]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/sunrpc/svc_xprt.c
x86: add MULTIUSER dependency for KVM
[mirror_ubuntu-artful-kernel.git] / net / sunrpc / svc_xprt.c
1 /*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/addr.h>
14 #include <linux/sunrpc/stats.h>
15 #include <linux/sunrpc/svc_xprt.h>
16 #include <linux/sunrpc/svcsock.h>
17 #include <linux/sunrpc/xprt.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
20 #include <trace/events/sunrpc.h>
21
22 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
23
24 static unsigned int svc_rpc_per_connection_limit __read_mostly;
25 module_param(svc_rpc_per_connection_limit, uint, 0644);
26
27
28 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
29 static int svc_deferred_recv(struct svc_rqst *rqstp);
30 static struct cache_deferred_req *svc_defer(struct cache_req *req);
31 static void svc_age_temp_xprts(unsigned long closure);
32 static void svc_delete_xprt(struct svc_xprt *xprt);
33
34 /* apparently the "standard" is that clients close
35 * idle connections after 5 minutes, servers after
36 * 6 minutes
37 * http://www.connectathon.org/talks96/nfstcp.pdf
38 */
39 static int svc_conn_age_period = 6*60;
40
41 /* List of registered transport classes */
42 static DEFINE_SPINLOCK(svc_xprt_class_lock);
43 static LIST_HEAD(svc_xprt_class_list);
44
45 /* SMP locking strategy:
46 *
47 * svc_pool->sp_lock protects most of the fields of that pool.
48 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
49 * when both need to be taken (rare), svc_serv->sv_lock is first.
50 * The "service mutex" protects svc_serv->sv_nrthread.
51 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
52 * and the ->sk_info_authunix cache.
53 *
54 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
55 * enqueued multiply. During normal transport processing this bit
56 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
57 * Providers should not manipulate this bit directly.
58 *
59 * Some flags can be set to certain values at any time
60 * providing that certain rules are followed:
61 *
62 * XPT_CONN, XPT_DATA:
63 * - Can be set or cleared at any time.
64 * - After a set, svc_xprt_enqueue must be called to enqueue
65 * the transport for processing.
66 * - After a clear, the transport must be read/accepted.
67 * If this succeeds, it must be set again.
68 * XPT_CLOSE:
69 * - Can set at any time. It is never cleared.
70 * XPT_DEAD:
71 * - Can only be set while XPT_BUSY is held which ensures
72 * that no other thread will be using the transport or will
73 * try to set XPT_DEAD.
74 */
75 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
76 {
77 struct svc_xprt_class *cl;
78 int res = -EEXIST;
79
80 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
81
82 INIT_LIST_HEAD(&xcl->xcl_list);
83 spin_lock(&svc_xprt_class_lock);
84 /* Make sure there isn't already a class with the same name */
85 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
86 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
87 goto out;
88 }
89 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
90 res = 0;
91 out:
92 spin_unlock(&svc_xprt_class_lock);
93 return res;
94 }
95 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
96
97 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
98 {
99 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
100 spin_lock(&svc_xprt_class_lock);
101 list_del_init(&xcl->xcl_list);
102 spin_unlock(&svc_xprt_class_lock);
103 }
104 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
105
106 /*
107 * Format the transport list for printing
108 */
109 int svc_print_xprts(char *buf, int maxlen)
110 {
111 struct svc_xprt_class *xcl;
112 char tmpstr[80];
113 int len = 0;
114 buf[0] = '\0';
115
116 spin_lock(&svc_xprt_class_lock);
117 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
118 int slen;
119
120 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
121 slen = strlen(tmpstr);
122 if (len + slen > maxlen)
123 break;
124 len += slen;
125 strcat(buf, tmpstr);
126 }
127 spin_unlock(&svc_xprt_class_lock);
128
129 return len;
130 }
131
132 static void svc_xprt_free(struct kref *kref)
133 {
134 struct svc_xprt *xprt =
135 container_of(kref, struct svc_xprt, xpt_ref);
136 struct module *owner = xprt->xpt_class->xcl_owner;
137 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
138 svcauth_unix_info_release(xprt);
139 put_net(xprt->xpt_net);
140 /* See comment on corresponding get in xs_setup_bc_tcp(): */
141 if (xprt->xpt_bc_xprt)
142 xprt_put(xprt->xpt_bc_xprt);
143 if (xprt->xpt_bc_xps)
144 xprt_switch_put(xprt->xpt_bc_xps);
145 xprt->xpt_ops->xpo_free(xprt);
146 module_put(owner);
147 }
148
149 void svc_xprt_put(struct svc_xprt *xprt)
150 {
151 kref_put(&xprt->xpt_ref, svc_xprt_free);
152 }
153 EXPORT_SYMBOL_GPL(svc_xprt_put);
154
155 /*
156 * Called by transport drivers to initialize the transport independent
157 * portion of the transport instance.
158 */
159 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
160 struct svc_xprt *xprt, struct svc_serv *serv)
161 {
162 memset(xprt, 0, sizeof(*xprt));
163 xprt->xpt_class = xcl;
164 xprt->xpt_ops = xcl->xcl_ops;
165 kref_init(&xprt->xpt_ref);
166 xprt->xpt_server = serv;
167 INIT_LIST_HEAD(&xprt->xpt_list);
168 INIT_LIST_HEAD(&xprt->xpt_ready);
169 INIT_LIST_HEAD(&xprt->xpt_deferred);
170 INIT_LIST_HEAD(&xprt->xpt_users);
171 mutex_init(&xprt->xpt_mutex);
172 spin_lock_init(&xprt->xpt_lock);
173 set_bit(XPT_BUSY, &xprt->xpt_flags);
174 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
175 xprt->xpt_net = get_net(net);
176 }
177 EXPORT_SYMBOL_GPL(svc_xprt_init);
178
179 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
180 struct svc_serv *serv,
181 struct net *net,
182 const int family,
183 const unsigned short port,
184 int flags)
185 {
186 struct sockaddr_in sin = {
187 .sin_family = AF_INET,
188 .sin_addr.s_addr = htonl(INADDR_ANY),
189 .sin_port = htons(port),
190 };
191 #if IS_ENABLED(CONFIG_IPV6)
192 struct sockaddr_in6 sin6 = {
193 .sin6_family = AF_INET6,
194 .sin6_addr = IN6ADDR_ANY_INIT,
195 .sin6_port = htons(port),
196 };
197 #endif
198 struct sockaddr *sap;
199 size_t len;
200
201 switch (family) {
202 case PF_INET:
203 sap = (struct sockaddr *)&sin;
204 len = sizeof(sin);
205 break;
206 #if IS_ENABLED(CONFIG_IPV6)
207 case PF_INET6:
208 sap = (struct sockaddr *)&sin6;
209 len = sizeof(sin6);
210 break;
211 #endif
212 default:
213 return ERR_PTR(-EAFNOSUPPORT);
214 }
215
216 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
217 }
218
219 /*
220 * svc_xprt_received conditionally queues the transport for processing
221 * by another thread. The caller must hold the XPT_BUSY bit and must
222 * not thereafter touch transport data.
223 *
224 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
225 * insufficient) data.
226 */
227 static void svc_xprt_received(struct svc_xprt *xprt)
228 {
229 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
230 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
231 return;
232 }
233
234 /* As soon as we clear busy, the xprt could be closed and
235 * 'put', so we need a reference to call svc_enqueue_xprt with:
236 */
237 svc_xprt_get(xprt);
238 smp_mb__before_atomic();
239 clear_bit(XPT_BUSY, &xprt->xpt_flags);
240 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
241 svc_xprt_put(xprt);
242 }
243
244 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
245 {
246 clear_bit(XPT_TEMP, &new->xpt_flags);
247 spin_lock_bh(&serv->sv_lock);
248 list_add(&new->xpt_list, &serv->sv_permsocks);
249 spin_unlock_bh(&serv->sv_lock);
250 svc_xprt_received(new);
251 }
252
253 int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
254 struct net *net, const int family,
255 const unsigned short port, int flags)
256 {
257 struct svc_xprt_class *xcl;
258
259 spin_lock(&svc_xprt_class_lock);
260 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
261 struct svc_xprt *newxprt;
262 unsigned short newport;
263
264 if (strcmp(xprt_name, xcl->xcl_name))
265 continue;
266
267 if (!try_module_get(xcl->xcl_owner))
268 goto err;
269
270 spin_unlock(&svc_xprt_class_lock);
271 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
272 if (IS_ERR(newxprt)) {
273 module_put(xcl->xcl_owner);
274 return PTR_ERR(newxprt);
275 }
276 svc_add_new_perm_xprt(serv, newxprt);
277 newport = svc_xprt_local_port(newxprt);
278 return newport;
279 }
280 err:
281 spin_unlock(&svc_xprt_class_lock);
282 /* This errno is exposed to user space. Provide a reasonable
283 * perror msg for a bad transport. */
284 return -EPROTONOSUPPORT;
285 }
286
287 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
288 struct net *net, const int family,
289 const unsigned short port, int flags)
290 {
291 int err;
292
293 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
294 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
295 if (err == -EPROTONOSUPPORT) {
296 request_module("svc%s", xprt_name);
297 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
298 }
299 if (err)
300 dprintk("svc: transport %s not found, err %d\n",
301 xprt_name, err);
302 return err;
303 }
304 EXPORT_SYMBOL_GPL(svc_create_xprt);
305
306 /*
307 * Copy the local and remote xprt addresses to the rqstp structure
308 */
309 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
310 {
311 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
312 rqstp->rq_addrlen = xprt->xpt_remotelen;
313
314 /*
315 * Destination address in request is needed for binding the
316 * source address in RPC replies/callbacks later.
317 */
318 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
319 rqstp->rq_daddrlen = xprt->xpt_locallen;
320 }
321 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
322
323 /**
324 * svc_print_addr - Format rq_addr field for printing
325 * @rqstp: svc_rqst struct containing address to print
326 * @buf: target buffer for formatted address
327 * @len: length of target buffer
328 *
329 */
330 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
331 {
332 return __svc_print_addr(svc_addr(rqstp), buf, len);
333 }
334 EXPORT_SYMBOL_GPL(svc_print_addr);
335
336 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
337 {
338 unsigned int limit = svc_rpc_per_connection_limit;
339 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
340
341 return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
342 }
343
344 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
345 {
346 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
347 if (!svc_xprt_slots_in_range(xprt))
348 return false;
349 atomic_inc(&xprt->xpt_nr_rqsts);
350 set_bit(RQ_DATA, &rqstp->rq_flags);
351 }
352 return true;
353 }
354
355 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
356 {
357 struct svc_xprt *xprt = rqstp->rq_xprt;
358 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
359 atomic_dec(&xprt->xpt_nr_rqsts);
360 svc_xprt_enqueue(xprt);
361 }
362 }
363
364 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
365 {
366 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
367 return true;
368 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) {
369 if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
370 svc_xprt_slots_in_range(xprt))
371 return true;
372 trace_svc_xprt_no_write_space(xprt);
373 return false;
374 }
375 return false;
376 }
377
378 void svc_xprt_do_enqueue(struct svc_xprt *xprt)
379 {
380 struct svc_pool *pool;
381 struct svc_rqst *rqstp = NULL;
382 int cpu;
383 bool queued = false;
384
385 if (!svc_xprt_has_something_to_do(xprt))
386 goto out;
387
388 /* Mark transport as busy. It will remain in this state until
389 * the provider calls svc_xprt_received. We update XPT_BUSY
390 * atomically because it also guards against trying to enqueue
391 * the transport twice.
392 */
393 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
394 /* Don't enqueue transport while already enqueued */
395 dprintk("svc: transport %p busy, not enqueued\n", xprt);
396 goto out;
397 }
398
399 cpu = get_cpu();
400 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
401
402 atomic_long_inc(&pool->sp_stats.packets);
403
404 redo_search:
405 /* find a thread for this xprt */
406 rcu_read_lock();
407 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
408 /* Do a lockless check first */
409 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
410 continue;
411
412 /*
413 * Once the xprt has been queued, it can only be dequeued by
414 * the task that intends to service it. All we can do at that
415 * point is to try to wake this thread back up so that it can
416 * do so.
417 */
418 if (!queued) {
419 spin_lock_bh(&rqstp->rq_lock);
420 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) {
421 /* already busy, move on... */
422 spin_unlock_bh(&rqstp->rq_lock);
423 continue;
424 }
425
426 /* this one will do */
427 rqstp->rq_xprt = xprt;
428 svc_xprt_get(xprt);
429 spin_unlock_bh(&rqstp->rq_lock);
430 }
431 rcu_read_unlock();
432
433 atomic_long_inc(&pool->sp_stats.threads_woken);
434 wake_up_process(rqstp->rq_task);
435 put_cpu();
436 goto out;
437 }
438 rcu_read_unlock();
439
440 /*
441 * We didn't find an idle thread to use, so we need to queue the xprt.
442 * Do so and then search again. If we find one, we can't hook this one
443 * up to it directly but we can wake the thread up in the hopes that it
444 * will pick it up once it searches for a xprt to service.
445 */
446 if (!queued) {
447 queued = true;
448 dprintk("svc: transport %p put into queue\n", xprt);
449 spin_lock_bh(&pool->sp_lock);
450 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
451 pool->sp_stats.sockets_queued++;
452 spin_unlock_bh(&pool->sp_lock);
453 goto redo_search;
454 }
455 rqstp = NULL;
456 put_cpu();
457 out:
458 trace_svc_xprt_do_enqueue(xprt, rqstp);
459 }
460 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
461
462 /*
463 * Queue up a transport with data pending. If there are idle nfsd
464 * processes, wake 'em up.
465 *
466 */
467 void svc_xprt_enqueue(struct svc_xprt *xprt)
468 {
469 if (test_bit(XPT_BUSY, &xprt->xpt_flags))
470 return;
471 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
472 }
473 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
474
475 /*
476 * Dequeue the first transport, if there is one.
477 */
478 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
479 {
480 struct svc_xprt *xprt = NULL;
481
482 if (list_empty(&pool->sp_sockets))
483 goto out;
484
485 spin_lock_bh(&pool->sp_lock);
486 if (likely(!list_empty(&pool->sp_sockets))) {
487 xprt = list_first_entry(&pool->sp_sockets,
488 struct svc_xprt, xpt_ready);
489 list_del_init(&xprt->xpt_ready);
490 svc_xprt_get(xprt);
491
492 dprintk("svc: transport %p dequeued, inuse=%d\n",
493 xprt, kref_read(&xprt->xpt_ref));
494 }
495 spin_unlock_bh(&pool->sp_lock);
496 out:
497 trace_svc_xprt_dequeue(xprt);
498 return xprt;
499 }
500
501 /**
502 * svc_reserve - change the space reserved for the reply to a request.
503 * @rqstp: The request in question
504 * @space: new max space to reserve
505 *
506 * Each request reserves some space on the output queue of the transport
507 * to make sure the reply fits. This function reduces that reserved
508 * space to be the amount of space used already, plus @space.
509 *
510 */
511 void svc_reserve(struct svc_rqst *rqstp, int space)
512 {
513 space += rqstp->rq_res.head[0].iov_len;
514
515 if (space < rqstp->rq_reserved) {
516 struct svc_xprt *xprt = rqstp->rq_xprt;
517 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
518 rqstp->rq_reserved = space;
519
520 svc_xprt_enqueue(xprt);
521 }
522 }
523 EXPORT_SYMBOL_GPL(svc_reserve);
524
525 static void svc_xprt_release(struct svc_rqst *rqstp)
526 {
527 struct svc_xprt *xprt = rqstp->rq_xprt;
528
529 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
530
531 kfree(rqstp->rq_deferred);
532 rqstp->rq_deferred = NULL;
533
534 svc_free_res_pages(rqstp);
535 rqstp->rq_res.page_len = 0;
536 rqstp->rq_res.page_base = 0;
537
538 /* Reset response buffer and release
539 * the reservation.
540 * But first, check that enough space was reserved
541 * for the reply, otherwise we have a bug!
542 */
543 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
544 printk(KERN_ERR "RPC request reserved %d but used %d\n",
545 rqstp->rq_reserved,
546 rqstp->rq_res.len);
547
548 rqstp->rq_res.head[0].iov_len = 0;
549 svc_reserve(rqstp, 0);
550 svc_xprt_release_slot(rqstp);
551 rqstp->rq_xprt = NULL;
552 svc_xprt_put(xprt);
553 }
554
555 /*
556 * Some svc_serv's will have occasional work to do, even when a xprt is not
557 * waiting to be serviced. This function is there to "kick" a task in one of
558 * those services so that it can wake up and do that work. Note that we only
559 * bother with pool 0 as we don't need to wake up more than one thread for
560 * this purpose.
561 */
562 void svc_wake_up(struct svc_serv *serv)
563 {
564 struct svc_rqst *rqstp;
565 struct svc_pool *pool;
566
567 pool = &serv->sv_pools[0];
568
569 rcu_read_lock();
570 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
571 /* skip any that aren't queued */
572 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
573 continue;
574 rcu_read_unlock();
575 dprintk("svc: daemon %p woken up.\n", rqstp);
576 wake_up_process(rqstp->rq_task);
577 trace_svc_wake_up(rqstp->rq_task->pid);
578 return;
579 }
580 rcu_read_unlock();
581
582 /* No free entries available */
583 set_bit(SP_TASK_PENDING, &pool->sp_flags);
584 smp_wmb();
585 trace_svc_wake_up(0);
586 }
587 EXPORT_SYMBOL_GPL(svc_wake_up);
588
589 int svc_port_is_privileged(struct sockaddr *sin)
590 {
591 switch (sin->sa_family) {
592 case AF_INET:
593 return ntohs(((struct sockaddr_in *)sin)->sin_port)
594 < PROT_SOCK;
595 case AF_INET6:
596 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
597 < PROT_SOCK;
598 default:
599 return 0;
600 }
601 }
602
603 /*
604 * Make sure that we don't have too many active connections. If we have,
605 * something must be dropped. It's not clear what will happen if we allow
606 * "too many" connections, but when dealing with network-facing software,
607 * we have to code defensively. Here we do that by imposing hard limits.
608 *
609 * There's no point in trying to do random drop here for DoS
610 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
611 * attacker can easily beat that.
612 *
613 * The only somewhat efficient mechanism would be if drop old
614 * connections from the same IP first. But right now we don't even
615 * record the client IP in svc_sock.
616 *
617 * single-threaded services that expect a lot of clients will probably
618 * need to set sv_maxconn to override the default value which is based
619 * on the number of threads
620 */
621 static void svc_check_conn_limits(struct svc_serv *serv)
622 {
623 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
624 (serv->sv_nrthreads+3) * 20;
625
626 if (serv->sv_tmpcnt > limit) {
627 struct svc_xprt *xprt = NULL;
628 spin_lock_bh(&serv->sv_lock);
629 if (!list_empty(&serv->sv_tempsocks)) {
630 /* Try to help the admin */
631 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
632 serv->sv_name, serv->sv_maxconn ?
633 "max number of connections" :
634 "number of threads");
635 /*
636 * Always select the oldest connection. It's not fair,
637 * but so is life
638 */
639 xprt = list_entry(serv->sv_tempsocks.prev,
640 struct svc_xprt,
641 xpt_list);
642 set_bit(XPT_CLOSE, &xprt->xpt_flags);
643 svc_xprt_get(xprt);
644 }
645 spin_unlock_bh(&serv->sv_lock);
646
647 if (xprt) {
648 svc_xprt_enqueue(xprt);
649 svc_xprt_put(xprt);
650 }
651 }
652 }
653
654 static int svc_alloc_arg(struct svc_rqst *rqstp)
655 {
656 struct svc_serv *serv = rqstp->rq_server;
657 struct xdr_buf *arg;
658 int pages;
659 int i;
660
661 /* now allocate needed pages. If we get a failure, sleep briefly */
662 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
663 if (pages > RPCSVC_MAXPAGES) {
664 pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n",
665 pages, RPCSVC_MAXPAGES);
666 /* use as many pages as possible */
667 pages = RPCSVC_MAXPAGES;
668 }
669 for (i = 0; i < pages ; i++)
670 while (rqstp->rq_pages[i] == NULL) {
671 struct page *p = alloc_page(GFP_KERNEL);
672 if (!p) {
673 set_current_state(TASK_INTERRUPTIBLE);
674 if (signalled() || kthread_should_stop()) {
675 set_current_state(TASK_RUNNING);
676 return -EINTR;
677 }
678 schedule_timeout(msecs_to_jiffies(500));
679 }
680 rqstp->rq_pages[i] = p;
681 }
682 rqstp->rq_page_end = &rqstp->rq_pages[i];
683 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
684
685 /* Make arg->head point to first page and arg->pages point to rest */
686 arg = &rqstp->rq_arg;
687 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
688 arg->head[0].iov_len = PAGE_SIZE;
689 arg->pages = rqstp->rq_pages + 1;
690 arg->page_base = 0;
691 /* save at least one page for response */
692 arg->page_len = (pages-2)*PAGE_SIZE;
693 arg->len = (pages-1)*PAGE_SIZE;
694 arg->tail[0].iov_len = 0;
695 return 0;
696 }
697
698 static bool
699 rqst_should_sleep(struct svc_rqst *rqstp)
700 {
701 struct svc_pool *pool = rqstp->rq_pool;
702
703 /* did someone call svc_wake_up? */
704 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
705 return false;
706
707 /* was a socket queued? */
708 if (!list_empty(&pool->sp_sockets))
709 return false;
710
711 /* are we shutting down? */
712 if (signalled() || kthread_should_stop())
713 return false;
714
715 /* are we freezing? */
716 if (freezing(current))
717 return false;
718
719 return true;
720 }
721
722 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
723 {
724 struct svc_xprt *xprt;
725 struct svc_pool *pool = rqstp->rq_pool;
726 long time_left = 0;
727
728 /* rq_xprt should be clear on entry */
729 WARN_ON_ONCE(rqstp->rq_xprt);
730
731 /* Normally we will wait up to 5 seconds for any required
732 * cache information to be provided.
733 */
734 rqstp->rq_chandle.thread_wait = 5*HZ;
735
736 xprt = svc_xprt_dequeue(pool);
737 if (xprt) {
738 rqstp->rq_xprt = xprt;
739
740 /* As there is a shortage of threads and this request
741 * had to be queued, don't allow the thread to wait so
742 * long for cache updates.
743 */
744 rqstp->rq_chandle.thread_wait = 1*HZ;
745 clear_bit(SP_TASK_PENDING, &pool->sp_flags);
746 return xprt;
747 }
748
749 /*
750 * We have to be able to interrupt this wait
751 * to bring down the daemons ...
752 */
753 set_current_state(TASK_INTERRUPTIBLE);
754 clear_bit(RQ_BUSY, &rqstp->rq_flags);
755 smp_mb();
756
757 if (likely(rqst_should_sleep(rqstp)))
758 time_left = schedule_timeout(timeout);
759 else
760 __set_current_state(TASK_RUNNING);
761
762 try_to_freeze();
763
764 spin_lock_bh(&rqstp->rq_lock);
765 set_bit(RQ_BUSY, &rqstp->rq_flags);
766 spin_unlock_bh(&rqstp->rq_lock);
767
768 xprt = rqstp->rq_xprt;
769 if (xprt != NULL)
770 return xprt;
771
772 if (!time_left)
773 atomic_long_inc(&pool->sp_stats.threads_timedout);
774
775 if (signalled() || kthread_should_stop())
776 return ERR_PTR(-EINTR);
777 return ERR_PTR(-EAGAIN);
778 }
779
780 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
781 {
782 spin_lock_bh(&serv->sv_lock);
783 set_bit(XPT_TEMP, &newxpt->xpt_flags);
784 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
785 serv->sv_tmpcnt++;
786 if (serv->sv_temptimer.function == NULL) {
787 /* setup timer to age temp transports */
788 setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
789 (unsigned long)serv);
790 mod_timer(&serv->sv_temptimer,
791 jiffies + svc_conn_age_period * HZ);
792 }
793 spin_unlock_bh(&serv->sv_lock);
794 svc_xprt_received(newxpt);
795 }
796
797 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
798 {
799 struct svc_serv *serv = rqstp->rq_server;
800 int len = 0;
801
802 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
803 dprintk("svc_recv: found XPT_CLOSE\n");
804 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
805 xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
806 svc_delete_xprt(xprt);
807 /* Leave XPT_BUSY set on the dead xprt: */
808 goto out;
809 }
810 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
811 struct svc_xprt *newxpt;
812 /*
813 * We know this module_get will succeed because the
814 * listener holds a reference too
815 */
816 __module_get(xprt->xpt_class->xcl_owner);
817 svc_check_conn_limits(xprt->xpt_server);
818 newxpt = xprt->xpt_ops->xpo_accept(xprt);
819 if (newxpt)
820 svc_add_new_temp_xprt(serv, newxpt);
821 else
822 module_put(xprt->xpt_class->xcl_owner);
823 } else if (svc_xprt_reserve_slot(rqstp, xprt)) {
824 /* XPT_DATA|XPT_DEFERRED case: */
825 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
826 rqstp, rqstp->rq_pool->sp_id, xprt,
827 kref_read(&xprt->xpt_ref));
828 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
829 if (rqstp->rq_deferred)
830 len = svc_deferred_recv(rqstp);
831 else
832 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
833 dprintk("svc: got len=%d\n", len);
834 rqstp->rq_reserved = serv->sv_max_mesg;
835 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
836 }
837 /* clear XPT_BUSY: */
838 svc_xprt_received(xprt);
839 out:
840 trace_svc_handle_xprt(xprt, len);
841 return len;
842 }
843
844 /*
845 * Receive the next request on any transport. This code is carefully
846 * organised not to touch any cachelines in the shared svc_serv
847 * structure, only cachelines in the local svc_pool.
848 */
849 int svc_recv(struct svc_rqst *rqstp, long timeout)
850 {
851 struct svc_xprt *xprt = NULL;
852 struct svc_serv *serv = rqstp->rq_server;
853 int len, err;
854
855 dprintk("svc: server %p waiting for data (to = %ld)\n",
856 rqstp, timeout);
857
858 if (rqstp->rq_xprt)
859 printk(KERN_ERR
860 "svc_recv: service %p, transport not NULL!\n",
861 rqstp);
862
863 err = svc_alloc_arg(rqstp);
864 if (err)
865 goto out;
866
867 try_to_freeze();
868 cond_resched();
869 err = -EINTR;
870 if (signalled() || kthread_should_stop())
871 goto out;
872
873 xprt = svc_get_next_xprt(rqstp, timeout);
874 if (IS_ERR(xprt)) {
875 err = PTR_ERR(xprt);
876 goto out;
877 }
878
879 len = svc_handle_xprt(rqstp, xprt);
880
881 /* No data, incomplete (TCP) read, or accept() */
882 err = -EAGAIN;
883 if (len <= 0)
884 goto out_release;
885
886 clear_bit(XPT_OLD, &xprt->xpt_flags);
887
888 if (xprt->xpt_ops->xpo_secure_port(rqstp))
889 set_bit(RQ_SECURE, &rqstp->rq_flags);
890 else
891 clear_bit(RQ_SECURE, &rqstp->rq_flags);
892 rqstp->rq_chandle.defer = svc_defer;
893 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
894
895 if (serv->sv_stats)
896 serv->sv_stats->netcnt++;
897 trace_svc_recv(rqstp, len);
898 return len;
899 out_release:
900 rqstp->rq_res.len = 0;
901 svc_xprt_release(rqstp);
902 out:
903 trace_svc_recv(rqstp, err);
904 return err;
905 }
906 EXPORT_SYMBOL_GPL(svc_recv);
907
908 /*
909 * Drop request
910 */
911 void svc_drop(struct svc_rqst *rqstp)
912 {
913 trace_svc_drop(rqstp);
914 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
915 svc_xprt_release(rqstp);
916 }
917 EXPORT_SYMBOL_GPL(svc_drop);
918
919 /*
920 * Return reply to client.
921 */
922 int svc_send(struct svc_rqst *rqstp)
923 {
924 struct svc_xprt *xprt;
925 int len = -EFAULT;
926 struct xdr_buf *xb;
927
928 xprt = rqstp->rq_xprt;
929 if (!xprt)
930 goto out;
931
932 /* release the receive skb before sending the reply */
933 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
934
935 /* calculate over-all length */
936 xb = &rqstp->rq_res;
937 xb->len = xb->head[0].iov_len +
938 xb->page_len +
939 xb->tail[0].iov_len;
940
941 /* Grab mutex to serialize outgoing data. */
942 mutex_lock(&xprt->xpt_mutex);
943 if (test_bit(XPT_DEAD, &xprt->xpt_flags)
944 || test_bit(XPT_CLOSE, &xprt->xpt_flags))
945 len = -ENOTCONN;
946 else
947 len = xprt->xpt_ops->xpo_sendto(rqstp);
948 mutex_unlock(&xprt->xpt_mutex);
949 rpc_wake_up(&xprt->xpt_bc_pending);
950 svc_xprt_release(rqstp);
951
952 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
953 len = 0;
954 out:
955 trace_svc_send(rqstp, len);
956 return len;
957 }
958
959 /*
960 * Timer function to close old temporary transports, using
961 * a mark-and-sweep algorithm.
962 */
963 static void svc_age_temp_xprts(unsigned long closure)
964 {
965 struct svc_serv *serv = (struct svc_serv *)closure;
966 struct svc_xprt *xprt;
967 struct list_head *le, *next;
968
969 dprintk("svc_age_temp_xprts\n");
970
971 if (!spin_trylock_bh(&serv->sv_lock)) {
972 /* busy, try again 1 sec later */
973 dprintk("svc_age_temp_xprts: busy\n");
974 mod_timer(&serv->sv_temptimer, jiffies + HZ);
975 return;
976 }
977
978 list_for_each_safe(le, next, &serv->sv_tempsocks) {
979 xprt = list_entry(le, struct svc_xprt, xpt_list);
980
981 /* First time through, just mark it OLD. Second time
982 * through, close it. */
983 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
984 continue;
985 if (kref_read(&xprt->xpt_ref) > 1 ||
986 test_bit(XPT_BUSY, &xprt->xpt_flags))
987 continue;
988 list_del_init(le);
989 set_bit(XPT_CLOSE, &xprt->xpt_flags);
990 dprintk("queuing xprt %p for closing\n", xprt);
991
992 /* a thread will dequeue and close it soon */
993 svc_xprt_enqueue(xprt);
994 }
995 spin_unlock_bh(&serv->sv_lock);
996
997 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
998 }
999
1000 /* Close temporary transports whose xpt_local matches server_addr immediately
1001 * instead of waiting for them to be picked up by the timer.
1002 *
1003 * This is meant to be called from a notifier_block that runs when an ip
1004 * address is deleted.
1005 */
1006 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
1007 {
1008 struct svc_xprt *xprt;
1009 struct list_head *le, *next;
1010 LIST_HEAD(to_be_closed);
1011
1012 spin_lock_bh(&serv->sv_lock);
1013 list_for_each_safe(le, next, &serv->sv_tempsocks) {
1014 xprt = list_entry(le, struct svc_xprt, xpt_list);
1015 if (rpc_cmp_addr(server_addr, (struct sockaddr *)
1016 &xprt->xpt_local)) {
1017 dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
1018 list_move(le, &to_be_closed);
1019 }
1020 }
1021 spin_unlock_bh(&serv->sv_lock);
1022
1023 while (!list_empty(&to_be_closed)) {
1024 le = to_be_closed.next;
1025 list_del_init(le);
1026 xprt = list_entry(le, struct svc_xprt, xpt_list);
1027 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1028 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
1029 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
1030 xprt);
1031 svc_xprt_enqueue(xprt);
1032 }
1033 }
1034 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1035
1036 static void call_xpt_users(struct svc_xprt *xprt)
1037 {
1038 struct svc_xpt_user *u;
1039
1040 spin_lock(&xprt->xpt_lock);
1041 while (!list_empty(&xprt->xpt_users)) {
1042 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1043 list_del(&u->list);
1044 u->callback(u);
1045 }
1046 spin_unlock(&xprt->xpt_lock);
1047 }
1048
1049 /*
1050 * Remove a dead transport
1051 */
1052 static void svc_delete_xprt(struct svc_xprt *xprt)
1053 {
1054 struct svc_serv *serv = xprt->xpt_server;
1055 struct svc_deferred_req *dr;
1056
1057 /* Only do this once */
1058 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1059 BUG();
1060
1061 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1062 xprt->xpt_ops->xpo_detach(xprt);
1063
1064 spin_lock_bh(&serv->sv_lock);
1065 list_del_init(&xprt->xpt_list);
1066 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1067 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1068 serv->sv_tmpcnt--;
1069 spin_unlock_bh(&serv->sv_lock);
1070
1071 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1072 kfree(dr);
1073
1074 call_xpt_users(xprt);
1075 svc_xprt_put(xprt);
1076 }
1077
1078 void svc_close_xprt(struct svc_xprt *xprt)
1079 {
1080 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1081 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1082 /* someone else will have to effect the close */
1083 return;
1084 /*
1085 * We expect svc_close_xprt() to work even when no threads are
1086 * running (e.g., while configuring the server before starting
1087 * any threads), so if the transport isn't busy, we delete
1088 * it ourself:
1089 */
1090 svc_delete_xprt(xprt);
1091 }
1092 EXPORT_SYMBOL_GPL(svc_close_xprt);
1093
1094 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1095 {
1096 struct svc_xprt *xprt;
1097 int ret = 0;
1098
1099 spin_lock(&serv->sv_lock);
1100 list_for_each_entry(xprt, xprt_list, xpt_list) {
1101 if (xprt->xpt_net != net)
1102 continue;
1103 ret++;
1104 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1105 svc_xprt_enqueue(xprt);
1106 }
1107 spin_unlock(&serv->sv_lock);
1108 return ret;
1109 }
1110
1111 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1112 {
1113 struct svc_pool *pool;
1114 struct svc_xprt *xprt;
1115 struct svc_xprt *tmp;
1116 int i;
1117
1118 for (i = 0; i < serv->sv_nrpools; i++) {
1119 pool = &serv->sv_pools[i];
1120
1121 spin_lock_bh(&pool->sp_lock);
1122 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1123 if (xprt->xpt_net != net)
1124 continue;
1125 list_del_init(&xprt->xpt_ready);
1126 spin_unlock_bh(&pool->sp_lock);
1127 return xprt;
1128 }
1129 spin_unlock_bh(&pool->sp_lock);
1130 }
1131 return NULL;
1132 }
1133
1134 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1135 {
1136 struct svc_xprt *xprt;
1137
1138 while ((xprt = svc_dequeue_net(serv, net))) {
1139 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1140 svc_delete_xprt(xprt);
1141 }
1142 }
1143
1144 /*
1145 * Server threads may still be running (especially in the case where the
1146 * service is still running in other network namespaces).
1147 *
1148 * So we shut down sockets the same way we would on a running server, by
1149 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1150 * the close. In the case there are no such other threads,
1151 * threads running, svc_clean_up_xprts() does a simple version of a
1152 * server's main event loop, and in the case where there are other
1153 * threads, we may need to wait a little while and then check again to
1154 * see if they're done.
1155 */
1156 void svc_close_net(struct svc_serv *serv, struct net *net)
1157 {
1158 int delay = 0;
1159
1160 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1161 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1162
1163 svc_clean_up_xprts(serv, net);
1164 msleep(delay++);
1165 }
1166 }
1167
1168 /*
1169 * Handle defer and revisit of requests
1170 */
1171
1172 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1173 {
1174 struct svc_deferred_req *dr =
1175 container_of(dreq, struct svc_deferred_req, handle);
1176 struct svc_xprt *xprt = dr->xprt;
1177
1178 spin_lock(&xprt->xpt_lock);
1179 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1180 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1181 spin_unlock(&xprt->xpt_lock);
1182 dprintk("revisit canceled\n");
1183 svc_xprt_put(xprt);
1184 trace_svc_drop_deferred(dr);
1185 kfree(dr);
1186 return;
1187 }
1188 dprintk("revisit queued\n");
1189 dr->xprt = NULL;
1190 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1191 spin_unlock(&xprt->xpt_lock);
1192 svc_xprt_enqueue(xprt);
1193 svc_xprt_put(xprt);
1194 }
1195
1196 /*
1197 * Save the request off for later processing. The request buffer looks
1198 * like this:
1199 *
1200 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1201 *
1202 * This code can only handle requests that consist of an xprt-header
1203 * and rpc-header.
1204 */
1205 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1206 {
1207 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1208 struct svc_deferred_req *dr;
1209
1210 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1211 return NULL; /* if more than a page, give up FIXME */
1212 if (rqstp->rq_deferred) {
1213 dr = rqstp->rq_deferred;
1214 rqstp->rq_deferred = NULL;
1215 } else {
1216 size_t skip;
1217 size_t size;
1218 /* FIXME maybe discard if size too large */
1219 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1220 dr = kmalloc(size, GFP_KERNEL);
1221 if (dr == NULL)
1222 return NULL;
1223
1224 dr->handle.owner = rqstp->rq_server;
1225 dr->prot = rqstp->rq_prot;
1226 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1227 dr->addrlen = rqstp->rq_addrlen;
1228 dr->daddr = rqstp->rq_daddr;
1229 dr->argslen = rqstp->rq_arg.len >> 2;
1230 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1231
1232 /* back up head to the start of the buffer and copy */
1233 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1234 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1235 dr->argslen << 2);
1236 }
1237 svc_xprt_get(rqstp->rq_xprt);
1238 dr->xprt = rqstp->rq_xprt;
1239 set_bit(RQ_DROPME, &rqstp->rq_flags);
1240
1241 dr->handle.revisit = svc_revisit;
1242 trace_svc_defer(rqstp);
1243 return &dr->handle;
1244 }
1245
1246 /*
1247 * recv data from a deferred request into an active one
1248 */
1249 static int svc_deferred_recv(struct svc_rqst *rqstp)
1250 {
1251 struct svc_deferred_req *dr = rqstp->rq_deferred;
1252
1253 /* setup iov_base past transport header */
1254 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1255 /* The iov_len does not include the transport header bytes */
1256 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1257 rqstp->rq_arg.page_len = 0;
1258 /* The rq_arg.len includes the transport header bytes */
1259 rqstp->rq_arg.len = dr->argslen<<2;
1260 rqstp->rq_prot = dr->prot;
1261 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1262 rqstp->rq_addrlen = dr->addrlen;
1263 /* Save off transport header len in case we get deferred again */
1264 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1265 rqstp->rq_daddr = dr->daddr;
1266 rqstp->rq_respages = rqstp->rq_pages;
1267 return (dr->argslen<<2) - dr->xprt_hlen;
1268 }
1269
1270
1271 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1272 {
1273 struct svc_deferred_req *dr = NULL;
1274
1275 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1276 return NULL;
1277 spin_lock(&xprt->xpt_lock);
1278 if (!list_empty(&xprt->xpt_deferred)) {
1279 dr = list_entry(xprt->xpt_deferred.next,
1280 struct svc_deferred_req,
1281 handle.recent);
1282 list_del_init(&dr->handle.recent);
1283 trace_svc_revisit_deferred(dr);
1284 } else
1285 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1286 spin_unlock(&xprt->xpt_lock);
1287 return dr;
1288 }
1289
1290 /**
1291 * svc_find_xprt - find an RPC transport instance
1292 * @serv: pointer to svc_serv to search
1293 * @xcl_name: C string containing transport's class name
1294 * @net: owner net pointer
1295 * @af: Address family of transport's local address
1296 * @port: transport's IP port number
1297 *
1298 * Return the transport instance pointer for the endpoint accepting
1299 * connections/peer traffic from the specified transport class,
1300 * address family and port.
1301 *
1302 * Specifying 0 for the address family or port is effectively a
1303 * wild-card, and will result in matching the first transport in the
1304 * service's list that has a matching class name.
1305 */
1306 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1307 struct net *net, const sa_family_t af,
1308 const unsigned short port)
1309 {
1310 struct svc_xprt *xprt;
1311 struct svc_xprt *found = NULL;
1312
1313 /* Sanity check the args */
1314 if (serv == NULL || xcl_name == NULL)
1315 return found;
1316
1317 spin_lock_bh(&serv->sv_lock);
1318 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1319 if (xprt->xpt_net != net)
1320 continue;
1321 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1322 continue;
1323 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1324 continue;
1325 if (port != 0 && port != svc_xprt_local_port(xprt))
1326 continue;
1327 found = xprt;
1328 svc_xprt_get(xprt);
1329 break;
1330 }
1331 spin_unlock_bh(&serv->sv_lock);
1332 return found;
1333 }
1334 EXPORT_SYMBOL_GPL(svc_find_xprt);
1335
1336 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1337 char *pos, int remaining)
1338 {
1339 int len;
1340
1341 len = snprintf(pos, remaining, "%s %u\n",
1342 xprt->xpt_class->xcl_name,
1343 svc_xprt_local_port(xprt));
1344 if (len >= remaining)
1345 return -ENAMETOOLONG;
1346 return len;
1347 }
1348
1349 /**
1350 * svc_xprt_names - format a buffer with a list of transport names
1351 * @serv: pointer to an RPC service
1352 * @buf: pointer to a buffer to be filled in
1353 * @buflen: length of buffer to be filled in
1354 *
1355 * Fills in @buf with a string containing a list of transport names,
1356 * each name terminated with '\n'.
1357 *
1358 * Returns positive length of the filled-in string on success; otherwise
1359 * a negative errno value is returned if an error occurs.
1360 */
1361 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1362 {
1363 struct svc_xprt *xprt;
1364 int len, totlen;
1365 char *pos;
1366
1367 /* Sanity check args */
1368 if (!serv)
1369 return 0;
1370
1371 spin_lock_bh(&serv->sv_lock);
1372
1373 pos = buf;
1374 totlen = 0;
1375 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1376 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1377 if (len < 0) {
1378 *buf = '\0';
1379 totlen = len;
1380 }
1381 if (len <= 0)
1382 break;
1383
1384 pos += len;
1385 totlen += len;
1386 }
1387
1388 spin_unlock_bh(&serv->sv_lock);
1389 return totlen;
1390 }
1391 EXPORT_SYMBOL_GPL(svc_xprt_names);
1392
1393
1394 /*----------------------------------------------------------------------------*/
1395
1396 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1397 {
1398 unsigned int pidx = (unsigned int)*pos;
1399 struct svc_serv *serv = m->private;
1400
1401 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1402
1403 if (!pidx)
1404 return SEQ_START_TOKEN;
1405 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1406 }
1407
1408 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1409 {
1410 struct svc_pool *pool = p;
1411 struct svc_serv *serv = m->private;
1412
1413 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1414
1415 if (p == SEQ_START_TOKEN) {
1416 pool = &serv->sv_pools[0];
1417 } else {
1418 unsigned int pidx = (pool - &serv->sv_pools[0]);
1419 if (pidx < serv->sv_nrpools-1)
1420 pool = &serv->sv_pools[pidx+1];
1421 else
1422 pool = NULL;
1423 }
1424 ++*pos;
1425 return pool;
1426 }
1427
1428 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1429 {
1430 }
1431
1432 static int svc_pool_stats_show(struct seq_file *m, void *p)
1433 {
1434 struct svc_pool *pool = p;
1435
1436 if (p == SEQ_START_TOKEN) {
1437 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1438 return 0;
1439 }
1440
1441 seq_printf(m, "%u %lu %lu %lu %lu\n",
1442 pool->sp_id,
1443 (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1444 pool->sp_stats.sockets_queued,
1445 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1446 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1447
1448 return 0;
1449 }
1450
1451 static const struct seq_operations svc_pool_stats_seq_ops = {
1452 .start = svc_pool_stats_start,
1453 .next = svc_pool_stats_next,
1454 .stop = svc_pool_stats_stop,
1455 .show = svc_pool_stats_show,
1456 };
1457
1458 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1459 {
1460 int err;
1461
1462 err = seq_open(file, &svc_pool_stats_seq_ops);
1463 if (!err)
1464 ((struct seq_file *) file->private_data)->private = serv;
1465 return err;
1466 }
1467 EXPORT_SYMBOL(svc_pool_stats_open);
1468
1469 /*----------------------------------------------------------------------------*/