]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/sunrpc/svc_xprt.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/cooloney...
[mirror_ubuntu-artful-kernel.git] / net / sunrpc / svc_xprt.c
1 /*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 #include <linux/sunrpc/xprt.h>
17 #include <linux/module.h>
18
19 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
20
21 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
22 static int svc_deferred_recv(struct svc_rqst *rqstp);
23 static struct cache_deferred_req *svc_defer(struct cache_req *req);
24 static void svc_age_temp_xprts(unsigned long closure);
25 static void svc_delete_xprt(struct svc_xprt *xprt);
26 static void svc_xprt_do_enqueue(struct svc_xprt *xprt);
27
28 /* apparently the "standard" is that clients close
29 * idle connections after 5 minutes, servers after
30 * 6 minutes
31 * http://www.connectathon.org/talks96/nfstcp.pdf
32 */
33 static int svc_conn_age_period = 6*60;
34
35 /* List of registered transport classes */
36 static DEFINE_SPINLOCK(svc_xprt_class_lock);
37 static LIST_HEAD(svc_xprt_class_list);
38
39 /* SMP locking strategy:
40 *
41 * svc_pool->sp_lock protects most of the fields of that pool.
42 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
43 * when both need to be taken (rare), svc_serv->sv_lock is first.
44 * BKL protects svc_serv->sv_nrthread.
45 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
46 * and the ->sk_info_authunix cache.
47 *
48 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
49 * enqueued multiply. During normal transport processing this bit
50 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
51 * Providers should not manipulate this bit directly.
52 *
53 * Some flags can be set to certain values at any time
54 * providing that certain rules are followed:
55 *
56 * XPT_CONN, XPT_DATA:
57 * - Can be set or cleared at any time.
58 * - After a set, svc_xprt_enqueue must be called to enqueue
59 * the transport for processing.
60 * - After a clear, the transport must be read/accepted.
61 * If this succeeds, it must be set again.
62 * XPT_CLOSE:
63 * - Can set at any time. It is never cleared.
64 * XPT_DEAD:
65 * - Can only be set while XPT_BUSY is held which ensures
66 * that no other thread will be using the transport or will
67 * try to set XPT_DEAD.
68 */
69
70 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
71 {
72 struct svc_xprt_class *cl;
73 int res = -EEXIST;
74
75 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
76
77 INIT_LIST_HEAD(&xcl->xcl_list);
78 spin_lock(&svc_xprt_class_lock);
79 /* Make sure there isn't already a class with the same name */
80 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
81 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
82 goto out;
83 }
84 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
85 res = 0;
86 out:
87 spin_unlock(&svc_xprt_class_lock);
88 return res;
89 }
90 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
91
92 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
93 {
94 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
95 spin_lock(&svc_xprt_class_lock);
96 list_del_init(&xcl->xcl_list);
97 spin_unlock(&svc_xprt_class_lock);
98 }
99 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
100
101 /*
102 * Format the transport list for printing
103 */
104 int svc_print_xprts(char *buf, int maxlen)
105 {
106 struct svc_xprt_class *xcl;
107 char tmpstr[80];
108 int len = 0;
109 buf[0] = '\0';
110
111 spin_lock(&svc_xprt_class_lock);
112 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
113 int slen;
114
115 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
116 slen = strlen(tmpstr);
117 if (len + slen > maxlen)
118 break;
119 len += slen;
120 strcat(buf, tmpstr);
121 }
122 spin_unlock(&svc_xprt_class_lock);
123
124 return len;
125 }
126
127 static void svc_xprt_free(struct kref *kref)
128 {
129 struct svc_xprt *xprt =
130 container_of(kref, struct svc_xprt, xpt_ref);
131 struct module *owner = xprt->xpt_class->xcl_owner;
132 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
133 svcauth_unix_info_release(xprt);
134 put_net(xprt->xpt_net);
135 /* See comment on corresponding get in xs_setup_bc_tcp(): */
136 if (xprt->xpt_bc_xprt)
137 xprt_put(xprt->xpt_bc_xprt);
138 xprt->xpt_ops->xpo_free(xprt);
139 module_put(owner);
140 }
141
142 void svc_xprt_put(struct svc_xprt *xprt)
143 {
144 kref_put(&xprt->xpt_ref, svc_xprt_free);
145 }
146 EXPORT_SYMBOL_GPL(svc_xprt_put);
147
148 /*
149 * Called by transport drivers to initialize the transport independent
150 * portion of the transport instance.
151 */
152 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
153 struct svc_xprt *xprt, struct svc_serv *serv)
154 {
155 memset(xprt, 0, sizeof(*xprt));
156 xprt->xpt_class = xcl;
157 xprt->xpt_ops = xcl->xcl_ops;
158 kref_init(&xprt->xpt_ref);
159 xprt->xpt_server = serv;
160 INIT_LIST_HEAD(&xprt->xpt_list);
161 INIT_LIST_HEAD(&xprt->xpt_ready);
162 INIT_LIST_HEAD(&xprt->xpt_deferred);
163 INIT_LIST_HEAD(&xprt->xpt_users);
164 mutex_init(&xprt->xpt_mutex);
165 spin_lock_init(&xprt->xpt_lock);
166 set_bit(XPT_BUSY, &xprt->xpt_flags);
167 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
168 xprt->xpt_net = get_net(net);
169 }
170 EXPORT_SYMBOL_GPL(svc_xprt_init);
171
172 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
173 struct svc_serv *serv,
174 struct net *net,
175 const int family,
176 const unsigned short port,
177 int flags)
178 {
179 struct sockaddr_in sin = {
180 .sin_family = AF_INET,
181 .sin_addr.s_addr = htonl(INADDR_ANY),
182 .sin_port = htons(port),
183 };
184 #if IS_ENABLED(CONFIG_IPV6)
185 struct sockaddr_in6 sin6 = {
186 .sin6_family = AF_INET6,
187 .sin6_addr = IN6ADDR_ANY_INIT,
188 .sin6_port = htons(port),
189 };
190 #endif
191 struct sockaddr *sap;
192 size_t len;
193
194 switch (family) {
195 case PF_INET:
196 sap = (struct sockaddr *)&sin;
197 len = sizeof(sin);
198 break;
199 #if IS_ENABLED(CONFIG_IPV6)
200 case PF_INET6:
201 sap = (struct sockaddr *)&sin6;
202 len = sizeof(sin6);
203 break;
204 #endif
205 default:
206 return ERR_PTR(-EAFNOSUPPORT);
207 }
208
209 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
210 }
211
212 /*
213 * svc_xprt_received conditionally queues the transport for processing
214 * by another thread. The caller must hold the XPT_BUSY bit and must
215 * not thereafter touch transport data.
216 *
217 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
218 * insufficient) data.
219 */
220 static void svc_xprt_received(struct svc_xprt *xprt)
221 {
222 WARN_ON_ONCE(!test_bit(XPT_BUSY, &xprt->xpt_flags));
223 if (!test_bit(XPT_BUSY, &xprt->xpt_flags))
224 return;
225 /* As soon as we clear busy, the xprt could be closed and
226 * 'put', so we need a reference to call svc_xprt_do_enqueue with:
227 */
228 svc_xprt_get(xprt);
229 smp_mb__before_atomic();
230 clear_bit(XPT_BUSY, &xprt->xpt_flags);
231 svc_xprt_do_enqueue(xprt);
232 svc_xprt_put(xprt);
233 }
234
235 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
236 {
237 clear_bit(XPT_TEMP, &new->xpt_flags);
238 spin_lock_bh(&serv->sv_lock);
239 list_add(&new->xpt_list, &serv->sv_permsocks);
240 spin_unlock_bh(&serv->sv_lock);
241 svc_xprt_received(new);
242 }
243
244 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
245 struct net *net, const int family,
246 const unsigned short port, int flags)
247 {
248 struct svc_xprt_class *xcl;
249
250 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
251 spin_lock(&svc_xprt_class_lock);
252 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
253 struct svc_xprt *newxprt;
254 unsigned short newport;
255
256 if (strcmp(xprt_name, xcl->xcl_name))
257 continue;
258
259 if (!try_module_get(xcl->xcl_owner))
260 goto err;
261
262 spin_unlock(&svc_xprt_class_lock);
263 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
264 if (IS_ERR(newxprt)) {
265 module_put(xcl->xcl_owner);
266 return PTR_ERR(newxprt);
267 }
268 svc_add_new_perm_xprt(serv, newxprt);
269 newport = svc_xprt_local_port(newxprt);
270 return newport;
271 }
272 err:
273 spin_unlock(&svc_xprt_class_lock);
274 dprintk("svc: transport %s not found\n", xprt_name);
275
276 /* This errno is exposed to user space. Provide a reasonable
277 * perror msg for a bad transport. */
278 return -EPROTONOSUPPORT;
279 }
280 EXPORT_SYMBOL_GPL(svc_create_xprt);
281
282 /*
283 * Copy the local and remote xprt addresses to the rqstp structure
284 */
285 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
286 {
287 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
288 rqstp->rq_addrlen = xprt->xpt_remotelen;
289
290 /*
291 * Destination address in request is needed for binding the
292 * source address in RPC replies/callbacks later.
293 */
294 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
295 rqstp->rq_daddrlen = xprt->xpt_locallen;
296 }
297 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
298
299 /**
300 * svc_print_addr - Format rq_addr field for printing
301 * @rqstp: svc_rqst struct containing address to print
302 * @buf: target buffer for formatted address
303 * @len: length of target buffer
304 *
305 */
306 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
307 {
308 return __svc_print_addr(svc_addr(rqstp), buf, len);
309 }
310 EXPORT_SYMBOL_GPL(svc_print_addr);
311
312 /*
313 * Queue up an idle server thread. Must have pool->sp_lock held.
314 * Note: this is really a stack rather than a queue, so that we only
315 * use as many different threads as we need, and the rest don't pollute
316 * the cache.
317 */
318 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
319 {
320 list_add(&rqstp->rq_list, &pool->sp_threads);
321 }
322
323 /*
324 * Dequeue an nfsd thread. Must have pool->sp_lock held.
325 */
326 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
327 {
328 list_del(&rqstp->rq_list);
329 }
330
331 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
332 {
333 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
334 return true;
335 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
336 return xprt->xpt_ops->xpo_has_wspace(xprt);
337 return false;
338 }
339
340 static void svc_xprt_do_enqueue(struct svc_xprt *xprt)
341 {
342 struct svc_pool *pool;
343 struct svc_rqst *rqstp;
344 int cpu;
345
346 if (!svc_xprt_has_something_to_do(xprt))
347 return;
348
349 /* Mark transport as busy. It will remain in this state until
350 * the provider calls svc_xprt_received. We update XPT_BUSY
351 * atomically because it also guards against trying to enqueue
352 * the transport twice.
353 */
354 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
355 /* Don't enqueue transport while already enqueued */
356 dprintk("svc: transport %p busy, not enqueued\n", xprt);
357 return;
358 }
359
360 cpu = get_cpu();
361 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
362 spin_lock_bh(&pool->sp_lock);
363
364 pool->sp_stats.packets++;
365
366 if (!list_empty(&pool->sp_threads)) {
367 rqstp = list_entry(pool->sp_threads.next,
368 struct svc_rqst,
369 rq_list);
370 dprintk("svc: transport %p served by daemon %p\n",
371 xprt, rqstp);
372 svc_thread_dequeue(pool, rqstp);
373 if (rqstp->rq_xprt)
374 printk(KERN_ERR
375 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
376 rqstp, rqstp->rq_xprt);
377 /* Note the order of the following 3 lines:
378 * We want to assign xprt to rqstp->rq_xprt only _after_
379 * we've woken up the process, so that we don't race with
380 * the lockless check in svc_get_next_xprt().
381 */
382 svc_xprt_get(xprt);
383 wake_up_process(rqstp->rq_task);
384 rqstp->rq_xprt = xprt;
385 pool->sp_stats.threads_woken++;
386 } else {
387 dprintk("svc: transport %p put into queue\n", xprt);
388 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
389 pool->sp_stats.sockets_queued++;
390 }
391
392 spin_unlock_bh(&pool->sp_lock);
393 put_cpu();
394 }
395
396 /*
397 * Queue up a transport with data pending. If there are idle nfsd
398 * processes, wake 'em up.
399 *
400 */
401 void svc_xprt_enqueue(struct svc_xprt *xprt)
402 {
403 if (test_bit(XPT_BUSY, &xprt->xpt_flags))
404 return;
405 svc_xprt_do_enqueue(xprt);
406 }
407 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
408
409 /*
410 * Dequeue the first transport. Must be called with the pool->sp_lock held.
411 */
412 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
413 {
414 struct svc_xprt *xprt;
415
416 if (list_empty(&pool->sp_sockets))
417 return NULL;
418
419 xprt = list_entry(pool->sp_sockets.next,
420 struct svc_xprt, xpt_ready);
421 list_del_init(&xprt->xpt_ready);
422
423 dprintk("svc: transport %p dequeued, inuse=%d\n",
424 xprt, atomic_read(&xprt->xpt_ref.refcount));
425
426 return xprt;
427 }
428
429 /**
430 * svc_reserve - change the space reserved for the reply to a request.
431 * @rqstp: The request in question
432 * @space: new max space to reserve
433 *
434 * Each request reserves some space on the output queue of the transport
435 * to make sure the reply fits. This function reduces that reserved
436 * space to be the amount of space used already, plus @space.
437 *
438 */
439 void svc_reserve(struct svc_rqst *rqstp, int space)
440 {
441 space += rqstp->rq_res.head[0].iov_len;
442
443 if (space < rqstp->rq_reserved) {
444 struct svc_xprt *xprt = rqstp->rq_xprt;
445 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
446 rqstp->rq_reserved = space;
447
448 if (xprt->xpt_ops->xpo_adjust_wspace)
449 xprt->xpt_ops->xpo_adjust_wspace(xprt);
450 svc_xprt_enqueue(xprt);
451 }
452 }
453 EXPORT_SYMBOL_GPL(svc_reserve);
454
455 static void svc_xprt_release(struct svc_rqst *rqstp)
456 {
457 struct svc_xprt *xprt = rqstp->rq_xprt;
458
459 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
460
461 kfree(rqstp->rq_deferred);
462 rqstp->rq_deferred = NULL;
463
464 svc_free_res_pages(rqstp);
465 rqstp->rq_res.page_len = 0;
466 rqstp->rq_res.page_base = 0;
467
468 /* Reset response buffer and release
469 * the reservation.
470 * But first, check that enough space was reserved
471 * for the reply, otherwise we have a bug!
472 */
473 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
474 printk(KERN_ERR "RPC request reserved %d but used %d\n",
475 rqstp->rq_reserved,
476 rqstp->rq_res.len);
477
478 rqstp->rq_res.head[0].iov_len = 0;
479 svc_reserve(rqstp, 0);
480 rqstp->rq_xprt = NULL;
481
482 svc_xprt_put(xprt);
483 }
484
485 /*
486 * External function to wake up a server waiting for data
487 * This really only makes sense for services like lockd
488 * which have exactly one thread anyway.
489 */
490 void svc_wake_up(struct svc_serv *serv)
491 {
492 struct svc_rqst *rqstp;
493 unsigned int i;
494 struct svc_pool *pool;
495
496 for (i = 0; i < serv->sv_nrpools; i++) {
497 pool = &serv->sv_pools[i];
498
499 spin_lock_bh(&pool->sp_lock);
500 if (!list_empty(&pool->sp_threads)) {
501 rqstp = list_entry(pool->sp_threads.next,
502 struct svc_rqst,
503 rq_list);
504 dprintk("svc: daemon %p woken up.\n", rqstp);
505 /*
506 svc_thread_dequeue(pool, rqstp);
507 rqstp->rq_xprt = NULL;
508 */
509 wake_up_process(rqstp->rq_task);
510 } else
511 pool->sp_task_pending = 1;
512 spin_unlock_bh(&pool->sp_lock);
513 }
514 }
515 EXPORT_SYMBOL_GPL(svc_wake_up);
516
517 int svc_port_is_privileged(struct sockaddr *sin)
518 {
519 switch (sin->sa_family) {
520 case AF_INET:
521 return ntohs(((struct sockaddr_in *)sin)->sin_port)
522 < PROT_SOCK;
523 case AF_INET6:
524 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
525 < PROT_SOCK;
526 default:
527 return 0;
528 }
529 }
530
531 /*
532 * Make sure that we don't have too many active connections. If we have,
533 * something must be dropped. It's not clear what will happen if we allow
534 * "too many" connections, but when dealing with network-facing software,
535 * we have to code defensively. Here we do that by imposing hard limits.
536 *
537 * There's no point in trying to do random drop here for DoS
538 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
539 * attacker can easily beat that.
540 *
541 * The only somewhat efficient mechanism would be if drop old
542 * connections from the same IP first. But right now we don't even
543 * record the client IP in svc_sock.
544 *
545 * single-threaded services that expect a lot of clients will probably
546 * need to set sv_maxconn to override the default value which is based
547 * on the number of threads
548 */
549 static void svc_check_conn_limits(struct svc_serv *serv)
550 {
551 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
552 (serv->sv_nrthreads+3) * 20;
553
554 if (serv->sv_tmpcnt > limit) {
555 struct svc_xprt *xprt = NULL;
556 spin_lock_bh(&serv->sv_lock);
557 if (!list_empty(&serv->sv_tempsocks)) {
558 /* Try to help the admin */
559 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
560 serv->sv_name, serv->sv_maxconn ?
561 "max number of connections" :
562 "number of threads");
563 /*
564 * Always select the oldest connection. It's not fair,
565 * but so is life
566 */
567 xprt = list_entry(serv->sv_tempsocks.prev,
568 struct svc_xprt,
569 xpt_list);
570 set_bit(XPT_CLOSE, &xprt->xpt_flags);
571 svc_xprt_get(xprt);
572 }
573 spin_unlock_bh(&serv->sv_lock);
574
575 if (xprt) {
576 svc_xprt_enqueue(xprt);
577 svc_xprt_put(xprt);
578 }
579 }
580 }
581
582 static int svc_alloc_arg(struct svc_rqst *rqstp)
583 {
584 struct svc_serv *serv = rqstp->rq_server;
585 struct xdr_buf *arg;
586 int pages;
587 int i;
588
589 /* now allocate needed pages. If we get a failure, sleep briefly */
590 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
591 WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
592 if (pages >= RPCSVC_MAXPAGES)
593 /* use as many pages as possible */
594 pages = RPCSVC_MAXPAGES - 1;
595 for (i = 0; i < pages ; i++)
596 while (rqstp->rq_pages[i] == NULL) {
597 struct page *p = alloc_page(GFP_KERNEL);
598 if (!p) {
599 set_current_state(TASK_INTERRUPTIBLE);
600 if (signalled() || kthread_should_stop()) {
601 set_current_state(TASK_RUNNING);
602 return -EINTR;
603 }
604 schedule_timeout(msecs_to_jiffies(500));
605 }
606 rqstp->rq_pages[i] = p;
607 }
608 rqstp->rq_page_end = &rqstp->rq_pages[i];
609 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
610
611 /* Make arg->head point to first page and arg->pages point to rest */
612 arg = &rqstp->rq_arg;
613 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
614 arg->head[0].iov_len = PAGE_SIZE;
615 arg->pages = rqstp->rq_pages + 1;
616 arg->page_base = 0;
617 /* save at least one page for response */
618 arg->page_len = (pages-2)*PAGE_SIZE;
619 arg->len = (pages-1)*PAGE_SIZE;
620 arg->tail[0].iov_len = 0;
621 return 0;
622 }
623
624 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
625 {
626 struct svc_xprt *xprt;
627 struct svc_pool *pool = rqstp->rq_pool;
628 long time_left = 0;
629
630 /* Normally we will wait up to 5 seconds for any required
631 * cache information to be provided.
632 */
633 rqstp->rq_chandle.thread_wait = 5*HZ;
634
635 spin_lock_bh(&pool->sp_lock);
636 xprt = svc_xprt_dequeue(pool);
637 if (xprt) {
638 rqstp->rq_xprt = xprt;
639 svc_xprt_get(xprt);
640
641 /* As there is a shortage of threads and this request
642 * had to be queued, don't allow the thread to wait so
643 * long for cache updates.
644 */
645 rqstp->rq_chandle.thread_wait = 1*HZ;
646 pool->sp_task_pending = 0;
647 } else {
648 if (pool->sp_task_pending) {
649 pool->sp_task_pending = 0;
650 xprt = ERR_PTR(-EAGAIN);
651 goto out;
652 }
653 /*
654 * We have to be able to interrupt this wait
655 * to bring down the daemons ...
656 */
657 set_current_state(TASK_INTERRUPTIBLE);
658
659 /* No data pending. Go to sleep */
660 svc_thread_enqueue(pool, rqstp);
661 spin_unlock_bh(&pool->sp_lock);
662
663 if (!(signalled() || kthread_should_stop())) {
664 time_left = schedule_timeout(timeout);
665 __set_current_state(TASK_RUNNING);
666
667 try_to_freeze();
668
669 xprt = rqstp->rq_xprt;
670 if (xprt != NULL)
671 return xprt;
672 } else
673 __set_current_state(TASK_RUNNING);
674
675 spin_lock_bh(&pool->sp_lock);
676 if (!time_left)
677 pool->sp_stats.threads_timedout++;
678
679 xprt = rqstp->rq_xprt;
680 if (!xprt) {
681 svc_thread_dequeue(pool, rqstp);
682 spin_unlock_bh(&pool->sp_lock);
683 dprintk("svc: server %p, no data yet\n", rqstp);
684 if (signalled() || kthread_should_stop())
685 return ERR_PTR(-EINTR);
686 else
687 return ERR_PTR(-EAGAIN);
688 }
689 }
690 out:
691 spin_unlock_bh(&pool->sp_lock);
692 return xprt;
693 }
694
695 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
696 {
697 spin_lock_bh(&serv->sv_lock);
698 set_bit(XPT_TEMP, &newxpt->xpt_flags);
699 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
700 serv->sv_tmpcnt++;
701 if (serv->sv_temptimer.function == NULL) {
702 /* setup timer to age temp transports */
703 setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
704 (unsigned long)serv);
705 mod_timer(&serv->sv_temptimer,
706 jiffies + svc_conn_age_period * HZ);
707 }
708 spin_unlock_bh(&serv->sv_lock);
709 svc_xprt_received(newxpt);
710 }
711
712 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
713 {
714 struct svc_serv *serv = rqstp->rq_server;
715 int len = 0;
716
717 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
718 dprintk("svc_recv: found XPT_CLOSE\n");
719 svc_delete_xprt(xprt);
720 /* Leave XPT_BUSY set on the dead xprt: */
721 return 0;
722 }
723 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
724 struct svc_xprt *newxpt;
725 /*
726 * We know this module_get will succeed because the
727 * listener holds a reference too
728 */
729 __module_get(xprt->xpt_class->xcl_owner);
730 svc_check_conn_limits(xprt->xpt_server);
731 newxpt = xprt->xpt_ops->xpo_accept(xprt);
732 if (newxpt)
733 svc_add_new_temp_xprt(serv, newxpt);
734 else
735 module_put(xprt->xpt_class->xcl_owner);
736 } else {
737 /* XPT_DATA|XPT_DEFERRED case: */
738 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
739 rqstp, rqstp->rq_pool->sp_id, xprt,
740 atomic_read(&xprt->xpt_ref.refcount));
741 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
742 if (rqstp->rq_deferred)
743 len = svc_deferred_recv(rqstp);
744 else
745 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
746 dprintk("svc: got len=%d\n", len);
747 rqstp->rq_reserved = serv->sv_max_mesg;
748 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
749 }
750 /* clear XPT_BUSY: */
751 svc_xprt_received(xprt);
752 return len;
753 }
754
755 /*
756 * Receive the next request on any transport. This code is carefully
757 * organised not to touch any cachelines in the shared svc_serv
758 * structure, only cachelines in the local svc_pool.
759 */
760 int svc_recv(struct svc_rqst *rqstp, long timeout)
761 {
762 struct svc_xprt *xprt = NULL;
763 struct svc_serv *serv = rqstp->rq_server;
764 int len, err;
765
766 dprintk("svc: server %p waiting for data (to = %ld)\n",
767 rqstp, timeout);
768
769 if (rqstp->rq_xprt)
770 printk(KERN_ERR
771 "svc_recv: service %p, transport not NULL!\n",
772 rqstp);
773
774 err = svc_alloc_arg(rqstp);
775 if (err)
776 return err;
777
778 try_to_freeze();
779 cond_resched();
780 if (signalled() || kthread_should_stop())
781 return -EINTR;
782
783 xprt = svc_get_next_xprt(rqstp, timeout);
784 if (IS_ERR(xprt))
785 return PTR_ERR(xprt);
786
787 len = svc_handle_xprt(rqstp, xprt);
788
789 /* No data, incomplete (TCP) read, or accept() */
790 if (len <= 0)
791 goto out;
792
793 clear_bit(XPT_OLD, &xprt->xpt_flags);
794
795 rqstp->rq_secure = xprt->xpt_ops->xpo_secure_port(rqstp);
796 rqstp->rq_chandle.defer = svc_defer;
797
798 if (serv->sv_stats)
799 serv->sv_stats->netcnt++;
800 return len;
801 out:
802 rqstp->rq_res.len = 0;
803 svc_xprt_release(rqstp);
804 return -EAGAIN;
805 }
806 EXPORT_SYMBOL_GPL(svc_recv);
807
808 /*
809 * Drop request
810 */
811 void svc_drop(struct svc_rqst *rqstp)
812 {
813 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
814 svc_xprt_release(rqstp);
815 }
816 EXPORT_SYMBOL_GPL(svc_drop);
817
818 /*
819 * Return reply to client.
820 */
821 int svc_send(struct svc_rqst *rqstp)
822 {
823 struct svc_xprt *xprt;
824 int len;
825 struct xdr_buf *xb;
826
827 xprt = rqstp->rq_xprt;
828 if (!xprt)
829 return -EFAULT;
830
831 /* release the receive skb before sending the reply */
832 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
833
834 /* calculate over-all length */
835 xb = &rqstp->rq_res;
836 xb->len = xb->head[0].iov_len +
837 xb->page_len +
838 xb->tail[0].iov_len;
839
840 /* Grab mutex to serialize outgoing data. */
841 mutex_lock(&xprt->xpt_mutex);
842 if (test_bit(XPT_DEAD, &xprt->xpt_flags)
843 || test_bit(XPT_CLOSE, &xprt->xpt_flags))
844 len = -ENOTCONN;
845 else
846 len = xprt->xpt_ops->xpo_sendto(rqstp);
847 mutex_unlock(&xprt->xpt_mutex);
848 rpc_wake_up(&xprt->xpt_bc_pending);
849 svc_xprt_release(rqstp);
850
851 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
852 return 0;
853 return len;
854 }
855
856 /*
857 * Timer function to close old temporary transports, using
858 * a mark-and-sweep algorithm.
859 */
860 static void svc_age_temp_xprts(unsigned long closure)
861 {
862 struct svc_serv *serv = (struct svc_serv *)closure;
863 struct svc_xprt *xprt;
864 struct list_head *le, *next;
865
866 dprintk("svc_age_temp_xprts\n");
867
868 if (!spin_trylock_bh(&serv->sv_lock)) {
869 /* busy, try again 1 sec later */
870 dprintk("svc_age_temp_xprts: busy\n");
871 mod_timer(&serv->sv_temptimer, jiffies + HZ);
872 return;
873 }
874
875 list_for_each_safe(le, next, &serv->sv_tempsocks) {
876 xprt = list_entry(le, struct svc_xprt, xpt_list);
877
878 /* First time through, just mark it OLD. Second time
879 * through, close it. */
880 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
881 continue;
882 if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
883 test_bit(XPT_BUSY, &xprt->xpt_flags))
884 continue;
885 list_del_init(le);
886 set_bit(XPT_CLOSE, &xprt->xpt_flags);
887 set_bit(XPT_DETACHED, &xprt->xpt_flags);
888 dprintk("queuing xprt %p for closing\n", xprt);
889
890 /* a thread will dequeue and close it soon */
891 svc_xprt_enqueue(xprt);
892 }
893 spin_unlock_bh(&serv->sv_lock);
894
895 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
896 }
897
898 static void call_xpt_users(struct svc_xprt *xprt)
899 {
900 struct svc_xpt_user *u;
901
902 spin_lock(&xprt->xpt_lock);
903 while (!list_empty(&xprt->xpt_users)) {
904 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
905 list_del(&u->list);
906 u->callback(u);
907 }
908 spin_unlock(&xprt->xpt_lock);
909 }
910
911 /*
912 * Remove a dead transport
913 */
914 static void svc_delete_xprt(struct svc_xprt *xprt)
915 {
916 struct svc_serv *serv = xprt->xpt_server;
917 struct svc_deferred_req *dr;
918
919 /* Only do this once */
920 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
921 BUG();
922
923 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
924 xprt->xpt_ops->xpo_detach(xprt);
925
926 spin_lock_bh(&serv->sv_lock);
927 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
928 list_del_init(&xprt->xpt_list);
929 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
930 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
931 serv->sv_tmpcnt--;
932 spin_unlock_bh(&serv->sv_lock);
933
934 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
935 kfree(dr);
936
937 call_xpt_users(xprt);
938 svc_xprt_put(xprt);
939 }
940
941 void svc_close_xprt(struct svc_xprt *xprt)
942 {
943 set_bit(XPT_CLOSE, &xprt->xpt_flags);
944 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
945 /* someone else will have to effect the close */
946 return;
947 /*
948 * We expect svc_close_xprt() to work even when no threads are
949 * running (e.g., while configuring the server before starting
950 * any threads), so if the transport isn't busy, we delete
951 * it ourself:
952 */
953 svc_delete_xprt(xprt);
954 }
955 EXPORT_SYMBOL_GPL(svc_close_xprt);
956
957 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
958 {
959 struct svc_xprt *xprt;
960 int ret = 0;
961
962 spin_lock(&serv->sv_lock);
963 list_for_each_entry(xprt, xprt_list, xpt_list) {
964 if (xprt->xpt_net != net)
965 continue;
966 ret++;
967 set_bit(XPT_CLOSE, &xprt->xpt_flags);
968 svc_xprt_enqueue(xprt);
969 }
970 spin_unlock(&serv->sv_lock);
971 return ret;
972 }
973
974 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
975 {
976 struct svc_pool *pool;
977 struct svc_xprt *xprt;
978 struct svc_xprt *tmp;
979 int i;
980
981 for (i = 0; i < serv->sv_nrpools; i++) {
982 pool = &serv->sv_pools[i];
983
984 spin_lock_bh(&pool->sp_lock);
985 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
986 if (xprt->xpt_net != net)
987 continue;
988 list_del_init(&xprt->xpt_ready);
989 spin_unlock_bh(&pool->sp_lock);
990 return xprt;
991 }
992 spin_unlock_bh(&pool->sp_lock);
993 }
994 return NULL;
995 }
996
997 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
998 {
999 struct svc_xprt *xprt;
1000
1001 while ((xprt = svc_dequeue_net(serv, net))) {
1002 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1003 svc_delete_xprt(xprt);
1004 }
1005 }
1006
1007 /*
1008 * Server threads may still be running (especially in the case where the
1009 * service is still running in other network namespaces).
1010 *
1011 * So we shut down sockets the same way we would on a running server, by
1012 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1013 * the close. In the case there are no such other threads,
1014 * threads running, svc_clean_up_xprts() does a simple version of a
1015 * server's main event loop, and in the case where there are other
1016 * threads, we may need to wait a little while and then check again to
1017 * see if they're done.
1018 */
1019 void svc_close_net(struct svc_serv *serv, struct net *net)
1020 {
1021 int delay = 0;
1022
1023 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1024 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1025
1026 svc_clean_up_xprts(serv, net);
1027 msleep(delay++);
1028 }
1029 }
1030
1031 /*
1032 * Handle defer and revisit of requests
1033 */
1034
1035 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1036 {
1037 struct svc_deferred_req *dr =
1038 container_of(dreq, struct svc_deferred_req, handle);
1039 struct svc_xprt *xprt = dr->xprt;
1040
1041 spin_lock(&xprt->xpt_lock);
1042 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1043 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1044 spin_unlock(&xprt->xpt_lock);
1045 dprintk("revisit canceled\n");
1046 svc_xprt_put(xprt);
1047 kfree(dr);
1048 return;
1049 }
1050 dprintk("revisit queued\n");
1051 dr->xprt = NULL;
1052 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1053 spin_unlock(&xprt->xpt_lock);
1054 svc_xprt_enqueue(xprt);
1055 svc_xprt_put(xprt);
1056 }
1057
1058 /*
1059 * Save the request off for later processing. The request buffer looks
1060 * like this:
1061 *
1062 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1063 *
1064 * This code can only handle requests that consist of an xprt-header
1065 * and rpc-header.
1066 */
1067 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1068 {
1069 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1070 struct svc_deferred_req *dr;
1071
1072 if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
1073 return NULL; /* if more than a page, give up FIXME */
1074 if (rqstp->rq_deferred) {
1075 dr = rqstp->rq_deferred;
1076 rqstp->rq_deferred = NULL;
1077 } else {
1078 size_t skip;
1079 size_t size;
1080 /* FIXME maybe discard if size too large */
1081 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1082 dr = kmalloc(size, GFP_KERNEL);
1083 if (dr == NULL)
1084 return NULL;
1085
1086 dr->handle.owner = rqstp->rq_server;
1087 dr->prot = rqstp->rq_prot;
1088 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1089 dr->addrlen = rqstp->rq_addrlen;
1090 dr->daddr = rqstp->rq_daddr;
1091 dr->argslen = rqstp->rq_arg.len >> 2;
1092 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1093
1094 /* back up head to the start of the buffer and copy */
1095 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1096 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1097 dr->argslen << 2);
1098 }
1099 svc_xprt_get(rqstp->rq_xprt);
1100 dr->xprt = rqstp->rq_xprt;
1101 rqstp->rq_dropme = true;
1102
1103 dr->handle.revisit = svc_revisit;
1104 return &dr->handle;
1105 }
1106
1107 /*
1108 * recv data from a deferred request into an active one
1109 */
1110 static int svc_deferred_recv(struct svc_rqst *rqstp)
1111 {
1112 struct svc_deferred_req *dr = rqstp->rq_deferred;
1113
1114 /* setup iov_base past transport header */
1115 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1116 /* The iov_len does not include the transport header bytes */
1117 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1118 rqstp->rq_arg.page_len = 0;
1119 /* The rq_arg.len includes the transport header bytes */
1120 rqstp->rq_arg.len = dr->argslen<<2;
1121 rqstp->rq_prot = dr->prot;
1122 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1123 rqstp->rq_addrlen = dr->addrlen;
1124 /* Save off transport header len in case we get deferred again */
1125 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1126 rqstp->rq_daddr = dr->daddr;
1127 rqstp->rq_respages = rqstp->rq_pages;
1128 return (dr->argslen<<2) - dr->xprt_hlen;
1129 }
1130
1131
1132 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1133 {
1134 struct svc_deferred_req *dr = NULL;
1135
1136 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1137 return NULL;
1138 spin_lock(&xprt->xpt_lock);
1139 if (!list_empty(&xprt->xpt_deferred)) {
1140 dr = list_entry(xprt->xpt_deferred.next,
1141 struct svc_deferred_req,
1142 handle.recent);
1143 list_del_init(&dr->handle.recent);
1144 } else
1145 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1146 spin_unlock(&xprt->xpt_lock);
1147 return dr;
1148 }
1149
1150 /**
1151 * svc_find_xprt - find an RPC transport instance
1152 * @serv: pointer to svc_serv to search
1153 * @xcl_name: C string containing transport's class name
1154 * @net: owner net pointer
1155 * @af: Address family of transport's local address
1156 * @port: transport's IP port number
1157 *
1158 * Return the transport instance pointer for the endpoint accepting
1159 * connections/peer traffic from the specified transport class,
1160 * address family and port.
1161 *
1162 * Specifying 0 for the address family or port is effectively a
1163 * wild-card, and will result in matching the first transport in the
1164 * service's list that has a matching class name.
1165 */
1166 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1167 struct net *net, const sa_family_t af,
1168 const unsigned short port)
1169 {
1170 struct svc_xprt *xprt;
1171 struct svc_xprt *found = NULL;
1172
1173 /* Sanity check the args */
1174 if (serv == NULL || xcl_name == NULL)
1175 return found;
1176
1177 spin_lock_bh(&serv->sv_lock);
1178 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1179 if (xprt->xpt_net != net)
1180 continue;
1181 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1182 continue;
1183 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1184 continue;
1185 if (port != 0 && port != svc_xprt_local_port(xprt))
1186 continue;
1187 found = xprt;
1188 svc_xprt_get(xprt);
1189 break;
1190 }
1191 spin_unlock_bh(&serv->sv_lock);
1192 return found;
1193 }
1194 EXPORT_SYMBOL_GPL(svc_find_xprt);
1195
1196 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1197 char *pos, int remaining)
1198 {
1199 int len;
1200
1201 len = snprintf(pos, remaining, "%s %u\n",
1202 xprt->xpt_class->xcl_name,
1203 svc_xprt_local_port(xprt));
1204 if (len >= remaining)
1205 return -ENAMETOOLONG;
1206 return len;
1207 }
1208
1209 /**
1210 * svc_xprt_names - format a buffer with a list of transport names
1211 * @serv: pointer to an RPC service
1212 * @buf: pointer to a buffer to be filled in
1213 * @buflen: length of buffer to be filled in
1214 *
1215 * Fills in @buf with a string containing a list of transport names,
1216 * each name terminated with '\n'.
1217 *
1218 * Returns positive length of the filled-in string on success; otherwise
1219 * a negative errno value is returned if an error occurs.
1220 */
1221 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1222 {
1223 struct svc_xprt *xprt;
1224 int len, totlen;
1225 char *pos;
1226
1227 /* Sanity check args */
1228 if (!serv)
1229 return 0;
1230
1231 spin_lock_bh(&serv->sv_lock);
1232
1233 pos = buf;
1234 totlen = 0;
1235 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1236 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1237 if (len < 0) {
1238 *buf = '\0';
1239 totlen = len;
1240 }
1241 if (len <= 0)
1242 break;
1243
1244 pos += len;
1245 totlen += len;
1246 }
1247
1248 spin_unlock_bh(&serv->sv_lock);
1249 return totlen;
1250 }
1251 EXPORT_SYMBOL_GPL(svc_xprt_names);
1252
1253
1254 /*----------------------------------------------------------------------------*/
1255
1256 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1257 {
1258 unsigned int pidx = (unsigned int)*pos;
1259 struct svc_serv *serv = m->private;
1260
1261 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1262
1263 if (!pidx)
1264 return SEQ_START_TOKEN;
1265 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1266 }
1267
1268 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1269 {
1270 struct svc_pool *pool = p;
1271 struct svc_serv *serv = m->private;
1272
1273 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1274
1275 if (p == SEQ_START_TOKEN) {
1276 pool = &serv->sv_pools[0];
1277 } else {
1278 unsigned int pidx = (pool - &serv->sv_pools[0]);
1279 if (pidx < serv->sv_nrpools-1)
1280 pool = &serv->sv_pools[pidx+1];
1281 else
1282 pool = NULL;
1283 }
1284 ++*pos;
1285 return pool;
1286 }
1287
1288 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1289 {
1290 }
1291
1292 static int svc_pool_stats_show(struct seq_file *m, void *p)
1293 {
1294 struct svc_pool *pool = p;
1295
1296 if (p == SEQ_START_TOKEN) {
1297 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1298 return 0;
1299 }
1300
1301 seq_printf(m, "%u %lu %lu %lu %lu\n",
1302 pool->sp_id,
1303 pool->sp_stats.packets,
1304 pool->sp_stats.sockets_queued,
1305 pool->sp_stats.threads_woken,
1306 pool->sp_stats.threads_timedout);
1307
1308 return 0;
1309 }
1310
1311 static const struct seq_operations svc_pool_stats_seq_ops = {
1312 .start = svc_pool_stats_start,
1313 .next = svc_pool_stats_next,
1314 .stop = svc_pool_stats_stop,
1315 .show = svc_pool_stats_show,
1316 };
1317
1318 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1319 {
1320 int err;
1321
1322 err = seq_open(file, &svc_pool_stats_seq_ops);
1323 if (!err)
1324 ((struct seq_file *) file->private_data)->private = serv;
1325 return err;
1326 }
1327 EXPORT_SYMBOL(svc_pool_stats_open);
1328
1329 /*----------------------------------------------------------------------------*/