233 }
234
235 #ifdef RPC_DEBUG
236 static void rpc_task_set_debuginfo(struct rpc_task *task)
237 {
238 static atomic_t rpc_pid;
239
240 task->tk_magic = RPC_TASK_MAGIC_ID;
241 task->tk_pid = atomic_inc_return(&rpc_pid);
242 }
243 #else
244 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
245 {
246 }
247 #endif
248
249 static void rpc_set_active(struct rpc_task *task)
250 {
251 struct rpc_clnt *clnt;
252 if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
253 return;
254 rpc_task_set_debuginfo(task);
255 /* Add to global list of all tasks */
256 clnt = task->tk_client;
257 if (clnt != NULL) {
258 spin_lock(&clnt->cl_lock);
259 list_add_tail(&task->tk_task, &clnt->cl_tasks);
260 spin_unlock(&clnt->cl_lock);
261 }
262 }
263
264 /*
265 * Mark an RPC call as having completed by clearing the 'active' bit
266 */
267 static void rpc_mark_complete_task(struct rpc_task *task)
268 {
269 smp_mb__before_clear_bit();
270 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
271 smp_mb__after_clear_bit();
272 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
273 }
274
275 /*
276 * Allow callers to wait for completion of an RPC call
277 */
278 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
279 {
280 if (action == NULL)
281 action = rpc_wait_bit_killable;
282 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
283 action, TASK_KILLABLE);
284 }
285 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
286
287 /*
288 * Make an RPC task runnable.
289 *
290 * Note: If the task is ASYNC, this must be called with
291 * the spinlock held to protect the wait queue operation.
292 */
293 static void rpc_make_runnable(struct rpc_task *task)
294 {
295 rpc_clear_queued(task);
296 if (rpc_test_and_set_running(task))
297 return;
298 if (RPC_IS_ASYNC(task)) {
299 int status;
300
301 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
302 status = queue_work(rpciod_workqueue, &task->u.tk_work);
303 if (status < 0) {
304 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
305 task->tk_status = status;
306 return;
307 }
308 } else
309 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
310 }
311
312 /*
313 * Prepare for sleeping on a wait queue.
314 * By always appending tasks to the list we ensure FIFO behavior.
315 * NB: An RPC task will only receive interrupt-driven events as long
316 * as it's on a wait queue.
317 */
318 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
319 rpc_action action)
320 {
321 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
322 task->tk_pid, rpc_qname(q), jiffies);
323
324 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
325 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
326 return;
327 }
328
329 __rpc_add_wait_queue(q, task);
330
331 BUG_ON(task->tk_callback != NULL);
332 task->tk_callback = action;
333 __rpc_add_timer(q, task);
334 }
335
336 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
337 rpc_action action)
338 {
339 /* Mark the task as being activated if so needed */
340 rpc_set_active(task);
341
342 /*
343 * Protect the queue operations.
344 */
345 spin_lock_bh(&q->lock);
346 __rpc_sleep_on(q, task, action);
347 spin_unlock_bh(&q->lock);
348 }
349 EXPORT_SYMBOL_GPL(rpc_sleep_on);
350
351 /**
352 * __rpc_do_wake_up_task - wake up a single rpc_task
353 * @queue: wait queue
354 * @task: task to be woken up
355 *
356 * Caller must hold queue->lock, and have cleared the task queued flag.
357 */
358 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
359 {
360 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
361 task->tk_pid, jiffies);
362
363 #ifdef RPC_DEBUG
364 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
365 #endif
366 /* Has the task been executed yet? If not, we cannot wake it up! */
367 if (!RPC_IS_ACTIVATED(task)) {
368 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
369 return;
370 }
371
372 __rpc_remove_wait_queue(queue, task);
373
374 rpc_make_runnable(task);
375
376 dprintk("RPC: __rpc_wake_up_task done\n");
377 }
378
379 /*
380 * Wake up a queued task while the queue lock is being held
381 */
382 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
383 {
384 if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
385 __rpc_do_wake_up_task(queue, task);
386 }
387
388 /*
389 * Tests whether rpc queue is empty
390 */
391 int rpc_queue_empty(struct rpc_wait_queue *queue)
392 {
393 int res;
394
395 spin_lock_bh(&queue->lock);
396 res = queue->qlen;
397 spin_unlock_bh(&queue->lock);
398 return (res == 0);
399 }
400 EXPORT_SYMBOL_GPL(rpc_queue_empty);
401
402 /*
403 * Wake up a task on a specific queue
404 */
405 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
406 {
407 spin_lock_bh(&queue->lock);
408 rpc_wake_up_task_queue_locked(queue, task);
409 spin_unlock_bh(&queue->lock);
410 }
411 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
412
413 /*
414 * Wake up the specified task
415 */
416 static void rpc_wake_up_task(struct rpc_task *task)
417 {
418 rpc_wake_up_queued_task(task->tk_waitqueue, task);
419 }
420
421 /*
422 * Wake up the next task on a priority queue.
423 */
424 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
425 {
426 struct list_head *q;
427 struct rpc_task *task;
428
429 /*
430 * Service a batch of tasks from a single owner.
431 */
432 q = &queue->tasks[queue->priority];
433 if (!list_empty(q)) {
434 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
435 if (queue->owner == task->tk_owner) {
436 if (--queue->nr)
437 goto out;
438 list_move_tail(&task->u.tk_wait.list, q);
439 }
440 /*
441 * Check if we need to switch queues.
442 */
443 if (--queue->count)
444 goto new_owner;
445 }
446
447 /*
448 * Service the next queue.
449 */
450 do {
451 if (q == &queue->tasks[0])
452 q = &queue->tasks[queue->maxpriority];
453 else
454 q = q - 1;
455 if (!list_empty(q)) {
456 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
457 goto new_queue;
458 }
459 } while (q != &queue->tasks[queue->priority]);
460
461 rpc_reset_waitqueue_priority(queue);
462 return NULL;
463
464 new_queue:
465 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
466 new_owner:
467 rpc_set_waitqueue_owner(queue, task->tk_owner);
468 out:
469 rpc_wake_up_task_queue_locked(queue, task);
470 return task;
471 }
472
473 /*
474 * Wake up the next task on the wait queue.
475 */
476 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
477 {
478 struct rpc_task *task = NULL;
479
480 dprintk("RPC: wake_up_next(%p \"%s\")\n",
481 queue, rpc_qname(queue));
482 spin_lock_bh(&queue->lock);
483 if (RPC_IS_PRIORITY(queue))
484 task = __rpc_wake_up_next_priority(queue);
485 else {
486 task_for_first(task, &queue->tasks[0])
487 rpc_wake_up_task_queue_locked(queue, task);
488 }
489 spin_unlock_bh(&queue->lock);
490
491 return task;
492 }
493 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
494
495 /**
496 * rpc_wake_up - wake up all rpc_tasks
497 * @queue: rpc_wait_queue on which the tasks are sleeping
498 *
499 * Grabs queue->lock
500 */
501 void rpc_wake_up(struct rpc_wait_queue *queue)
502 {
503 struct rpc_task *task, *next;
504 struct list_head *head;
505
506 spin_lock_bh(&queue->lock);
507 head = &queue->tasks[queue->maxpriority];
508 for (;;) {
509 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
510 rpc_wake_up_task_queue_locked(queue, task);
511 if (head == &queue->tasks[0])
512 break;
513 head--;
514 }
515 spin_unlock_bh(&queue->lock);
516 }
517 EXPORT_SYMBOL_GPL(rpc_wake_up);
518
519 /**
520 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
521 * @queue: rpc_wait_queue on which the tasks are sleeping
522 * @status: status value to set
523 *
524 * Grabs queue->lock
525 */
526 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
527 {
528 struct rpc_task *task, *next;
529 struct list_head *head;
530
531 spin_lock_bh(&queue->lock);
532 head = &queue->tasks[queue->maxpriority];
533 for (;;) {
534 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
535 task->tk_status = status;
536 rpc_wake_up_task_queue_locked(queue, task);
537 }
538 if (head == &queue->tasks[0])
539 break;
540 head--;
541 }
542 spin_unlock_bh(&queue->lock);
543 }
544 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
545
546 static void __rpc_queue_timer_fn(unsigned long ptr)
547 {
548 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
549 struct rpc_task *task, *n;
550 unsigned long expires, now, timeo;
551
552 spin_lock(&queue->lock);
553 expires = now = jiffies;
554 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
555 timeo = task->u.tk_wait.expires;
556 if (time_after_eq(now, timeo)) {
557 dprintk("RPC: %5u timeout\n", task->tk_pid);
558 task->tk_status = -ETIMEDOUT;
559 rpc_wake_up_task_queue_locked(queue, task);
560 continue;
561 }
562 if (expires == now || time_after(expires, timeo))
563 expires = timeo;
564 }
565 if (!list_empty(&queue->timer_list.list))
566 rpc_set_queue_timer(queue, expires);
567 spin_unlock(&queue->lock);
568 }
569
570 static void __rpc_atrun(struct rpc_task *task)
571 {
572 task->tk_status = 0;
573 }
574
575 /*
576 * Run a task at a later time
577 */
578 void rpc_delay(struct rpc_task *task, unsigned long delay)
579 {
580 task->tk_timeout = delay;
581 rpc_sleep_on(&delay_queue, task, __rpc_atrun);
582 }
583 EXPORT_SYMBOL_GPL(rpc_delay);
584
585 /*
586 * Helper to call task->tk_ops->rpc_call_prepare
587 */
588 void rpc_prepare_task(struct rpc_task *task)
589 {
590 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
591 }
592
593 /*
594 * Helper that calls task->tk_ops->rpc_call_done if it exists
595 */
596 void rpc_exit_task(struct rpc_task *task)
597 {
598 task->tk_action = NULL;
599 if (task->tk_ops->rpc_call_done != NULL) {
600 task->tk_ops->rpc_call_done(task, task->tk_calldata);
601 if (task->tk_action != NULL) {
602 WARN_ON(RPC_ASSASSINATED(task));
603 /* Always release the RPC slot and buffer memory */
604 xprt_release(task);
605 }
606 }
607 }
608 EXPORT_SYMBOL_GPL(rpc_exit_task);
609
610 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
611 {
612 if (ops->rpc_release != NULL)
613 ops->rpc_release(calldata);
614 }
615
616 /*
617 * This is the RPC `scheduler' (or rather, the finite state machine).
618 */
619 static void __rpc_execute(struct rpc_task *task)
620 {
621 struct rpc_wait_queue *queue;
622 int task_is_async = RPC_IS_ASYNC(task);
623 int status = 0;
624
625 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
626 task->tk_pid, task->tk_flags);
627
628 BUG_ON(RPC_IS_QUEUED(task));
629
630 for (;;) {
631
632 /*
633 * Execute any pending callback.
634 */
635 if (task->tk_callback) {
636 void (*save_callback)(struct rpc_task *);
637
638 /*
639 * We set tk_callback to NULL before calling it,
640 * in case it sets the tk_callback field itself:
641 */
642 save_callback = task->tk_callback;
643 task->tk_callback = NULL;
644 save_callback(task);
645 }
646
647 /*
648 * Perform the next FSM step.
649 * tk_action may be NULL when the task has been killed
650 * by someone else.
651 */
652 if (!RPC_IS_QUEUED(task)) {
653 if (task->tk_action == NULL)
654 break;
655 task->tk_action(task);
656 }
657
658 /*
659 * Lockless check for whether task is sleeping or not.
660 */
661 if (!RPC_IS_QUEUED(task))
662 continue;
663 /*
664 * The queue->lock protects against races with
665 * rpc_make_runnable().
666 *
667 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
668 * rpc_task, rpc_make_runnable() can assign it to a
669 * different workqueue. We therefore cannot assume that the
670 * rpc_task pointer may still be dereferenced.
671 */
672 queue = task->tk_waitqueue;
673 spin_lock_bh(&queue->lock);
674 if (!RPC_IS_QUEUED(task)) {
675 spin_unlock_bh(&queue->lock);
676 continue;
677 }
678 rpc_clear_running(task);
679 spin_unlock_bh(&queue->lock);
680 if (task_is_async)
681 return;
682
683 /* sync task: sleep here */
684 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
685 status = out_of_line_wait_on_bit(&task->tk_runstate,
686 RPC_TASK_QUEUED, rpc_wait_bit_killable,
687 TASK_KILLABLE);
688 if (status == -ERESTARTSYS) {
689 /*
690 * When a sync task receives a signal, it exits with
691 * -ERESTARTSYS. In order to catch any callbacks that
692 * clean up after sleeping on some queue, we don't
693 * break the loop here, but go around once more.
694 */
695 dprintk("RPC: %5u got signal\n", task->tk_pid);
696 task->tk_flags |= RPC_TASK_KILLED;
697 rpc_exit(task, -ERESTARTSYS);
698 rpc_wake_up_task(task);
699 }
700 rpc_set_running(task);
701 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
702 }
703
704 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
705 task->tk_status);
706 /* Release all resources associated with the task */
707 rpc_release_task(task);
708 }
709
710 /*
711 * User-visible entry point to the scheduler.
712 *
713 * This may be called recursively if e.g. an async NFS task updates
714 * the attributes and finds that dirty pages must be flushed.
715 * NOTE: Upon exit of this function the task is guaranteed to be
716 * released. In particular note that tk_release() will have
717 * been called, so your task memory may have been freed.
718 */
719 void rpc_execute(struct rpc_task *task)
720 {
721 rpc_set_active(task);
722 rpc_set_running(task);
723 __rpc_execute(task);
724 }
725
726 static void rpc_async_schedule(struct work_struct *work)
727 {
728 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
729 }
730
731 /**
732 * rpc_malloc - allocate an RPC buffer
733 * @task: RPC task that will use this buffer
734 * @size: requested byte size
735 *
736 * To prevent rpciod from hanging, this allocator never sleeps,
737 * returning NULL if the request cannot be serviced immediately.
738 * The caller can arrange to sleep in a way that is safe for rpciod.
739 *
740 * Most requests are 'small' (under 2KiB) and can be serviced from a
741 * mempool, ensuring that NFS reads and writes can always proceed,
742 * and that there is good locality of reference for these buffers.
743 *
744 * In order to avoid memory starvation triggering more writebacks of
745 * NFS requests, we avoid using GFP_KERNEL.
746 */
747 void *rpc_malloc(struct rpc_task *task, size_t size)
748 {
749 struct rpc_buffer *buf;
750 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
751
752 size += sizeof(struct rpc_buffer);
753 if (size <= RPC_BUFFER_MAXSIZE)
754 buf = mempool_alloc(rpc_buffer_mempool, gfp);
755 else
756 buf = kmalloc(size, gfp);
757
758 if (!buf)
759 return NULL;
760
761 buf->len = size;
762 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
763 task->tk_pid, size, buf);
764 return &buf->data;
765 }
766 EXPORT_SYMBOL_GPL(rpc_malloc);
767
768 /**
769 * rpc_free - free buffer allocated via rpc_malloc
770 * @buffer: buffer to free
771 *
772 */
773 void rpc_free(void *buffer)
774 {
775 size_t size;
776 struct rpc_buffer *buf;
777
778 if (!buffer)
779 return;
780
781 buf = container_of(buffer, struct rpc_buffer, data);
782 size = buf->len;
783
784 dprintk("RPC: freeing buffer of size %zu at %p\n",
785 size, buf);
786
787 if (size <= RPC_BUFFER_MAXSIZE)
788 mempool_free(buf, rpc_buffer_mempool);
789 else
790 kfree(buf);
791 }
792 EXPORT_SYMBOL_GPL(rpc_free);
793
794 /*
795 * Creation and deletion of RPC task structures
796 */
797 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
798 {
799 memset(task, 0, sizeof(*task));
800 atomic_set(&task->tk_count, 1);
801 task->tk_flags = task_setup_data->flags;
802 task->tk_ops = task_setup_data->callback_ops;
803 task->tk_calldata = task_setup_data->callback_data;
804 INIT_LIST_HEAD(&task->tk_task);
805
806 /* Initialize retry counters */
807 task->tk_garb_retry = 2;
808 task->tk_cred_retry = 2;
809
810 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
811 task->tk_owner = current->tgid;
812
813 /* Initialize workqueue for async tasks */
814 task->tk_workqueue = task_setup_data->workqueue;
815
816 task->tk_client = task_setup_data->rpc_client;
817 if (task->tk_client != NULL) {
818 kref_get(&task->tk_client->cl_kref);
819 if (task->tk_client->cl_softrtry)
820 task->tk_flags |= RPC_TASK_SOFT;
821 }
822
823 if (task->tk_ops->rpc_call_prepare != NULL)
824 task->tk_action = rpc_prepare_task;
825
826 if (task_setup_data->rpc_message != NULL) {
827 task->tk_msg.rpc_proc = task_setup_data->rpc_message->rpc_proc;
828 task->tk_msg.rpc_argp = task_setup_data->rpc_message->rpc_argp;
829 task->tk_msg.rpc_resp = task_setup_data->rpc_message->rpc_resp;
830 /* Bind the user cred */
831 rpcauth_bindcred(task, task_setup_data->rpc_message->rpc_cred, task_setup_data->flags);
832 if (task->tk_action == NULL)
833 rpc_call_start(task);
834 }
835
836 /* starting timestamp */
837 task->tk_start = jiffies;
838
839 dprintk("RPC: new task initialized, procpid %u\n",
840 task_pid_nr(current));
841 }
842
843 static struct rpc_task *
844 rpc_alloc_task(void)
845 {
846 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
847 }
848
849 /*
850 * Create a new task for the specified client.
851 */
852 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
853 {
854 struct rpc_task *task = setup_data->task;
855 unsigned short flags = 0;
856
857 if (task == NULL) {
858 task = rpc_alloc_task();
859 if (task == NULL)
860 goto out;
861 flags = RPC_TASK_DYNAMIC;
862 }
863
864 rpc_init_task(task, setup_data);
865
866 task->tk_flags |= flags;
867 dprintk("RPC: allocated task %p\n", task);
868 out:
869 return task;
870 }
871
872 static void rpc_free_task(struct rpc_task *task)
873 {
874 const struct rpc_call_ops *tk_ops = task->tk_ops;
875 void *calldata = task->tk_calldata;
876
877 if (task->tk_flags & RPC_TASK_DYNAMIC) {
878 dprintk("RPC: %5u freeing task\n", task->tk_pid);
879 mempool_free(task, rpc_task_mempool);
880 }
881 rpc_release_calldata(tk_ops, calldata);
882 }
883
884 static void rpc_async_release(struct work_struct *work)
885 {
886 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
887 }
888
889 void rpc_put_task(struct rpc_task *task)
890 {
891 if (!atomic_dec_and_test(&task->tk_count))
892 return;
893 /* Release resources */
894 if (task->tk_rqstp)
895 xprt_release(task);
896 if (task->tk_msg.rpc_cred)
897 rpcauth_unbindcred(task);
898 if (task->tk_client) {
899 rpc_release_client(task->tk_client);
900 task->tk_client = NULL;
901 }
902 if (task->tk_workqueue != NULL) {
903 INIT_WORK(&task->u.tk_work, rpc_async_release);
904 queue_work(task->tk_workqueue, &task->u.tk_work);
905 } else
906 rpc_free_task(task);
907 }
908 EXPORT_SYMBOL_GPL(rpc_put_task);
909
910 static void rpc_release_task(struct rpc_task *task)
911 {
912 #ifdef RPC_DEBUG
913 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
914 #endif
915 dprintk("RPC: %5u release task\n", task->tk_pid);
916
917 if (!list_empty(&task->tk_task)) {
918 struct rpc_clnt *clnt = task->tk_client;
919 /* Remove from client task list */
920 spin_lock(&clnt->cl_lock);
921 list_del(&task->tk_task);
922 spin_unlock(&clnt->cl_lock);
923 }
924 BUG_ON (RPC_IS_QUEUED(task));
925
926 #ifdef RPC_DEBUG
927 task->tk_magic = 0;
928 #endif
929 /* Wake up anyone who is waiting for task completion */
930 rpc_mark_complete_task(task);
931
932 rpc_put_task(task);
933 }
934
935 /*
936 * Kill all tasks for the given client.
937 * XXX: kill their descendants as well?
938 */
939 void rpc_killall_tasks(struct rpc_clnt *clnt)
940 {
941 struct rpc_task *rovr;
942
943
944 if (list_empty(&clnt->cl_tasks))
945 return;
946 dprintk("RPC: killing all tasks for client %p\n", clnt);
947 /*
948 * Spin lock all_tasks to prevent changes...
949 */
950 spin_lock(&clnt->cl_lock);
951 list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
952 if (! RPC_IS_ACTIVATED(rovr))
953 continue;
954 if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
955 rovr->tk_flags |= RPC_TASK_KILLED;
956 rpc_exit(rovr, -EIO);
957 rpc_wake_up_task(rovr);
958 }
959 }
960 spin_unlock(&clnt->cl_lock);
961 }
962 EXPORT_SYMBOL_GPL(rpc_killall_tasks);
963
964 int rpciod_up(void)
965 {
966 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
967 }
968
969 void rpciod_down(void)
970 {
971 module_put(THIS_MODULE);
972 }
973
974 /*
975 * Start up the rpciod workqueue.
976 */
977 static int rpciod_start(void)
978 {
979 struct workqueue_struct *wq;
980
981 /*
982 * Create the rpciod thread and wait for it to start.
983 */
984 dprintk("RPC: creating workqueue rpciod\n");
985 wq = create_workqueue("rpciod");
986 rpciod_workqueue = wq;
987 return rpciod_workqueue != NULL;
988 }
989
990 static void rpciod_stop(void)
991 {
992 struct workqueue_struct *wq = NULL;
993
994 if (rpciod_workqueue == NULL)
995 return;
996 dprintk("RPC: destroying workqueue rpciod\n");
997
998 wq = rpciod_workqueue;
999 rpciod_workqueue = NULL;
1000 destroy_workqueue(wq);
1001 }
1002
1003 void
1004 rpc_destroy_mempool(void)
1005 {
1006 rpciod_stop();
1007 if (rpc_buffer_mempool)
1008 mempool_destroy(rpc_buffer_mempool);
1009 if (rpc_task_mempool)
1010 mempool_destroy(rpc_task_mempool);
1011 if (rpc_task_slabp)
1012 kmem_cache_destroy(rpc_task_slabp);
1013 if (rpc_buffer_slabp)
1014 kmem_cache_destroy(rpc_buffer_slabp);
1015 rpc_destroy_wait_queue(&delay_queue);
1016 }
1017
1018 int
1019 rpc_init_mempool(void)
1020 {
1021 /*
1022 * The following is not strictly a mempool initialisation,
1023 * but there is no harm in doing it here
1024 */
1025 rpc_init_wait_queue(&delay_queue, "delayq");
1026 if (!rpciod_start())
1027 goto err_nomem;
1028
1029 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1030 sizeof(struct rpc_task),
1031 0, SLAB_HWCACHE_ALIGN,
1032 NULL);
1033 if (!rpc_task_slabp)
1034 goto err_nomem;
1035 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1036 RPC_BUFFER_MAXSIZE,
1037 0, SLAB_HWCACHE_ALIGN,
1038 NULL);
1039 if (!rpc_buffer_slabp)
1040 goto err_nomem;
1041 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1042 rpc_task_slabp);
1043 if (!rpc_task_mempool)
1044 goto err_nomem;
1045 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1046 rpc_buffer_slabp);
1047 if (!rpc_buffer_mempool)
1048 goto err_nomem;
1049 return 0;
1050 err_nomem:
1051 rpc_destroy_mempool();
1052 return -ENOMEM;
1053 }