]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/sunrpc/svc_xprt.c
scsi: cxgb4i: call neigh_event_send() to update MAC address
[mirror_ubuntu-artful-kernel.git] / net / sunrpc / svc_xprt.c
1 /*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/addr.h>
14 #include <linux/sunrpc/stats.h>
15 #include <linux/sunrpc/svc_xprt.h>
16 #include <linux/sunrpc/svcsock.h>
17 #include <linux/sunrpc/xprt.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
20 #include <trace/events/sunrpc.h>
21
22 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
23
24 static unsigned int svc_rpc_per_connection_limit __read_mostly;
25 module_param(svc_rpc_per_connection_limit, uint, 0644);
26
27
28 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
29 static int svc_deferred_recv(struct svc_rqst *rqstp);
30 static struct cache_deferred_req *svc_defer(struct cache_req *req);
31 static void svc_age_temp_xprts(unsigned long closure);
32 static void svc_delete_xprt(struct svc_xprt *xprt);
33
34 /* apparently the "standard" is that clients close
35 * idle connections after 5 minutes, servers after
36 * 6 minutes
37 * http://www.connectathon.org/talks96/nfstcp.pdf
38 */
39 static int svc_conn_age_period = 6*60;
40
41 /* List of registered transport classes */
42 static DEFINE_SPINLOCK(svc_xprt_class_lock);
43 static LIST_HEAD(svc_xprt_class_list);
44
45 /* SMP locking strategy:
46 *
47 * svc_pool->sp_lock protects most of the fields of that pool.
48 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
49 * when both need to be taken (rare), svc_serv->sv_lock is first.
50 * The "service mutex" protects svc_serv->sv_nrthread.
51 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
52 * and the ->sk_info_authunix cache.
53 *
54 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
55 * enqueued multiply. During normal transport processing this bit
56 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
57 * Providers should not manipulate this bit directly.
58 *
59 * Some flags can be set to certain values at any time
60 * providing that certain rules are followed:
61 *
62 * XPT_CONN, XPT_DATA:
63 * - Can be set or cleared at any time.
64 * - After a set, svc_xprt_enqueue must be called to enqueue
65 * the transport for processing.
66 * - After a clear, the transport must be read/accepted.
67 * If this succeeds, it must be set again.
68 * XPT_CLOSE:
69 * - Can set at any time. It is never cleared.
70 * XPT_DEAD:
71 * - Can only be set while XPT_BUSY is held which ensures
72 * that no other thread will be using the transport or will
73 * try to set XPT_DEAD.
74 */
75 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
76 {
77 struct svc_xprt_class *cl;
78 int res = -EEXIST;
79
80 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
81
82 INIT_LIST_HEAD(&xcl->xcl_list);
83 spin_lock(&svc_xprt_class_lock);
84 /* Make sure there isn't already a class with the same name */
85 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
86 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
87 goto out;
88 }
89 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
90 res = 0;
91 out:
92 spin_unlock(&svc_xprt_class_lock);
93 return res;
94 }
95 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
96
97 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
98 {
99 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
100 spin_lock(&svc_xprt_class_lock);
101 list_del_init(&xcl->xcl_list);
102 spin_unlock(&svc_xprt_class_lock);
103 }
104 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
105
106 /*
107 * Format the transport list for printing
108 */
109 int svc_print_xprts(char *buf, int maxlen)
110 {
111 struct svc_xprt_class *xcl;
112 char tmpstr[80];
113 int len = 0;
114 buf[0] = '\0';
115
116 spin_lock(&svc_xprt_class_lock);
117 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
118 int slen;
119
120 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
121 slen = strlen(tmpstr);
122 if (len + slen > maxlen)
123 break;
124 len += slen;
125 strcat(buf, tmpstr);
126 }
127 spin_unlock(&svc_xprt_class_lock);
128
129 return len;
130 }
131
132 static void svc_xprt_free(struct kref *kref)
133 {
134 struct svc_xprt *xprt =
135 container_of(kref, struct svc_xprt, xpt_ref);
136 struct module *owner = xprt->xpt_class->xcl_owner;
137 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
138 svcauth_unix_info_release(xprt);
139 put_net(xprt->xpt_net);
140 /* See comment on corresponding get in xs_setup_bc_tcp(): */
141 if (xprt->xpt_bc_xprt)
142 xprt_put(xprt->xpt_bc_xprt);
143 if (xprt->xpt_bc_xps)
144 xprt_switch_put(xprt->xpt_bc_xps);
145 xprt->xpt_ops->xpo_free(xprt);
146 module_put(owner);
147 }
148
149 void svc_xprt_put(struct svc_xprt *xprt)
150 {
151 kref_put(&xprt->xpt_ref, svc_xprt_free);
152 }
153 EXPORT_SYMBOL_GPL(svc_xprt_put);
154
155 /*
156 * Called by transport drivers to initialize the transport independent
157 * portion of the transport instance.
158 */
159 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
160 struct svc_xprt *xprt, struct svc_serv *serv)
161 {
162 memset(xprt, 0, sizeof(*xprt));
163 xprt->xpt_class = xcl;
164 xprt->xpt_ops = xcl->xcl_ops;
165 kref_init(&xprt->xpt_ref);
166 xprt->xpt_server = serv;
167 INIT_LIST_HEAD(&xprt->xpt_list);
168 INIT_LIST_HEAD(&xprt->xpt_ready);
169 INIT_LIST_HEAD(&xprt->xpt_deferred);
170 INIT_LIST_HEAD(&xprt->xpt_users);
171 mutex_init(&xprt->xpt_mutex);
172 spin_lock_init(&xprt->xpt_lock);
173 set_bit(XPT_BUSY, &xprt->xpt_flags);
174 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
175 xprt->xpt_net = get_net(net);
176 }
177 EXPORT_SYMBOL_GPL(svc_xprt_init);
178
179 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
180 struct svc_serv *serv,
181 struct net *net,
182 const int family,
183 const unsigned short port,
184 int flags)
185 {
186 struct sockaddr_in sin = {
187 .sin_family = AF_INET,
188 .sin_addr.s_addr = htonl(INADDR_ANY),
189 .sin_port = htons(port),
190 };
191 #if IS_ENABLED(CONFIG_IPV6)
192 struct sockaddr_in6 sin6 = {
193 .sin6_family = AF_INET6,
194 .sin6_addr = IN6ADDR_ANY_INIT,
195 .sin6_port = htons(port),
196 };
197 #endif
198 struct sockaddr *sap;
199 size_t len;
200
201 switch (family) {
202 case PF_INET:
203 sap = (struct sockaddr *)&sin;
204 len = sizeof(sin);
205 break;
206 #if IS_ENABLED(CONFIG_IPV6)
207 case PF_INET6:
208 sap = (struct sockaddr *)&sin6;
209 len = sizeof(sin6);
210 break;
211 #endif
212 default:
213 return ERR_PTR(-EAFNOSUPPORT);
214 }
215
216 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
217 }
218
219 /*
220 * svc_xprt_received conditionally queues the transport for processing
221 * by another thread. The caller must hold the XPT_BUSY bit and must
222 * not thereafter touch transport data.
223 *
224 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
225 * insufficient) data.
226 */
227 static void svc_xprt_received(struct svc_xprt *xprt)
228 {
229 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
230 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
231 return;
232 }
233
234 /* As soon as we clear busy, the xprt could be closed and
235 * 'put', so we need a reference to call svc_enqueue_xprt with:
236 */
237 svc_xprt_get(xprt);
238 smp_mb__before_atomic();
239 clear_bit(XPT_BUSY, &xprt->xpt_flags);
240 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
241 svc_xprt_put(xprt);
242 }
243
244 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
245 {
246 clear_bit(XPT_TEMP, &new->xpt_flags);
247 spin_lock_bh(&serv->sv_lock);
248 list_add(&new->xpt_list, &serv->sv_permsocks);
249 spin_unlock_bh(&serv->sv_lock);
250 svc_xprt_received(new);
251 }
252
253 int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
254 struct net *net, const int family,
255 const unsigned short port, int flags)
256 {
257 struct svc_xprt_class *xcl;
258
259 spin_lock(&svc_xprt_class_lock);
260 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
261 struct svc_xprt *newxprt;
262 unsigned short newport;
263
264 if (strcmp(xprt_name, xcl->xcl_name))
265 continue;
266
267 if (!try_module_get(xcl->xcl_owner))
268 goto err;
269
270 spin_unlock(&svc_xprt_class_lock);
271 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
272 if (IS_ERR(newxprt)) {
273 module_put(xcl->xcl_owner);
274 return PTR_ERR(newxprt);
275 }
276 svc_add_new_perm_xprt(serv, newxprt);
277 newport = svc_xprt_local_port(newxprt);
278 return newport;
279 }
280 err:
281 spin_unlock(&svc_xprt_class_lock);
282 /* This errno is exposed to user space. Provide a reasonable
283 * perror msg for a bad transport. */
284 return -EPROTONOSUPPORT;
285 }
286
287 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
288 struct net *net, const int family,
289 const unsigned short port, int flags)
290 {
291 int err;
292
293 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
294 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
295 if (err == -EPROTONOSUPPORT) {
296 request_module("svc%s", xprt_name);
297 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
298 }
299 if (err)
300 dprintk("svc: transport %s not found, err %d\n",
301 xprt_name, err);
302 return err;
303 }
304 EXPORT_SYMBOL_GPL(svc_create_xprt);
305
306 /*
307 * Copy the local and remote xprt addresses to the rqstp structure
308 */
309 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
310 {
311 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
312 rqstp->rq_addrlen = xprt->xpt_remotelen;
313
314 /*
315 * Destination address in request is needed for binding the
316 * source address in RPC replies/callbacks later.
317 */
318 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
319 rqstp->rq_daddrlen = xprt->xpt_locallen;
320 }
321 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
322
323 /**
324 * svc_print_addr - Format rq_addr field for printing
325 * @rqstp: svc_rqst struct containing address to print
326 * @buf: target buffer for formatted address
327 * @len: length of target buffer
328 *
329 */
330 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
331 {
332 return __svc_print_addr(svc_addr(rqstp), buf, len);
333 }
334 EXPORT_SYMBOL_GPL(svc_print_addr);
335
336 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
337 {
338 unsigned int limit = svc_rpc_per_connection_limit;
339 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
340
341 return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
342 }
343
344 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
345 {
346 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
347 if (!svc_xprt_slots_in_range(xprt))
348 return false;
349 atomic_inc(&xprt->xpt_nr_rqsts);
350 set_bit(RQ_DATA, &rqstp->rq_flags);
351 }
352 return true;
353 }
354
355 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
356 {
357 struct svc_xprt *xprt = rqstp->rq_xprt;
358 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
359 atomic_dec(&xprt->xpt_nr_rqsts);
360 svc_xprt_enqueue(xprt);
361 }
362 }
363
364 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
365 {
366 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
367 return true;
368 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) {
369 if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
370 svc_xprt_slots_in_range(xprt))
371 return true;
372 trace_svc_xprt_no_write_space(xprt);
373 return false;
374 }
375 return false;
376 }
377
378 void svc_xprt_do_enqueue(struct svc_xprt *xprt)
379 {
380 struct svc_pool *pool;
381 struct svc_rqst *rqstp = NULL;
382 int cpu;
383 bool queued = false;
384
385 if (!svc_xprt_has_something_to_do(xprt))
386 goto out;
387
388 /* Mark transport as busy. It will remain in this state until
389 * the provider calls svc_xprt_received. We update XPT_BUSY
390 * atomically because it also guards against trying to enqueue
391 * the transport twice.
392 */
393 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
394 /* Don't enqueue transport while already enqueued */
395 dprintk("svc: transport %p busy, not enqueued\n", xprt);
396 goto out;
397 }
398
399 cpu = get_cpu();
400 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
401
402 atomic_long_inc(&pool->sp_stats.packets);
403
404 redo_search:
405 /* find a thread for this xprt */
406 rcu_read_lock();
407 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
408 /* Do a lockless check first */
409 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
410 continue;
411
412 /*
413 * Once the xprt has been queued, it can only be dequeued by
414 * the task that intends to service it. All we can do at that
415 * point is to try to wake this thread back up so that it can
416 * do so.
417 */
418 if (!queued) {
419 spin_lock_bh(&rqstp->rq_lock);
420 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) {
421 /* already busy, move on... */
422 spin_unlock_bh(&rqstp->rq_lock);
423 continue;
424 }
425
426 /* this one will do */
427 rqstp->rq_xprt = xprt;
428 svc_xprt_get(xprt);
429 spin_unlock_bh(&rqstp->rq_lock);
430 }
431 rcu_read_unlock();
432
433 atomic_long_inc(&pool->sp_stats.threads_woken);
434 wake_up_process(rqstp->rq_task);
435 put_cpu();
436 goto out;
437 }
438 rcu_read_unlock();
439
440 /*
441 * We didn't find an idle thread to use, so we need to queue the xprt.
442 * Do so and then search again. If we find one, we can't hook this one
443 * up to it directly but we can wake the thread up in the hopes that it
444 * will pick it up once it searches for a xprt to service.
445 */
446 if (!queued) {
447 queued = true;
448 dprintk("svc: transport %p put into queue\n", xprt);
449 spin_lock_bh(&pool->sp_lock);
450 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
451 pool->sp_stats.sockets_queued++;
452 spin_unlock_bh(&pool->sp_lock);
453 goto redo_search;
454 }
455 rqstp = NULL;
456 put_cpu();
457 out:
458 trace_svc_xprt_do_enqueue(xprt, rqstp);
459 }
460 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
461
462 /*
463 * Queue up a transport with data pending. If there are idle nfsd
464 * processes, wake 'em up.
465 *
466 */
467 void svc_xprt_enqueue(struct svc_xprt *xprt)
468 {
469 if (test_bit(XPT_BUSY, &xprt->xpt_flags))
470 return;
471 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
472 }
473 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
474
475 /*
476 * Dequeue the first transport, if there is one.
477 */
478 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
479 {
480 struct svc_xprt *xprt = NULL;
481
482 if (list_empty(&pool->sp_sockets))
483 goto out;
484
485 spin_lock_bh(&pool->sp_lock);
486 if (likely(!list_empty(&pool->sp_sockets))) {
487 xprt = list_first_entry(&pool->sp_sockets,
488 struct svc_xprt, xpt_ready);
489 list_del_init(&xprt->xpt_ready);
490 svc_xprt_get(xprt);
491
492 dprintk("svc: transport %p dequeued, inuse=%d\n",
493 xprt, kref_read(&xprt->xpt_ref));
494 }
495 spin_unlock_bh(&pool->sp_lock);
496 out:
497 trace_svc_xprt_dequeue(xprt);
498 return xprt;
499 }
500
501 /**
502 * svc_reserve - change the space reserved for the reply to a request.
503 * @rqstp: The request in question
504 * @space: new max space to reserve
505 *
506 * Each request reserves some space on the output queue of the transport
507 * to make sure the reply fits. This function reduces that reserved
508 * space to be the amount of space used already, plus @space.
509 *
510 */
511 void svc_reserve(struct svc_rqst *rqstp, int space)
512 {
513 space += rqstp->rq_res.head[0].iov_len;
514
515 if (space < rqstp->rq_reserved) {
516 struct svc_xprt *xprt = rqstp->rq_xprt;
517 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
518 rqstp->rq_reserved = space;
519
520 svc_xprt_enqueue(xprt);
521 }
522 }
523 EXPORT_SYMBOL_GPL(svc_reserve);
524
525 static void svc_xprt_release(struct svc_rqst *rqstp)
526 {
527 struct svc_xprt *xprt = rqstp->rq_xprt;
528
529 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
530
531 kfree(rqstp->rq_deferred);
532 rqstp->rq_deferred = NULL;
533
534 svc_free_res_pages(rqstp);
535 rqstp->rq_res.page_len = 0;
536 rqstp->rq_res.page_base = 0;
537
538 /* Reset response buffer and release
539 * the reservation.
540 * But first, check that enough space was reserved
541 * for the reply, otherwise we have a bug!
542 */
543 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
544 printk(KERN_ERR "RPC request reserved %d but used %d\n",
545 rqstp->rq_reserved,
546 rqstp->rq_res.len);
547
548 rqstp->rq_res.head[0].iov_len = 0;
549 svc_reserve(rqstp, 0);
550 svc_xprt_release_slot(rqstp);
551 rqstp->rq_xprt = NULL;
552 svc_xprt_put(xprt);
553 }
554
555 /*
556 * Some svc_serv's will have occasional work to do, even when a xprt is not
557 * waiting to be serviced. This function is there to "kick" a task in one of
558 * those services so that it can wake up and do that work. Note that we only
559 * bother with pool 0 as we don't need to wake up more than one thread for
560 * this purpose.
561 */
562 void svc_wake_up(struct svc_serv *serv)
563 {
564 struct svc_rqst *rqstp;
565 struct svc_pool *pool;
566
567 pool = &serv->sv_pools[0];
568
569 rcu_read_lock();
570 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
571 /* skip any that aren't queued */
572 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
573 continue;
574 rcu_read_unlock();
575 dprintk("svc: daemon %p woken up.\n", rqstp);
576 wake_up_process(rqstp->rq_task);
577 trace_svc_wake_up(rqstp->rq_task->pid);
578 return;
579 }
580 rcu_read_unlock();
581
582 /* No free entries available */
583 set_bit(SP_TASK_PENDING, &pool->sp_flags);
584 smp_wmb();
585 trace_svc_wake_up(0);
586 }
587 EXPORT_SYMBOL_GPL(svc_wake_up);
588
589 int svc_port_is_privileged(struct sockaddr *sin)
590 {
591 switch (sin->sa_family) {
592 case AF_INET:
593 return ntohs(((struct sockaddr_in *)sin)->sin_port)
594 < PROT_SOCK;
595 case AF_INET6:
596 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
597 < PROT_SOCK;
598 default:
599 return 0;
600 }
601 }
602
603 /*
604 * Make sure that we don't have too many active connections. If we have,
605 * something must be dropped. It's not clear what will happen if we allow
606 * "too many" connections, but when dealing with network-facing software,
607 * we have to code defensively. Here we do that by imposing hard limits.
608 *
609 * There's no point in trying to do random drop here for DoS
610 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
611 * attacker can easily beat that.
612 *
613 * The only somewhat efficient mechanism would be if drop old
614 * connections from the same IP first. But right now we don't even
615 * record the client IP in svc_sock.
616 *
617 * single-threaded services that expect a lot of clients will probably
618 * need to set sv_maxconn to override the default value which is based
619 * on the number of threads
620 */
621 static void svc_check_conn_limits(struct svc_serv *serv)
622 {
623 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
624 (serv->sv_nrthreads+3) * 20;
625
626 if (serv->sv_tmpcnt > limit) {
627 struct svc_xprt *xprt = NULL;
628 spin_lock_bh(&serv->sv_lock);
629 if (!list_empty(&serv->sv_tempsocks)) {
630 /* Try to help the admin */
631 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
632 serv->sv_name, serv->sv_maxconn ?
633 "max number of connections" :
634 "number of threads");
635 /*
636 * Always select the oldest connection. It's not fair,
637 * but so is life
638 */
639 xprt = list_entry(serv->sv_tempsocks.prev,
640 struct svc_xprt,
641 xpt_list);
642 set_bit(XPT_CLOSE, &xprt->xpt_flags);
643 svc_xprt_get(xprt);
644 }
645 spin_unlock_bh(&serv->sv_lock);
646
647 if (xprt) {
648 svc_xprt_enqueue(xprt);
649 svc_xprt_put(xprt);
650 }
651 }
652 }
653
654 static int svc_alloc_arg(struct svc_rqst *rqstp)
655 {
656 struct svc_serv *serv = rqstp->rq_server;
657 struct xdr_buf *arg;
658 int pages;
659 int i;
660
661 /* now allocate needed pages. If we get a failure, sleep briefly */
662 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
663 WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
664 if (pages >= RPCSVC_MAXPAGES)
665 /* use as many pages as possible */
666 pages = RPCSVC_MAXPAGES - 1;
667 for (i = 0; i < pages ; i++)
668 while (rqstp->rq_pages[i] == NULL) {
669 struct page *p = alloc_page(GFP_KERNEL);
670 if (!p) {
671 set_current_state(TASK_INTERRUPTIBLE);
672 if (signalled() || kthread_should_stop()) {
673 set_current_state(TASK_RUNNING);
674 return -EINTR;
675 }
676 schedule_timeout(msecs_to_jiffies(500));
677 }
678 rqstp->rq_pages[i] = p;
679 }
680 rqstp->rq_page_end = &rqstp->rq_pages[i];
681 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
682
683 /* Make arg->head point to first page and arg->pages point to rest */
684 arg = &rqstp->rq_arg;
685 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
686 arg->head[0].iov_len = PAGE_SIZE;
687 arg->pages = rqstp->rq_pages + 1;
688 arg->page_base = 0;
689 /* save at least one page for response */
690 arg->page_len = (pages-2)*PAGE_SIZE;
691 arg->len = (pages-1)*PAGE_SIZE;
692 arg->tail[0].iov_len = 0;
693 return 0;
694 }
695
696 static bool
697 rqst_should_sleep(struct svc_rqst *rqstp)
698 {
699 struct svc_pool *pool = rqstp->rq_pool;
700
701 /* did someone call svc_wake_up? */
702 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
703 return false;
704
705 /* was a socket queued? */
706 if (!list_empty(&pool->sp_sockets))
707 return false;
708
709 /* are we shutting down? */
710 if (signalled() || kthread_should_stop())
711 return false;
712
713 /* are we freezing? */
714 if (freezing(current))
715 return false;
716
717 return true;
718 }
719
720 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
721 {
722 struct svc_xprt *xprt;
723 struct svc_pool *pool = rqstp->rq_pool;
724 long time_left = 0;
725
726 /* rq_xprt should be clear on entry */
727 WARN_ON_ONCE(rqstp->rq_xprt);
728
729 /* Normally we will wait up to 5 seconds for any required
730 * cache information to be provided.
731 */
732 rqstp->rq_chandle.thread_wait = 5*HZ;
733
734 xprt = svc_xprt_dequeue(pool);
735 if (xprt) {
736 rqstp->rq_xprt = xprt;
737
738 /* As there is a shortage of threads and this request
739 * had to be queued, don't allow the thread to wait so
740 * long for cache updates.
741 */
742 rqstp->rq_chandle.thread_wait = 1*HZ;
743 clear_bit(SP_TASK_PENDING, &pool->sp_flags);
744 return xprt;
745 }
746
747 /*
748 * We have to be able to interrupt this wait
749 * to bring down the daemons ...
750 */
751 set_current_state(TASK_INTERRUPTIBLE);
752 clear_bit(RQ_BUSY, &rqstp->rq_flags);
753 smp_mb();
754
755 if (likely(rqst_should_sleep(rqstp)))
756 time_left = schedule_timeout(timeout);
757 else
758 __set_current_state(TASK_RUNNING);
759
760 try_to_freeze();
761
762 spin_lock_bh(&rqstp->rq_lock);
763 set_bit(RQ_BUSY, &rqstp->rq_flags);
764 spin_unlock_bh(&rqstp->rq_lock);
765
766 xprt = rqstp->rq_xprt;
767 if (xprt != NULL)
768 return xprt;
769
770 if (!time_left)
771 atomic_long_inc(&pool->sp_stats.threads_timedout);
772
773 if (signalled() || kthread_should_stop())
774 return ERR_PTR(-EINTR);
775 return ERR_PTR(-EAGAIN);
776 }
777
778 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
779 {
780 spin_lock_bh(&serv->sv_lock);
781 set_bit(XPT_TEMP, &newxpt->xpt_flags);
782 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
783 serv->sv_tmpcnt++;
784 if (serv->sv_temptimer.function == NULL) {
785 /* setup timer to age temp transports */
786 setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
787 (unsigned long)serv);
788 mod_timer(&serv->sv_temptimer,
789 jiffies + svc_conn_age_period * HZ);
790 }
791 spin_unlock_bh(&serv->sv_lock);
792 svc_xprt_received(newxpt);
793 }
794
795 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
796 {
797 struct svc_serv *serv = rqstp->rq_server;
798 int len = 0;
799
800 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
801 dprintk("svc_recv: found XPT_CLOSE\n");
802 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
803 xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
804 svc_delete_xprt(xprt);
805 /* Leave XPT_BUSY set on the dead xprt: */
806 goto out;
807 }
808 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
809 struct svc_xprt *newxpt;
810 /*
811 * We know this module_get will succeed because the
812 * listener holds a reference too
813 */
814 __module_get(xprt->xpt_class->xcl_owner);
815 svc_check_conn_limits(xprt->xpt_server);
816 newxpt = xprt->xpt_ops->xpo_accept(xprt);
817 if (newxpt)
818 svc_add_new_temp_xprt(serv, newxpt);
819 else
820 module_put(xprt->xpt_class->xcl_owner);
821 } else if (svc_xprt_reserve_slot(rqstp, xprt)) {
822 /* XPT_DATA|XPT_DEFERRED case: */
823 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
824 rqstp, rqstp->rq_pool->sp_id, xprt,
825 kref_read(&xprt->xpt_ref));
826 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
827 if (rqstp->rq_deferred)
828 len = svc_deferred_recv(rqstp);
829 else
830 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
831 dprintk("svc: got len=%d\n", len);
832 rqstp->rq_reserved = serv->sv_max_mesg;
833 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
834 }
835 /* clear XPT_BUSY: */
836 svc_xprt_received(xprt);
837 out:
838 trace_svc_handle_xprt(xprt, len);
839 return len;
840 }
841
842 /*
843 * Receive the next request on any transport. This code is carefully
844 * organised not to touch any cachelines in the shared svc_serv
845 * structure, only cachelines in the local svc_pool.
846 */
847 int svc_recv(struct svc_rqst *rqstp, long timeout)
848 {
849 struct svc_xprt *xprt = NULL;
850 struct svc_serv *serv = rqstp->rq_server;
851 int len, err;
852
853 dprintk("svc: server %p waiting for data (to = %ld)\n",
854 rqstp, timeout);
855
856 if (rqstp->rq_xprt)
857 printk(KERN_ERR
858 "svc_recv: service %p, transport not NULL!\n",
859 rqstp);
860
861 err = svc_alloc_arg(rqstp);
862 if (err)
863 goto out;
864
865 try_to_freeze();
866 cond_resched();
867 err = -EINTR;
868 if (signalled() || kthread_should_stop())
869 goto out;
870
871 xprt = svc_get_next_xprt(rqstp, timeout);
872 if (IS_ERR(xprt)) {
873 err = PTR_ERR(xprt);
874 goto out;
875 }
876
877 len = svc_handle_xprt(rqstp, xprt);
878
879 /* No data, incomplete (TCP) read, or accept() */
880 err = -EAGAIN;
881 if (len <= 0)
882 goto out_release;
883
884 clear_bit(XPT_OLD, &xprt->xpt_flags);
885
886 if (xprt->xpt_ops->xpo_secure_port(rqstp))
887 set_bit(RQ_SECURE, &rqstp->rq_flags);
888 else
889 clear_bit(RQ_SECURE, &rqstp->rq_flags);
890 rqstp->rq_chandle.defer = svc_defer;
891 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
892
893 if (serv->sv_stats)
894 serv->sv_stats->netcnt++;
895 trace_svc_recv(rqstp, len);
896 return len;
897 out_release:
898 rqstp->rq_res.len = 0;
899 svc_xprt_release(rqstp);
900 out:
901 trace_svc_recv(rqstp, err);
902 return err;
903 }
904 EXPORT_SYMBOL_GPL(svc_recv);
905
906 /*
907 * Drop request
908 */
909 void svc_drop(struct svc_rqst *rqstp)
910 {
911 trace_svc_drop(rqstp);
912 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
913 svc_xprt_release(rqstp);
914 }
915 EXPORT_SYMBOL_GPL(svc_drop);
916
917 /*
918 * Return reply to client.
919 */
920 int svc_send(struct svc_rqst *rqstp)
921 {
922 struct svc_xprt *xprt;
923 int len = -EFAULT;
924 struct xdr_buf *xb;
925
926 xprt = rqstp->rq_xprt;
927 if (!xprt)
928 goto out;
929
930 /* release the receive skb before sending the reply */
931 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
932
933 /* calculate over-all length */
934 xb = &rqstp->rq_res;
935 xb->len = xb->head[0].iov_len +
936 xb->page_len +
937 xb->tail[0].iov_len;
938
939 /* Grab mutex to serialize outgoing data. */
940 mutex_lock(&xprt->xpt_mutex);
941 if (test_bit(XPT_DEAD, &xprt->xpt_flags)
942 || test_bit(XPT_CLOSE, &xprt->xpt_flags))
943 len = -ENOTCONN;
944 else
945 len = xprt->xpt_ops->xpo_sendto(rqstp);
946 mutex_unlock(&xprt->xpt_mutex);
947 rpc_wake_up(&xprt->xpt_bc_pending);
948 svc_xprt_release(rqstp);
949
950 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
951 len = 0;
952 out:
953 trace_svc_send(rqstp, len);
954 return len;
955 }
956
957 /*
958 * Timer function to close old temporary transports, using
959 * a mark-and-sweep algorithm.
960 */
961 static void svc_age_temp_xprts(unsigned long closure)
962 {
963 struct svc_serv *serv = (struct svc_serv *)closure;
964 struct svc_xprt *xprt;
965 struct list_head *le, *next;
966
967 dprintk("svc_age_temp_xprts\n");
968
969 if (!spin_trylock_bh(&serv->sv_lock)) {
970 /* busy, try again 1 sec later */
971 dprintk("svc_age_temp_xprts: busy\n");
972 mod_timer(&serv->sv_temptimer, jiffies + HZ);
973 return;
974 }
975
976 list_for_each_safe(le, next, &serv->sv_tempsocks) {
977 xprt = list_entry(le, struct svc_xprt, xpt_list);
978
979 /* First time through, just mark it OLD. Second time
980 * through, close it. */
981 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
982 continue;
983 if (kref_read(&xprt->xpt_ref) > 1 ||
984 test_bit(XPT_BUSY, &xprt->xpt_flags))
985 continue;
986 list_del_init(le);
987 set_bit(XPT_CLOSE, &xprt->xpt_flags);
988 dprintk("queuing xprt %p for closing\n", xprt);
989
990 /* a thread will dequeue and close it soon */
991 svc_xprt_enqueue(xprt);
992 }
993 spin_unlock_bh(&serv->sv_lock);
994
995 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
996 }
997
998 /* Close temporary transports whose xpt_local matches server_addr immediately
999 * instead of waiting for them to be picked up by the timer.
1000 *
1001 * This is meant to be called from a notifier_block that runs when an ip
1002 * address is deleted.
1003 */
1004 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
1005 {
1006 struct svc_xprt *xprt;
1007 struct list_head *le, *next;
1008 LIST_HEAD(to_be_closed);
1009
1010 spin_lock_bh(&serv->sv_lock);
1011 list_for_each_safe(le, next, &serv->sv_tempsocks) {
1012 xprt = list_entry(le, struct svc_xprt, xpt_list);
1013 if (rpc_cmp_addr(server_addr, (struct sockaddr *)
1014 &xprt->xpt_local)) {
1015 dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
1016 list_move(le, &to_be_closed);
1017 }
1018 }
1019 spin_unlock_bh(&serv->sv_lock);
1020
1021 while (!list_empty(&to_be_closed)) {
1022 le = to_be_closed.next;
1023 list_del_init(le);
1024 xprt = list_entry(le, struct svc_xprt, xpt_list);
1025 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1026 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
1027 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
1028 xprt);
1029 svc_xprt_enqueue(xprt);
1030 }
1031 }
1032 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1033
1034 static void call_xpt_users(struct svc_xprt *xprt)
1035 {
1036 struct svc_xpt_user *u;
1037
1038 spin_lock(&xprt->xpt_lock);
1039 while (!list_empty(&xprt->xpt_users)) {
1040 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1041 list_del(&u->list);
1042 u->callback(u);
1043 }
1044 spin_unlock(&xprt->xpt_lock);
1045 }
1046
1047 /*
1048 * Remove a dead transport
1049 */
1050 static void svc_delete_xprt(struct svc_xprt *xprt)
1051 {
1052 struct svc_serv *serv = xprt->xpt_server;
1053 struct svc_deferred_req *dr;
1054
1055 /* Only do this once */
1056 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1057 BUG();
1058
1059 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1060 xprt->xpt_ops->xpo_detach(xprt);
1061
1062 spin_lock_bh(&serv->sv_lock);
1063 list_del_init(&xprt->xpt_list);
1064 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1065 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1066 serv->sv_tmpcnt--;
1067 spin_unlock_bh(&serv->sv_lock);
1068
1069 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1070 kfree(dr);
1071
1072 call_xpt_users(xprt);
1073 svc_xprt_put(xprt);
1074 }
1075
1076 void svc_close_xprt(struct svc_xprt *xprt)
1077 {
1078 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1079 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1080 /* someone else will have to effect the close */
1081 return;
1082 /*
1083 * We expect svc_close_xprt() to work even when no threads are
1084 * running (e.g., while configuring the server before starting
1085 * any threads), so if the transport isn't busy, we delete
1086 * it ourself:
1087 */
1088 svc_delete_xprt(xprt);
1089 }
1090 EXPORT_SYMBOL_GPL(svc_close_xprt);
1091
1092 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1093 {
1094 struct svc_xprt *xprt;
1095 int ret = 0;
1096
1097 spin_lock(&serv->sv_lock);
1098 list_for_each_entry(xprt, xprt_list, xpt_list) {
1099 if (xprt->xpt_net != net)
1100 continue;
1101 ret++;
1102 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1103 svc_xprt_enqueue(xprt);
1104 }
1105 spin_unlock(&serv->sv_lock);
1106 return ret;
1107 }
1108
1109 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1110 {
1111 struct svc_pool *pool;
1112 struct svc_xprt *xprt;
1113 struct svc_xprt *tmp;
1114 int i;
1115
1116 for (i = 0; i < serv->sv_nrpools; i++) {
1117 pool = &serv->sv_pools[i];
1118
1119 spin_lock_bh(&pool->sp_lock);
1120 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1121 if (xprt->xpt_net != net)
1122 continue;
1123 list_del_init(&xprt->xpt_ready);
1124 spin_unlock_bh(&pool->sp_lock);
1125 return xprt;
1126 }
1127 spin_unlock_bh(&pool->sp_lock);
1128 }
1129 return NULL;
1130 }
1131
1132 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1133 {
1134 struct svc_xprt *xprt;
1135
1136 while ((xprt = svc_dequeue_net(serv, net))) {
1137 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1138 svc_delete_xprt(xprt);
1139 }
1140 }
1141
1142 /*
1143 * Server threads may still be running (especially in the case where the
1144 * service is still running in other network namespaces).
1145 *
1146 * So we shut down sockets the same way we would on a running server, by
1147 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1148 * the close. In the case there are no such other threads,
1149 * threads running, svc_clean_up_xprts() does a simple version of a
1150 * server's main event loop, and in the case where there are other
1151 * threads, we may need to wait a little while and then check again to
1152 * see if they're done.
1153 */
1154 void svc_close_net(struct svc_serv *serv, struct net *net)
1155 {
1156 int delay = 0;
1157
1158 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1159 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1160
1161 svc_clean_up_xprts(serv, net);
1162 msleep(delay++);
1163 }
1164 }
1165
1166 /*
1167 * Handle defer and revisit of requests
1168 */
1169
1170 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1171 {
1172 struct svc_deferred_req *dr =
1173 container_of(dreq, struct svc_deferred_req, handle);
1174 struct svc_xprt *xprt = dr->xprt;
1175
1176 spin_lock(&xprt->xpt_lock);
1177 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1178 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1179 spin_unlock(&xprt->xpt_lock);
1180 dprintk("revisit canceled\n");
1181 svc_xprt_put(xprt);
1182 trace_svc_drop_deferred(dr);
1183 kfree(dr);
1184 return;
1185 }
1186 dprintk("revisit queued\n");
1187 dr->xprt = NULL;
1188 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1189 spin_unlock(&xprt->xpt_lock);
1190 svc_xprt_enqueue(xprt);
1191 svc_xprt_put(xprt);
1192 }
1193
1194 /*
1195 * Save the request off for later processing. The request buffer looks
1196 * like this:
1197 *
1198 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1199 *
1200 * This code can only handle requests that consist of an xprt-header
1201 * and rpc-header.
1202 */
1203 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1204 {
1205 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1206 struct svc_deferred_req *dr;
1207
1208 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1209 return NULL; /* if more than a page, give up FIXME */
1210 if (rqstp->rq_deferred) {
1211 dr = rqstp->rq_deferred;
1212 rqstp->rq_deferred = NULL;
1213 } else {
1214 size_t skip;
1215 size_t size;
1216 /* FIXME maybe discard if size too large */
1217 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1218 dr = kmalloc(size, GFP_KERNEL);
1219 if (dr == NULL)
1220 return NULL;
1221
1222 dr->handle.owner = rqstp->rq_server;
1223 dr->prot = rqstp->rq_prot;
1224 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1225 dr->addrlen = rqstp->rq_addrlen;
1226 dr->daddr = rqstp->rq_daddr;
1227 dr->argslen = rqstp->rq_arg.len >> 2;
1228 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1229
1230 /* back up head to the start of the buffer and copy */
1231 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1232 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1233 dr->argslen << 2);
1234 }
1235 svc_xprt_get(rqstp->rq_xprt);
1236 dr->xprt = rqstp->rq_xprt;
1237 set_bit(RQ_DROPME, &rqstp->rq_flags);
1238
1239 dr->handle.revisit = svc_revisit;
1240 trace_svc_defer(rqstp);
1241 return &dr->handle;
1242 }
1243
1244 /*
1245 * recv data from a deferred request into an active one
1246 */
1247 static int svc_deferred_recv(struct svc_rqst *rqstp)
1248 {
1249 struct svc_deferred_req *dr = rqstp->rq_deferred;
1250
1251 /* setup iov_base past transport header */
1252 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1253 /* The iov_len does not include the transport header bytes */
1254 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1255 rqstp->rq_arg.page_len = 0;
1256 /* The rq_arg.len includes the transport header bytes */
1257 rqstp->rq_arg.len = dr->argslen<<2;
1258 rqstp->rq_prot = dr->prot;
1259 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1260 rqstp->rq_addrlen = dr->addrlen;
1261 /* Save off transport header len in case we get deferred again */
1262 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1263 rqstp->rq_daddr = dr->daddr;
1264 rqstp->rq_respages = rqstp->rq_pages;
1265 return (dr->argslen<<2) - dr->xprt_hlen;
1266 }
1267
1268
1269 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1270 {
1271 struct svc_deferred_req *dr = NULL;
1272
1273 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1274 return NULL;
1275 spin_lock(&xprt->xpt_lock);
1276 if (!list_empty(&xprt->xpt_deferred)) {
1277 dr = list_entry(xprt->xpt_deferred.next,
1278 struct svc_deferred_req,
1279 handle.recent);
1280 list_del_init(&dr->handle.recent);
1281 trace_svc_revisit_deferred(dr);
1282 } else
1283 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1284 spin_unlock(&xprt->xpt_lock);
1285 return dr;
1286 }
1287
1288 /**
1289 * svc_find_xprt - find an RPC transport instance
1290 * @serv: pointer to svc_serv to search
1291 * @xcl_name: C string containing transport's class name
1292 * @net: owner net pointer
1293 * @af: Address family of transport's local address
1294 * @port: transport's IP port number
1295 *
1296 * Return the transport instance pointer for the endpoint accepting
1297 * connections/peer traffic from the specified transport class,
1298 * address family and port.
1299 *
1300 * Specifying 0 for the address family or port is effectively a
1301 * wild-card, and will result in matching the first transport in the
1302 * service's list that has a matching class name.
1303 */
1304 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1305 struct net *net, const sa_family_t af,
1306 const unsigned short port)
1307 {
1308 struct svc_xprt *xprt;
1309 struct svc_xprt *found = NULL;
1310
1311 /* Sanity check the args */
1312 if (serv == NULL || xcl_name == NULL)
1313 return found;
1314
1315 spin_lock_bh(&serv->sv_lock);
1316 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1317 if (xprt->xpt_net != net)
1318 continue;
1319 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1320 continue;
1321 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1322 continue;
1323 if (port != 0 && port != svc_xprt_local_port(xprt))
1324 continue;
1325 found = xprt;
1326 svc_xprt_get(xprt);
1327 break;
1328 }
1329 spin_unlock_bh(&serv->sv_lock);
1330 return found;
1331 }
1332 EXPORT_SYMBOL_GPL(svc_find_xprt);
1333
1334 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1335 char *pos, int remaining)
1336 {
1337 int len;
1338
1339 len = snprintf(pos, remaining, "%s %u\n",
1340 xprt->xpt_class->xcl_name,
1341 svc_xprt_local_port(xprt));
1342 if (len >= remaining)
1343 return -ENAMETOOLONG;
1344 return len;
1345 }
1346
1347 /**
1348 * svc_xprt_names - format a buffer with a list of transport names
1349 * @serv: pointer to an RPC service
1350 * @buf: pointer to a buffer to be filled in
1351 * @buflen: length of buffer to be filled in
1352 *
1353 * Fills in @buf with a string containing a list of transport names,
1354 * each name terminated with '\n'.
1355 *
1356 * Returns positive length of the filled-in string on success; otherwise
1357 * a negative errno value is returned if an error occurs.
1358 */
1359 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1360 {
1361 struct svc_xprt *xprt;
1362 int len, totlen;
1363 char *pos;
1364
1365 /* Sanity check args */
1366 if (!serv)
1367 return 0;
1368
1369 spin_lock_bh(&serv->sv_lock);
1370
1371 pos = buf;
1372 totlen = 0;
1373 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1374 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1375 if (len < 0) {
1376 *buf = '\0';
1377 totlen = len;
1378 }
1379 if (len <= 0)
1380 break;
1381
1382 pos += len;
1383 totlen += len;
1384 }
1385
1386 spin_unlock_bh(&serv->sv_lock);
1387 return totlen;
1388 }
1389 EXPORT_SYMBOL_GPL(svc_xprt_names);
1390
1391
1392 /*----------------------------------------------------------------------------*/
1393
1394 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1395 {
1396 unsigned int pidx = (unsigned int)*pos;
1397 struct svc_serv *serv = m->private;
1398
1399 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1400
1401 if (!pidx)
1402 return SEQ_START_TOKEN;
1403 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1404 }
1405
1406 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1407 {
1408 struct svc_pool *pool = p;
1409 struct svc_serv *serv = m->private;
1410
1411 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1412
1413 if (p == SEQ_START_TOKEN) {
1414 pool = &serv->sv_pools[0];
1415 } else {
1416 unsigned int pidx = (pool - &serv->sv_pools[0]);
1417 if (pidx < serv->sv_nrpools-1)
1418 pool = &serv->sv_pools[pidx+1];
1419 else
1420 pool = NULL;
1421 }
1422 ++*pos;
1423 return pool;
1424 }
1425
1426 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1427 {
1428 }
1429
1430 static int svc_pool_stats_show(struct seq_file *m, void *p)
1431 {
1432 struct svc_pool *pool = p;
1433
1434 if (p == SEQ_START_TOKEN) {
1435 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1436 return 0;
1437 }
1438
1439 seq_printf(m, "%u %lu %lu %lu %lu\n",
1440 pool->sp_id,
1441 (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1442 pool->sp_stats.sockets_queued,
1443 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1444 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1445
1446 return 0;
1447 }
1448
1449 static const struct seq_operations svc_pool_stats_seq_ops = {
1450 .start = svc_pool_stats_start,
1451 .next = svc_pool_stats_next,
1452 .stop = svc_pool_stats_stop,
1453 .show = svc_pool_stats_show,
1454 };
1455
1456 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1457 {
1458 int err;
1459
1460 err = seq_open(file, &svc_pool_stats_seq_ops);
1461 if (!err)
1462 ((struct seq_file *) file->private_data)->private = serv;
1463 return err;
1464 }
1465 EXPORT_SYMBOL(svc_pool_stats_open);
1466
1467 /*----------------------------------------------------------------------------*/