]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/sunrpc/svc.c
Merge tag 'nfs-for-5.15-1' of git://git.linux-nfs.org/projects/anna/linux-nfs
[mirror_ubuntu-jammy-kernel.git] / net / sunrpc / svc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/net/sunrpc/svc.c
4 *
5 * High-level RPC service routines
6 *
7 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
8 *
9 * Multiple threads pools and NUMAisation
10 * Copyright (c) 2006 Silicon Graphics, Inc.
11 * by Greg Banks <gnb@melbourne.sgi.com>
12 */
13
14 #include <linux/linkage.h>
15 #include <linux/sched/signal.h>
16 #include <linux/errno.h>
17 #include <linux/net.h>
18 #include <linux/in.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/kthread.h>
23 #include <linux/slab.h>
24
25 #include <linux/sunrpc/types.h>
26 #include <linux/sunrpc/xdr.h>
27 #include <linux/sunrpc/stats.h>
28 #include <linux/sunrpc/svcsock.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/sunrpc/bc_xprt.h>
31
32 #include <trace/events/sunrpc.h>
33
34 #include "fail.h"
35
36 #define RPCDBG_FACILITY RPCDBG_SVCDSP
37
38 static void svc_unregister(const struct svc_serv *serv, struct net *net);
39
40 #define svc_serv_is_pooled(serv) ((serv)->sv_ops->svo_function)
41
42 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL
43
44 /*
45 * Structure for mapping cpus to pools and vice versa.
46 * Setup once during sunrpc initialisation.
47 */
48 struct svc_pool_map svc_pool_map = {
49 .mode = SVC_POOL_DEFAULT
50 };
51 EXPORT_SYMBOL_GPL(svc_pool_map);
52
53 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
54
55 static int
56 param_set_pool_mode(const char *val, const struct kernel_param *kp)
57 {
58 int *ip = (int *)kp->arg;
59 struct svc_pool_map *m = &svc_pool_map;
60 int err;
61
62 mutex_lock(&svc_pool_map_mutex);
63
64 err = -EBUSY;
65 if (m->count)
66 goto out;
67
68 err = 0;
69 if (!strncmp(val, "auto", 4))
70 *ip = SVC_POOL_AUTO;
71 else if (!strncmp(val, "global", 6))
72 *ip = SVC_POOL_GLOBAL;
73 else if (!strncmp(val, "percpu", 6))
74 *ip = SVC_POOL_PERCPU;
75 else if (!strncmp(val, "pernode", 7))
76 *ip = SVC_POOL_PERNODE;
77 else
78 err = -EINVAL;
79
80 out:
81 mutex_unlock(&svc_pool_map_mutex);
82 return err;
83 }
84
85 static int
86 param_get_pool_mode(char *buf, const struct kernel_param *kp)
87 {
88 int *ip = (int *)kp->arg;
89
90 switch (*ip)
91 {
92 case SVC_POOL_AUTO:
93 return strlcpy(buf, "auto\n", 20);
94 case SVC_POOL_GLOBAL:
95 return strlcpy(buf, "global\n", 20);
96 case SVC_POOL_PERCPU:
97 return strlcpy(buf, "percpu\n", 20);
98 case SVC_POOL_PERNODE:
99 return strlcpy(buf, "pernode\n", 20);
100 default:
101 return sprintf(buf, "%d\n", *ip);
102 }
103 }
104
105 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
106 &svc_pool_map.mode, 0644);
107
108 /*
109 * Detect best pool mapping mode heuristically,
110 * according to the machine's topology.
111 */
112 static int
113 svc_pool_map_choose_mode(void)
114 {
115 unsigned int node;
116
117 if (nr_online_nodes > 1) {
118 /*
119 * Actually have multiple NUMA nodes,
120 * so split pools on NUMA node boundaries
121 */
122 return SVC_POOL_PERNODE;
123 }
124
125 node = first_online_node;
126 if (nr_cpus_node(node) > 2) {
127 /*
128 * Non-trivial SMP, or CONFIG_NUMA on
129 * non-NUMA hardware, e.g. with a generic
130 * x86_64 kernel on Xeons. In this case we
131 * want to divide the pools on cpu boundaries.
132 */
133 return SVC_POOL_PERCPU;
134 }
135
136 /* default: one global pool */
137 return SVC_POOL_GLOBAL;
138 }
139
140 /*
141 * Allocate the to_pool[] and pool_to[] arrays.
142 * Returns 0 on success or an errno.
143 */
144 static int
145 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
146 {
147 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
148 if (!m->to_pool)
149 goto fail;
150 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
151 if (!m->pool_to)
152 goto fail_free;
153
154 return 0;
155
156 fail_free:
157 kfree(m->to_pool);
158 m->to_pool = NULL;
159 fail:
160 return -ENOMEM;
161 }
162
163 /*
164 * Initialise the pool map for SVC_POOL_PERCPU mode.
165 * Returns number of pools or <0 on error.
166 */
167 static int
168 svc_pool_map_init_percpu(struct svc_pool_map *m)
169 {
170 unsigned int maxpools = nr_cpu_ids;
171 unsigned int pidx = 0;
172 unsigned int cpu;
173 int err;
174
175 err = svc_pool_map_alloc_arrays(m, maxpools);
176 if (err)
177 return err;
178
179 for_each_online_cpu(cpu) {
180 BUG_ON(pidx >= maxpools);
181 m->to_pool[cpu] = pidx;
182 m->pool_to[pidx] = cpu;
183 pidx++;
184 }
185 /* cpus brought online later all get mapped to pool0, sorry */
186
187 return pidx;
188 };
189
190
191 /*
192 * Initialise the pool map for SVC_POOL_PERNODE mode.
193 * Returns number of pools or <0 on error.
194 */
195 static int
196 svc_pool_map_init_pernode(struct svc_pool_map *m)
197 {
198 unsigned int maxpools = nr_node_ids;
199 unsigned int pidx = 0;
200 unsigned int node;
201 int err;
202
203 err = svc_pool_map_alloc_arrays(m, maxpools);
204 if (err)
205 return err;
206
207 for_each_node_with_cpus(node) {
208 /* some architectures (e.g. SN2) have cpuless nodes */
209 BUG_ON(pidx > maxpools);
210 m->to_pool[node] = pidx;
211 m->pool_to[pidx] = node;
212 pidx++;
213 }
214 /* nodes brought online later all get mapped to pool0, sorry */
215
216 return pidx;
217 }
218
219
220 /*
221 * Add a reference to the global map of cpus to pools (and
222 * vice versa). Initialise the map if we're the first user.
223 * Returns the number of pools.
224 */
225 unsigned int
226 svc_pool_map_get(void)
227 {
228 struct svc_pool_map *m = &svc_pool_map;
229 int npools = -1;
230
231 mutex_lock(&svc_pool_map_mutex);
232
233 if (m->count++) {
234 mutex_unlock(&svc_pool_map_mutex);
235 return m->npools;
236 }
237
238 if (m->mode == SVC_POOL_AUTO)
239 m->mode = svc_pool_map_choose_mode();
240
241 switch (m->mode) {
242 case SVC_POOL_PERCPU:
243 npools = svc_pool_map_init_percpu(m);
244 break;
245 case SVC_POOL_PERNODE:
246 npools = svc_pool_map_init_pernode(m);
247 break;
248 }
249
250 if (npools < 0) {
251 /* default, or memory allocation failure */
252 npools = 1;
253 m->mode = SVC_POOL_GLOBAL;
254 }
255 m->npools = npools;
256
257 mutex_unlock(&svc_pool_map_mutex);
258 return m->npools;
259 }
260 EXPORT_SYMBOL_GPL(svc_pool_map_get);
261
262 /*
263 * Drop a reference to the global map of cpus to pools.
264 * When the last reference is dropped, the map data is
265 * freed; this allows the sysadmin to change the pool
266 * mode using the pool_mode module option without
267 * rebooting or re-loading sunrpc.ko.
268 */
269 void
270 svc_pool_map_put(void)
271 {
272 struct svc_pool_map *m = &svc_pool_map;
273
274 mutex_lock(&svc_pool_map_mutex);
275
276 if (!--m->count) {
277 kfree(m->to_pool);
278 m->to_pool = NULL;
279 kfree(m->pool_to);
280 m->pool_to = NULL;
281 m->npools = 0;
282 }
283
284 mutex_unlock(&svc_pool_map_mutex);
285 }
286 EXPORT_SYMBOL_GPL(svc_pool_map_put);
287
288 static int svc_pool_map_get_node(unsigned int pidx)
289 {
290 const struct svc_pool_map *m = &svc_pool_map;
291
292 if (m->count) {
293 if (m->mode == SVC_POOL_PERCPU)
294 return cpu_to_node(m->pool_to[pidx]);
295 if (m->mode == SVC_POOL_PERNODE)
296 return m->pool_to[pidx];
297 }
298 return NUMA_NO_NODE;
299 }
300 /*
301 * Set the given thread's cpus_allowed mask so that it
302 * will only run on cpus in the given pool.
303 */
304 static inline void
305 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
306 {
307 struct svc_pool_map *m = &svc_pool_map;
308 unsigned int node = m->pool_to[pidx];
309
310 /*
311 * The caller checks for sv_nrpools > 1, which
312 * implies that we've been initialized.
313 */
314 WARN_ON_ONCE(m->count == 0);
315 if (m->count == 0)
316 return;
317
318 switch (m->mode) {
319 case SVC_POOL_PERCPU:
320 {
321 set_cpus_allowed_ptr(task, cpumask_of(node));
322 break;
323 }
324 case SVC_POOL_PERNODE:
325 {
326 set_cpus_allowed_ptr(task, cpumask_of_node(node));
327 break;
328 }
329 }
330 }
331
332 /*
333 * Use the mapping mode to choose a pool for a given CPU.
334 * Used when enqueueing an incoming RPC. Always returns
335 * a non-NULL pool pointer.
336 */
337 struct svc_pool *
338 svc_pool_for_cpu(struct svc_serv *serv, int cpu)
339 {
340 struct svc_pool_map *m = &svc_pool_map;
341 unsigned int pidx = 0;
342
343 /*
344 * An uninitialised map happens in a pure client when
345 * lockd is brought up, so silently treat it the
346 * same as SVC_POOL_GLOBAL.
347 */
348 if (svc_serv_is_pooled(serv)) {
349 switch (m->mode) {
350 case SVC_POOL_PERCPU:
351 pidx = m->to_pool[cpu];
352 break;
353 case SVC_POOL_PERNODE:
354 pidx = m->to_pool[cpu_to_node(cpu)];
355 break;
356 }
357 }
358 return &serv->sv_pools[pidx % serv->sv_nrpools];
359 }
360
361 int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
362 {
363 int err;
364
365 err = rpcb_create_local(net);
366 if (err)
367 return err;
368
369 /* Remove any stale portmap registrations */
370 svc_unregister(serv, net);
371 return 0;
372 }
373 EXPORT_SYMBOL_GPL(svc_rpcb_setup);
374
375 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
376 {
377 svc_unregister(serv, net);
378 rpcb_put_local(net);
379 }
380 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
381
382 static int svc_uses_rpcbind(struct svc_serv *serv)
383 {
384 struct svc_program *progp;
385 unsigned int i;
386
387 for (progp = serv->sv_program; progp; progp = progp->pg_next) {
388 for (i = 0; i < progp->pg_nvers; i++) {
389 if (progp->pg_vers[i] == NULL)
390 continue;
391 if (!progp->pg_vers[i]->vs_hidden)
392 return 1;
393 }
394 }
395
396 return 0;
397 }
398
399 int svc_bind(struct svc_serv *serv, struct net *net)
400 {
401 if (!svc_uses_rpcbind(serv))
402 return 0;
403 return svc_rpcb_setup(serv, net);
404 }
405 EXPORT_SYMBOL_GPL(svc_bind);
406
407 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
408 static void
409 __svc_init_bc(struct svc_serv *serv)
410 {
411 INIT_LIST_HEAD(&serv->sv_cb_list);
412 spin_lock_init(&serv->sv_cb_lock);
413 init_waitqueue_head(&serv->sv_cb_waitq);
414 }
415 #else
416 static void
417 __svc_init_bc(struct svc_serv *serv)
418 {
419 }
420 #endif
421
422 /*
423 * Create an RPC service
424 */
425 static struct svc_serv *
426 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools,
427 const struct svc_serv_ops *ops)
428 {
429 struct svc_serv *serv;
430 unsigned int vers;
431 unsigned int xdrsize;
432 unsigned int i;
433
434 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
435 return NULL;
436 serv->sv_name = prog->pg_name;
437 serv->sv_program = prog;
438 serv->sv_nrthreads = 1;
439 serv->sv_stats = prog->pg_stats;
440 if (bufsize > RPCSVC_MAXPAYLOAD)
441 bufsize = RPCSVC_MAXPAYLOAD;
442 serv->sv_max_payload = bufsize? bufsize : 4096;
443 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
444 serv->sv_ops = ops;
445 xdrsize = 0;
446 while (prog) {
447 prog->pg_lovers = prog->pg_nvers-1;
448 for (vers=0; vers<prog->pg_nvers ; vers++)
449 if (prog->pg_vers[vers]) {
450 prog->pg_hivers = vers;
451 if (prog->pg_lovers > vers)
452 prog->pg_lovers = vers;
453 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
454 xdrsize = prog->pg_vers[vers]->vs_xdrsize;
455 }
456 prog = prog->pg_next;
457 }
458 serv->sv_xdrsize = xdrsize;
459 INIT_LIST_HEAD(&serv->sv_tempsocks);
460 INIT_LIST_HEAD(&serv->sv_permsocks);
461 timer_setup(&serv->sv_temptimer, NULL, 0);
462 spin_lock_init(&serv->sv_lock);
463
464 __svc_init_bc(serv);
465
466 serv->sv_nrpools = npools;
467 serv->sv_pools =
468 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
469 GFP_KERNEL);
470 if (!serv->sv_pools) {
471 kfree(serv);
472 return NULL;
473 }
474
475 for (i = 0; i < serv->sv_nrpools; i++) {
476 struct svc_pool *pool = &serv->sv_pools[i];
477
478 dprintk("svc: initialising pool %u for %s\n",
479 i, serv->sv_name);
480
481 pool->sp_id = i;
482 INIT_LIST_HEAD(&pool->sp_sockets);
483 INIT_LIST_HEAD(&pool->sp_all_threads);
484 spin_lock_init(&pool->sp_lock);
485 }
486
487 return serv;
488 }
489
490 struct svc_serv *
491 svc_create(struct svc_program *prog, unsigned int bufsize,
492 const struct svc_serv_ops *ops)
493 {
494 return __svc_create(prog, bufsize, /*npools*/1, ops);
495 }
496 EXPORT_SYMBOL_GPL(svc_create);
497
498 struct svc_serv *
499 svc_create_pooled(struct svc_program *prog, unsigned int bufsize,
500 const struct svc_serv_ops *ops)
501 {
502 struct svc_serv *serv;
503 unsigned int npools = svc_pool_map_get();
504
505 serv = __svc_create(prog, bufsize, npools, ops);
506 if (!serv)
507 goto out_err;
508 return serv;
509 out_err:
510 svc_pool_map_put();
511 return NULL;
512 }
513 EXPORT_SYMBOL_GPL(svc_create_pooled);
514
515 void svc_shutdown_net(struct svc_serv *serv, struct net *net)
516 {
517 svc_close_net(serv, net);
518
519 if (serv->sv_ops->svo_shutdown)
520 serv->sv_ops->svo_shutdown(serv, net);
521 }
522 EXPORT_SYMBOL_GPL(svc_shutdown_net);
523
524 /*
525 * Destroy an RPC service. Should be called with appropriate locking to
526 * protect the sv_nrthreads, sv_permsocks and sv_tempsocks.
527 */
528 void
529 svc_destroy(struct svc_serv *serv)
530 {
531 dprintk("svc: svc_destroy(%s, %d)\n",
532 serv->sv_program->pg_name,
533 serv->sv_nrthreads);
534
535 if (serv->sv_nrthreads) {
536 if (--(serv->sv_nrthreads) != 0) {
537 svc_sock_update_bufs(serv);
538 return;
539 }
540 } else
541 printk("svc_destroy: no threads for serv=%p!\n", serv);
542
543 del_timer_sync(&serv->sv_temptimer);
544
545 /*
546 * The last user is gone and thus all sockets have to be destroyed to
547 * the point. Check this.
548 */
549 BUG_ON(!list_empty(&serv->sv_permsocks));
550 BUG_ON(!list_empty(&serv->sv_tempsocks));
551
552 cache_clean_deferred(serv);
553
554 if (svc_serv_is_pooled(serv))
555 svc_pool_map_put();
556
557 kfree(serv->sv_pools);
558 kfree(serv);
559 }
560 EXPORT_SYMBOL_GPL(svc_destroy);
561
562 /*
563 * Allocate an RPC server's buffer space.
564 * We allocate pages and place them in rq_pages.
565 */
566 static int
567 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
568 {
569 unsigned int pages, arghi;
570
571 /* bc_xprt uses fore channel allocated buffers */
572 if (svc_is_backchannel(rqstp))
573 return 1;
574
575 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
576 * We assume one is at most one page
577 */
578 arghi = 0;
579 WARN_ON_ONCE(pages > RPCSVC_MAXPAGES);
580 if (pages > RPCSVC_MAXPAGES)
581 pages = RPCSVC_MAXPAGES;
582 while (pages) {
583 struct page *p = alloc_pages_node(node, GFP_KERNEL, 0);
584 if (!p)
585 break;
586 rqstp->rq_pages[arghi++] = p;
587 pages--;
588 }
589 return pages == 0;
590 }
591
592 /*
593 * Release an RPC server buffer
594 */
595 static void
596 svc_release_buffer(struct svc_rqst *rqstp)
597 {
598 unsigned int i;
599
600 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
601 if (rqstp->rq_pages[i])
602 put_page(rqstp->rq_pages[i]);
603 }
604
605 struct svc_rqst *
606 svc_rqst_alloc(struct svc_serv *serv, struct svc_pool *pool, int node)
607 {
608 struct svc_rqst *rqstp;
609
610 rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
611 if (!rqstp)
612 return rqstp;
613
614 __set_bit(RQ_BUSY, &rqstp->rq_flags);
615 spin_lock_init(&rqstp->rq_lock);
616 rqstp->rq_server = serv;
617 rqstp->rq_pool = pool;
618
619 rqstp->rq_scratch_page = alloc_pages_node(node, GFP_KERNEL, 0);
620 if (!rqstp->rq_scratch_page)
621 goto out_enomem;
622
623 rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
624 if (!rqstp->rq_argp)
625 goto out_enomem;
626
627 rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
628 if (!rqstp->rq_resp)
629 goto out_enomem;
630
631 if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
632 goto out_enomem;
633
634 return rqstp;
635 out_enomem:
636 svc_rqst_free(rqstp);
637 return NULL;
638 }
639 EXPORT_SYMBOL_GPL(svc_rqst_alloc);
640
641 struct svc_rqst *
642 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
643 {
644 struct svc_rqst *rqstp;
645
646 rqstp = svc_rqst_alloc(serv, pool, node);
647 if (!rqstp)
648 return ERR_PTR(-ENOMEM);
649
650 serv->sv_nrthreads++;
651 spin_lock_bh(&pool->sp_lock);
652 pool->sp_nrthreads++;
653 list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads);
654 spin_unlock_bh(&pool->sp_lock);
655 return rqstp;
656 }
657 EXPORT_SYMBOL_GPL(svc_prepare_thread);
658
659 /*
660 * Choose a pool in which to create a new thread, for svc_set_num_threads
661 */
662 static inline struct svc_pool *
663 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
664 {
665 if (pool != NULL)
666 return pool;
667
668 return &serv->sv_pools[(*state)++ % serv->sv_nrpools];
669 }
670
671 /*
672 * Choose a thread to kill, for svc_set_num_threads
673 */
674 static inline struct task_struct *
675 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
676 {
677 unsigned int i;
678 struct task_struct *task = NULL;
679
680 if (pool != NULL) {
681 spin_lock_bh(&pool->sp_lock);
682 } else {
683 /* choose a pool in round-robin fashion */
684 for (i = 0; i < serv->sv_nrpools; i++) {
685 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
686 spin_lock_bh(&pool->sp_lock);
687 if (!list_empty(&pool->sp_all_threads))
688 goto found_pool;
689 spin_unlock_bh(&pool->sp_lock);
690 }
691 return NULL;
692 }
693
694 found_pool:
695 if (!list_empty(&pool->sp_all_threads)) {
696 struct svc_rqst *rqstp;
697
698 /*
699 * Remove from the pool->sp_all_threads list
700 * so we don't try to kill it again.
701 */
702 rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all);
703 set_bit(RQ_VICTIM, &rqstp->rq_flags);
704 list_del_rcu(&rqstp->rq_all);
705 task = rqstp->rq_task;
706 }
707 spin_unlock_bh(&pool->sp_lock);
708
709 return task;
710 }
711
712 /* create new threads */
713 static int
714 svc_start_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
715 {
716 struct svc_rqst *rqstp;
717 struct task_struct *task;
718 struct svc_pool *chosen_pool;
719 unsigned int state = serv->sv_nrthreads-1;
720 int node;
721
722 do {
723 nrservs--;
724 chosen_pool = choose_pool(serv, pool, &state);
725
726 node = svc_pool_map_get_node(chosen_pool->sp_id);
727 rqstp = svc_prepare_thread(serv, chosen_pool, node);
728 if (IS_ERR(rqstp))
729 return PTR_ERR(rqstp);
730
731 __module_get(serv->sv_ops->svo_module);
732 task = kthread_create_on_node(serv->sv_ops->svo_function, rqstp,
733 node, "%s", serv->sv_name);
734 if (IS_ERR(task)) {
735 module_put(serv->sv_ops->svo_module);
736 svc_exit_thread(rqstp);
737 return PTR_ERR(task);
738 }
739
740 rqstp->rq_task = task;
741 if (serv->sv_nrpools > 1)
742 svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
743
744 svc_sock_update_bufs(serv);
745 wake_up_process(task);
746 } while (nrservs > 0);
747
748 return 0;
749 }
750
751
752 /* destroy old threads */
753 static int
754 svc_signal_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
755 {
756 struct task_struct *task;
757 unsigned int state = serv->sv_nrthreads-1;
758
759 /* destroy old threads */
760 do {
761 task = choose_victim(serv, pool, &state);
762 if (task == NULL)
763 break;
764 send_sig(SIGINT, task, 1);
765 nrservs++;
766 } while (nrservs < 0);
767
768 return 0;
769 }
770
771 /*
772 * Create or destroy enough new threads to make the number
773 * of threads the given number. If `pool' is non-NULL, applies
774 * only to threads in that pool, otherwise round-robins between
775 * all pools. Caller must ensure that mutual exclusion between this and
776 * server startup or shutdown.
777 *
778 * Destroying threads relies on the service threads filling in
779 * rqstp->rq_task, which only the nfs ones do. Assumes the serv
780 * has been created using svc_create_pooled().
781 *
782 * Based on code that used to be in nfsd_svc() but tweaked
783 * to be pool-aware.
784 */
785 int
786 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
787 {
788 if (pool == NULL) {
789 /* The -1 assumes caller has done a svc_get() */
790 nrservs -= (serv->sv_nrthreads-1);
791 } else {
792 spin_lock_bh(&pool->sp_lock);
793 nrservs -= pool->sp_nrthreads;
794 spin_unlock_bh(&pool->sp_lock);
795 }
796
797 if (nrservs > 0)
798 return svc_start_kthreads(serv, pool, nrservs);
799 if (nrservs < 0)
800 return svc_signal_kthreads(serv, pool, nrservs);
801 return 0;
802 }
803 EXPORT_SYMBOL_GPL(svc_set_num_threads);
804
805 /* destroy old threads */
806 static int
807 svc_stop_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
808 {
809 struct task_struct *task;
810 unsigned int state = serv->sv_nrthreads-1;
811
812 /* destroy old threads */
813 do {
814 task = choose_victim(serv, pool, &state);
815 if (task == NULL)
816 break;
817 kthread_stop(task);
818 nrservs++;
819 } while (nrservs < 0);
820 return 0;
821 }
822
823 int
824 svc_set_num_threads_sync(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
825 {
826 if (pool == NULL) {
827 /* The -1 assumes caller has done a svc_get() */
828 nrservs -= (serv->sv_nrthreads-1);
829 } else {
830 spin_lock_bh(&pool->sp_lock);
831 nrservs -= pool->sp_nrthreads;
832 spin_unlock_bh(&pool->sp_lock);
833 }
834
835 if (nrservs > 0)
836 return svc_start_kthreads(serv, pool, nrservs);
837 if (nrservs < 0)
838 return svc_stop_kthreads(serv, pool, nrservs);
839 return 0;
840 }
841 EXPORT_SYMBOL_GPL(svc_set_num_threads_sync);
842
843 /**
844 * svc_rqst_replace_page - Replace one page in rq_pages[]
845 * @rqstp: svc_rqst with pages to replace
846 * @page: replacement page
847 *
848 * When replacing a page in rq_pages, batch the release of the
849 * replaced pages to avoid hammering the page allocator.
850 */
851 void svc_rqst_replace_page(struct svc_rqst *rqstp, struct page *page)
852 {
853 if (*rqstp->rq_next_page) {
854 if (!pagevec_space(&rqstp->rq_pvec))
855 __pagevec_release(&rqstp->rq_pvec);
856 pagevec_add(&rqstp->rq_pvec, *rqstp->rq_next_page);
857 }
858
859 get_page(page);
860 *(rqstp->rq_next_page++) = page;
861 }
862 EXPORT_SYMBOL_GPL(svc_rqst_replace_page);
863
864 /*
865 * Called from a server thread as it's exiting. Caller must hold the "service
866 * mutex" for the service.
867 */
868 void
869 svc_rqst_free(struct svc_rqst *rqstp)
870 {
871 svc_release_buffer(rqstp);
872 if (rqstp->rq_scratch_page)
873 put_page(rqstp->rq_scratch_page);
874 kfree(rqstp->rq_resp);
875 kfree(rqstp->rq_argp);
876 kfree(rqstp->rq_auth_data);
877 kfree_rcu(rqstp, rq_rcu_head);
878 }
879 EXPORT_SYMBOL_GPL(svc_rqst_free);
880
881 void
882 svc_exit_thread(struct svc_rqst *rqstp)
883 {
884 struct svc_serv *serv = rqstp->rq_server;
885 struct svc_pool *pool = rqstp->rq_pool;
886
887 spin_lock_bh(&pool->sp_lock);
888 pool->sp_nrthreads--;
889 if (!test_and_set_bit(RQ_VICTIM, &rqstp->rq_flags))
890 list_del_rcu(&rqstp->rq_all);
891 spin_unlock_bh(&pool->sp_lock);
892
893 svc_rqst_free(rqstp);
894
895 /* Release the server */
896 if (serv)
897 svc_destroy(serv);
898 }
899 EXPORT_SYMBOL_GPL(svc_exit_thread);
900
901 /*
902 * Register an "inet" protocol family netid with the local
903 * rpcbind daemon via an rpcbind v4 SET request.
904 *
905 * No netconfig infrastructure is available in the kernel, so
906 * we map IP_ protocol numbers to netids by hand.
907 *
908 * Returns zero on success; a negative errno value is returned
909 * if any error occurs.
910 */
911 static int __svc_rpcb_register4(struct net *net, const u32 program,
912 const u32 version,
913 const unsigned short protocol,
914 const unsigned short port)
915 {
916 const struct sockaddr_in sin = {
917 .sin_family = AF_INET,
918 .sin_addr.s_addr = htonl(INADDR_ANY),
919 .sin_port = htons(port),
920 };
921 const char *netid;
922 int error;
923
924 switch (protocol) {
925 case IPPROTO_UDP:
926 netid = RPCBIND_NETID_UDP;
927 break;
928 case IPPROTO_TCP:
929 netid = RPCBIND_NETID_TCP;
930 break;
931 default:
932 return -ENOPROTOOPT;
933 }
934
935 error = rpcb_v4_register(net, program, version,
936 (const struct sockaddr *)&sin, netid);
937
938 /*
939 * User space didn't support rpcbind v4, so retry this
940 * registration request with the legacy rpcbind v2 protocol.
941 */
942 if (error == -EPROTONOSUPPORT)
943 error = rpcb_register(net, program, version, protocol, port);
944
945 return error;
946 }
947
948 #if IS_ENABLED(CONFIG_IPV6)
949 /*
950 * Register an "inet6" protocol family netid with the local
951 * rpcbind daemon via an rpcbind v4 SET request.
952 *
953 * No netconfig infrastructure is available in the kernel, so
954 * we map IP_ protocol numbers to netids by hand.
955 *
956 * Returns zero on success; a negative errno value is returned
957 * if any error occurs.
958 */
959 static int __svc_rpcb_register6(struct net *net, const u32 program,
960 const u32 version,
961 const unsigned short protocol,
962 const unsigned short port)
963 {
964 const struct sockaddr_in6 sin6 = {
965 .sin6_family = AF_INET6,
966 .sin6_addr = IN6ADDR_ANY_INIT,
967 .sin6_port = htons(port),
968 };
969 const char *netid;
970 int error;
971
972 switch (protocol) {
973 case IPPROTO_UDP:
974 netid = RPCBIND_NETID_UDP6;
975 break;
976 case IPPROTO_TCP:
977 netid = RPCBIND_NETID_TCP6;
978 break;
979 default:
980 return -ENOPROTOOPT;
981 }
982
983 error = rpcb_v4_register(net, program, version,
984 (const struct sockaddr *)&sin6, netid);
985
986 /*
987 * User space didn't support rpcbind version 4, so we won't
988 * use a PF_INET6 listener.
989 */
990 if (error == -EPROTONOSUPPORT)
991 error = -EAFNOSUPPORT;
992
993 return error;
994 }
995 #endif /* IS_ENABLED(CONFIG_IPV6) */
996
997 /*
998 * Register a kernel RPC service via rpcbind version 4.
999 *
1000 * Returns zero on success; a negative errno value is returned
1001 * if any error occurs.
1002 */
1003 static int __svc_register(struct net *net, const char *progname,
1004 const u32 program, const u32 version,
1005 const int family,
1006 const unsigned short protocol,
1007 const unsigned short port)
1008 {
1009 int error = -EAFNOSUPPORT;
1010
1011 switch (family) {
1012 case PF_INET:
1013 error = __svc_rpcb_register4(net, program, version,
1014 protocol, port);
1015 break;
1016 #if IS_ENABLED(CONFIG_IPV6)
1017 case PF_INET6:
1018 error = __svc_rpcb_register6(net, program, version,
1019 protocol, port);
1020 #endif
1021 }
1022
1023 trace_svc_register(progname, version, protocol, port, family, error);
1024 return error;
1025 }
1026
1027 int svc_rpcbind_set_version(struct net *net,
1028 const struct svc_program *progp,
1029 u32 version, int family,
1030 unsigned short proto,
1031 unsigned short port)
1032 {
1033 return __svc_register(net, progp->pg_name, progp->pg_prog,
1034 version, family, proto, port);
1035
1036 }
1037 EXPORT_SYMBOL_GPL(svc_rpcbind_set_version);
1038
1039 int svc_generic_rpcbind_set(struct net *net,
1040 const struct svc_program *progp,
1041 u32 version, int family,
1042 unsigned short proto,
1043 unsigned short port)
1044 {
1045 const struct svc_version *vers = progp->pg_vers[version];
1046 int error;
1047
1048 if (vers == NULL)
1049 return 0;
1050
1051 if (vers->vs_hidden) {
1052 trace_svc_noregister(progp->pg_name, version, proto,
1053 port, family, 0);
1054 return 0;
1055 }
1056
1057 /*
1058 * Don't register a UDP port if we need congestion
1059 * control.
1060 */
1061 if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP)
1062 return 0;
1063
1064 error = svc_rpcbind_set_version(net, progp, version,
1065 family, proto, port);
1066
1067 return (vers->vs_rpcb_optnl) ? 0 : error;
1068 }
1069 EXPORT_SYMBOL_GPL(svc_generic_rpcbind_set);
1070
1071 /**
1072 * svc_register - register an RPC service with the local portmapper
1073 * @serv: svc_serv struct for the service to register
1074 * @net: net namespace for the service to register
1075 * @family: protocol family of service's listener socket
1076 * @proto: transport protocol number to advertise
1077 * @port: port to advertise
1078 *
1079 * Service is registered for any address in the passed-in protocol family
1080 */
1081 int svc_register(const struct svc_serv *serv, struct net *net,
1082 const int family, const unsigned short proto,
1083 const unsigned short port)
1084 {
1085 struct svc_program *progp;
1086 unsigned int i;
1087 int error = 0;
1088
1089 WARN_ON_ONCE(proto == 0 && port == 0);
1090 if (proto == 0 && port == 0)
1091 return -EINVAL;
1092
1093 for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1094 for (i = 0; i < progp->pg_nvers; i++) {
1095
1096 error = progp->pg_rpcbind_set(net, progp, i,
1097 family, proto, port);
1098 if (error < 0) {
1099 printk(KERN_WARNING "svc: failed to register "
1100 "%sv%u RPC service (errno %d).\n",
1101 progp->pg_name, i, -error);
1102 break;
1103 }
1104 }
1105 }
1106
1107 return error;
1108 }
1109
1110 /*
1111 * If user space is running rpcbind, it should take the v4 UNSET
1112 * and clear everything for this [program, version]. If user space
1113 * is running portmap, it will reject the v4 UNSET, but won't have
1114 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient
1115 * in this case to clear all existing entries for [program, version].
1116 */
1117 static void __svc_unregister(struct net *net, const u32 program, const u32 version,
1118 const char *progname)
1119 {
1120 int error;
1121
1122 error = rpcb_v4_register(net, program, version, NULL, "");
1123
1124 /*
1125 * User space didn't support rpcbind v4, so retry this
1126 * request with the legacy rpcbind v2 protocol.
1127 */
1128 if (error == -EPROTONOSUPPORT)
1129 error = rpcb_register(net, program, version, 0, 0);
1130
1131 trace_svc_unregister(progname, version, error);
1132 }
1133
1134 /*
1135 * All netids, bind addresses and ports registered for [program, version]
1136 * are removed from the local rpcbind database (if the service is not
1137 * hidden) to make way for a new instance of the service.
1138 *
1139 * The result of unregistration is reported via dprintk for those who want
1140 * verification of the result, but is otherwise not important.
1141 */
1142 static void svc_unregister(const struct svc_serv *serv, struct net *net)
1143 {
1144 struct svc_program *progp;
1145 unsigned long flags;
1146 unsigned int i;
1147
1148 clear_thread_flag(TIF_SIGPENDING);
1149
1150 for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1151 for (i = 0; i < progp->pg_nvers; i++) {
1152 if (progp->pg_vers[i] == NULL)
1153 continue;
1154 if (progp->pg_vers[i]->vs_hidden)
1155 continue;
1156 __svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1157 }
1158 }
1159
1160 spin_lock_irqsave(&current->sighand->siglock, flags);
1161 recalc_sigpending();
1162 spin_unlock_irqrestore(&current->sighand->siglock, flags);
1163 }
1164
1165 /*
1166 * dprintk the given error with the address of the client that caused it.
1167 */
1168 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
1169 static __printf(2, 3)
1170 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1171 {
1172 struct va_format vaf;
1173 va_list args;
1174 char buf[RPC_MAX_ADDRBUFLEN];
1175
1176 va_start(args, fmt);
1177
1178 vaf.fmt = fmt;
1179 vaf.va = &args;
1180
1181 dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf);
1182
1183 va_end(args);
1184 }
1185 #else
1186 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {}
1187 #endif
1188
1189 static int
1190 svc_generic_dispatch(struct svc_rqst *rqstp, __be32 *statp)
1191 {
1192 struct kvec *argv = &rqstp->rq_arg.head[0];
1193 struct kvec *resv = &rqstp->rq_res.head[0];
1194 const struct svc_procedure *procp = rqstp->rq_procinfo;
1195
1196 /*
1197 * Decode arguments
1198 * XXX: why do we ignore the return value?
1199 */
1200 if (procp->pc_decode &&
1201 !procp->pc_decode(rqstp, argv->iov_base)) {
1202 *statp = rpc_garbage_args;
1203 return 1;
1204 }
1205
1206 *statp = procp->pc_func(rqstp);
1207
1208 if (*statp == rpc_drop_reply ||
1209 test_bit(RQ_DROPME, &rqstp->rq_flags))
1210 return 0;
1211
1212 if (rqstp->rq_auth_stat != rpc_auth_ok)
1213 return 1;
1214
1215 if (*statp != rpc_success)
1216 return 1;
1217
1218 /* Encode reply */
1219 if (procp->pc_encode &&
1220 !procp->pc_encode(rqstp, resv->iov_base + resv->iov_len)) {
1221 dprintk("svc: failed to encode reply\n");
1222 /* serv->sv_stats->rpcsystemerr++; */
1223 *statp = rpc_system_err;
1224 }
1225 return 1;
1226 }
1227
1228 __be32
1229 svc_generic_init_request(struct svc_rqst *rqstp,
1230 const struct svc_program *progp,
1231 struct svc_process_info *ret)
1232 {
1233 const struct svc_version *versp = NULL; /* compiler food */
1234 const struct svc_procedure *procp = NULL;
1235
1236 if (rqstp->rq_vers >= progp->pg_nvers )
1237 goto err_bad_vers;
1238 versp = progp->pg_vers[rqstp->rq_vers];
1239 if (!versp)
1240 goto err_bad_vers;
1241
1242 /*
1243 * Some protocol versions (namely NFSv4) require some form of
1244 * congestion control. (See RFC 7530 section 3.1 paragraph 2)
1245 * In other words, UDP is not allowed. We mark those when setting
1246 * up the svc_xprt, and verify that here.
1247 *
1248 * The spec is not very clear about what error should be returned
1249 * when someone tries to access a server that is listening on UDP
1250 * for lower versions. RPC_PROG_MISMATCH seems to be the closest
1251 * fit.
1252 */
1253 if (versp->vs_need_cong_ctrl && rqstp->rq_xprt &&
1254 !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags))
1255 goto err_bad_vers;
1256
1257 if (rqstp->rq_proc >= versp->vs_nproc)
1258 goto err_bad_proc;
1259 rqstp->rq_procinfo = procp = &versp->vs_proc[rqstp->rq_proc];
1260 if (!procp)
1261 goto err_bad_proc;
1262
1263 /* Initialize storage for argp and resp */
1264 memset(rqstp->rq_argp, 0, procp->pc_argsize);
1265 memset(rqstp->rq_resp, 0, procp->pc_ressize);
1266
1267 /* Bump per-procedure stats counter */
1268 versp->vs_count[rqstp->rq_proc]++;
1269
1270 ret->dispatch = versp->vs_dispatch;
1271 return rpc_success;
1272 err_bad_vers:
1273 ret->mismatch.lovers = progp->pg_lovers;
1274 ret->mismatch.hivers = progp->pg_hivers;
1275 return rpc_prog_mismatch;
1276 err_bad_proc:
1277 return rpc_proc_unavail;
1278 }
1279 EXPORT_SYMBOL_GPL(svc_generic_init_request);
1280
1281 /*
1282 * Common routine for processing the RPC request.
1283 */
1284 static int
1285 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv)
1286 {
1287 struct svc_program *progp;
1288 const struct svc_procedure *procp = NULL;
1289 struct svc_serv *serv = rqstp->rq_server;
1290 struct svc_process_info process;
1291 __be32 *statp;
1292 u32 prog, vers;
1293 __be32 rpc_stat;
1294 int auth_res;
1295 __be32 *reply_statp;
1296
1297 rpc_stat = rpc_success;
1298
1299 if (argv->iov_len < 6*4)
1300 goto err_short_len;
1301
1302 /* Will be turned off by GSS integrity and privacy services */
1303 set_bit(RQ_SPLICE_OK, &rqstp->rq_flags);
1304 /* Will be turned off only when NFSv4 Sessions are used */
1305 set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags);
1306 clear_bit(RQ_DROPME, &rqstp->rq_flags);
1307
1308 svc_putu32(resv, rqstp->rq_xid);
1309
1310 vers = svc_getnl(argv);
1311
1312 /* First words of reply: */
1313 svc_putnl(resv, 1); /* REPLY */
1314
1315 if (vers != 2) /* RPC version number */
1316 goto err_bad_rpc;
1317
1318 /* Save position in case we later decide to reject: */
1319 reply_statp = resv->iov_base + resv->iov_len;
1320
1321 svc_putnl(resv, 0); /* ACCEPT */
1322
1323 rqstp->rq_prog = prog = svc_getnl(argv); /* program number */
1324 rqstp->rq_vers = svc_getnl(argv); /* version number */
1325 rqstp->rq_proc = svc_getnl(argv); /* procedure number */
1326
1327 for (progp = serv->sv_program; progp; progp = progp->pg_next)
1328 if (prog == progp->pg_prog)
1329 break;
1330
1331 /*
1332 * Decode auth data, and add verifier to reply buffer.
1333 * We do this before anything else in order to get a decent
1334 * auth verifier.
1335 */
1336 auth_res = svc_authenticate(rqstp);
1337 /* Also give the program a chance to reject this call: */
1338 if (auth_res == SVC_OK && progp)
1339 auth_res = progp->pg_authenticate(rqstp);
1340 if (auth_res != SVC_OK)
1341 trace_svc_authenticate(rqstp, auth_res);
1342 switch (auth_res) {
1343 case SVC_OK:
1344 break;
1345 case SVC_GARBAGE:
1346 goto err_garbage;
1347 case SVC_SYSERR:
1348 rpc_stat = rpc_system_err;
1349 goto err_bad;
1350 case SVC_DENIED:
1351 goto err_bad_auth;
1352 case SVC_CLOSE:
1353 goto close;
1354 case SVC_DROP:
1355 goto dropit;
1356 case SVC_COMPLETE:
1357 goto sendit;
1358 }
1359
1360 if (progp == NULL)
1361 goto err_bad_prog;
1362
1363 rpc_stat = progp->pg_init_request(rqstp, progp, &process);
1364 switch (rpc_stat) {
1365 case rpc_success:
1366 break;
1367 case rpc_prog_unavail:
1368 goto err_bad_prog;
1369 case rpc_prog_mismatch:
1370 goto err_bad_vers;
1371 case rpc_proc_unavail:
1372 goto err_bad_proc;
1373 }
1374
1375 procp = rqstp->rq_procinfo;
1376 /* Should this check go into the dispatcher? */
1377 if (!procp || !procp->pc_func)
1378 goto err_bad_proc;
1379
1380 /* Syntactic check complete */
1381 serv->sv_stats->rpccnt++;
1382 trace_svc_process(rqstp, progp->pg_name);
1383
1384 /* Build the reply header. */
1385 statp = resv->iov_base +resv->iov_len;
1386 svc_putnl(resv, RPC_SUCCESS);
1387
1388 /* un-reserve some of the out-queue now that we have a
1389 * better idea of reply size
1390 */
1391 if (procp->pc_xdrressize)
1392 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1393
1394 /* Call the function that processes the request. */
1395 if (!process.dispatch) {
1396 if (!svc_generic_dispatch(rqstp, statp))
1397 goto release_dropit;
1398 if (*statp == rpc_garbage_args)
1399 goto err_garbage;
1400 } else {
1401 dprintk("svc: calling dispatcher\n");
1402 if (!process.dispatch(rqstp, statp))
1403 goto release_dropit; /* Release reply info */
1404 }
1405
1406 if (rqstp->rq_auth_stat != rpc_auth_ok)
1407 goto err_release_bad_auth;
1408
1409 /* Check RPC status result */
1410 if (*statp != rpc_success)
1411 resv->iov_len = ((void*)statp) - resv->iov_base + 4;
1412
1413 /* Release reply info */
1414 if (procp->pc_release)
1415 procp->pc_release(rqstp);
1416
1417 if (procp->pc_encode == NULL)
1418 goto dropit;
1419
1420 sendit:
1421 if (svc_authorise(rqstp))
1422 goto close_xprt;
1423 return 1; /* Caller can now send it */
1424
1425 release_dropit:
1426 if (procp->pc_release)
1427 procp->pc_release(rqstp);
1428 dropit:
1429 svc_authorise(rqstp); /* doesn't hurt to call this twice */
1430 dprintk("svc: svc_process dropit\n");
1431 return 0;
1432
1433 close:
1434 svc_authorise(rqstp);
1435 close_xprt:
1436 if (rqstp->rq_xprt && test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1437 svc_close_xprt(rqstp->rq_xprt);
1438 dprintk("svc: svc_process close\n");
1439 return 0;
1440
1441 err_short_len:
1442 svc_printk(rqstp, "short len %zd, dropping request\n",
1443 argv->iov_len);
1444 goto close_xprt;
1445
1446 err_bad_rpc:
1447 serv->sv_stats->rpcbadfmt++;
1448 svc_putnl(resv, 1); /* REJECT */
1449 svc_putnl(resv, 0); /* RPC_MISMATCH */
1450 svc_putnl(resv, 2); /* Only RPCv2 supported */
1451 svc_putnl(resv, 2);
1452 goto sendit;
1453
1454 err_release_bad_auth:
1455 if (procp->pc_release)
1456 procp->pc_release(rqstp);
1457 err_bad_auth:
1458 dprintk("svc: authentication failed (%d)\n",
1459 be32_to_cpu(rqstp->rq_auth_stat));
1460 serv->sv_stats->rpcbadauth++;
1461 /* Restore write pointer to location of accept status: */
1462 xdr_ressize_check(rqstp, reply_statp);
1463 svc_putnl(resv, 1); /* REJECT */
1464 svc_putnl(resv, 1); /* AUTH_ERROR */
1465 svc_putu32(resv, rqstp->rq_auth_stat); /* status */
1466 goto sendit;
1467
1468 err_bad_prog:
1469 dprintk("svc: unknown program %d\n", prog);
1470 serv->sv_stats->rpcbadfmt++;
1471 svc_putnl(resv, RPC_PROG_UNAVAIL);
1472 goto sendit;
1473
1474 err_bad_vers:
1475 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1476 rqstp->rq_vers, rqstp->rq_prog, progp->pg_name);
1477
1478 serv->sv_stats->rpcbadfmt++;
1479 svc_putnl(resv, RPC_PROG_MISMATCH);
1480 svc_putnl(resv, process.mismatch.lovers);
1481 svc_putnl(resv, process.mismatch.hivers);
1482 goto sendit;
1483
1484 err_bad_proc:
1485 svc_printk(rqstp, "unknown procedure (%d)\n", rqstp->rq_proc);
1486
1487 serv->sv_stats->rpcbadfmt++;
1488 svc_putnl(resv, RPC_PROC_UNAVAIL);
1489 goto sendit;
1490
1491 err_garbage:
1492 svc_printk(rqstp, "failed to decode args\n");
1493
1494 rpc_stat = rpc_garbage_args;
1495 err_bad:
1496 serv->sv_stats->rpcbadfmt++;
1497 svc_putnl(resv, ntohl(rpc_stat));
1498 goto sendit;
1499 }
1500
1501 /*
1502 * Process the RPC request.
1503 */
1504 int
1505 svc_process(struct svc_rqst *rqstp)
1506 {
1507 struct kvec *argv = &rqstp->rq_arg.head[0];
1508 struct kvec *resv = &rqstp->rq_res.head[0];
1509 struct svc_serv *serv = rqstp->rq_server;
1510 u32 dir;
1511
1512 #if IS_ENABLED(CONFIG_FAIL_SUNRPC)
1513 if (!fail_sunrpc.ignore_server_disconnect &&
1514 should_fail(&fail_sunrpc.attr, 1))
1515 svc_xprt_deferred_close(rqstp->rq_xprt);
1516 #endif
1517
1518 /*
1519 * Setup response xdr_buf.
1520 * Initially it has just one page
1521 */
1522 rqstp->rq_next_page = &rqstp->rq_respages[1];
1523 resv->iov_base = page_address(rqstp->rq_respages[0]);
1524 resv->iov_len = 0;
1525 rqstp->rq_res.pages = rqstp->rq_respages + 1;
1526 rqstp->rq_res.len = 0;
1527 rqstp->rq_res.page_base = 0;
1528 rqstp->rq_res.page_len = 0;
1529 rqstp->rq_res.buflen = PAGE_SIZE;
1530 rqstp->rq_res.tail[0].iov_base = NULL;
1531 rqstp->rq_res.tail[0].iov_len = 0;
1532
1533 dir = svc_getnl(argv);
1534 if (dir != 0) {
1535 /* direction != CALL */
1536 svc_printk(rqstp, "bad direction %d, dropping request\n", dir);
1537 serv->sv_stats->rpcbadfmt++;
1538 goto out_drop;
1539 }
1540
1541 /* Returns 1 for send, 0 for drop */
1542 if (likely(svc_process_common(rqstp, argv, resv)))
1543 return svc_send(rqstp);
1544
1545 out_drop:
1546 svc_drop(rqstp);
1547 return 0;
1548 }
1549 EXPORT_SYMBOL_GPL(svc_process);
1550
1551 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1552 /*
1553 * Process a backchannel RPC request that arrived over an existing
1554 * outbound connection
1555 */
1556 int
1557 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req,
1558 struct svc_rqst *rqstp)
1559 {
1560 struct kvec *argv = &rqstp->rq_arg.head[0];
1561 struct kvec *resv = &rqstp->rq_res.head[0];
1562 struct rpc_task *task;
1563 int proc_error;
1564 int error;
1565
1566 dprintk("svc: %s(%p)\n", __func__, req);
1567
1568 /* Build the svc_rqst used by the common processing routine */
1569 rqstp->rq_xid = req->rq_xid;
1570 rqstp->rq_prot = req->rq_xprt->prot;
1571 rqstp->rq_server = serv;
1572 rqstp->rq_bc_net = req->rq_xprt->xprt_net;
1573
1574 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1575 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1576 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1577 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1578
1579 /* Adjust the argument buffer length */
1580 rqstp->rq_arg.len = req->rq_private_buf.len;
1581 if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1582 rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1583 rqstp->rq_arg.page_len = 0;
1584 } else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len +
1585 rqstp->rq_arg.page_len)
1586 rqstp->rq_arg.page_len = rqstp->rq_arg.len -
1587 rqstp->rq_arg.head[0].iov_len;
1588 else
1589 rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len +
1590 rqstp->rq_arg.page_len;
1591
1592 /* reset result send buffer "put" position */
1593 resv->iov_len = 0;
1594
1595 /*
1596 * Skip the next two words because they've already been
1597 * processed in the transport
1598 */
1599 svc_getu32(argv); /* XID */
1600 svc_getnl(argv); /* CALLDIR */
1601
1602 /* Parse and execute the bc call */
1603 proc_error = svc_process_common(rqstp, argv, resv);
1604
1605 atomic_dec(&req->rq_xprt->bc_slot_count);
1606 if (!proc_error) {
1607 /* Processing error: drop the request */
1608 xprt_free_bc_request(req);
1609 error = -EINVAL;
1610 goto out;
1611 }
1612 /* Finally, send the reply synchronously */
1613 memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf));
1614 task = rpc_run_bc_task(req);
1615 if (IS_ERR(task)) {
1616 error = PTR_ERR(task);
1617 goto out;
1618 }
1619
1620 WARN_ON_ONCE(atomic_read(&task->tk_count) != 1);
1621 error = task->tk_status;
1622 rpc_put_task(task);
1623
1624 out:
1625 dprintk("svc: %s(), error=%d\n", __func__, error);
1626 return error;
1627 }
1628 EXPORT_SYMBOL_GPL(bc_svc_process);
1629 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1630
1631 /*
1632 * Return (transport-specific) limit on the rpc payload.
1633 */
1634 u32 svc_max_payload(const struct svc_rqst *rqstp)
1635 {
1636 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1637
1638 if (rqstp->rq_server->sv_max_payload < max)
1639 max = rqstp->rq_server->sv_max_payload;
1640 return max;
1641 }
1642 EXPORT_SYMBOL_GPL(svc_max_payload);
1643
1644 /**
1645 * svc_proc_name - Return RPC procedure name in string form
1646 * @rqstp: svc_rqst to operate on
1647 *
1648 * Return value:
1649 * Pointer to a NUL-terminated string
1650 */
1651 const char *svc_proc_name(const struct svc_rqst *rqstp)
1652 {
1653 if (rqstp && rqstp->rq_procinfo)
1654 return rqstp->rq_procinfo->pc_name;
1655 return "unknown";
1656 }
1657
1658
1659 /**
1660 * svc_encode_result_payload - mark a range of bytes as a result payload
1661 * @rqstp: svc_rqst to operate on
1662 * @offset: payload's byte offset in rqstp->rq_res
1663 * @length: size of payload, in bytes
1664 *
1665 * Returns zero on success, or a negative errno if a permanent
1666 * error occurred.
1667 */
1668 int svc_encode_result_payload(struct svc_rqst *rqstp, unsigned int offset,
1669 unsigned int length)
1670 {
1671 return rqstp->rq_xprt->xpt_ops->xpo_result_payload(rqstp, offset,
1672 length);
1673 }
1674 EXPORT_SYMBOL_GPL(svc_encode_result_payload);
1675
1676 /**
1677 * svc_fill_write_vector - Construct data argument for VFS write call
1678 * @rqstp: svc_rqst to operate on
1679 * @pages: list of pages containing data payload
1680 * @first: buffer containing first section of write payload
1681 * @total: total number of bytes of write payload
1682 *
1683 * Fills in rqstp::rq_vec, and returns the number of elements.
1684 */
1685 unsigned int svc_fill_write_vector(struct svc_rqst *rqstp, struct page **pages,
1686 struct kvec *first, size_t total)
1687 {
1688 struct kvec *vec = rqstp->rq_vec;
1689 unsigned int i;
1690
1691 /* Some types of transport can present the write payload
1692 * entirely in rq_arg.pages. In this case, @first is empty.
1693 */
1694 i = 0;
1695 if (first->iov_len) {
1696 vec[i].iov_base = first->iov_base;
1697 vec[i].iov_len = min_t(size_t, total, first->iov_len);
1698 total -= vec[i].iov_len;
1699 ++i;
1700 }
1701
1702 while (total) {
1703 vec[i].iov_base = page_address(*pages);
1704 vec[i].iov_len = min_t(size_t, total, PAGE_SIZE);
1705 total -= vec[i].iov_len;
1706 ++i;
1707 ++pages;
1708 }
1709
1710 WARN_ON_ONCE(i > ARRAY_SIZE(rqstp->rq_vec));
1711 return i;
1712 }
1713 EXPORT_SYMBOL_GPL(svc_fill_write_vector);
1714
1715 /**
1716 * svc_fill_symlink_pathname - Construct pathname argument for VFS symlink call
1717 * @rqstp: svc_rqst to operate on
1718 * @first: buffer containing first section of pathname
1719 * @p: buffer containing remaining section of pathname
1720 * @total: total length of the pathname argument
1721 *
1722 * The VFS symlink API demands a NUL-terminated pathname in mapped memory.
1723 * Returns pointer to a NUL-terminated string, or an ERR_PTR. Caller must free
1724 * the returned string.
1725 */
1726 char *svc_fill_symlink_pathname(struct svc_rqst *rqstp, struct kvec *first,
1727 void *p, size_t total)
1728 {
1729 size_t len, remaining;
1730 char *result, *dst;
1731
1732 result = kmalloc(total + 1, GFP_KERNEL);
1733 if (!result)
1734 return ERR_PTR(-ESERVERFAULT);
1735
1736 dst = result;
1737 remaining = total;
1738
1739 len = min_t(size_t, total, first->iov_len);
1740 if (len) {
1741 memcpy(dst, first->iov_base, len);
1742 dst += len;
1743 remaining -= len;
1744 }
1745
1746 if (remaining) {
1747 len = min_t(size_t, remaining, PAGE_SIZE);
1748 memcpy(dst, p, len);
1749 dst += len;
1750 }
1751
1752 *dst = '\0';
1753
1754 /* Sanity check: Linux doesn't allow the pathname argument to
1755 * contain a NUL byte.
1756 */
1757 if (strlen(result) != total) {
1758 kfree(result);
1759 return ERR_PTR(-EINVAL);
1760 }
1761 return result;
1762 }
1763 EXPORT_SYMBOL_GPL(svc_fill_symlink_pathname);