]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sunrpc/sched.c
dff07795bd16af0dbbb5ff1cb51e4729a28ef3ab
[mirror_ubuntu-bionic-kernel.git] / net / sunrpc / sched.c
1 /*
2 * linux/net/sunrpc/sched.c
3 *
4 * Scheduling for synchronous and asynchronous RPC requests.
5 *
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7 *
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10 */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22
23 #include <linux/sunrpc/clnt.h>
24 #include <linux/sunrpc/xprt.h>
25
26 #ifdef RPC_DEBUG
27 #define RPCDBG_FACILITY RPCDBG_SCHED
28 #define RPC_TASK_MAGIC_ID 0xf00baa
29 static int rpc_task_id;
30 #endif
31
32 /*
33 * RPC slabs and memory pools
34 */
35 #define RPC_BUFFER_MAXSIZE (2048)
36 #define RPC_BUFFER_POOLSIZE (8)
37 #define RPC_TASK_POOLSIZE (8)
38 static kmem_cache_t *rpc_task_slabp __read_mostly;
39 static kmem_cache_t *rpc_buffer_slabp __read_mostly;
40 static mempool_t *rpc_task_mempool __read_mostly;
41 static mempool_t *rpc_buffer_mempool __read_mostly;
42
43 static void __rpc_default_timer(struct rpc_task *task);
44 static void rpciod_killall(void);
45 static void rpc_async_schedule(void *);
46
47 /*
48 * RPC tasks that create another task (e.g. for contacting the portmapper)
49 * will wait on this queue for their child's completion
50 */
51 static RPC_WAITQ(childq, "childq");
52
53 /*
54 * RPC tasks sit here while waiting for conditions to improve.
55 */
56 static RPC_WAITQ(delay_queue, "delayq");
57
58 /*
59 * All RPC tasks are linked into this list
60 */
61 static LIST_HEAD(all_tasks);
62
63 /*
64 * rpciod-related stuff
65 */
66 static DEFINE_MUTEX(rpciod_mutex);
67 static unsigned int rpciod_users;
68 static struct workqueue_struct *rpciod_workqueue;
69
70 /*
71 * Spinlock for other critical sections of code.
72 */
73 static DEFINE_SPINLOCK(rpc_sched_lock);
74
75 /*
76 * Disable the timer for a given RPC task. Should be called with
77 * queue->lock and bh_disabled in order to avoid races within
78 * rpc_run_timer().
79 */
80 static inline void
81 __rpc_disable_timer(struct rpc_task *task)
82 {
83 dprintk("RPC: %4d disabling timer\n", task->tk_pid);
84 task->tk_timeout_fn = NULL;
85 task->tk_timeout = 0;
86 }
87
88 /*
89 * Run a timeout function.
90 * We use the callback in order to allow __rpc_wake_up_task()
91 * and friends to disable the timer synchronously on SMP systems
92 * without calling del_timer_sync(). The latter could cause a
93 * deadlock if called while we're holding spinlocks...
94 */
95 static void rpc_run_timer(struct rpc_task *task)
96 {
97 void (*callback)(struct rpc_task *);
98
99 callback = task->tk_timeout_fn;
100 task->tk_timeout_fn = NULL;
101 if (callback && RPC_IS_QUEUED(task)) {
102 dprintk("RPC: %4d running timer\n", task->tk_pid);
103 callback(task);
104 }
105 smp_mb__before_clear_bit();
106 clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
107 smp_mb__after_clear_bit();
108 }
109
110 /*
111 * Set up a timer for the current task.
112 */
113 static inline void
114 __rpc_add_timer(struct rpc_task *task, rpc_action timer)
115 {
116 if (!task->tk_timeout)
117 return;
118
119 dprintk("RPC: %4d setting alarm for %lu ms\n",
120 task->tk_pid, task->tk_timeout * 1000 / HZ);
121
122 if (timer)
123 task->tk_timeout_fn = timer;
124 else
125 task->tk_timeout_fn = __rpc_default_timer;
126 set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
127 mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
128 }
129
130 /*
131 * Delete any timer for the current task. Because we use del_timer_sync(),
132 * this function should never be called while holding queue->lock.
133 */
134 static void
135 rpc_delete_timer(struct rpc_task *task)
136 {
137 if (RPC_IS_QUEUED(task))
138 return;
139 if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
140 del_singleshot_timer_sync(&task->tk_timer);
141 dprintk("RPC: %4d deleting timer\n", task->tk_pid);
142 }
143 }
144
145 /*
146 * Add new request to a priority queue.
147 */
148 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
149 {
150 struct list_head *q;
151 struct rpc_task *t;
152
153 INIT_LIST_HEAD(&task->u.tk_wait.links);
154 q = &queue->tasks[task->tk_priority];
155 if (unlikely(task->tk_priority > queue->maxpriority))
156 q = &queue->tasks[queue->maxpriority];
157 list_for_each_entry(t, q, u.tk_wait.list) {
158 if (t->tk_cookie == task->tk_cookie) {
159 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
160 return;
161 }
162 }
163 list_add_tail(&task->u.tk_wait.list, q);
164 }
165
166 /*
167 * Add new request to wait queue.
168 *
169 * Swapper tasks always get inserted at the head of the queue.
170 * This should avoid many nasty memory deadlocks and hopefully
171 * improve overall performance.
172 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
173 */
174 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
175 {
176 BUG_ON (RPC_IS_QUEUED(task));
177
178 if (RPC_IS_PRIORITY(queue))
179 __rpc_add_wait_queue_priority(queue, task);
180 else if (RPC_IS_SWAPPER(task))
181 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
182 else
183 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
184 task->u.tk_wait.rpc_waitq = queue;
185 rpc_set_queued(task);
186
187 dprintk("RPC: %4d added to queue %p \"%s\"\n",
188 task->tk_pid, queue, rpc_qname(queue));
189 }
190
191 /*
192 * Remove request from a priority queue.
193 */
194 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
195 {
196 struct rpc_task *t;
197
198 if (!list_empty(&task->u.tk_wait.links)) {
199 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
200 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
201 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
202 }
203 list_del(&task->u.tk_wait.list);
204 }
205
206 /*
207 * Remove request from queue.
208 * Note: must be called with spin lock held.
209 */
210 static void __rpc_remove_wait_queue(struct rpc_task *task)
211 {
212 struct rpc_wait_queue *queue;
213 queue = task->u.tk_wait.rpc_waitq;
214
215 if (RPC_IS_PRIORITY(queue))
216 __rpc_remove_wait_queue_priority(task);
217 else
218 list_del(&task->u.tk_wait.list);
219 dprintk("RPC: %4d removed from queue %p \"%s\"\n",
220 task->tk_pid, queue, rpc_qname(queue));
221 }
222
223 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
224 {
225 queue->priority = priority;
226 queue->count = 1 << (priority * 2);
227 }
228
229 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie)
230 {
231 queue->cookie = cookie;
232 queue->nr = RPC_BATCH_COUNT;
233 }
234
235 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
236 {
237 rpc_set_waitqueue_priority(queue, queue->maxpriority);
238 rpc_set_waitqueue_cookie(queue, 0);
239 }
240
241 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio)
242 {
243 int i;
244
245 spin_lock_init(&queue->lock);
246 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
247 INIT_LIST_HEAD(&queue->tasks[i]);
248 queue->maxpriority = maxprio;
249 rpc_reset_waitqueue_priority(queue);
250 #ifdef RPC_DEBUG
251 queue->name = qname;
252 #endif
253 }
254
255 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
256 {
257 __rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH);
258 }
259
260 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
261 {
262 __rpc_init_priority_wait_queue(queue, qname, 0);
263 }
264 EXPORT_SYMBOL(rpc_init_wait_queue);
265
266 static int rpc_wait_bit_interruptible(void *word)
267 {
268 if (signal_pending(current))
269 return -ERESTARTSYS;
270 schedule();
271 return 0;
272 }
273
274 /*
275 * Mark an RPC call as having completed by clearing the 'active' bit
276 */
277 static inline void rpc_mark_complete_task(struct rpc_task *task)
278 {
279 rpc_clear_active(task);
280 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
281 }
282
283 /*
284 * Allow callers to wait for completion of an RPC call
285 */
286 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
287 {
288 if (action == NULL)
289 action = rpc_wait_bit_interruptible;
290 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
291 action, TASK_INTERRUPTIBLE);
292 }
293 EXPORT_SYMBOL(__rpc_wait_for_completion_task);
294
295 /*
296 * Make an RPC task runnable.
297 *
298 * Note: If the task is ASYNC, this must be called with
299 * the spinlock held to protect the wait queue operation.
300 */
301 static void rpc_make_runnable(struct rpc_task *task)
302 {
303 int do_ret;
304
305 BUG_ON(task->tk_timeout_fn);
306 do_ret = rpc_test_and_set_running(task);
307 rpc_clear_queued(task);
308 if (do_ret)
309 return;
310 if (RPC_IS_ASYNC(task)) {
311 int status;
312
313 INIT_WORK(&task->u.tk_work, rpc_async_schedule, (void *)task);
314 status = queue_work(task->tk_workqueue, &task->u.tk_work);
315 if (status < 0) {
316 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
317 task->tk_status = status;
318 return;
319 }
320 } else
321 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
322 }
323
324 /*
325 * Place a newly initialized task on the workqueue.
326 */
327 static inline void
328 rpc_schedule_run(struct rpc_task *task)
329 {
330 rpc_set_active(task);
331 rpc_make_runnable(task);
332 }
333
334 /*
335 * Prepare for sleeping on a wait queue.
336 * By always appending tasks to the list we ensure FIFO behavior.
337 * NB: An RPC task will only receive interrupt-driven events as long
338 * as it's on a wait queue.
339 */
340 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
341 rpc_action action, rpc_action timer)
342 {
343 dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task->tk_pid,
344 rpc_qname(q), jiffies);
345
346 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
347 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
348 return;
349 }
350
351 /* Mark the task as being activated if so needed */
352 rpc_set_active(task);
353
354 __rpc_add_wait_queue(q, task);
355
356 BUG_ON(task->tk_callback != NULL);
357 task->tk_callback = action;
358 __rpc_add_timer(task, timer);
359 }
360
361 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
362 rpc_action action, rpc_action timer)
363 {
364 /*
365 * Protect the queue operations.
366 */
367 spin_lock_bh(&q->lock);
368 __rpc_sleep_on(q, task, action, timer);
369 spin_unlock_bh(&q->lock);
370 }
371
372 /**
373 * __rpc_do_wake_up_task - wake up a single rpc_task
374 * @task: task to be woken up
375 *
376 * Caller must hold queue->lock, and have cleared the task queued flag.
377 */
378 static void __rpc_do_wake_up_task(struct rpc_task *task)
379 {
380 dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task->tk_pid, jiffies);
381
382 #ifdef RPC_DEBUG
383 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
384 #endif
385 /* Has the task been executed yet? If not, we cannot wake it up! */
386 if (!RPC_IS_ACTIVATED(task)) {
387 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
388 return;
389 }
390
391 __rpc_disable_timer(task);
392 __rpc_remove_wait_queue(task);
393
394 rpc_make_runnable(task);
395
396 dprintk("RPC: __rpc_wake_up_task done\n");
397 }
398
399 /*
400 * Wake up the specified task
401 */
402 static void __rpc_wake_up_task(struct rpc_task *task)
403 {
404 if (rpc_start_wakeup(task)) {
405 if (RPC_IS_QUEUED(task))
406 __rpc_do_wake_up_task(task);
407 rpc_finish_wakeup(task);
408 }
409 }
410
411 /*
412 * Default timeout handler if none specified by user
413 */
414 static void
415 __rpc_default_timer(struct rpc_task *task)
416 {
417 dprintk("RPC: %d timeout (default timer)\n", task->tk_pid);
418 task->tk_status = -ETIMEDOUT;
419 rpc_wake_up_task(task);
420 }
421
422 /*
423 * Wake up the specified task
424 */
425 void rpc_wake_up_task(struct rpc_task *task)
426 {
427 if (rpc_start_wakeup(task)) {
428 if (RPC_IS_QUEUED(task)) {
429 struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
430
431 spin_lock_bh(&queue->lock);
432 __rpc_do_wake_up_task(task);
433 spin_unlock_bh(&queue->lock);
434 }
435 rpc_finish_wakeup(task);
436 }
437 }
438
439 /*
440 * Wake up the next task on a priority queue.
441 */
442 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
443 {
444 struct list_head *q;
445 struct rpc_task *task;
446
447 /*
448 * Service a batch of tasks from a single cookie.
449 */
450 q = &queue->tasks[queue->priority];
451 if (!list_empty(q)) {
452 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
453 if (queue->cookie == task->tk_cookie) {
454 if (--queue->nr)
455 goto out;
456 list_move_tail(&task->u.tk_wait.list, q);
457 }
458 /*
459 * Check if we need to switch queues.
460 */
461 if (--queue->count)
462 goto new_cookie;
463 }
464
465 /*
466 * Service the next queue.
467 */
468 do {
469 if (q == &queue->tasks[0])
470 q = &queue->tasks[queue->maxpriority];
471 else
472 q = q - 1;
473 if (!list_empty(q)) {
474 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
475 goto new_queue;
476 }
477 } while (q != &queue->tasks[queue->priority]);
478
479 rpc_reset_waitqueue_priority(queue);
480 return NULL;
481
482 new_queue:
483 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
484 new_cookie:
485 rpc_set_waitqueue_cookie(queue, task->tk_cookie);
486 out:
487 __rpc_wake_up_task(task);
488 return task;
489 }
490
491 /*
492 * Wake up the next task on the wait queue.
493 */
494 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
495 {
496 struct rpc_task *task = NULL;
497
498 dprintk("RPC: wake_up_next(%p \"%s\")\n", queue, rpc_qname(queue));
499 spin_lock_bh(&queue->lock);
500 if (RPC_IS_PRIORITY(queue))
501 task = __rpc_wake_up_next_priority(queue);
502 else {
503 task_for_first(task, &queue->tasks[0])
504 __rpc_wake_up_task(task);
505 }
506 spin_unlock_bh(&queue->lock);
507
508 return task;
509 }
510
511 /**
512 * rpc_wake_up - wake up all rpc_tasks
513 * @queue: rpc_wait_queue on which the tasks are sleeping
514 *
515 * Grabs queue->lock
516 */
517 void rpc_wake_up(struct rpc_wait_queue *queue)
518 {
519 struct rpc_task *task, *next;
520 struct list_head *head;
521
522 spin_lock_bh(&queue->lock);
523 head = &queue->tasks[queue->maxpriority];
524 for (;;) {
525 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
526 __rpc_wake_up_task(task);
527 if (head == &queue->tasks[0])
528 break;
529 head--;
530 }
531 spin_unlock_bh(&queue->lock);
532 }
533
534 /**
535 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
536 * @queue: rpc_wait_queue on which the tasks are sleeping
537 * @status: status value to set
538 *
539 * Grabs queue->lock
540 */
541 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
542 {
543 struct rpc_task *task, *next;
544 struct list_head *head;
545
546 spin_lock_bh(&queue->lock);
547 head = &queue->tasks[queue->maxpriority];
548 for (;;) {
549 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
550 task->tk_status = status;
551 __rpc_wake_up_task(task);
552 }
553 if (head == &queue->tasks[0])
554 break;
555 head--;
556 }
557 spin_unlock_bh(&queue->lock);
558 }
559
560 /*
561 * Run a task at a later time
562 */
563 static void __rpc_atrun(struct rpc_task *);
564 void
565 rpc_delay(struct rpc_task *task, unsigned long delay)
566 {
567 task->tk_timeout = delay;
568 rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
569 }
570
571 static void
572 __rpc_atrun(struct rpc_task *task)
573 {
574 task->tk_status = 0;
575 rpc_wake_up_task(task);
576 }
577
578 /*
579 * Helper to call task->tk_ops->rpc_call_prepare
580 */
581 static void rpc_prepare_task(struct rpc_task *task)
582 {
583 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
584 }
585
586 /*
587 * Helper that calls task->tk_ops->rpc_call_done if it exists
588 */
589 void rpc_exit_task(struct rpc_task *task)
590 {
591 task->tk_action = NULL;
592 if (task->tk_ops->rpc_call_done != NULL) {
593 task->tk_ops->rpc_call_done(task, task->tk_calldata);
594 if (task->tk_action != NULL) {
595 WARN_ON(RPC_ASSASSINATED(task));
596 /* Always release the RPC slot and buffer memory */
597 xprt_release(task);
598 }
599 }
600 }
601 EXPORT_SYMBOL(rpc_exit_task);
602
603 /*
604 * This is the RPC `scheduler' (or rather, the finite state machine).
605 */
606 static int __rpc_execute(struct rpc_task *task)
607 {
608 int status = 0;
609
610 dprintk("RPC: %4d rpc_execute flgs %x\n",
611 task->tk_pid, task->tk_flags);
612
613 BUG_ON(RPC_IS_QUEUED(task));
614
615 for (;;) {
616 /*
617 * Garbage collection of pending timers...
618 */
619 rpc_delete_timer(task);
620
621 /*
622 * Execute any pending callback.
623 */
624 if (RPC_DO_CALLBACK(task)) {
625 /* Define a callback save pointer */
626 void (*save_callback)(struct rpc_task *);
627
628 /*
629 * If a callback exists, save it, reset it,
630 * call it.
631 * The save is needed to stop from resetting
632 * another callback set within the callback handler
633 * - Dave
634 */
635 save_callback=task->tk_callback;
636 task->tk_callback=NULL;
637 lock_kernel();
638 save_callback(task);
639 unlock_kernel();
640 }
641
642 /*
643 * Perform the next FSM step.
644 * tk_action may be NULL when the task has been killed
645 * by someone else.
646 */
647 if (!RPC_IS_QUEUED(task)) {
648 if (task->tk_action == NULL)
649 break;
650 lock_kernel();
651 task->tk_action(task);
652 unlock_kernel();
653 }
654
655 /*
656 * Lockless check for whether task is sleeping or not.
657 */
658 if (!RPC_IS_QUEUED(task))
659 continue;
660 rpc_clear_running(task);
661 if (RPC_IS_ASYNC(task)) {
662 /* Careful! we may have raced... */
663 if (RPC_IS_QUEUED(task))
664 return 0;
665 if (rpc_test_and_set_running(task))
666 return 0;
667 continue;
668 }
669
670 /* sync task: sleep here */
671 dprintk("RPC: %4d sync task going to sleep\n", task->tk_pid);
672 /* Note: Caller should be using rpc_clnt_sigmask() */
673 status = out_of_line_wait_on_bit(&task->tk_runstate,
674 RPC_TASK_QUEUED, rpc_wait_bit_interruptible,
675 TASK_INTERRUPTIBLE);
676 if (status == -ERESTARTSYS) {
677 /*
678 * When a sync task receives a signal, it exits with
679 * -ERESTARTSYS. In order to catch any callbacks that
680 * clean up after sleeping on some queue, we don't
681 * break the loop here, but go around once more.
682 */
683 dprintk("RPC: %4d got signal\n", task->tk_pid);
684 task->tk_flags |= RPC_TASK_KILLED;
685 rpc_exit(task, -ERESTARTSYS);
686 rpc_wake_up_task(task);
687 }
688 rpc_set_running(task);
689 dprintk("RPC: %4d sync task resuming\n", task->tk_pid);
690 }
691
692 dprintk("RPC: %4d, return %d, status %d\n", task->tk_pid, status, task->tk_status);
693 /* Wake up anyone who is waiting for task completion */
694 rpc_mark_complete_task(task);
695 /* Release all resources associated with the task */
696 rpc_release_task(task);
697 return status;
698 }
699
700 /*
701 * User-visible entry point to the scheduler.
702 *
703 * This may be called recursively if e.g. an async NFS task updates
704 * the attributes and finds that dirty pages must be flushed.
705 * NOTE: Upon exit of this function the task is guaranteed to be
706 * released. In particular note that tk_release() will have
707 * been called, so your task memory may have been freed.
708 */
709 int
710 rpc_execute(struct rpc_task *task)
711 {
712 rpc_set_active(task);
713 rpc_set_running(task);
714 return __rpc_execute(task);
715 }
716
717 static void rpc_async_schedule(void *arg)
718 {
719 __rpc_execute((struct rpc_task *)arg);
720 }
721
722 /**
723 * rpc_malloc - allocate an RPC buffer
724 * @task: RPC task that will use this buffer
725 * @size: requested byte size
726 *
727 * We try to ensure that some NFS reads and writes can always proceed
728 * by using a mempool when allocating 'small' buffers.
729 * In order to avoid memory starvation triggering more writebacks of
730 * NFS requests, we use GFP_NOFS rather than GFP_KERNEL.
731 */
732 void * rpc_malloc(struct rpc_task *task, size_t size)
733 {
734 struct rpc_rqst *req = task->tk_rqstp;
735 gfp_t gfp;
736
737 if (task->tk_flags & RPC_TASK_SWAPPER)
738 gfp = GFP_ATOMIC;
739 else
740 gfp = GFP_NOFS;
741
742 if (size > RPC_BUFFER_MAXSIZE) {
743 req->rq_buffer = kmalloc(size, gfp);
744 if (req->rq_buffer)
745 req->rq_bufsize = size;
746 } else {
747 req->rq_buffer = mempool_alloc(rpc_buffer_mempool, gfp);
748 if (req->rq_buffer)
749 req->rq_bufsize = RPC_BUFFER_MAXSIZE;
750 }
751 return req->rq_buffer;
752 }
753
754 /**
755 * rpc_free - free buffer allocated via rpc_malloc
756 * @task: RPC task with a buffer to be freed
757 *
758 */
759 void rpc_free(struct rpc_task *task)
760 {
761 struct rpc_rqst *req = task->tk_rqstp;
762
763 if (req->rq_buffer) {
764 if (req->rq_bufsize == RPC_BUFFER_MAXSIZE)
765 mempool_free(req->rq_buffer, rpc_buffer_mempool);
766 else
767 kfree(req->rq_buffer);
768 req->rq_buffer = NULL;
769 req->rq_bufsize = 0;
770 }
771 }
772
773 /*
774 * Creation and deletion of RPC task structures
775 */
776 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
777 {
778 memset(task, 0, sizeof(*task));
779 init_timer(&task->tk_timer);
780 task->tk_timer.data = (unsigned long) task;
781 task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer;
782 atomic_set(&task->tk_count, 1);
783 task->tk_client = clnt;
784 task->tk_flags = flags;
785 task->tk_ops = tk_ops;
786 if (tk_ops->rpc_call_prepare != NULL)
787 task->tk_action = rpc_prepare_task;
788 task->tk_calldata = calldata;
789
790 /* Initialize retry counters */
791 task->tk_garb_retry = 2;
792 task->tk_cred_retry = 2;
793
794 task->tk_priority = RPC_PRIORITY_NORMAL;
795 task->tk_cookie = (unsigned long)current;
796
797 /* Initialize workqueue for async tasks */
798 task->tk_workqueue = rpciod_workqueue;
799
800 if (clnt) {
801 atomic_inc(&clnt->cl_users);
802 if (clnt->cl_softrtry)
803 task->tk_flags |= RPC_TASK_SOFT;
804 if (!clnt->cl_intr)
805 task->tk_flags |= RPC_TASK_NOINTR;
806 }
807
808 #ifdef RPC_DEBUG
809 task->tk_magic = RPC_TASK_MAGIC_ID;
810 task->tk_pid = rpc_task_id++;
811 #endif
812 /* Add to global list of all tasks */
813 spin_lock(&rpc_sched_lock);
814 list_add_tail(&task->tk_task, &all_tasks);
815 spin_unlock(&rpc_sched_lock);
816
817 BUG_ON(task->tk_ops == NULL);
818
819 dprintk("RPC: %4d new task procpid %d\n", task->tk_pid,
820 current->pid);
821 }
822
823 static struct rpc_task *
824 rpc_alloc_task(void)
825 {
826 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
827 }
828
829 static void rpc_free_task(struct rpc_task *task)
830 {
831 dprintk("RPC: %4d freeing task\n", task->tk_pid);
832 mempool_free(task, rpc_task_mempool);
833 }
834
835 /*
836 * Create a new task for the specified client. We have to
837 * clean up after an allocation failure, as the client may
838 * have specified "oneshot".
839 */
840 struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
841 {
842 struct rpc_task *task;
843
844 task = rpc_alloc_task();
845 if (!task)
846 goto cleanup;
847
848 rpc_init_task(task, clnt, flags, tk_ops, calldata);
849
850 dprintk("RPC: %4d allocated task\n", task->tk_pid);
851 task->tk_flags |= RPC_TASK_DYNAMIC;
852 out:
853 return task;
854
855 cleanup:
856 /* Check whether to release the client */
857 if (clnt) {
858 printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
859 atomic_read(&clnt->cl_users), clnt->cl_oneshot);
860 atomic_inc(&clnt->cl_users); /* pretend we were used ... */
861 rpc_release_client(clnt);
862 }
863 goto out;
864 }
865
866 void rpc_release_task(struct rpc_task *task)
867 {
868 const struct rpc_call_ops *tk_ops = task->tk_ops;
869 void *calldata = task->tk_calldata;
870
871 #ifdef RPC_DEBUG
872 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
873 #endif
874 if (!atomic_dec_and_test(&task->tk_count))
875 return;
876 dprintk("RPC: %4d release task\n", task->tk_pid);
877
878 /* Remove from global task list */
879 spin_lock(&rpc_sched_lock);
880 list_del(&task->tk_task);
881 spin_unlock(&rpc_sched_lock);
882
883 BUG_ON (RPC_IS_QUEUED(task));
884
885 /* Synchronously delete any running timer */
886 rpc_delete_timer(task);
887
888 /* Release resources */
889 if (task->tk_rqstp)
890 xprt_release(task);
891 if (task->tk_msg.rpc_cred)
892 rpcauth_unbindcred(task);
893 if (task->tk_client) {
894 rpc_release_client(task->tk_client);
895 task->tk_client = NULL;
896 }
897
898 #ifdef RPC_DEBUG
899 task->tk_magic = 0;
900 #endif
901 if (task->tk_flags & RPC_TASK_DYNAMIC)
902 rpc_free_task(task);
903 if (tk_ops->rpc_release)
904 tk_ops->rpc_release(calldata);
905 }
906
907 /**
908 * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
909 * @clnt: pointer to RPC client
910 * @flags: RPC flags
911 * @ops: RPC call ops
912 * @data: user call data
913 */
914 struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags,
915 const struct rpc_call_ops *ops,
916 void *data)
917 {
918 struct rpc_task *task;
919 task = rpc_new_task(clnt, flags, ops, data);
920 if (task == NULL)
921 return ERR_PTR(-ENOMEM);
922 atomic_inc(&task->tk_count);
923 rpc_execute(task);
924 return task;
925 }
926 EXPORT_SYMBOL(rpc_run_task);
927
928 /**
929 * rpc_find_parent - find the parent of a child task.
930 * @child: child task
931 * @parent: parent task
932 *
933 * Checks that the parent task is still sleeping on the
934 * queue 'childq'. If so returns a pointer to the parent.
935 * Upon failure returns NULL.
936 *
937 * Caller must hold childq.lock
938 */
939 static inline struct rpc_task *rpc_find_parent(struct rpc_task *child, struct rpc_task *parent)
940 {
941 struct rpc_task *task;
942 struct list_head *le;
943
944 task_for_each(task, le, &childq.tasks[0])
945 if (task == parent)
946 return parent;
947
948 return NULL;
949 }
950
951 static void rpc_child_exit(struct rpc_task *child, void *calldata)
952 {
953 struct rpc_task *parent;
954
955 spin_lock_bh(&childq.lock);
956 if ((parent = rpc_find_parent(child, calldata)) != NULL) {
957 parent->tk_status = child->tk_status;
958 __rpc_wake_up_task(parent);
959 }
960 spin_unlock_bh(&childq.lock);
961 }
962
963 static const struct rpc_call_ops rpc_child_ops = {
964 .rpc_call_done = rpc_child_exit,
965 };
966
967 /*
968 * Note: rpc_new_task releases the client after a failure.
969 */
970 struct rpc_task *
971 rpc_new_child(struct rpc_clnt *clnt, struct rpc_task *parent)
972 {
973 struct rpc_task *task;
974
975 task = rpc_new_task(clnt, RPC_TASK_ASYNC | RPC_TASK_CHILD, &rpc_child_ops, parent);
976 if (!task)
977 goto fail;
978 return task;
979
980 fail:
981 parent->tk_status = -ENOMEM;
982 return NULL;
983 }
984
985 void rpc_run_child(struct rpc_task *task, struct rpc_task *child, rpc_action func)
986 {
987 spin_lock_bh(&childq.lock);
988 /* N.B. Is it possible for the child to have already finished? */
989 __rpc_sleep_on(&childq, task, func, NULL);
990 rpc_schedule_run(child);
991 spin_unlock_bh(&childq.lock);
992 }
993
994 /*
995 * Kill all tasks for the given client.
996 * XXX: kill their descendants as well?
997 */
998 void rpc_killall_tasks(struct rpc_clnt *clnt)
999 {
1000 struct rpc_task *rovr;
1001 struct list_head *le;
1002
1003 dprintk("RPC: killing all tasks for client %p\n", clnt);
1004
1005 /*
1006 * Spin lock all_tasks to prevent changes...
1007 */
1008 spin_lock(&rpc_sched_lock);
1009 alltask_for_each(rovr, le, &all_tasks) {
1010 if (! RPC_IS_ACTIVATED(rovr))
1011 continue;
1012 if (!clnt || rovr->tk_client == clnt) {
1013 rovr->tk_flags |= RPC_TASK_KILLED;
1014 rpc_exit(rovr, -EIO);
1015 rpc_wake_up_task(rovr);
1016 }
1017 }
1018 spin_unlock(&rpc_sched_lock);
1019 }
1020
1021 static DECLARE_MUTEX_LOCKED(rpciod_running);
1022
1023 static void rpciod_killall(void)
1024 {
1025 unsigned long flags;
1026
1027 while (!list_empty(&all_tasks)) {
1028 clear_thread_flag(TIF_SIGPENDING);
1029 rpc_killall_tasks(NULL);
1030 flush_workqueue(rpciod_workqueue);
1031 if (!list_empty(&all_tasks)) {
1032 dprintk("rpciod_killall: waiting for tasks to exit\n");
1033 yield();
1034 }
1035 }
1036
1037 spin_lock_irqsave(&current->sighand->siglock, flags);
1038 recalc_sigpending();
1039 spin_unlock_irqrestore(&current->sighand->siglock, flags);
1040 }
1041
1042 /*
1043 * Start up the rpciod process if it's not already running.
1044 */
1045 int
1046 rpciod_up(void)
1047 {
1048 struct workqueue_struct *wq;
1049 int error = 0;
1050
1051 mutex_lock(&rpciod_mutex);
1052 dprintk("rpciod_up: users %d\n", rpciod_users);
1053 rpciod_users++;
1054 if (rpciod_workqueue)
1055 goto out;
1056 /*
1057 * If there's no pid, we should be the first user.
1058 */
1059 if (rpciod_users > 1)
1060 printk(KERN_WARNING "rpciod_up: no workqueue, %d users??\n", rpciod_users);
1061 /*
1062 * Create the rpciod thread and wait for it to start.
1063 */
1064 error = -ENOMEM;
1065 wq = create_workqueue("rpciod");
1066 if (wq == NULL) {
1067 printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error);
1068 rpciod_users--;
1069 goto out;
1070 }
1071 rpciod_workqueue = wq;
1072 error = 0;
1073 out:
1074 mutex_unlock(&rpciod_mutex);
1075 return error;
1076 }
1077
1078 void
1079 rpciod_down(void)
1080 {
1081 mutex_lock(&rpciod_mutex);
1082 dprintk("rpciod_down sema %d\n", rpciod_users);
1083 if (rpciod_users) {
1084 if (--rpciod_users)
1085 goto out;
1086 } else
1087 printk(KERN_WARNING "rpciod_down: no users??\n");
1088
1089 if (!rpciod_workqueue) {
1090 dprintk("rpciod_down: Nothing to do!\n");
1091 goto out;
1092 }
1093 rpciod_killall();
1094
1095 destroy_workqueue(rpciod_workqueue);
1096 rpciod_workqueue = NULL;
1097 out:
1098 mutex_unlock(&rpciod_mutex);
1099 }
1100
1101 #ifdef RPC_DEBUG
1102 void rpc_show_tasks(void)
1103 {
1104 struct list_head *le;
1105 struct rpc_task *t;
1106
1107 spin_lock(&rpc_sched_lock);
1108 if (list_empty(&all_tasks)) {
1109 spin_unlock(&rpc_sched_lock);
1110 return;
1111 }
1112 printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1113 "-rpcwait -action- ---ops--\n");
1114 alltask_for_each(t, le, &all_tasks) {
1115 const char *rpc_waitq = "none";
1116
1117 if (RPC_IS_QUEUED(t))
1118 rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq);
1119
1120 printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n",
1121 t->tk_pid,
1122 (t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1),
1123 t->tk_flags, t->tk_status,
1124 t->tk_client,
1125 (t->tk_client ? t->tk_client->cl_prog : 0),
1126 t->tk_rqstp, t->tk_timeout,
1127 rpc_waitq,
1128 t->tk_action, t->tk_ops);
1129 }
1130 spin_unlock(&rpc_sched_lock);
1131 }
1132 #endif
1133
1134 void
1135 rpc_destroy_mempool(void)
1136 {
1137 if (rpc_buffer_mempool)
1138 mempool_destroy(rpc_buffer_mempool);
1139 if (rpc_task_mempool)
1140 mempool_destroy(rpc_task_mempool);
1141 if (rpc_task_slabp && kmem_cache_destroy(rpc_task_slabp))
1142 printk(KERN_INFO "rpc_task: not all structures were freed\n");
1143 if (rpc_buffer_slabp && kmem_cache_destroy(rpc_buffer_slabp))
1144 printk(KERN_INFO "rpc_buffers: not all structures were freed\n");
1145 }
1146
1147 int
1148 rpc_init_mempool(void)
1149 {
1150 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1151 sizeof(struct rpc_task),
1152 0, SLAB_HWCACHE_ALIGN,
1153 NULL, NULL);
1154 if (!rpc_task_slabp)
1155 goto err_nomem;
1156 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1157 RPC_BUFFER_MAXSIZE,
1158 0, SLAB_HWCACHE_ALIGN,
1159 NULL, NULL);
1160 if (!rpc_buffer_slabp)
1161 goto err_nomem;
1162 rpc_task_mempool = mempool_create(RPC_TASK_POOLSIZE,
1163 mempool_alloc_slab,
1164 mempool_free_slab,
1165 rpc_task_slabp);
1166 if (!rpc_task_mempool)
1167 goto err_nomem;
1168 rpc_buffer_mempool = mempool_create(RPC_BUFFER_POOLSIZE,
1169 mempool_alloc_slab,
1170 mempool_free_slab,
1171 rpc_buffer_slabp);
1172 if (!rpc_buffer_mempool)
1173 goto err_nomem;
1174 return 0;
1175 err_nomem:
1176 rpc_destroy_mempool();
1177 return -ENOMEM;
1178 }