]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sunrpc/svc_xprt.c
tcp: fix "old stuff" D-SACK causing SACK to be treated as D-SACK
[mirror_ubuntu-bionic-kernel.git] / net / sunrpc / svc_xprt.c
1 /*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/addr.h>
14 #include <linux/sunrpc/stats.h>
15 #include <linux/sunrpc/svc_xprt.h>
16 #include <linux/sunrpc/svcsock.h>
17 #include <linux/sunrpc/xprt.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
20 #include <trace/events/sunrpc.h>
21
22 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
23
24 static unsigned int svc_rpc_per_connection_limit __read_mostly;
25 module_param(svc_rpc_per_connection_limit, uint, 0644);
26
27
28 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
29 static int svc_deferred_recv(struct svc_rqst *rqstp);
30 static struct cache_deferred_req *svc_defer(struct cache_req *req);
31 static void svc_age_temp_xprts(struct timer_list *t);
32 static void svc_delete_xprt(struct svc_xprt *xprt);
33
34 /* apparently the "standard" is that clients close
35 * idle connections after 5 minutes, servers after
36 * 6 minutes
37 * http://www.connectathon.org/talks96/nfstcp.pdf
38 */
39 static int svc_conn_age_period = 6*60;
40
41 /* List of registered transport classes */
42 static DEFINE_SPINLOCK(svc_xprt_class_lock);
43 static LIST_HEAD(svc_xprt_class_list);
44
45 /* SMP locking strategy:
46 *
47 * svc_pool->sp_lock protects most of the fields of that pool.
48 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
49 * when both need to be taken (rare), svc_serv->sv_lock is first.
50 * The "service mutex" protects svc_serv->sv_nrthread.
51 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
52 * and the ->sk_info_authunix cache.
53 *
54 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
55 * enqueued multiply. During normal transport processing this bit
56 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
57 * Providers should not manipulate this bit directly.
58 *
59 * Some flags can be set to certain values at any time
60 * providing that certain rules are followed:
61 *
62 * XPT_CONN, XPT_DATA:
63 * - Can be set or cleared at any time.
64 * - After a set, svc_xprt_enqueue must be called to enqueue
65 * the transport for processing.
66 * - After a clear, the transport must be read/accepted.
67 * If this succeeds, it must be set again.
68 * XPT_CLOSE:
69 * - Can set at any time. It is never cleared.
70 * XPT_DEAD:
71 * - Can only be set while XPT_BUSY is held which ensures
72 * that no other thread will be using the transport or will
73 * try to set XPT_DEAD.
74 */
75 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
76 {
77 struct svc_xprt_class *cl;
78 int res = -EEXIST;
79
80 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
81
82 INIT_LIST_HEAD(&xcl->xcl_list);
83 spin_lock(&svc_xprt_class_lock);
84 /* Make sure there isn't already a class with the same name */
85 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
86 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
87 goto out;
88 }
89 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
90 res = 0;
91 out:
92 spin_unlock(&svc_xprt_class_lock);
93 return res;
94 }
95 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
96
97 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
98 {
99 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
100 spin_lock(&svc_xprt_class_lock);
101 list_del_init(&xcl->xcl_list);
102 spin_unlock(&svc_xprt_class_lock);
103 }
104 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
105
106 /*
107 * Format the transport list for printing
108 */
109 int svc_print_xprts(char *buf, int maxlen)
110 {
111 struct svc_xprt_class *xcl;
112 char tmpstr[80];
113 int len = 0;
114 buf[0] = '\0';
115
116 spin_lock(&svc_xprt_class_lock);
117 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
118 int slen;
119
120 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
121 slen = strlen(tmpstr);
122 if (len + slen > maxlen)
123 break;
124 len += slen;
125 strcat(buf, tmpstr);
126 }
127 spin_unlock(&svc_xprt_class_lock);
128
129 return len;
130 }
131
132 static void svc_xprt_free(struct kref *kref)
133 {
134 struct svc_xprt *xprt =
135 container_of(kref, struct svc_xprt, xpt_ref);
136 struct module *owner = xprt->xpt_class->xcl_owner;
137 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
138 svcauth_unix_info_release(xprt);
139 put_net(xprt->xpt_net);
140 /* See comment on corresponding get in xs_setup_bc_tcp(): */
141 if (xprt->xpt_bc_xprt)
142 xprt_put(xprt->xpt_bc_xprt);
143 if (xprt->xpt_bc_xps)
144 xprt_switch_put(xprt->xpt_bc_xps);
145 xprt->xpt_ops->xpo_free(xprt);
146 module_put(owner);
147 }
148
149 void svc_xprt_put(struct svc_xprt *xprt)
150 {
151 kref_put(&xprt->xpt_ref, svc_xprt_free);
152 }
153 EXPORT_SYMBOL_GPL(svc_xprt_put);
154
155 /*
156 * Called by transport drivers to initialize the transport independent
157 * portion of the transport instance.
158 */
159 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
160 struct svc_xprt *xprt, struct svc_serv *serv)
161 {
162 memset(xprt, 0, sizeof(*xprt));
163 xprt->xpt_class = xcl;
164 xprt->xpt_ops = xcl->xcl_ops;
165 kref_init(&xprt->xpt_ref);
166 xprt->xpt_server = serv;
167 INIT_LIST_HEAD(&xprt->xpt_list);
168 INIT_LIST_HEAD(&xprt->xpt_ready);
169 INIT_LIST_HEAD(&xprt->xpt_deferred);
170 INIT_LIST_HEAD(&xprt->xpt_users);
171 mutex_init(&xprt->xpt_mutex);
172 spin_lock_init(&xprt->xpt_lock);
173 set_bit(XPT_BUSY, &xprt->xpt_flags);
174 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
175 xprt->xpt_net = get_net(net);
176 }
177 EXPORT_SYMBOL_GPL(svc_xprt_init);
178
179 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
180 struct svc_serv *serv,
181 struct net *net,
182 const int family,
183 const unsigned short port,
184 int flags)
185 {
186 struct sockaddr_in sin = {
187 .sin_family = AF_INET,
188 .sin_addr.s_addr = htonl(INADDR_ANY),
189 .sin_port = htons(port),
190 };
191 #if IS_ENABLED(CONFIG_IPV6)
192 struct sockaddr_in6 sin6 = {
193 .sin6_family = AF_INET6,
194 .sin6_addr = IN6ADDR_ANY_INIT,
195 .sin6_port = htons(port),
196 };
197 #endif
198 struct sockaddr *sap;
199 size_t len;
200
201 switch (family) {
202 case PF_INET:
203 sap = (struct sockaddr *)&sin;
204 len = sizeof(sin);
205 break;
206 #if IS_ENABLED(CONFIG_IPV6)
207 case PF_INET6:
208 sap = (struct sockaddr *)&sin6;
209 len = sizeof(sin6);
210 break;
211 #endif
212 default:
213 return ERR_PTR(-EAFNOSUPPORT);
214 }
215
216 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
217 }
218
219 /*
220 * svc_xprt_received conditionally queues the transport for processing
221 * by another thread. The caller must hold the XPT_BUSY bit and must
222 * not thereafter touch transport data.
223 *
224 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
225 * insufficient) data.
226 */
227 static void svc_xprt_received(struct svc_xprt *xprt)
228 {
229 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
230 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
231 return;
232 }
233
234 /* As soon as we clear busy, the xprt could be closed and
235 * 'put', so we need a reference to call svc_enqueue_xprt with:
236 */
237 svc_xprt_get(xprt);
238 smp_mb__before_atomic();
239 clear_bit(XPT_BUSY, &xprt->xpt_flags);
240 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
241 svc_xprt_put(xprt);
242 }
243
244 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
245 {
246 clear_bit(XPT_TEMP, &new->xpt_flags);
247 spin_lock_bh(&serv->sv_lock);
248 list_add(&new->xpt_list, &serv->sv_permsocks);
249 spin_unlock_bh(&serv->sv_lock);
250 svc_xprt_received(new);
251 }
252
253 static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
254 struct net *net, const int family,
255 const unsigned short port, int flags)
256 {
257 struct svc_xprt_class *xcl;
258
259 spin_lock(&svc_xprt_class_lock);
260 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
261 struct svc_xprt *newxprt;
262 unsigned short newport;
263
264 if (strcmp(xprt_name, xcl->xcl_name))
265 continue;
266
267 if (!try_module_get(xcl->xcl_owner))
268 goto err;
269
270 spin_unlock(&svc_xprt_class_lock);
271 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
272 if (IS_ERR(newxprt)) {
273 module_put(xcl->xcl_owner);
274 return PTR_ERR(newxprt);
275 }
276 svc_add_new_perm_xprt(serv, newxprt);
277 newport = svc_xprt_local_port(newxprt);
278 return newport;
279 }
280 err:
281 spin_unlock(&svc_xprt_class_lock);
282 /* This errno is exposed to user space. Provide a reasonable
283 * perror msg for a bad transport. */
284 return -EPROTONOSUPPORT;
285 }
286
287 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
288 struct net *net, const int family,
289 const unsigned short port, int flags)
290 {
291 int err;
292
293 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
294 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
295 if (err == -EPROTONOSUPPORT) {
296 request_module("svc%s", xprt_name);
297 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
298 }
299 if (err)
300 dprintk("svc: transport %s not found, err %d\n",
301 xprt_name, err);
302 return err;
303 }
304 EXPORT_SYMBOL_GPL(svc_create_xprt);
305
306 /*
307 * Copy the local and remote xprt addresses to the rqstp structure
308 */
309 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
310 {
311 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
312 rqstp->rq_addrlen = xprt->xpt_remotelen;
313
314 /*
315 * Destination address in request is needed for binding the
316 * source address in RPC replies/callbacks later.
317 */
318 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
319 rqstp->rq_daddrlen = xprt->xpt_locallen;
320 }
321 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
322
323 /**
324 * svc_print_addr - Format rq_addr field for printing
325 * @rqstp: svc_rqst struct containing address to print
326 * @buf: target buffer for formatted address
327 * @len: length of target buffer
328 *
329 */
330 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
331 {
332 return __svc_print_addr(svc_addr(rqstp), buf, len);
333 }
334 EXPORT_SYMBOL_GPL(svc_print_addr);
335
336 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
337 {
338 unsigned int limit = svc_rpc_per_connection_limit;
339 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
340
341 return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
342 }
343
344 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
345 {
346 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
347 if (!svc_xprt_slots_in_range(xprt))
348 return false;
349 atomic_inc(&xprt->xpt_nr_rqsts);
350 set_bit(RQ_DATA, &rqstp->rq_flags);
351 }
352 return true;
353 }
354
355 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
356 {
357 struct svc_xprt *xprt = rqstp->rq_xprt;
358 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
359 atomic_dec(&xprt->xpt_nr_rqsts);
360 svc_xprt_enqueue(xprt);
361 }
362 }
363
364 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
365 {
366 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
367 return true;
368 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) {
369 if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
370 svc_xprt_slots_in_range(xprt))
371 return true;
372 trace_svc_xprt_no_write_space(xprt);
373 return false;
374 }
375 return false;
376 }
377
378 void svc_xprt_do_enqueue(struct svc_xprt *xprt)
379 {
380 struct svc_pool *pool;
381 struct svc_rqst *rqstp = NULL;
382 int cpu;
383
384 if (!svc_xprt_has_something_to_do(xprt))
385 goto out;
386
387 /* Mark transport as busy. It will remain in this state until
388 * the provider calls svc_xprt_received. We update XPT_BUSY
389 * atomically because it also guards against trying to enqueue
390 * the transport twice.
391 */
392 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
393 /* Don't enqueue transport while already enqueued */
394 dprintk("svc: transport %p busy, not enqueued\n", xprt);
395 goto out;
396 }
397
398 cpu = get_cpu();
399 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
400
401 atomic_long_inc(&pool->sp_stats.packets);
402
403 dprintk("svc: transport %p put into queue\n", xprt);
404 spin_lock_bh(&pool->sp_lock);
405 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
406 pool->sp_stats.sockets_queued++;
407 spin_unlock_bh(&pool->sp_lock);
408
409 /* find a thread for this xprt */
410 rcu_read_lock();
411 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
412 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
413 continue;
414 atomic_long_inc(&pool->sp_stats.threads_woken);
415 wake_up_process(rqstp->rq_task);
416 goto out_unlock;
417 }
418 set_bit(SP_CONGESTED, &pool->sp_flags);
419 rqstp = NULL;
420 out_unlock:
421 rcu_read_unlock();
422 put_cpu();
423 out:
424 trace_svc_xprt_do_enqueue(xprt, rqstp);
425 }
426 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
427
428 /*
429 * Queue up a transport with data pending. If there are idle nfsd
430 * processes, wake 'em up.
431 *
432 */
433 void svc_xprt_enqueue(struct svc_xprt *xprt)
434 {
435 if (test_bit(XPT_BUSY, &xprt->xpt_flags))
436 return;
437 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
438 }
439 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
440
441 /*
442 * Dequeue the first transport, if there is one.
443 */
444 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
445 {
446 struct svc_xprt *xprt = NULL;
447
448 if (list_empty(&pool->sp_sockets))
449 goto out;
450
451 spin_lock_bh(&pool->sp_lock);
452 if (likely(!list_empty(&pool->sp_sockets))) {
453 xprt = list_first_entry(&pool->sp_sockets,
454 struct svc_xprt, xpt_ready);
455 list_del_init(&xprt->xpt_ready);
456 svc_xprt_get(xprt);
457
458 dprintk("svc: transport %p dequeued, inuse=%d\n",
459 xprt, kref_read(&xprt->xpt_ref));
460 }
461 spin_unlock_bh(&pool->sp_lock);
462 out:
463 trace_svc_xprt_dequeue(xprt);
464 return xprt;
465 }
466
467 /**
468 * svc_reserve - change the space reserved for the reply to a request.
469 * @rqstp: The request in question
470 * @space: new max space to reserve
471 *
472 * Each request reserves some space on the output queue of the transport
473 * to make sure the reply fits. This function reduces that reserved
474 * space to be the amount of space used already, plus @space.
475 *
476 */
477 void svc_reserve(struct svc_rqst *rqstp, int space)
478 {
479 struct svc_xprt *xprt = rqstp->rq_xprt;
480
481 space += rqstp->rq_res.head[0].iov_len;
482
483 if (xprt && space < rqstp->rq_reserved) {
484 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
485 rqstp->rq_reserved = space;
486
487 svc_xprt_enqueue(xprt);
488 }
489 }
490 EXPORT_SYMBOL_GPL(svc_reserve);
491
492 static void svc_xprt_release(struct svc_rqst *rqstp)
493 {
494 struct svc_xprt *xprt = rqstp->rq_xprt;
495
496 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
497
498 kfree(rqstp->rq_deferred);
499 rqstp->rq_deferred = NULL;
500
501 svc_free_res_pages(rqstp);
502 rqstp->rq_res.page_len = 0;
503 rqstp->rq_res.page_base = 0;
504
505 /* Reset response buffer and release
506 * the reservation.
507 * But first, check that enough space was reserved
508 * for the reply, otherwise we have a bug!
509 */
510 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
511 printk(KERN_ERR "RPC request reserved %d but used %d\n",
512 rqstp->rq_reserved,
513 rqstp->rq_res.len);
514
515 rqstp->rq_res.head[0].iov_len = 0;
516 svc_reserve(rqstp, 0);
517 svc_xprt_release_slot(rqstp);
518 rqstp->rq_xprt = NULL;
519 svc_xprt_put(xprt);
520 }
521
522 /*
523 * Some svc_serv's will have occasional work to do, even when a xprt is not
524 * waiting to be serviced. This function is there to "kick" a task in one of
525 * those services so that it can wake up and do that work. Note that we only
526 * bother with pool 0 as we don't need to wake up more than one thread for
527 * this purpose.
528 */
529 void svc_wake_up(struct svc_serv *serv)
530 {
531 struct svc_rqst *rqstp;
532 struct svc_pool *pool;
533
534 pool = &serv->sv_pools[0];
535
536 rcu_read_lock();
537 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
538 /* skip any that aren't queued */
539 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
540 continue;
541 rcu_read_unlock();
542 dprintk("svc: daemon %p woken up.\n", rqstp);
543 wake_up_process(rqstp->rq_task);
544 trace_svc_wake_up(rqstp->rq_task->pid);
545 return;
546 }
547 rcu_read_unlock();
548
549 /* No free entries available */
550 set_bit(SP_TASK_PENDING, &pool->sp_flags);
551 smp_wmb();
552 trace_svc_wake_up(0);
553 }
554 EXPORT_SYMBOL_GPL(svc_wake_up);
555
556 int svc_port_is_privileged(struct sockaddr *sin)
557 {
558 switch (sin->sa_family) {
559 case AF_INET:
560 return ntohs(((struct sockaddr_in *)sin)->sin_port)
561 < PROT_SOCK;
562 case AF_INET6:
563 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
564 < PROT_SOCK;
565 default:
566 return 0;
567 }
568 }
569
570 /*
571 * Make sure that we don't have too many active connections. If we have,
572 * something must be dropped. It's not clear what will happen if we allow
573 * "too many" connections, but when dealing with network-facing software,
574 * we have to code defensively. Here we do that by imposing hard limits.
575 *
576 * There's no point in trying to do random drop here for DoS
577 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
578 * attacker can easily beat that.
579 *
580 * The only somewhat efficient mechanism would be if drop old
581 * connections from the same IP first. But right now we don't even
582 * record the client IP in svc_sock.
583 *
584 * single-threaded services that expect a lot of clients will probably
585 * need to set sv_maxconn to override the default value which is based
586 * on the number of threads
587 */
588 static void svc_check_conn_limits(struct svc_serv *serv)
589 {
590 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
591 (serv->sv_nrthreads+3) * 20;
592
593 if (serv->sv_tmpcnt > limit) {
594 struct svc_xprt *xprt = NULL;
595 spin_lock_bh(&serv->sv_lock);
596 if (!list_empty(&serv->sv_tempsocks)) {
597 /* Try to help the admin */
598 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
599 serv->sv_name, serv->sv_maxconn ?
600 "max number of connections" :
601 "number of threads");
602 /*
603 * Always select the oldest connection. It's not fair,
604 * but so is life
605 */
606 xprt = list_entry(serv->sv_tempsocks.prev,
607 struct svc_xprt,
608 xpt_list);
609 set_bit(XPT_CLOSE, &xprt->xpt_flags);
610 svc_xprt_get(xprt);
611 }
612 spin_unlock_bh(&serv->sv_lock);
613
614 if (xprt) {
615 svc_xprt_enqueue(xprt);
616 svc_xprt_put(xprt);
617 }
618 }
619 }
620
621 static int svc_alloc_arg(struct svc_rqst *rqstp)
622 {
623 struct svc_serv *serv = rqstp->rq_server;
624 struct xdr_buf *arg;
625 int pages;
626 int i;
627
628 /* now allocate needed pages. If we get a failure, sleep briefly */
629 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
630 if (pages > RPCSVC_MAXPAGES) {
631 pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n",
632 pages, RPCSVC_MAXPAGES);
633 /* use as many pages as possible */
634 pages = RPCSVC_MAXPAGES;
635 }
636 for (i = 0; i < pages ; i++)
637 while (rqstp->rq_pages[i] == NULL) {
638 struct page *p = alloc_page(GFP_KERNEL);
639 if (!p) {
640 set_current_state(TASK_INTERRUPTIBLE);
641 if (signalled() || kthread_should_stop()) {
642 set_current_state(TASK_RUNNING);
643 return -EINTR;
644 }
645 schedule_timeout(msecs_to_jiffies(500));
646 }
647 rqstp->rq_pages[i] = p;
648 }
649 rqstp->rq_page_end = &rqstp->rq_pages[i];
650 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
651
652 /* Make arg->head point to first page and arg->pages point to rest */
653 arg = &rqstp->rq_arg;
654 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
655 arg->head[0].iov_len = PAGE_SIZE;
656 arg->pages = rqstp->rq_pages + 1;
657 arg->page_base = 0;
658 /* save at least one page for response */
659 arg->page_len = (pages-2)*PAGE_SIZE;
660 arg->len = (pages-1)*PAGE_SIZE;
661 arg->tail[0].iov_len = 0;
662 return 0;
663 }
664
665 static bool
666 rqst_should_sleep(struct svc_rqst *rqstp)
667 {
668 struct svc_pool *pool = rqstp->rq_pool;
669
670 /* did someone call svc_wake_up? */
671 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
672 return false;
673
674 /* was a socket queued? */
675 if (!list_empty(&pool->sp_sockets))
676 return false;
677
678 /* are we shutting down? */
679 if (signalled() || kthread_should_stop())
680 return false;
681
682 /* are we freezing? */
683 if (freezing(current))
684 return false;
685
686 return true;
687 }
688
689 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
690 {
691 struct svc_pool *pool = rqstp->rq_pool;
692 long time_left = 0;
693
694 /* rq_xprt should be clear on entry */
695 WARN_ON_ONCE(rqstp->rq_xprt);
696
697 rqstp->rq_xprt = svc_xprt_dequeue(pool);
698 if (rqstp->rq_xprt)
699 goto out_found;
700
701 /*
702 * We have to be able to interrupt this wait
703 * to bring down the daemons ...
704 */
705 set_current_state(TASK_INTERRUPTIBLE);
706 smp_mb__before_atomic();
707 clear_bit(SP_CONGESTED, &pool->sp_flags);
708 clear_bit(RQ_BUSY, &rqstp->rq_flags);
709 smp_mb__after_atomic();
710
711 if (likely(rqst_should_sleep(rqstp)))
712 time_left = schedule_timeout(timeout);
713 else
714 __set_current_state(TASK_RUNNING);
715
716 try_to_freeze();
717
718 set_bit(RQ_BUSY, &rqstp->rq_flags);
719 smp_mb__after_atomic();
720 rqstp->rq_xprt = svc_xprt_dequeue(pool);
721 if (rqstp->rq_xprt)
722 goto out_found;
723
724 if (!time_left)
725 atomic_long_inc(&pool->sp_stats.threads_timedout);
726
727 if (signalled() || kthread_should_stop())
728 return ERR_PTR(-EINTR);
729 return ERR_PTR(-EAGAIN);
730 out_found:
731 /* Normally we will wait up to 5 seconds for any required
732 * cache information to be provided.
733 */
734 if (!test_bit(SP_CONGESTED, &pool->sp_flags))
735 rqstp->rq_chandle.thread_wait = 5*HZ;
736 else
737 rqstp->rq_chandle.thread_wait = 1*HZ;
738 return rqstp->rq_xprt;
739 }
740
741 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
742 {
743 spin_lock_bh(&serv->sv_lock);
744 set_bit(XPT_TEMP, &newxpt->xpt_flags);
745 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
746 serv->sv_tmpcnt++;
747 if (serv->sv_temptimer.function == NULL) {
748 /* setup timer to age temp transports */
749 serv->sv_temptimer.function = svc_age_temp_xprts;
750 mod_timer(&serv->sv_temptimer,
751 jiffies + svc_conn_age_period * HZ);
752 }
753 spin_unlock_bh(&serv->sv_lock);
754 svc_xprt_received(newxpt);
755 }
756
757 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
758 {
759 struct svc_serv *serv = rqstp->rq_server;
760 int len = 0;
761
762 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
763 dprintk("svc_recv: found XPT_CLOSE\n");
764 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
765 xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
766 svc_delete_xprt(xprt);
767 /* Leave XPT_BUSY set on the dead xprt: */
768 goto out;
769 }
770 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
771 struct svc_xprt *newxpt;
772 /*
773 * We know this module_get will succeed because the
774 * listener holds a reference too
775 */
776 __module_get(xprt->xpt_class->xcl_owner);
777 svc_check_conn_limits(xprt->xpt_server);
778 newxpt = xprt->xpt_ops->xpo_accept(xprt);
779 if (newxpt)
780 svc_add_new_temp_xprt(serv, newxpt);
781 else
782 module_put(xprt->xpt_class->xcl_owner);
783 } else if (svc_xprt_reserve_slot(rqstp, xprt)) {
784 /* XPT_DATA|XPT_DEFERRED case: */
785 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
786 rqstp, rqstp->rq_pool->sp_id, xprt,
787 kref_read(&xprt->xpt_ref));
788 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
789 if (rqstp->rq_deferred)
790 len = svc_deferred_recv(rqstp);
791 else
792 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
793 dprintk("svc: got len=%d\n", len);
794 rqstp->rq_reserved = serv->sv_max_mesg;
795 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
796 }
797 /* clear XPT_BUSY: */
798 svc_xprt_received(xprt);
799 out:
800 trace_svc_handle_xprt(xprt, len);
801 return len;
802 }
803
804 /*
805 * Receive the next request on any transport. This code is carefully
806 * organised not to touch any cachelines in the shared svc_serv
807 * structure, only cachelines in the local svc_pool.
808 */
809 int svc_recv(struct svc_rqst *rqstp, long timeout)
810 {
811 struct svc_xprt *xprt = NULL;
812 struct svc_serv *serv = rqstp->rq_server;
813 int len, err;
814
815 dprintk("svc: server %p waiting for data (to = %ld)\n",
816 rqstp, timeout);
817
818 if (rqstp->rq_xprt)
819 printk(KERN_ERR
820 "svc_recv: service %p, transport not NULL!\n",
821 rqstp);
822
823 err = svc_alloc_arg(rqstp);
824 if (err)
825 goto out;
826
827 try_to_freeze();
828 cond_resched();
829 err = -EINTR;
830 if (signalled() || kthread_should_stop())
831 goto out;
832
833 xprt = svc_get_next_xprt(rqstp, timeout);
834 if (IS_ERR(xprt)) {
835 err = PTR_ERR(xprt);
836 goto out;
837 }
838
839 len = svc_handle_xprt(rqstp, xprt);
840
841 /* No data, incomplete (TCP) read, or accept() */
842 err = -EAGAIN;
843 if (len <= 0)
844 goto out_release;
845
846 clear_bit(XPT_OLD, &xprt->xpt_flags);
847
848 if (xprt->xpt_ops->xpo_secure_port(rqstp))
849 set_bit(RQ_SECURE, &rqstp->rq_flags);
850 else
851 clear_bit(RQ_SECURE, &rqstp->rq_flags);
852 rqstp->rq_chandle.defer = svc_defer;
853 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
854
855 if (serv->sv_stats)
856 serv->sv_stats->netcnt++;
857 trace_svc_recv(rqstp, len);
858 return len;
859 out_release:
860 rqstp->rq_res.len = 0;
861 svc_xprt_release(rqstp);
862 out:
863 trace_svc_recv(rqstp, err);
864 return err;
865 }
866 EXPORT_SYMBOL_GPL(svc_recv);
867
868 /*
869 * Drop request
870 */
871 void svc_drop(struct svc_rqst *rqstp)
872 {
873 trace_svc_drop(rqstp);
874 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
875 svc_xprt_release(rqstp);
876 }
877 EXPORT_SYMBOL_GPL(svc_drop);
878
879 /*
880 * Return reply to client.
881 */
882 int svc_send(struct svc_rqst *rqstp)
883 {
884 struct svc_xprt *xprt;
885 int len = -EFAULT;
886 struct xdr_buf *xb;
887
888 xprt = rqstp->rq_xprt;
889 if (!xprt)
890 goto out;
891
892 /* release the receive skb before sending the reply */
893 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
894
895 /* calculate over-all length */
896 xb = &rqstp->rq_res;
897 xb->len = xb->head[0].iov_len +
898 xb->page_len +
899 xb->tail[0].iov_len;
900
901 /* Grab mutex to serialize outgoing data. */
902 mutex_lock(&xprt->xpt_mutex);
903 if (test_bit(XPT_DEAD, &xprt->xpt_flags)
904 || test_bit(XPT_CLOSE, &xprt->xpt_flags))
905 len = -ENOTCONN;
906 else
907 len = xprt->xpt_ops->xpo_sendto(rqstp);
908 mutex_unlock(&xprt->xpt_mutex);
909 rpc_wake_up(&xprt->xpt_bc_pending);
910 svc_xprt_release(rqstp);
911
912 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
913 len = 0;
914 out:
915 trace_svc_send(rqstp, len);
916 return len;
917 }
918
919 /*
920 * Timer function to close old temporary transports, using
921 * a mark-and-sweep algorithm.
922 */
923 static void svc_age_temp_xprts(struct timer_list *t)
924 {
925 struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
926 struct svc_xprt *xprt;
927 struct list_head *le, *next;
928
929 dprintk("svc_age_temp_xprts\n");
930
931 if (!spin_trylock_bh(&serv->sv_lock)) {
932 /* busy, try again 1 sec later */
933 dprintk("svc_age_temp_xprts: busy\n");
934 mod_timer(&serv->sv_temptimer, jiffies + HZ);
935 return;
936 }
937
938 list_for_each_safe(le, next, &serv->sv_tempsocks) {
939 xprt = list_entry(le, struct svc_xprt, xpt_list);
940
941 /* First time through, just mark it OLD. Second time
942 * through, close it. */
943 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
944 continue;
945 if (kref_read(&xprt->xpt_ref) > 1 ||
946 test_bit(XPT_BUSY, &xprt->xpt_flags))
947 continue;
948 list_del_init(le);
949 set_bit(XPT_CLOSE, &xprt->xpt_flags);
950 dprintk("queuing xprt %p for closing\n", xprt);
951
952 /* a thread will dequeue and close it soon */
953 svc_xprt_enqueue(xprt);
954 }
955 spin_unlock_bh(&serv->sv_lock);
956
957 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
958 }
959
960 /* Close temporary transports whose xpt_local matches server_addr immediately
961 * instead of waiting for them to be picked up by the timer.
962 *
963 * This is meant to be called from a notifier_block that runs when an ip
964 * address is deleted.
965 */
966 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
967 {
968 struct svc_xprt *xprt;
969 struct list_head *le, *next;
970 LIST_HEAD(to_be_closed);
971
972 spin_lock_bh(&serv->sv_lock);
973 list_for_each_safe(le, next, &serv->sv_tempsocks) {
974 xprt = list_entry(le, struct svc_xprt, xpt_list);
975 if (rpc_cmp_addr(server_addr, (struct sockaddr *)
976 &xprt->xpt_local)) {
977 dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
978 list_move(le, &to_be_closed);
979 }
980 }
981 spin_unlock_bh(&serv->sv_lock);
982
983 while (!list_empty(&to_be_closed)) {
984 le = to_be_closed.next;
985 list_del_init(le);
986 xprt = list_entry(le, struct svc_xprt, xpt_list);
987 set_bit(XPT_CLOSE, &xprt->xpt_flags);
988 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
989 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
990 xprt);
991 svc_xprt_enqueue(xprt);
992 }
993 }
994 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
995
996 static void call_xpt_users(struct svc_xprt *xprt)
997 {
998 struct svc_xpt_user *u;
999
1000 spin_lock(&xprt->xpt_lock);
1001 while (!list_empty(&xprt->xpt_users)) {
1002 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1003 list_del_init(&u->list);
1004 u->callback(u);
1005 }
1006 spin_unlock(&xprt->xpt_lock);
1007 }
1008
1009 /*
1010 * Remove a dead transport
1011 */
1012 static void svc_delete_xprt(struct svc_xprt *xprt)
1013 {
1014 struct svc_serv *serv = xprt->xpt_server;
1015 struct svc_deferred_req *dr;
1016
1017 /* Only do this once */
1018 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1019 BUG();
1020
1021 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1022 xprt->xpt_ops->xpo_detach(xprt);
1023
1024 spin_lock_bh(&serv->sv_lock);
1025 list_del_init(&xprt->xpt_list);
1026 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1027 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1028 serv->sv_tmpcnt--;
1029 spin_unlock_bh(&serv->sv_lock);
1030
1031 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1032 kfree(dr);
1033
1034 call_xpt_users(xprt);
1035 svc_xprt_put(xprt);
1036 }
1037
1038 void svc_close_xprt(struct svc_xprt *xprt)
1039 {
1040 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1041 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1042 /* someone else will have to effect the close */
1043 return;
1044 /*
1045 * We expect svc_close_xprt() to work even when no threads are
1046 * running (e.g., while configuring the server before starting
1047 * any threads), so if the transport isn't busy, we delete
1048 * it ourself:
1049 */
1050 svc_delete_xprt(xprt);
1051 }
1052 EXPORT_SYMBOL_GPL(svc_close_xprt);
1053
1054 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1055 {
1056 struct svc_xprt *xprt;
1057 int ret = 0;
1058
1059 spin_lock(&serv->sv_lock);
1060 list_for_each_entry(xprt, xprt_list, xpt_list) {
1061 if (xprt->xpt_net != net)
1062 continue;
1063 ret++;
1064 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1065 svc_xprt_enqueue(xprt);
1066 }
1067 spin_unlock(&serv->sv_lock);
1068 return ret;
1069 }
1070
1071 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1072 {
1073 struct svc_pool *pool;
1074 struct svc_xprt *xprt;
1075 struct svc_xprt *tmp;
1076 int i;
1077
1078 for (i = 0; i < serv->sv_nrpools; i++) {
1079 pool = &serv->sv_pools[i];
1080
1081 spin_lock_bh(&pool->sp_lock);
1082 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1083 if (xprt->xpt_net != net)
1084 continue;
1085 list_del_init(&xprt->xpt_ready);
1086 spin_unlock_bh(&pool->sp_lock);
1087 return xprt;
1088 }
1089 spin_unlock_bh(&pool->sp_lock);
1090 }
1091 return NULL;
1092 }
1093
1094 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1095 {
1096 struct svc_xprt *xprt;
1097
1098 while ((xprt = svc_dequeue_net(serv, net))) {
1099 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1100 svc_delete_xprt(xprt);
1101 }
1102 }
1103
1104 /*
1105 * Server threads may still be running (especially in the case where the
1106 * service is still running in other network namespaces).
1107 *
1108 * So we shut down sockets the same way we would on a running server, by
1109 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1110 * the close. In the case there are no such other threads,
1111 * threads running, svc_clean_up_xprts() does a simple version of a
1112 * server's main event loop, and in the case where there are other
1113 * threads, we may need to wait a little while and then check again to
1114 * see if they're done.
1115 */
1116 void svc_close_net(struct svc_serv *serv, struct net *net)
1117 {
1118 int delay = 0;
1119
1120 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1121 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1122
1123 svc_clean_up_xprts(serv, net);
1124 msleep(delay++);
1125 }
1126 }
1127
1128 /*
1129 * Handle defer and revisit of requests
1130 */
1131
1132 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1133 {
1134 struct svc_deferred_req *dr =
1135 container_of(dreq, struct svc_deferred_req, handle);
1136 struct svc_xprt *xprt = dr->xprt;
1137
1138 spin_lock(&xprt->xpt_lock);
1139 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1140 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1141 spin_unlock(&xprt->xpt_lock);
1142 dprintk("revisit canceled\n");
1143 svc_xprt_put(xprt);
1144 trace_svc_drop_deferred(dr);
1145 kfree(dr);
1146 return;
1147 }
1148 dprintk("revisit queued\n");
1149 dr->xprt = NULL;
1150 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1151 spin_unlock(&xprt->xpt_lock);
1152 svc_xprt_enqueue(xprt);
1153 svc_xprt_put(xprt);
1154 }
1155
1156 /*
1157 * Save the request off for later processing. The request buffer looks
1158 * like this:
1159 *
1160 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1161 *
1162 * This code can only handle requests that consist of an xprt-header
1163 * and rpc-header.
1164 */
1165 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1166 {
1167 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1168 struct svc_deferred_req *dr;
1169
1170 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1171 return NULL; /* if more than a page, give up FIXME */
1172 if (rqstp->rq_deferred) {
1173 dr = rqstp->rq_deferred;
1174 rqstp->rq_deferred = NULL;
1175 } else {
1176 size_t skip;
1177 size_t size;
1178 /* FIXME maybe discard if size too large */
1179 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1180 dr = kmalloc(size, GFP_KERNEL);
1181 if (dr == NULL)
1182 return NULL;
1183
1184 dr->handle.owner = rqstp->rq_server;
1185 dr->prot = rqstp->rq_prot;
1186 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1187 dr->addrlen = rqstp->rq_addrlen;
1188 dr->daddr = rqstp->rq_daddr;
1189 dr->argslen = rqstp->rq_arg.len >> 2;
1190 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1191
1192 /* back up head to the start of the buffer and copy */
1193 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1194 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1195 dr->argslen << 2);
1196 }
1197 svc_xprt_get(rqstp->rq_xprt);
1198 dr->xprt = rqstp->rq_xprt;
1199 set_bit(RQ_DROPME, &rqstp->rq_flags);
1200
1201 dr->handle.revisit = svc_revisit;
1202 trace_svc_defer(rqstp);
1203 return &dr->handle;
1204 }
1205
1206 /*
1207 * recv data from a deferred request into an active one
1208 */
1209 static int svc_deferred_recv(struct svc_rqst *rqstp)
1210 {
1211 struct svc_deferred_req *dr = rqstp->rq_deferred;
1212
1213 /* setup iov_base past transport header */
1214 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1215 /* The iov_len does not include the transport header bytes */
1216 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1217 rqstp->rq_arg.page_len = 0;
1218 /* The rq_arg.len includes the transport header bytes */
1219 rqstp->rq_arg.len = dr->argslen<<2;
1220 rqstp->rq_prot = dr->prot;
1221 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1222 rqstp->rq_addrlen = dr->addrlen;
1223 /* Save off transport header len in case we get deferred again */
1224 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1225 rqstp->rq_daddr = dr->daddr;
1226 rqstp->rq_respages = rqstp->rq_pages;
1227 return (dr->argslen<<2) - dr->xprt_hlen;
1228 }
1229
1230
1231 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1232 {
1233 struct svc_deferred_req *dr = NULL;
1234
1235 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1236 return NULL;
1237 spin_lock(&xprt->xpt_lock);
1238 if (!list_empty(&xprt->xpt_deferred)) {
1239 dr = list_entry(xprt->xpt_deferred.next,
1240 struct svc_deferred_req,
1241 handle.recent);
1242 list_del_init(&dr->handle.recent);
1243 trace_svc_revisit_deferred(dr);
1244 } else
1245 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1246 spin_unlock(&xprt->xpt_lock);
1247 return dr;
1248 }
1249
1250 /**
1251 * svc_find_xprt - find an RPC transport instance
1252 * @serv: pointer to svc_serv to search
1253 * @xcl_name: C string containing transport's class name
1254 * @net: owner net pointer
1255 * @af: Address family of transport's local address
1256 * @port: transport's IP port number
1257 *
1258 * Return the transport instance pointer for the endpoint accepting
1259 * connections/peer traffic from the specified transport class,
1260 * address family and port.
1261 *
1262 * Specifying 0 for the address family or port is effectively a
1263 * wild-card, and will result in matching the first transport in the
1264 * service's list that has a matching class name.
1265 */
1266 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1267 struct net *net, const sa_family_t af,
1268 const unsigned short port)
1269 {
1270 struct svc_xprt *xprt;
1271 struct svc_xprt *found = NULL;
1272
1273 /* Sanity check the args */
1274 if (serv == NULL || xcl_name == NULL)
1275 return found;
1276
1277 spin_lock_bh(&serv->sv_lock);
1278 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1279 if (xprt->xpt_net != net)
1280 continue;
1281 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1282 continue;
1283 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1284 continue;
1285 if (port != 0 && port != svc_xprt_local_port(xprt))
1286 continue;
1287 found = xprt;
1288 svc_xprt_get(xprt);
1289 break;
1290 }
1291 spin_unlock_bh(&serv->sv_lock);
1292 return found;
1293 }
1294 EXPORT_SYMBOL_GPL(svc_find_xprt);
1295
1296 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1297 char *pos, int remaining)
1298 {
1299 int len;
1300
1301 len = snprintf(pos, remaining, "%s %u\n",
1302 xprt->xpt_class->xcl_name,
1303 svc_xprt_local_port(xprt));
1304 if (len >= remaining)
1305 return -ENAMETOOLONG;
1306 return len;
1307 }
1308
1309 /**
1310 * svc_xprt_names - format a buffer with a list of transport names
1311 * @serv: pointer to an RPC service
1312 * @buf: pointer to a buffer to be filled in
1313 * @buflen: length of buffer to be filled in
1314 *
1315 * Fills in @buf with a string containing a list of transport names,
1316 * each name terminated with '\n'.
1317 *
1318 * Returns positive length of the filled-in string on success; otherwise
1319 * a negative errno value is returned if an error occurs.
1320 */
1321 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1322 {
1323 struct svc_xprt *xprt;
1324 int len, totlen;
1325 char *pos;
1326
1327 /* Sanity check args */
1328 if (!serv)
1329 return 0;
1330
1331 spin_lock_bh(&serv->sv_lock);
1332
1333 pos = buf;
1334 totlen = 0;
1335 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1336 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1337 if (len < 0) {
1338 *buf = '\0';
1339 totlen = len;
1340 }
1341 if (len <= 0)
1342 break;
1343
1344 pos += len;
1345 totlen += len;
1346 }
1347
1348 spin_unlock_bh(&serv->sv_lock);
1349 return totlen;
1350 }
1351 EXPORT_SYMBOL_GPL(svc_xprt_names);
1352
1353
1354 /*----------------------------------------------------------------------------*/
1355
1356 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1357 {
1358 unsigned int pidx = (unsigned int)*pos;
1359 struct svc_serv *serv = m->private;
1360
1361 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1362
1363 if (!pidx)
1364 return SEQ_START_TOKEN;
1365 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1366 }
1367
1368 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1369 {
1370 struct svc_pool *pool = p;
1371 struct svc_serv *serv = m->private;
1372
1373 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1374
1375 if (p == SEQ_START_TOKEN) {
1376 pool = &serv->sv_pools[0];
1377 } else {
1378 unsigned int pidx = (pool - &serv->sv_pools[0]);
1379 if (pidx < serv->sv_nrpools-1)
1380 pool = &serv->sv_pools[pidx+1];
1381 else
1382 pool = NULL;
1383 }
1384 ++*pos;
1385 return pool;
1386 }
1387
1388 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1389 {
1390 }
1391
1392 static int svc_pool_stats_show(struct seq_file *m, void *p)
1393 {
1394 struct svc_pool *pool = p;
1395
1396 if (p == SEQ_START_TOKEN) {
1397 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1398 return 0;
1399 }
1400
1401 seq_printf(m, "%u %lu %lu %lu %lu\n",
1402 pool->sp_id,
1403 (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1404 pool->sp_stats.sockets_queued,
1405 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1406 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1407
1408 return 0;
1409 }
1410
1411 static const struct seq_operations svc_pool_stats_seq_ops = {
1412 .start = svc_pool_stats_start,
1413 .next = svc_pool_stats_next,
1414 .stop = svc_pool_stats_stop,
1415 .show = svc_pool_stats_show,
1416 };
1417
1418 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1419 {
1420 int err;
1421
1422 err = seq_open(file, &svc_pool_stats_seq_ops);
1423 if (!err)
1424 ((struct seq_file *) file->private_data)->private = serv;
1425 return err;
1426 }
1427 EXPORT_SYMBOL(svc_pool_stats_open);
1428
1429 /*----------------------------------------------------------------------------*/