]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/sunrpc/sched.c
Merge tag 'arc-5.10-rc1-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupt...
[mirror_ubuntu-jammy-kernel.git] / net / sunrpc / sched.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/net/sunrpc/sched.c
4 *
5 * Scheduling for synchronous and asynchronous RPC requests.
6 *
7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 *
9 * TCP NFS related read + write fixes
10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11 */
12
13 #include <linux/module.h>
14
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
27
28 #include "sunrpc.h"
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/sunrpc.h>
32
33 /*
34 * RPC slabs and memory pools
35 */
36 #define RPC_BUFFER_MAXSIZE (2048)
37 #define RPC_BUFFER_POOLSIZE (8)
38 #define RPC_TASK_POOLSIZE (8)
39 static struct kmem_cache *rpc_task_slabp __read_mostly;
40 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
41 static mempool_t *rpc_task_mempool __read_mostly;
42 static mempool_t *rpc_buffer_mempool __read_mostly;
43
44 static void rpc_async_schedule(struct work_struct *);
45 static void rpc_release_task(struct rpc_task *task);
46 static void __rpc_queue_timer_fn(struct work_struct *);
47
48 /*
49 * RPC tasks sit here while waiting for conditions to improve.
50 */
51 static struct rpc_wait_queue delay_queue;
52
53 /*
54 * rpciod-related stuff
55 */
56 struct workqueue_struct *rpciod_workqueue __read_mostly;
57 struct workqueue_struct *xprtiod_workqueue __read_mostly;
58 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
59
60 unsigned long
61 rpc_task_timeout(const struct rpc_task *task)
62 {
63 unsigned long timeout = READ_ONCE(task->tk_timeout);
64
65 if (timeout != 0) {
66 unsigned long now = jiffies;
67 if (time_before(now, timeout))
68 return timeout - now;
69 }
70 return 0;
71 }
72 EXPORT_SYMBOL_GPL(rpc_task_timeout);
73
74 /*
75 * Disable the timer for a given RPC task. Should be called with
76 * queue->lock and bh_disabled in order to avoid races within
77 * rpc_run_timer().
78 */
79 static void
80 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
81 {
82 if (list_empty(&task->u.tk_wait.timer_list))
83 return;
84 task->tk_timeout = 0;
85 list_del(&task->u.tk_wait.timer_list);
86 if (list_empty(&queue->timer_list.list))
87 cancel_delayed_work(&queue->timer_list.dwork);
88 }
89
90 static void
91 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
92 {
93 unsigned long now = jiffies;
94 queue->timer_list.expires = expires;
95 if (time_before_eq(expires, now))
96 expires = 0;
97 else
98 expires -= now;
99 mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
100 }
101
102 /*
103 * Set up a timer for the current task.
104 */
105 static void
106 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
107 unsigned long timeout)
108 {
109 task->tk_timeout = timeout;
110 if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
111 rpc_set_queue_timer(queue, timeout);
112 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
113 }
114
115 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
116 {
117 if (queue->priority != priority) {
118 queue->priority = priority;
119 queue->nr = 1U << priority;
120 }
121 }
122
123 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
124 {
125 rpc_set_waitqueue_priority(queue, queue->maxpriority);
126 }
127
128 /*
129 * Add a request to a queue list
130 */
131 static void
132 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
133 {
134 struct rpc_task *t;
135
136 list_for_each_entry(t, q, u.tk_wait.list) {
137 if (t->tk_owner == task->tk_owner) {
138 list_add_tail(&task->u.tk_wait.links,
139 &t->u.tk_wait.links);
140 /* Cache the queue head in task->u.tk_wait.list */
141 task->u.tk_wait.list.next = q;
142 task->u.tk_wait.list.prev = NULL;
143 return;
144 }
145 }
146 INIT_LIST_HEAD(&task->u.tk_wait.links);
147 list_add_tail(&task->u.tk_wait.list, q);
148 }
149
150 /*
151 * Remove request from a queue list
152 */
153 static void
154 __rpc_list_dequeue_task(struct rpc_task *task)
155 {
156 struct list_head *q;
157 struct rpc_task *t;
158
159 if (task->u.tk_wait.list.prev == NULL) {
160 list_del(&task->u.tk_wait.links);
161 return;
162 }
163 if (!list_empty(&task->u.tk_wait.links)) {
164 t = list_first_entry(&task->u.tk_wait.links,
165 struct rpc_task,
166 u.tk_wait.links);
167 /* Assume __rpc_list_enqueue_task() cached the queue head */
168 q = t->u.tk_wait.list.next;
169 list_add_tail(&t->u.tk_wait.list, q);
170 list_del(&task->u.tk_wait.links);
171 }
172 list_del(&task->u.tk_wait.list);
173 }
174
175 /*
176 * Add new request to a priority queue.
177 */
178 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
179 struct rpc_task *task,
180 unsigned char queue_priority)
181 {
182 if (unlikely(queue_priority > queue->maxpriority))
183 queue_priority = queue->maxpriority;
184 __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
185 }
186
187 /*
188 * Add new request to wait queue.
189 *
190 * Swapper tasks always get inserted at the head of the queue.
191 * This should avoid many nasty memory deadlocks and hopefully
192 * improve overall performance.
193 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
194 */
195 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
196 struct rpc_task *task,
197 unsigned char queue_priority)
198 {
199 INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
200 if (RPC_IS_PRIORITY(queue))
201 __rpc_add_wait_queue_priority(queue, task, queue_priority);
202 else if (RPC_IS_SWAPPER(task))
203 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
204 else
205 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
206 task->tk_waitqueue = queue;
207 queue->qlen++;
208 /* barrier matches the read in rpc_wake_up_task_queue_locked() */
209 smp_wmb();
210 rpc_set_queued(task);
211 }
212
213 /*
214 * Remove request from a priority queue.
215 */
216 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
217 {
218 __rpc_list_dequeue_task(task);
219 }
220
221 /*
222 * Remove request from queue.
223 * Note: must be called with spin lock held.
224 */
225 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
226 {
227 __rpc_disable_timer(queue, task);
228 if (RPC_IS_PRIORITY(queue))
229 __rpc_remove_wait_queue_priority(task);
230 else
231 list_del(&task->u.tk_wait.list);
232 queue->qlen--;
233 }
234
235 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
236 {
237 int i;
238
239 spin_lock_init(&queue->lock);
240 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
241 INIT_LIST_HEAD(&queue->tasks[i]);
242 queue->maxpriority = nr_queues - 1;
243 rpc_reset_waitqueue_priority(queue);
244 queue->qlen = 0;
245 queue->timer_list.expires = 0;
246 INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
247 INIT_LIST_HEAD(&queue->timer_list.list);
248 rpc_assign_waitqueue_name(queue, qname);
249 }
250
251 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
252 {
253 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
254 }
255 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
256
257 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
258 {
259 __rpc_init_priority_wait_queue(queue, qname, 1);
260 }
261 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
262
263 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
264 {
265 cancel_delayed_work_sync(&queue->timer_list.dwork);
266 }
267 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
268
269 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
270 {
271 freezable_schedule_unsafe();
272 if (signal_pending_state(mode, current))
273 return -ERESTARTSYS;
274 return 0;
275 }
276
277 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
278 static void rpc_task_set_debuginfo(struct rpc_task *task)
279 {
280 static atomic_t rpc_pid;
281
282 task->tk_pid = atomic_inc_return(&rpc_pid);
283 }
284 #else
285 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
286 {
287 }
288 #endif
289
290 static void rpc_set_active(struct rpc_task *task)
291 {
292 rpc_task_set_debuginfo(task);
293 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
294 trace_rpc_task_begin(task, NULL);
295 }
296
297 /*
298 * Mark an RPC call as having completed by clearing the 'active' bit
299 * and then waking up all tasks that were sleeping.
300 */
301 static int rpc_complete_task(struct rpc_task *task)
302 {
303 void *m = &task->tk_runstate;
304 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
305 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
306 unsigned long flags;
307 int ret;
308
309 trace_rpc_task_complete(task, NULL);
310
311 spin_lock_irqsave(&wq->lock, flags);
312 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
313 ret = atomic_dec_and_test(&task->tk_count);
314 if (waitqueue_active(wq))
315 __wake_up_locked_key(wq, TASK_NORMAL, &k);
316 spin_unlock_irqrestore(&wq->lock, flags);
317 return ret;
318 }
319
320 /*
321 * Allow callers to wait for completion of an RPC call
322 *
323 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
324 * to enforce taking of the wq->lock and hence avoid races with
325 * rpc_complete_task().
326 */
327 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
328 {
329 if (action == NULL)
330 action = rpc_wait_bit_killable;
331 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
332 action, TASK_KILLABLE);
333 }
334 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
335
336 /*
337 * Make an RPC task runnable.
338 *
339 * Note: If the task is ASYNC, and is being made runnable after sitting on an
340 * rpc_wait_queue, this must be called with the queue spinlock held to protect
341 * the wait queue operation.
342 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
343 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
344 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
345 * the RPC_TASK_RUNNING flag.
346 */
347 static void rpc_make_runnable(struct workqueue_struct *wq,
348 struct rpc_task *task)
349 {
350 bool need_wakeup = !rpc_test_and_set_running(task);
351
352 rpc_clear_queued(task);
353 if (!need_wakeup)
354 return;
355 if (RPC_IS_ASYNC(task)) {
356 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
357 queue_work(wq, &task->u.tk_work);
358 } else
359 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
360 }
361
362 /*
363 * Prepare for sleeping on a wait queue.
364 * By always appending tasks to the list we ensure FIFO behavior.
365 * NB: An RPC task will only receive interrupt-driven events as long
366 * as it's on a wait queue.
367 */
368 static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
369 struct rpc_task *task,
370 unsigned char queue_priority)
371 {
372 trace_rpc_task_sleep(task, q);
373
374 __rpc_add_wait_queue(q, task, queue_priority);
375 }
376
377 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
378 struct rpc_task *task,
379 unsigned char queue_priority)
380 {
381 if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
382 return;
383 __rpc_do_sleep_on_priority(q, task, queue_priority);
384 }
385
386 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
387 struct rpc_task *task, unsigned long timeout,
388 unsigned char queue_priority)
389 {
390 if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
391 return;
392 if (time_is_after_jiffies(timeout)) {
393 __rpc_do_sleep_on_priority(q, task, queue_priority);
394 __rpc_add_timer(q, task, timeout);
395 } else
396 task->tk_status = -ETIMEDOUT;
397 }
398
399 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
400 {
401 if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
402 task->tk_callback = action;
403 }
404
405 static bool rpc_sleep_check_activated(struct rpc_task *task)
406 {
407 /* We shouldn't ever put an inactive task to sleep */
408 if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
409 task->tk_status = -EIO;
410 rpc_put_task_async(task);
411 return false;
412 }
413 return true;
414 }
415
416 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
417 rpc_action action, unsigned long timeout)
418 {
419 if (!rpc_sleep_check_activated(task))
420 return;
421
422 rpc_set_tk_callback(task, action);
423
424 /*
425 * Protect the queue operations.
426 */
427 spin_lock(&q->lock);
428 __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
429 spin_unlock(&q->lock);
430 }
431 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
432
433 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
434 rpc_action action)
435 {
436 if (!rpc_sleep_check_activated(task))
437 return;
438
439 rpc_set_tk_callback(task, action);
440
441 WARN_ON_ONCE(task->tk_timeout != 0);
442 /*
443 * Protect the queue operations.
444 */
445 spin_lock(&q->lock);
446 __rpc_sleep_on_priority(q, task, task->tk_priority);
447 spin_unlock(&q->lock);
448 }
449 EXPORT_SYMBOL_GPL(rpc_sleep_on);
450
451 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
452 struct rpc_task *task, unsigned long timeout, int priority)
453 {
454 if (!rpc_sleep_check_activated(task))
455 return;
456
457 priority -= RPC_PRIORITY_LOW;
458 /*
459 * Protect the queue operations.
460 */
461 spin_lock(&q->lock);
462 __rpc_sleep_on_priority_timeout(q, task, timeout, priority);
463 spin_unlock(&q->lock);
464 }
465 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
466
467 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
468 int priority)
469 {
470 if (!rpc_sleep_check_activated(task))
471 return;
472
473 WARN_ON_ONCE(task->tk_timeout != 0);
474 priority -= RPC_PRIORITY_LOW;
475 /*
476 * Protect the queue operations.
477 */
478 spin_lock(&q->lock);
479 __rpc_sleep_on_priority(q, task, priority);
480 spin_unlock(&q->lock);
481 }
482 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
483
484 /**
485 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
486 * @wq: workqueue on which to run task
487 * @queue: wait queue
488 * @task: task to be woken up
489 *
490 * Caller must hold queue->lock, and have cleared the task queued flag.
491 */
492 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
493 struct rpc_wait_queue *queue,
494 struct rpc_task *task)
495 {
496 /* Has the task been executed yet? If not, we cannot wake it up! */
497 if (!RPC_IS_ACTIVATED(task)) {
498 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
499 return;
500 }
501
502 trace_rpc_task_wakeup(task, queue);
503
504 __rpc_remove_wait_queue(queue, task);
505
506 rpc_make_runnable(wq, task);
507 }
508
509 /*
510 * Wake up a queued task while the queue lock is being held
511 */
512 static struct rpc_task *
513 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
514 struct rpc_wait_queue *queue, struct rpc_task *task,
515 bool (*action)(struct rpc_task *, void *), void *data)
516 {
517 if (RPC_IS_QUEUED(task)) {
518 smp_rmb();
519 if (task->tk_waitqueue == queue) {
520 if (action == NULL || action(task, data)) {
521 __rpc_do_wake_up_task_on_wq(wq, queue, task);
522 return task;
523 }
524 }
525 }
526 return NULL;
527 }
528
529 /*
530 * Wake up a queued task while the queue lock is being held
531 */
532 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
533 struct rpc_task *task)
534 {
535 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
536 task, NULL, NULL);
537 }
538
539 /*
540 * Wake up a task on a specific queue
541 */
542 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
543 {
544 if (!RPC_IS_QUEUED(task))
545 return;
546 spin_lock(&queue->lock);
547 rpc_wake_up_task_queue_locked(queue, task);
548 spin_unlock(&queue->lock);
549 }
550 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
551
552 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
553 {
554 task->tk_status = *(int *)status;
555 return true;
556 }
557
558 static void
559 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
560 struct rpc_task *task, int status)
561 {
562 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
563 task, rpc_task_action_set_status, &status);
564 }
565
566 /**
567 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
568 * @queue: pointer to rpc_wait_queue
569 * @task: pointer to rpc_task
570 * @status: integer error value
571 *
572 * If @task is queued on @queue, then it is woken up, and @task->tk_status is
573 * set to the value of @status.
574 */
575 void
576 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
577 struct rpc_task *task, int status)
578 {
579 if (!RPC_IS_QUEUED(task))
580 return;
581 spin_lock(&queue->lock);
582 rpc_wake_up_task_queue_set_status_locked(queue, task, status);
583 spin_unlock(&queue->lock);
584 }
585
586 /*
587 * Wake up the next task on a priority queue.
588 */
589 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
590 {
591 struct list_head *q;
592 struct rpc_task *task;
593
594 /*
595 * Service a batch of tasks from a single owner.
596 */
597 q = &queue->tasks[queue->priority];
598 if (!list_empty(q) && --queue->nr) {
599 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
600 goto out;
601 }
602
603 /*
604 * Service the next queue.
605 */
606 do {
607 if (q == &queue->tasks[0])
608 q = &queue->tasks[queue->maxpriority];
609 else
610 q = q - 1;
611 if (!list_empty(q)) {
612 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
613 goto new_queue;
614 }
615 } while (q != &queue->tasks[queue->priority]);
616
617 rpc_reset_waitqueue_priority(queue);
618 return NULL;
619
620 new_queue:
621 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
622 out:
623 return task;
624 }
625
626 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
627 {
628 if (RPC_IS_PRIORITY(queue))
629 return __rpc_find_next_queued_priority(queue);
630 if (!list_empty(&queue->tasks[0]))
631 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
632 return NULL;
633 }
634
635 /*
636 * Wake up the first task on the wait queue.
637 */
638 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
639 struct rpc_wait_queue *queue,
640 bool (*func)(struct rpc_task *, void *), void *data)
641 {
642 struct rpc_task *task = NULL;
643
644 spin_lock(&queue->lock);
645 task = __rpc_find_next_queued(queue);
646 if (task != NULL)
647 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
648 task, func, data);
649 spin_unlock(&queue->lock);
650
651 return task;
652 }
653
654 /*
655 * Wake up the first task on the wait queue.
656 */
657 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
658 bool (*func)(struct rpc_task *, void *), void *data)
659 {
660 return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
661 }
662 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
663
664 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
665 {
666 return true;
667 }
668
669 /*
670 * Wake up the next task on the wait queue.
671 */
672 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
673 {
674 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
675 }
676 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
677
678 /**
679 * rpc_wake_up - wake up all rpc_tasks
680 * @queue: rpc_wait_queue on which the tasks are sleeping
681 *
682 * Grabs queue->lock
683 */
684 void rpc_wake_up(struct rpc_wait_queue *queue)
685 {
686 struct list_head *head;
687
688 spin_lock(&queue->lock);
689 head = &queue->tasks[queue->maxpriority];
690 for (;;) {
691 while (!list_empty(head)) {
692 struct rpc_task *task;
693 task = list_first_entry(head,
694 struct rpc_task,
695 u.tk_wait.list);
696 rpc_wake_up_task_queue_locked(queue, task);
697 }
698 if (head == &queue->tasks[0])
699 break;
700 head--;
701 }
702 spin_unlock(&queue->lock);
703 }
704 EXPORT_SYMBOL_GPL(rpc_wake_up);
705
706 /**
707 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
708 * @queue: rpc_wait_queue on which the tasks are sleeping
709 * @status: status value to set
710 *
711 * Grabs queue->lock
712 */
713 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
714 {
715 struct list_head *head;
716
717 spin_lock(&queue->lock);
718 head = &queue->tasks[queue->maxpriority];
719 for (;;) {
720 while (!list_empty(head)) {
721 struct rpc_task *task;
722 task = list_first_entry(head,
723 struct rpc_task,
724 u.tk_wait.list);
725 task->tk_status = status;
726 rpc_wake_up_task_queue_locked(queue, task);
727 }
728 if (head == &queue->tasks[0])
729 break;
730 head--;
731 }
732 spin_unlock(&queue->lock);
733 }
734 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
735
736 static void __rpc_queue_timer_fn(struct work_struct *work)
737 {
738 struct rpc_wait_queue *queue = container_of(work,
739 struct rpc_wait_queue,
740 timer_list.dwork.work);
741 struct rpc_task *task, *n;
742 unsigned long expires, now, timeo;
743
744 spin_lock(&queue->lock);
745 expires = now = jiffies;
746 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
747 timeo = task->tk_timeout;
748 if (time_after_eq(now, timeo)) {
749 trace_rpc_task_timeout(task, task->tk_action);
750 task->tk_status = -ETIMEDOUT;
751 rpc_wake_up_task_queue_locked(queue, task);
752 continue;
753 }
754 if (expires == now || time_after(expires, timeo))
755 expires = timeo;
756 }
757 if (!list_empty(&queue->timer_list.list))
758 rpc_set_queue_timer(queue, expires);
759 spin_unlock(&queue->lock);
760 }
761
762 static void __rpc_atrun(struct rpc_task *task)
763 {
764 if (task->tk_status == -ETIMEDOUT)
765 task->tk_status = 0;
766 }
767
768 /*
769 * Run a task at a later time
770 */
771 void rpc_delay(struct rpc_task *task, unsigned long delay)
772 {
773 rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
774 }
775 EXPORT_SYMBOL_GPL(rpc_delay);
776
777 /*
778 * Helper to call task->tk_ops->rpc_call_prepare
779 */
780 void rpc_prepare_task(struct rpc_task *task)
781 {
782 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
783 }
784
785 static void
786 rpc_init_task_statistics(struct rpc_task *task)
787 {
788 /* Initialize retry counters */
789 task->tk_garb_retry = 2;
790 task->tk_cred_retry = 2;
791 task->tk_rebind_retry = 2;
792
793 /* starting timestamp */
794 task->tk_start = ktime_get();
795 }
796
797 static void
798 rpc_reset_task_statistics(struct rpc_task *task)
799 {
800 task->tk_timeouts = 0;
801 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
802 rpc_init_task_statistics(task);
803 }
804
805 /*
806 * Helper that calls task->tk_ops->rpc_call_done if it exists
807 */
808 void rpc_exit_task(struct rpc_task *task)
809 {
810 trace_rpc_task_end(task, task->tk_action);
811 task->tk_action = NULL;
812 if (task->tk_ops->rpc_count_stats)
813 task->tk_ops->rpc_count_stats(task, task->tk_calldata);
814 else if (task->tk_client)
815 rpc_count_iostats(task, task->tk_client->cl_metrics);
816 if (task->tk_ops->rpc_call_done != NULL) {
817 task->tk_ops->rpc_call_done(task, task->tk_calldata);
818 if (task->tk_action != NULL) {
819 /* Always release the RPC slot and buffer memory */
820 xprt_release(task);
821 rpc_reset_task_statistics(task);
822 }
823 }
824 }
825
826 void rpc_signal_task(struct rpc_task *task)
827 {
828 struct rpc_wait_queue *queue;
829
830 if (!RPC_IS_ACTIVATED(task))
831 return;
832
833 trace_rpc_task_signalled(task, task->tk_action);
834 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
835 smp_mb__after_atomic();
836 queue = READ_ONCE(task->tk_waitqueue);
837 if (queue)
838 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
839 }
840
841 void rpc_exit(struct rpc_task *task, int status)
842 {
843 task->tk_status = status;
844 task->tk_action = rpc_exit_task;
845 rpc_wake_up_queued_task(task->tk_waitqueue, task);
846 }
847 EXPORT_SYMBOL_GPL(rpc_exit);
848
849 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
850 {
851 if (ops->rpc_release != NULL)
852 ops->rpc_release(calldata);
853 }
854
855 /*
856 * This is the RPC `scheduler' (or rather, the finite state machine).
857 */
858 static void __rpc_execute(struct rpc_task *task)
859 {
860 struct rpc_wait_queue *queue;
861 int task_is_async = RPC_IS_ASYNC(task);
862 int status = 0;
863
864 WARN_ON_ONCE(RPC_IS_QUEUED(task));
865 if (RPC_IS_QUEUED(task))
866 return;
867
868 for (;;) {
869 void (*do_action)(struct rpc_task *);
870
871 /*
872 * Perform the next FSM step or a pending callback.
873 *
874 * tk_action may be NULL if the task has been killed.
875 * In particular, note that rpc_killall_tasks may
876 * do this at any time, so beware when dereferencing.
877 */
878 do_action = task->tk_action;
879 if (task->tk_callback) {
880 do_action = task->tk_callback;
881 task->tk_callback = NULL;
882 }
883 if (!do_action)
884 break;
885 trace_rpc_task_run_action(task, do_action);
886 do_action(task);
887
888 /*
889 * Lockless check for whether task is sleeping or not.
890 */
891 if (!RPC_IS_QUEUED(task))
892 continue;
893
894 /*
895 * Signalled tasks should exit rather than sleep.
896 */
897 if (RPC_SIGNALLED(task)) {
898 task->tk_rpc_status = -ERESTARTSYS;
899 rpc_exit(task, -ERESTARTSYS);
900 }
901
902 /*
903 * The queue->lock protects against races with
904 * rpc_make_runnable().
905 *
906 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
907 * rpc_task, rpc_make_runnable() can assign it to a
908 * different workqueue. We therefore cannot assume that the
909 * rpc_task pointer may still be dereferenced.
910 */
911 queue = task->tk_waitqueue;
912 spin_lock(&queue->lock);
913 if (!RPC_IS_QUEUED(task)) {
914 spin_unlock(&queue->lock);
915 continue;
916 }
917 rpc_clear_running(task);
918 spin_unlock(&queue->lock);
919 if (task_is_async)
920 return;
921
922 /* sync task: sleep here */
923 trace_rpc_task_sync_sleep(task, task->tk_action);
924 status = out_of_line_wait_on_bit(&task->tk_runstate,
925 RPC_TASK_QUEUED, rpc_wait_bit_killable,
926 TASK_KILLABLE);
927 if (status < 0) {
928 /*
929 * When a sync task receives a signal, it exits with
930 * -ERESTARTSYS. In order to catch any callbacks that
931 * clean up after sleeping on some queue, we don't
932 * break the loop here, but go around once more.
933 */
934 trace_rpc_task_signalled(task, task->tk_action);
935 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
936 task->tk_rpc_status = -ERESTARTSYS;
937 rpc_exit(task, -ERESTARTSYS);
938 }
939 trace_rpc_task_sync_wake(task, task->tk_action);
940 }
941
942 /* Release all resources associated with the task */
943 rpc_release_task(task);
944 }
945
946 /*
947 * User-visible entry point to the scheduler.
948 *
949 * This may be called recursively if e.g. an async NFS task updates
950 * the attributes and finds that dirty pages must be flushed.
951 * NOTE: Upon exit of this function the task is guaranteed to be
952 * released. In particular note that tk_release() will have
953 * been called, so your task memory may have been freed.
954 */
955 void rpc_execute(struct rpc_task *task)
956 {
957 bool is_async = RPC_IS_ASYNC(task);
958
959 rpc_set_active(task);
960 rpc_make_runnable(rpciod_workqueue, task);
961 if (!is_async)
962 __rpc_execute(task);
963 }
964
965 static void rpc_async_schedule(struct work_struct *work)
966 {
967 unsigned int pflags = memalloc_nofs_save();
968
969 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
970 memalloc_nofs_restore(pflags);
971 }
972
973 /**
974 * rpc_malloc - allocate RPC buffer resources
975 * @task: RPC task
976 *
977 * A single memory region is allocated, which is split between the
978 * RPC call and RPC reply that this task is being used for. When
979 * this RPC is retired, the memory is released by calling rpc_free.
980 *
981 * To prevent rpciod from hanging, this allocator never sleeps,
982 * returning -ENOMEM and suppressing warning if the request cannot
983 * be serviced immediately. The caller can arrange to sleep in a
984 * way that is safe for rpciod.
985 *
986 * Most requests are 'small' (under 2KiB) and can be serviced from a
987 * mempool, ensuring that NFS reads and writes can always proceed,
988 * and that there is good locality of reference for these buffers.
989 */
990 int rpc_malloc(struct rpc_task *task)
991 {
992 struct rpc_rqst *rqst = task->tk_rqstp;
993 size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
994 struct rpc_buffer *buf;
995 gfp_t gfp = GFP_NOFS;
996
997 if (RPC_IS_SWAPPER(task))
998 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
999
1000 size += sizeof(struct rpc_buffer);
1001 if (size <= RPC_BUFFER_MAXSIZE)
1002 buf = mempool_alloc(rpc_buffer_mempool, gfp);
1003 else
1004 buf = kmalloc(size, gfp);
1005
1006 if (!buf)
1007 return -ENOMEM;
1008
1009 buf->len = size;
1010 rqst->rq_buffer = buf->data;
1011 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1012 return 0;
1013 }
1014 EXPORT_SYMBOL_GPL(rpc_malloc);
1015
1016 /**
1017 * rpc_free - free RPC buffer resources allocated via rpc_malloc
1018 * @task: RPC task
1019 *
1020 */
1021 void rpc_free(struct rpc_task *task)
1022 {
1023 void *buffer = task->tk_rqstp->rq_buffer;
1024 size_t size;
1025 struct rpc_buffer *buf;
1026
1027 buf = container_of(buffer, struct rpc_buffer, data);
1028 size = buf->len;
1029
1030 if (size <= RPC_BUFFER_MAXSIZE)
1031 mempool_free(buf, rpc_buffer_mempool);
1032 else
1033 kfree(buf);
1034 }
1035 EXPORT_SYMBOL_GPL(rpc_free);
1036
1037 /*
1038 * Creation and deletion of RPC task structures
1039 */
1040 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1041 {
1042 memset(task, 0, sizeof(*task));
1043 atomic_set(&task->tk_count, 1);
1044 task->tk_flags = task_setup_data->flags;
1045 task->tk_ops = task_setup_data->callback_ops;
1046 task->tk_calldata = task_setup_data->callback_data;
1047 INIT_LIST_HEAD(&task->tk_task);
1048
1049 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1050 task->tk_owner = current->tgid;
1051
1052 /* Initialize workqueue for async tasks */
1053 task->tk_workqueue = task_setup_data->workqueue;
1054
1055 task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1056 xprt_get(task_setup_data->rpc_xprt));
1057
1058 task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1059
1060 if (task->tk_ops->rpc_call_prepare != NULL)
1061 task->tk_action = rpc_prepare_task;
1062
1063 rpc_init_task_statistics(task);
1064 }
1065
1066 static struct rpc_task *
1067 rpc_alloc_task(void)
1068 {
1069 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1070 }
1071
1072 /*
1073 * Create a new task for the specified client.
1074 */
1075 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1076 {
1077 struct rpc_task *task = setup_data->task;
1078 unsigned short flags = 0;
1079
1080 if (task == NULL) {
1081 task = rpc_alloc_task();
1082 flags = RPC_TASK_DYNAMIC;
1083 }
1084
1085 rpc_init_task(task, setup_data);
1086 task->tk_flags |= flags;
1087 return task;
1088 }
1089
1090 /*
1091 * rpc_free_task - release rpc task and perform cleanups
1092 *
1093 * Note that we free up the rpc_task _after_ rpc_release_calldata()
1094 * in order to work around a workqueue dependency issue.
1095 *
1096 * Tejun Heo states:
1097 * "Workqueue currently considers two work items to be the same if they're
1098 * on the same address and won't execute them concurrently - ie. it
1099 * makes a work item which is queued again while being executed wait
1100 * for the previous execution to complete.
1101 *
1102 * If a work function frees the work item, and then waits for an event
1103 * which should be performed by another work item and *that* work item
1104 * recycles the freed work item, it can create a false dependency loop.
1105 * There really is no reliable way to detect this short of verifying
1106 * every memory free."
1107 *
1108 */
1109 static void rpc_free_task(struct rpc_task *task)
1110 {
1111 unsigned short tk_flags = task->tk_flags;
1112
1113 put_rpccred(task->tk_op_cred);
1114 rpc_release_calldata(task->tk_ops, task->tk_calldata);
1115
1116 if (tk_flags & RPC_TASK_DYNAMIC)
1117 mempool_free(task, rpc_task_mempool);
1118 }
1119
1120 static void rpc_async_release(struct work_struct *work)
1121 {
1122 unsigned int pflags = memalloc_nofs_save();
1123
1124 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1125 memalloc_nofs_restore(pflags);
1126 }
1127
1128 static void rpc_release_resources_task(struct rpc_task *task)
1129 {
1130 xprt_release(task);
1131 if (task->tk_msg.rpc_cred) {
1132 if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
1133 put_cred(task->tk_msg.rpc_cred);
1134 task->tk_msg.rpc_cred = NULL;
1135 }
1136 rpc_task_release_client(task);
1137 }
1138
1139 static void rpc_final_put_task(struct rpc_task *task,
1140 struct workqueue_struct *q)
1141 {
1142 if (q != NULL) {
1143 INIT_WORK(&task->u.tk_work, rpc_async_release);
1144 queue_work(q, &task->u.tk_work);
1145 } else
1146 rpc_free_task(task);
1147 }
1148
1149 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1150 {
1151 if (atomic_dec_and_test(&task->tk_count)) {
1152 rpc_release_resources_task(task);
1153 rpc_final_put_task(task, q);
1154 }
1155 }
1156
1157 void rpc_put_task(struct rpc_task *task)
1158 {
1159 rpc_do_put_task(task, NULL);
1160 }
1161 EXPORT_SYMBOL_GPL(rpc_put_task);
1162
1163 void rpc_put_task_async(struct rpc_task *task)
1164 {
1165 rpc_do_put_task(task, task->tk_workqueue);
1166 }
1167 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1168
1169 static void rpc_release_task(struct rpc_task *task)
1170 {
1171 WARN_ON_ONCE(RPC_IS_QUEUED(task));
1172
1173 rpc_release_resources_task(task);
1174
1175 /*
1176 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1177 * so it should be safe to use task->tk_count as a test for whether
1178 * or not any other processes still hold references to our rpc_task.
1179 */
1180 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1181 /* Wake up anyone who may be waiting for task completion */
1182 if (!rpc_complete_task(task))
1183 return;
1184 } else {
1185 if (!atomic_dec_and_test(&task->tk_count))
1186 return;
1187 }
1188 rpc_final_put_task(task, task->tk_workqueue);
1189 }
1190
1191 int rpciod_up(void)
1192 {
1193 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1194 }
1195
1196 void rpciod_down(void)
1197 {
1198 module_put(THIS_MODULE);
1199 }
1200
1201 /*
1202 * Start up the rpciod workqueue.
1203 */
1204 static int rpciod_start(void)
1205 {
1206 struct workqueue_struct *wq;
1207
1208 /*
1209 * Create the rpciod thread and wait for it to start.
1210 */
1211 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1212 if (!wq)
1213 goto out_failed;
1214 rpciod_workqueue = wq;
1215 /* Note: highpri because network receive is latency sensitive */
1216 wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1217 if (!wq)
1218 goto free_rpciod;
1219 xprtiod_workqueue = wq;
1220 return 1;
1221 free_rpciod:
1222 wq = rpciod_workqueue;
1223 rpciod_workqueue = NULL;
1224 destroy_workqueue(wq);
1225 out_failed:
1226 return 0;
1227 }
1228
1229 static void rpciod_stop(void)
1230 {
1231 struct workqueue_struct *wq = NULL;
1232
1233 if (rpciod_workqueue == NULL)
1234 return;
1235
1236 wq = rpciod_workqueue;
1237 rpciod_workqueue = NULL;
1238 destroy_workqueue(wq);
1239 wq = xprtiod_workqueue;
1240 xprtiod_workqueue = NULL;
1241 destroy_workqueue(wq);
1242 }
1243
1244 void
1245 rpc_destroy_mempool(void)
1246 {
1247 rpciod_stop();
1248 mempool_destroy(rpc_buffer_mempool);
1249 mempool_destroy(rpc_task_mempool);
1250 kmem_cache_destroy(rpc_task_slabp);
1251 kmem_cache_destroy(rpc_buffer_slabp);
1252 rpc_destroy_wait_queue(&delay_queue);
1253 }
1254
1255 int
1256 rpc_init_mempool(void)
1257 {
1258 /*
1259 * The following is not strictly a mempool initialisation,
1260 * but there is no harm in doing it here
1261 */
1262 rpc_init_wait_queue(&delay_queue, "delayq");
1263 if (!rpciod_start())
1264 goto err_nomem;
1265
1266 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1267 sizeof(struct rpc_task),
1268 0, SLAB_HWCACHE_ALIGN,
1269 NULL);
1270 if (!rpc_task_slabp)
1271 goto err_nomem;
1272 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1273 RPC_BUFFER_MAXSIZE,
1274 0, SLAB_HWCACHE_ALIGN,
1275 NULL);
1276 if (!rpc_buffer_slabp)
1277 goto err_nomem;
1278 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1279 rpc_task_slabp);
1280 if (!rpc_task_mempool)
1281 goto err_nomem;
1282 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1283 rpc_buffer_slabp);
1284 if (!rpc_buffer_mempool)
1285 goto err_nomem;
1286 return 0;
1287 err_nomem:
1288 rpc_destroy_mempool();
1289 return -ENOMEM;
1290 }