]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sunrpc/svc_xprt.c
Merge branch 'overlayfs-af_unix-fix' into overlayfs-linus
[mirror_ubuntu-bionic-kernel.git] / net / sunrpc / svc_xprt.c
1 /*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/addr.h>
14 #include <linux/sunrpc/stats.h>
15 #include <linux/sunrpc/svc_xprt.h>
16 #include <linux/sunrpc/svcsock.h>
17 #include <linux/sunrpc/xprt.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
20 #include <trace/events/sunrpc.h>
21
22 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
23
24 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
25 static int svc_deferred_recv(struct svc_rqst *rqstp);
26 static struct cache_deferred_req *svc_defer(struct cache_req *req);
27 static void svc_age_temp_xprts(unsigned long closure);
28 static void svc_delete_xprt(struct svc_xprt *xprt);
29
30 /* apparently the "standard" is that clients close
31 * idle connections after 5 minutes, servers after
32 * 6 minutes
33 * http://www.connectathon.org/talks96/nfstcp.pdf
34 */
35 static int svc_conn_age_period = 6*60;
36
37 /* List of registered transport classes */
38 static DEFINE_SPINLOCK(svc_xprt_class_lock);
39 static LIST_HEAD(svc_xprt_class_list);
40
41 /* SMP locking strategy:
42 *
43 * svc_pool->sp_lock protects most of the fields of that pool.
44 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
45 * when both need to be taken (rare), svc_serv->sv_lock is first.
46 * The "service mutex" protects svc_serv->sv_nrthread.
47 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
48 * and the ->sk_info_authunix cache.
49 *
50 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
51 * enqueued multiply. During normal transport processing this bit
52 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
53 * Providers should not manipulate this bit directly.
54 *
55 * Some flags can be set to certain values at any time
56 * providing that certain rules are followed:
57 *
58 * XPT_CONN, XPT_DATA:
59 * - Can be set or cleared at any time.
60 * - After a set, svc_xprt_enqueue must be called to enqueue
61 * the transport for processing.
62 * - After a clear, the transport must be read/accepted.
63 * If this succeeds, it must be set again.
64 * XPT_CLOSE:
65 * - Can set at any time. It is never cleared.
66 * XPT_DEAD:
67 * - Can only be set while XPT_BUSY is held which ensures
68 * that no other thread will be using the transport or will
69 * try to set XPT_DEAD.
70 */
71 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
72 {
73 struct svc_xprt_class *cl;
74 int res = -EEXIST;
75
76 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
77
78 INIT_LIST_HEAD(&xcl->xcl_list);
79 spin_lock(&svc_xprt_class_lock);
80 /* Make sure there isn't already a class with the same name */
81 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
82 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
83 goto out;
84 }
85 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
86 res = 0;
87 out:
88 spin_unlock(&svc_xprt_class_lock);
89 return res;
90 }
91 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
92
93 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
94 {
95 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
96 spin_lock(&svc_xprt_class_lock);
97 list_del_init(&xcl->xcl_list);
98 spin_unlock(&svc_xprt_class_lock);
99 }
100 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
101
102 /*
103 * Format the transport list for printing
104 */
105 int svc_print_xprts(char *buf, int maxlen)
106 {
107 struct svc_xprt_class *xcl;
108 char tmpstr[80];
109 int len = 0;
110 buf[0] = '\0';
111
112 spin_lock(&svc_xprt_class_lock);
113 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
114 int slen;
115
116 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
117 slen = strlen(tmpstr);
118 if (len + slen > maxlen)
119 break;
120 len += slen;
121 strcat(buf, tmpstr);
122 }
123 spin_unlock(&svc_xprt_class_lock);
124
125 return len;
126 }
127
128 static void svc_xprt_free(struct kref *kref)
129 {
130 struct svc_xprt *xprt =
131 container_of(kref, struct svc_xprt, xpt_ref);
132 struct module *owner = xprt->xpt_class->xcl_owner;
133 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
134 svcauth_unix_info_release(xprt);
135 put_net(xprt->xpt_net);
136 /* See comment on corresponding get in xs_setup_bc_tcp(): */
137 if (xprt->xpt_bc_xprt)
138 xprt_put(xprt->xpt_bc_xprt);
139 xprt->xpt_ops->xpo_free(xprt);
140 module_put(owner);
141 }
142
143 void svc_xprt_put(struct svc_xprt *xprt)
144 {
145 kref_put(&xprt->xpt_ref, svc_xprt_free);
146 }
147 EXPORT_SYMBOL_GPL(svc_xprt_put);
148
149 /*
150 * Called by transport drivers to initialize the transport independent
151 * portion of the transport instance.
152 */
153 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
154 struct svc_xprt *xprt, struct svc_serv *serv)
155 {
156 memset(xprt, 0, sizeof(*xprt));
157 xprt->xpt_class = xcl;
158 xprt->xpt_ops = xcl->xcl_ops;
159 kref_init(&xprt->xpt_ref);
160 xprt->xpt_server = serv;
161 INIT_LIST_HEAD(&xprt->xpt_list);
162 INIT_LIST_HEAD(&xprt->xpt_ready);
163 INIT_LIST_HEAD(&xprt->xpt_deferred);
164 INIT_LIST_HEAD(&xprt->xpt_users);
165 mutex_init(&xprt->xpt_mutex);
166 spin_lock_init(&xprt->xpt_lock);
167 set_bit(XPT_BUSY, &xprt->xpt_flags);
168 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
169 xprt->xpt_net = get_net(net);
170 }
171 EXPORT_SYMBOL_GPL(svc_xprt_init);
172
173 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
174 struct svc_serv *serv,
175 struct net *net,
176 const int family,
177 const unsigned short port,
178 int flags)
179 {
180 struct sockaddr_in sin = {
181 .sin_family = AF_INET,
182 .sin_addr.s_addr = htonl(INADDR_ANY),
183 .sin_port = htons(port),
184 };
185 #if IS_ENABLED(CONFIG_IPV6)
186 struct sockaddr_in6 sin6 = {
187 .sin6_family = AF_INET6,
188 .sin6_addr = IN6ADDR_ANY_INIT,
189 .sin6_port = htons(port),
190 };
191 #endif
192 struct sockaddr *sap;
193 size_t len;
194
195 switch (family) {
196 case PF_INET:
197 sap = (struct sockaddr *)&sin;
198 len = sizeof(sin);
199 break;
200 #if IS_ENABLED(CONFIG_IPV6)
201 case PF_INET6:
202 sap = (struct sockaddr *)&sin6;
203 len = sizeof(sin6);
204 break;
205 #endif
206 default:
207 return ERR_PTR(-EAFNOSUPPORT);
208 }
209
210 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
211 }
212
213 /*
214 * svc_xprt_received conditionally queues the transport for processing
215 * by another thread. The caller must hold the XPT_BUSY bit and must
216 * not thereafter touch transport data.
217 *
218 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
219 * insufficient) data.
220 */
221 static void svc_xprt_received(struct svc_xprt *xprt)
222 {
223 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
224 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
225 return;
226 }
227
228 /* As soon as we clear busy, the xprt could be closed and
229 * 'put', so we need a reference to call svc_enqueue_xprt with:
230 */
231 svc_xprt_get(xprt);
232 smp_mb__before_atomic();
233 clear_bit(XPT_BUSY, &xprt->xpt_flags);
234 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
235 svc_xprt_put(xprt);
236 }
237
238 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
239 {
240 clear_bit(XPT_TEMP, &new->xpt_flags);
241 spin_lock_bh(&serv->sv_lock);
242 list_add(&new->xpt_list, &serv->sv_permsocks);
243 spin_unlock_bh(&serv->sv_lock);
244 svc_xprt_received(new);
245 }
246
247 int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
248 struct net *net, const int family,
249 const unsigned short port, int flags)
250 {
251 struct svc_xprt_class *xcl;
252
253 spin_lock(&svc_xprt_class_lock);
254 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
255 struct svc_xprt *newxprt;
256 unsigned short newport;
257
258 if (strcmp(xprt_name, xcl->xcl_name))
259 continue;
260
261 if (!try_module_get(xcl->xcl_owner))
262 goto err;
263
264 spin_unlock(&svc_xprt_class_lock);
265 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
266 if (IS_ERR(newxprt)) {
267 module_put(xcl->xcl_owner);
268 return PTR_ERR(newxprt);
269 }
270 svc_add_new_perm_xprt(serv, newxprt);
271 newport = svc_xprt_local_port(newxprt);
272 return newport;
273 }
274 err:
275 spin_unlock(&svc_xprt_class_lock);
276 /* This errno is exposed to user space. Provide a reasonable
277 * perror msg for a bad transport. */
278 return -EPROTONOSUPPORT;
279 }
280
281 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
282 struct net *net, const int family,
283 const unsigned short port, int flags)
284 {
285 int err;
286
287 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
288 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
289 if (err == -EPROTONOSUPPORT) {
290 request_module("svc%s", xprt_name);
291 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
292 }
293 if (err)
294 dprintk("svc: transport %s not found, err %d\n",
295 xprt_name, err);
296 return err;
297 }
298 EXPORT_SYMBOL_GPL(svc_create_xprt);
299
300 /*
301 * Copy the local and remote xprt addresses to the rqstp structure
302 */
303 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
304 {
305 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
306 rqstp->rq_addrlen = xprt->xpt_remotelen;
307
308 /*
309 * Destination address in request is needed for binding the
310 * source address in RPC replies/callbacks later.
311 */
312 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
313 rqstp->rq_daddrlen = xprt->xpt_locallen;
314 }
315 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
316
317 /**
318 * svc_print_addr - Format rq_addr field for printing
319 * @rqstp: svc_rqst struct containing address to print
320 * @buf: target buffer for formatted address
321 * @len: length of target buffer
322 *
323 */
324 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
325 {
326 return __svc_print_addr(svc_addr(rqstp), buf, len);
327 }
328 EXPORT_SYMBOL_GPL(svc_print_addr);
329
330 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
331 {
332 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
333 return true;
334 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
335 return xprt->xpt_ops->xpo_has_wspace(xprt);
336 return false;
337 }
338
339 void svc_xprt_do_enqueue(struct svc_xprt *xprt)
340 {
341 struct svc_pool *pool;
342 struct svc_rqst *rqstp = NULL;
343 int cpu;
344 bool queued = false;
345
346 if (!svc_xprt_has_something_to_do(xprt))
347 goto out;
348
349 /* Mark transport as busy. It will remain in this state until
350 * the provider calls svc_xprt_received. We update XPT_BUSY
351 * atomically because it also guards against trying to enqueue
352 * the transport twice.
353 */
354 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
355 /* Don't enqueue transport while already enqueued */
356 dprintk("svc: transport %p busy, not enqueued\n", xprt);
357 goto out;
358 }
359
360 cpu = get_cpu();
361 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
362
363 atomic_long_inc(&pool->sp_stats.packets);
364
365 redo_search:
366 /* find a thread for this xprt */
367 rcu_read_lock();
368 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
369 /* Do a lockless check first */
370 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
371 continue;
372
373 /*
374 * Once the xprt has been queued, it can only be dequeued by
375 * the task that intends to service it. All we can do at that
376 * point is to try to wake this thread back up so that it can
377 * do so.
378 */
379 if (!queued) {
380 spin_lock_bh(&rqstp->rq_lock);
381 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) {
382 /* already busy, move on... */
383 spin_unlock_bh(&rqstp->rq_lock);
384 continue;
385 }
386
387 /* this one will do */
388 rqstp->rq_xprt = xprt;
389 svc_xprt_get(xprt);
390 spin_unlock_bh(&rqstp->rq_lock);
391 }
392 rcu_read_unlock();
393
394 atomic_long_inc(&pool->sp_stats.threads_woken);
395 wake_up_process(rqstp->rq_task);
396 put_cpu();
397 goto out;
398 }
399 rcu_read_unlock();
400
401 /*
402 * We didn't find an idle thread to use, so we need to queue the xprt.
403 * Do so and then search again. If we find one, we can't hook this one
404 * up to it directly but we can wake the thread up in the hopes that it
405 * will pick it up once it searches for a xprt to service.
406 */
407 if (!queued) {
408 queued = true;
409 dprintk("svc: transport %p put into queue\n", xprt);
410 spin_lock_bh(&pool->sp_lock);
411 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
412 pool->sp_stats.sockets_queued++;
413 spin_unlock_bh(&pool->sp_lock);
414 goto redo_search;
415 }
416 rqstp = NULL;
417 put_cpu();
418 out:
419 trace_svc_xprt_do_enqueue(xprt, rqstp);
420 }
421 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
422
423 /*
424 * Queue up a transport with data pending. If there are idle nfsd
425 * processes, wake 'em up.
426 *
427 */
428 void svc_xprt_enqueue(struct svc_xprt *xprt)
429 {
430 if (test_bit(XPT_BUSY, &xprt->xpt_flags))
431 return;
432 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
433 }
434 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
435
436 /*
437 * Dequeue the first transport, if there is one.
438 */
439 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
440 {
441 struct svc_xprt *xprt = NULL;
442
443 if (list_empty(&pool->sp_sockets))
444 goto out;
445
446 spin_lock_bh(&pool->sp_lock);
447 if (likely(!list_empty(&pool->sp_sockets))) {
448 xprt = list_first_entry(&pool->sp_sockets,
449 struct svc_xprt, xpt_ready);
450 list_del_init(&xprt->xpt_ready);
451 svc_xprt_get(xprt);
452
453 dprintk("svc: transport %p dequeued, inuse=%d\n",
454 xprt, atomic_read(&xprt->xpt_ref.refcount));
455 }
456 spin_unlock_bh(&pool->sp_lock);
457 out:
458 trace_svc_xprt_dequeue(xprt);
459 return xprt;
460 }
461
462 /**
463 * svc_reserve - change the space reserved for the reply to a request.
464 * @rqstp: The request in question
465 * @space: new max space to reserve
466 *
467 * Each request reserves some space on the output queue of the transport
468 * to make sure the reply fits. This function reduces that reserved
469 * space to be the amount of space used already, plus @space.
470 *
471 */
472 void svc_reserve(struct svc_rqst *rqstp, int space)
473 {
474 space += rqstp->rq_res.head[0].iov_len;
475
476 if (space < rqstp->rq_reserved) {
477 struct svc_xprt *xprt = rqstp->rq_xprt;
478 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
479 rqstp->rq_reserved = space;
480
481 if (xprt->xpt_ops->xpo_adjust_wspace)
482 xprt->xpt_ops->xpo_adjust_wspace(xprt);
483 svc_xprt_enqueue(xprt);
484 }
485 }
486 EXPORT_SYMBOL_GPL(svc_reserve);
487
488 static void svc_xprt_release(struct svc_rqst *rqstp)
489 {
490 struct svc_xprt *xprt = rqstp->rq_xprt;
491
492 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
493
494 kfree(rqstp->rq_deferred);
495 rqstp->rq_deferred = NULL;
496
497 svc_free_res_pages(rqstp);
498 rqstp->rq_res.page_len = 0;
499 rqstp->rq_res.page_base = 0;
500
501 /* Reset response buffer and release
502 * the reservation.
503 * But first, check that enough space was reserved
504 * for the reply, otherwise we have a bug!
505 */
506 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
507 printk(KERN_ERR "RPC request reserved %d but used %d\n",
508 rqstp->rq_reserved,
509 rqstp->rq_res.len);
510
511 rqstp->rq_res.head[0].iov_len = 0;
512 svc_reserve(rqstp, 0);
513 rqstp->rq_xprt = NULL;
514
515 svc_xprt_put(xprt);
516 }
517
518 /*
519 * Some svc_serv's will have occasional work to do, even when a xprt is not
520 * waiting to be serviced. This function is there to "kick" a task in one of
521 * those services so that it can wake up and do that work. Note that we only
522 * bother with pool 0 as we don't need to wake up more than one thread for
523 * this purpose.
524 */
525 void svc_wake_up(struct svc_serv *serv)
526 {
527 struct svc_rqst *rqstp;
528 struct svc_pool *pool;
529
530 pool = &serv->sv_pools[0];
531
532 rcu_read_lock();
533 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
534 /* skip any that aren't queued */
535 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
536 continue;
537 rcu_read_unlock();
538 dprintk("svc: daemon %p woken up.\n", rqstp);
539 wake_up_process(rqstp->rq_task);
540 trace_svc_wake_up(rqstp->rq_task->pid);
541 return;
542 }
543 rcu_read_unlock();
544
545 /* No free entries available */
546 set_bit(SP_TASK_PENDING, &pool->sp_flags);
547 smp_wmb();
548 trace_svc_wake_up(0);
549 }
550 EXPORT_SYMBOL_GPL(svc_wake_up);
551
552 int svc_port_is_privileged(struct sockaddr *sin)
553 {
554 switch (sin->sa_family) {
555 case AF_INET:
556 return ntohs(((struct sockaddr_in *)sin)->sin_port)
557 < PROT_SOCK;
558 case AF_INET6:
559 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
560 < PROT_SOCK;
561 default:
562 return 0;
563 }
564 }
565
566 /*
567 * Make sure that we don't have too many active connections. If we have,
568 * something must be dropped. It's not clear what will happen if we allow
569 * "too many" connections, but when dealing with network-facing software,
570 * we have to code defensively. Here we do that by imposing hard limits.
571 *
572 * There's no point in trying to do random drop here for DoS
573 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
574 * attacker can easily beat that.
575 *
576 * The only somewhat efficient mechanism would be if drop old
577 * connections from the same IP first. But right now we don't even
578 * record the client IP in svc_sock.
579 *
580 * single-threaded services that expect a lot of clients will probably
581 * need to set sv_maxconn to override the default value which is based
582 * on the number of threads
583 */
584 static void svc_check_conn_limits(struct svc_serv *serv)
585 {
586 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
587 (serv->sv_nrthreads+3) * 20;
588
589 if (serv->sv_tmpcnt > limit) {
590 struct svc_xprt *xprt = NULL;
591 spin_lock_bh(&serv->sv_lock);
592 if (!list_empty(&serv->sv_tempsocks)) {
593 /* Try to help the admin */
594 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
595 serv->sv_name, serv->sv_maxconn ?
596 "max number of connections" :
597 "number of threads");
598 /*
599 * Always select the oldest connection. It's not fair,
600 * but so is life
601 */
602 xprt = list_entry(serv->sv_tempsocks.prev,
603 struct svc_xprt,
604 xpt_list);
605 set_bit(XPT_CLOSE, &xprt->xpt_flags);
606 svc_xprt_get(xprt);
607 }
608 spin_unlock_bh(&serv->sv_lock);
609
610 if (xprt) {
611 svc_xprt_enqueue(xprt);
612 svc_xprt_put(xprt);
613 }
614 }
615 }
616
617 static int svc_alloc_arg(struct svc_rqst *rqstp)
618 {
619 struct svc_serv *serv = rqstp->rq_server;
620 struct xdr_buf *arg;
621 int pages;
622 int i;
623
624 /* now allocate needed pages. If we get a failure, sleep briefly */
625 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
626 WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
627 if (pages >= RPCSVC_MAXPAGES)
628 /* use as many pages as possible */
629 pages = RPCSVC_MAXPAGES - 1;
630 for (i = 0; i < pages ; i++)
631 while (rqstp->rq_pages[i] == NULL) {
632 struct page *p = alloc_page(GFP_KERNEL);
633 if (!p) {
634 set_current_state(TASK_INTERRUPTIBLE);
635 if (signalled() || kthread_should_stop()) {
636 set_current_state(TASK_RUNNING);
637 return -EINTR;
638 }
639 schedule_timeout(msecs_to_jiffies(500));
640 }
641 rqstp->rq_pages[i] = p;
642 }
643 rqstp->rq_page_end = &rqstp->rq_pages[i];
644 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
645
646 /* Make arg->head point to first page and arg->pages point to rest */
647 arg = &rqstp->rq_arg;
648 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
649 arg->head[0].iov_len = PAGE_SIZE;
650 arg->pages = rqstp->rq_pages + 1;
651 arg->page_base = 0;
652 /* save at least one page for response */
653 arg->page_len = (pages-2)*PAGE_SIZE;
654 arg->len = (pages-1)*PAGE_SIZE;
655 arg->tail[0].iov_len = 0;
656 return 0;
657 }
658
659 static bool
660 rqst_should_sleep(struct svc_rqst *rqstp)
661 {
662 struct svc_pool *pool = rqstp->rq_pool;
663
664 /* did someone call svc_wake_up? */
665 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
666 return false;
667
668 /* was a socket queued? */
669 if (!list_empty(&pool->sp_sockets))
670 return false;
671
672 /* are we shutting down? */
673 if (signalled() || kthread_should_stop())
674 return false;
675
676 /* are we freezing? */
677 if (freezing(current))
678 return false;
679
680 return true;
681 }
682
683 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
684 {
685 struct svc_xprt *xprt;
686 struct svc_pool *pool = rqstp->rq_pool;
687 long time_left = 0;
688
689 /* rq_xprt should be clear on entry */
690 WARN_ON_ONCE(rqstp->rq_xprt);
691
692 /* Normally we will wait up to 5 seconds for any required
693 * cache information to be provided.
694 */
695 rqstp->rq_chandle.thread_wait = 5*HZ;
696
697 xprt = svc_xprt_dequeue(pool);
698 if (xprt) {
699 rqstp->rq_xprt = xprt;
700
701 /* As there is a shortage of threads and this request
702 * had to be queued, don't allow the thread to wait so
703 * long for cache updates.
704 */
705 rqstp->rq_chandle.thread_wait = 1*HZ;
706 clear_bit(SP_TASK_PENDING, &pool->sp_flags);
707 return xprt;
708 }
709
710 /*
711 * We have to be able to interrupt this wait
712 * to bring down the daemons ...
713 */
714 set_current_state(TASK_INTERRUPTIBLE);
715 clear_bit(RQ_BUSY, &rqstp->rq_flags);
716 smp_mb();
717
718 if (likely(rqst_should_sleep(rqstp)))
719 time_left = schedule_timeout(timeout);
720 else
721 __set_current_state(TASK_RUNNING);
722
723 try_to_freeze();
724
725 spin_lock_bh(&rqstp->rq_lock);
726 set_bit(RQ_BUSY, &rqstp->rq_flags);
727 spin_unlock_bh(&rqstp->rq_lock);
728
729 xprt = rqstp->rq_xprt;
730 if (xprt != NULL)
731 return xprt;
732
733 if (!time_left)
734 atomic_long_inc(&pool->sp_stats.threads_timedout);
735
736 if (signalled() || kthread_should_stop())
737 return ERR_PTR(-EINTR);
738 return ERR_PTR(-EAGAIN);
739 }
740
741 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
742 {
743 spin_lock_bh(&serv->sv_lock);
744 set_bit(XPT_TEMP, &newxpt->xpt_flags);
745 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
746 serv->sv_tmpcnt++;
747 if (serv->sv_temptimer.function == NULL) {
748 /* setup timer to age temp transports */
749 setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
750 (unsigned long)serv);
751 mod_timer(&serv->sv_temptimer,
752 jiffies + svc_conn_age_period * HZ);
753 }
754 spin_unlock_bh(&serv->sv_lock);
755 svc_xprt_received(newxpt);
756 }
757
758 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
759 {
760 struct svc_serv *serv = rqstp->rq_server;
761 int len = 0;
762
763 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
764 dprintk("svc_recv: found XPT_CLOSE\n");
765 svc_delete_xprt(xprt);
766 /* Leave XPT_BUSY set on the dead xprt: */
767 goto out;
768 }
769 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
770 struct svc_xprt *newxpt;
771 /*
772 * We know this module_get will succeed because the
773 * listener holds a reference too
774 */
775 __module_get(xprt->xpt_class->xcl_owner);
776 svc_check_conn_limits(xprt->xpt_server);
777 newxpt = xprt->xpt_ops->xpo_accept(xprt);
778 if (newxpt)
779 svc_add_new_temp_xprt(serv, newxpt);
780 else
781 module_put(xprt->xpt_class->xcl_owner);
782 } else {
783 /* XPT_DATA|XPT_DEFERRED case: */
784 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
785 rqstp, rqstp->rq_pool->sp_id, xprt,
786 atomic_read(&xprt->xpt_ref.refcount));
787 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
788 if (rqstp->rq_deferred)
789 len = svc_deferred_recv(rqstp);
790 else
791 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
792 dprintk("svc: got len=%d\n", len);
793 rqstp->rq_reserved = serv->sv_max_mesg;
794 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
795 }
796 /* clear XPT_BUSY: */
797 svc_xprt_received(xprt);
798 out:
799 trace_svc_handle_xprt(xprt, len);
800 return len;
801 }
802
803 /*
804 * Receive the next request on any transport. This code is carefully
805 * organised not to touch any cachelines in the shared svc_serv
806 * structure, only cachelines in the local svc_pool.
807 */
808 int svc_recv(struct svc_rqst *rqstp, long timeout)
809 {
810 struct svc_xprt *xprt = NULL;
811 struct svc_serv *serv = rqstp->rq_server;
812 int len, err;
813
814 dprintk("svc: server %p waiting for data (to = %ld)\n",
815 rqstp, timeout);
816
817 if (rqstp->rq_xprt)
818 printk(KERN_ERR
819 "svc_recv: service %p, transport not NULL!\n",
820 rqstp);
821
822 err = svc_alloc_arg(rqstp);
823 if (err)
824 goto out;
825
826 try_to_freeze();
827 cond_resched();
828 err = -EINTR;
829 if (signalled() || kthread_should_stop())
830 goto out;
831
832 xprt = svc_get_next_xprt(rqstp, timeout);
833 if (IS_ERR(xprt)) {
834 err = PTR_ERR(xprt);
835 goto out;
836 }
837
838 len = svc_handle_xprt(rqstp, xprt);
839
840 /* No data, incomplete (TCP) read, or accept() */
841 err = -EAGAIN;
842 if (len <= 0)
843 goto out_release;
844
845 clear_bit(XPT_OLD, &xprt->xpt_flags);
846
847 if (xprt->xpt_ops->xpo_secure_port(rqstp))
848 set_bit(RQ_SECURE, &rqstp->rq_flags);
849 else
850 clear_bit(RQ_SECURE, &rqstp->rq_flags);
851 rqstp->rq_chandle.defer = svc_defer;
852 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
853
854 if (serv->sv_stats)
855 serv->sv_stats->netcnt++;
856 trace_svc_recv(rqstp, len);
857 return len;
858 out_release:
859 rqstp->rq_res.len = 0;
860 svc_xprt_release(rqstp);
861 out:
862 trace_svc_recv(rqstp, err);
863 return err;
864 }
865 EXPORT_SYMBOL_GPL(svc_recv);
866
867 /*
868 * Drop request
869 */
870 void svc_drop(struct svc_rqst *rqstp)
871 {
872 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
873 svc_xprt_release(rqstp);
874 }
875 EXPORT_SYMBOL_GPL(svc_drop);
876
877 /*
878 * Return reply to client.
879 */
880 int svc_send(struct svc_rqst *rqstp)
881 {
882 struct svc_xprt *xprt;
883 int len = -EFAULT;
884 struct xdr_buf *xb;
885
886 xprt = rqstp->rq_xprt;
887 if (!xprt)
888 goto out;
889
890 /* release the receive skb before sending the reply */
891 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
892
893 /* calculate over-all length */
894 xb = &rqstp->rq_res;
895 xb->len = xb->head[0].iov_len +
896 xb->page_len +
897 xb->tail[0].iov_len;
898
899 /* Grab mutex to serialize outgoing data. */
900 mutex_lock(&xprt->xpt_mutex);
901 if (test_bit(XPT_DEAD, &xprt->xpt_flags)
902 || test_bit(XPT_CLOSE, &xprt->xpt_flags))
903 len = -ENOTCONN;
904 else
905 len = xprt->xpt_ops->xpo_sendto(rqstp);
906 mutex_unlock(&xprt->xpt_mutex);
907 rpc_wake_up(&xprt->xpt_bc_pending);
908 svc_xprt_release(rqstp);
909
910 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
911 len = 0;
912 out:
913 trace_svc_send(rqstp, len);
914 return len;
915 }
916
917 /*
918 * Timer function to close old temporary transports, using
919 * a mark-and-sweep algorithm.
920 */
921 static void svc_age_temp_xprts(unsigned long closure)
922 {
923 struct svc_serv *serv = (struct svc_serv *)closure;
924 struct svc_xprt *xprt;
925 struct list_head *le, *next;
926
927 dprintk("svc_age_temp_xprts\n");
928
929 if (!spin_trylock_bh(&serv->sv_lock)) {
930 /* busy, try again 1 sec later */
931 dprintk("svc_age_temp_xprts: busy\n");
932 mod_timer(&serv->sv_temptimer, jiffies + HZ);
933 return;
934 }
935
936 list_for_each_safe(le, next, &serv->sv_tempsocks) {
937 xprt = list_entry(le, struct svc_xprt, xpt_list);
938
939 /* First time through, just mark it OLD. Second time
940 * through, close it. */
941 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
942 continue;
943 if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
944 test_bit(XPT_BUSY, &xprt->xpt_flags))
945 continue;
946 list_del_init(le);
947 set_bit(XPT_CLOSE, &xprt->xpt_flags);
948 dprintk("queuing xprt %p for closing\n", xprt);
949
950 /* a thread will dequeue and close it soon */
951 svc_xprt_enqueue(xprt);
952 }
953 spin_unlock_bh(&serv->sv_lock);
954
955 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
956 }
957
958 /* Close temporary transports whose xpt_local matches server_addr immediately
959 * instead of waiting for them to be picked up by the timer.
960 *
961 * This is meant to be called from a notifier_block that runs when an ip
962 * address is deleted.
963 */
964 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
965 {
966 struct svc_xprt *xprt;
967 struct svc_sock *svsk;
968 struct socket *sock;
969 struct list_head *le, *next;
970 LIST_HEAD(to_be_closed);
971 struct linger no_linger = {
972 .l_onoff = 1,
973 .l_linger = 0,
974 };
975
976 spin_lock_bh(&serv->sv_lock);
977 list_for_each_safe(le, next, &serv->sv_tempsocks) {
978 xprt = list_entry(le, struct svc_xprt, xpt_list);
979 if (rpc_cmp_addr(server_addr, (struct sockaddr *)
980 &xprt->xpt_local)) {
981 dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
982 list_move(le, &to_be_closed);
983 }
984 }
985 spin_unlock_bh(&serv->sv_lock);
986
987 while (!list_empty(&to_be_closed)) {
988 le = to_be_closed.next;
989 list_del_init(le);
990 xprt = list_entry(le, struct svc_xprt, xpt_list);
991 dprintk("svc_age_temp_xprts_now: closing %p\n", xprt);
992 svsk = container_of(xprt, struct svc_sock, sk_xprt);
993 sock = svsk->sk_sock;
994 kernel_setsockopt(sock, SOL_SOCKET, SO_LINGER,
995 (char *)&no_linger, sizeof(no_linger));
996 svc_close_xprt(xprt);
997 }
998 }
999 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1000
1001 static void call_xpt_users(struct svc_xprt *xprt)
1002 {
1003 struct svc_xpt_user *u;
1004
1005 spin_lock(&xprt->xpt_lock);
1006 while (!list_empty(&xprt->xpt_users)) {
1007 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1008 list_del(&u->list);
1009 u->callback(u);
1010 }
1011 spin_unlock(&xprt->xpt_lock);
1012 }
1013
1014 /*
1015 * Remove a dead transport
1016 */
1017 static void svc_delete_xprt(struct svc_xprt *xprt)
1018 {
1019 struct svc_serv *serv = xprt->xpt_server;
1020 struct svc_deferred_req *dr;
1021
1022 /* Only do this once */
1023 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1024 BUG();
1025
1026 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1027 xprt->xpt_ops->xpo_detach(xprt);
1028
1029 spin_lock_bh(&serv->sv_lock);
1030 list_del_init(&xprt->xpt_list);
1031 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1032 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1033 serv->sv_tmpcnt--;
1034 spin_unlock_bh(&serv->sv_lock);
1035
1036 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1037 kfree(dr);
1038
1039 call_xpt_users(xprt);
1040 svc_xprt_put(xprt);
1041 }
1042
1043 void svc_close_xprt(struct svc_xprt *xprt)
1044 {
1045 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1046 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1047 /* someone else will have to effect the close */
1048 return;
1049 /*
1050 * We expect svc_close_xprt() to work even when no threads are
1051 * running (e.g., while configuring the server before starting
1052 * any threads), so if the transport isn't busy, we delete
1053 * it ourself:
1054 */
1055 svc_delete_xprt(xprt);
1056 }
1057 EXPORT_SYMBOL_GPL(svc_close_xprt);
1058
1059 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1060 {
1061 struct svc_xprt *xprt;
1062 int ret = 0;
1063
1064 spin_lock(&serv->sv_lock);
1065 list_for_each_entry(xprt, xprt_list, xpt_list) {
1066 if (xprt->xpt_net != net)
1067 continue;
1068 ret++;
1069 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1070 svc_xprt_enqueue(xprt);
1071 }
1072 spin_unlock(&serv->sv_lock);
1073 return ret;
1074 }
1075
1076 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1077 {
1078 struct svc_pool *pool;
1079 struct svc_xprt *xprt;
1080 struct svc_xprt *tmp;
1081 int i;
1082
1083 for (i = 0; i < serv->sv_nrpools; i++) {
1084 pool = &serv->sv_pools[i];
1085
1086 spin_lock_bh(&pool->sp_lock);
1087 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1088 if (xprt->xpt_net != net)
1089 continue;
1090 list_del_init(&xprt->xpt_ready);
1091 spin_unlock_bh(&pool->sp_lock);
1092 return xprt;
1093 }
1094 spin_unlock_bh(&pool->sp_lock);
1095 }
1096 return NULL;
1097 }
1098
1099 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1100 {
1101 struct svc_xprt *xprt;
1102
1103 while ((xprt = svc_dequeue_net(serv, net))) {
1104 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1105 svc_delete_xprt(xprt);
1106 }
1107 }
1108
1109 /*
1110 * Server threads may still be running (especially in the case where the
1111 * service is still running in other network namespaces).
1112 *
1113 * So we shut down sockets the same way we would on a running server, by
1114 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1115 * the close. In the case there are no such other threads,
1116 * threads running, svc_clean_up_xprts() does a simple version of a
1117 * server's main event loop, and in the case where there are other
1118 * threads, we may need to wait a little while and then check again to
1119 * see if they're done.
1120 */
1121 void svc_close_net(struct svc_serv *serv, struct net *net)
1122 {
1123 int delay = 0;
1124
1125 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1126 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1127
1128 svc_clean_up_xprts(serv, net);
1129 msleep(delay++);
1130 }
1131 }
1132
1133 /*
1134 * Handle defer and revisit of requests
1135 */
1136
1137 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1138 {
1139 struct svc_deferred_req *dr =
1140 container_of(dreq, struct svc_deferred_req, handle);
1141 struct svc_xprt *xprt = dr->xprt;
1142
1143 spin_lock(&xprt->xpt_lock);
1144 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1145 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1146 spin_unlock(&xprt->xpt_lock);
1147 dprintk("revisit canceled\n");
1148 svc_xprt_put(xprt);
1149 kfree(dr);
1150 return;
1151 }
1152 dprintk("revisit queued\n");
1153 dr->xprt = NULL;
1154 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1155 spin_unlock(&xprt->xpt_lock);
1156 svc_xprt_enqueue(xprt);
1157 svc_xprt_put(xprt);
1158 }
1159
1160 /*
1161 * Save the request off for later processing. The request buffer looks
1162 * like this:
1163 *
1164 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1165 *
1166 * This code can only handle requests that consist of an xprt-header
1167 * and rpc-header.
1168 */
1169 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1170 {
1171 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1172 struct svc_deferred_req *dr;
1173
1174 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1175 return NULL; /* if more than a page, give up FIXME */
1176 if (rqstp->rq_deferred) {
1177 dr = rqstp->rq_deferred;
1178 rqstp->rq_deferred = NULL;
1179 } else {
1180 size_t skip;
1181 size_t size;
1182 /* FIXME maybe discard if size too large */
1183 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1184 dr = kmalloc(size, GFP_KERNEL);
1185 if (dr == NULL)
1186 return NULL;
1187
1188 dr->handle.owner = rqstp->rq_server;
1189 dr->prot = rqstp->rq_prot;
1190 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1191 dr->addrlen = rqstp->rq_addrlen;
1192 dr->daddr = rqstp->rq_daddr;
1193 dr->argslen = rqstp->rq_arg.len >> 2;
1194 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1195
1196 /* back up head to the start of the buffer and copy */
1197 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1198 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1199 dr->argslen << 2);
1200 }
1201 svc_xprt_get(rqstp->rq_xprt);
1202 dr->xprt = rqstp->rq_xprt;
1203 set_bit(RQ_DROPME, &rqstp->rq_flags);
1204
1205 dr->handle.revisit = svc_revisit;
1206 return &dr->handle;
1207 }
1208
1209 /*
1210 * recv data from a deferred request into an active one
1211 */
1212 static int svc_deferred_recv(struct svc_rqst *rqstp)
1213 {
1214 struct svc_deferred_req *dr = rqstp->rq_deferred;
1215
1216 /* setup iov_base past transport header */
1217 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1218 /* The iov_len does not include the transport header bytes */
1219 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1220 rqstp->rq_arg.page_len = 0;
1221 /* The rq_arg.len includes the transport header bytes */
1222 rqstp->rq_arg.len = dr->argslen<<2;
1223 rqstp->rq_prot = dr->prot;
1224 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1225 rqstp->rq_addrlen = dr->addrlen;
1226 /* Save off transport header len in case we get deferred again */
1227 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1228 rqstp->rq_daddr = dr->daddr;
1229 rqstp->rq_respages = rqstp->rq_pages;
1230 return (dr->argslen<<2) - dr->xprt_hlen;
1231 }
1232
1233
1234 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1235 {
1236 struct svc_deferred_req *dr = NULL;
1237
1238 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1239 return NULL;
1240 spin_lock(&xprt->xpt_lock);
1241 if (!list_empty(&xprt->xpt_deferred)) {
1242 dr = list_entry(xprt->xpt_deferred.next,
1243 struct svc_deferred_req,
1244 handle.recent);
1245 list_del_init(&dr->handle.recent);
1246 } else
1247 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1248 spin_unlock(&xprt->xpt_lock);
1249 return dr;
1250 }
1251
1252 /**
1253 * svc_find_xprt - find an RPC transport instance
1254 * @serv: pointer to svc_serv to search
1255 * @xcl_name: C string containing transport's class name
1256 * @net: owner net pointer
1257 * @af: Address family of transport's local address
1258 * @port: transport's IP port number
1259 *
1260 * Return the transport instance pointer for the endpoint accepting
1261 * connections/peer traffic from the specified transport class,
1262 * address family and port.
1263 *
1264 * Specifying 0 for the address family or port is effectively a
1265 * wild-card, and will result in matching the first transport in the
1266 * service's list that has a matching class name.
1267 */
1268 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1269 struct net *net, const sa_family_t af,
1270 const unsigned short port)
1271 {
1272 struct svc_xprt *xprt;
1273 struct svc_xprt *found = NULL;
1274
1275 /* Sanity check the args */
1276 if (serv == NULL || xcl_name == NULL)
1277 return found;
1278
1279 spin_lock_bh(&serv->sv_lock);
1280 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1281 if (xprt->xpt_net != net)
1282 continue;
1283 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1284 continue;
1285 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1286 continue;
1287 if (port != 0 && port != svc_xprt_local_port(xprt))
1288 continue;
1289 found = xprt;
1290 svc_xprt_get(xprt);
1291 break;
1292 }
1293 spin_unlock_bh(&serv->sv_lock);
1294 return found;
1295 }
1296 EXPORT_SYMBOL_GPL(svc_find_xprt);
1297
1298 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1299 char *pos, int remaining)
1300 {
1301 int len;
1302
1303 len = snprintf(pos, remaining, "%s %u\n",
1304 xprt->xpt_class->xcl_name,
1305 svc_xprt_local_port(xprt));
1306 if (len >= remaining)
1307 return -ENAMETOOLONG;
1308 return len;
1309 }
1310
1311 /**
1312 * svc_xprt_names - format a buffer with a list of transport names
1313 * @serv: pointer to an RPC service
1314 * @buf: pointer to a buffer to be filled in
1315 * @buflen: length of buffer to be filled in
1316 *
1317 * Fills in @buf with a string containing a list of transport names,
1318 * each name terminated with '\n'.
1319 *
1320 * Returns positive length of the filled-in string on success; otherwise
1321 * a negative errno value is returned if an error occurs.
1322 */
1323 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1324 {
1325 struct svc_xprt *xprt;
1326 int len, totlen;
1327 char *pos;
1328
1329 /* Sanity check args */
1330 if (!serv)
1331 return 0;
1332
1333 spin_lock_bh(&serv->sv_lock);
1334
1335 pos = buf;
1336 totlen = 0;
1337 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1338 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1339 if (len < 0) {
1340 *buf = '\0';
1341 totlen = len;
1342 }
1343 if (len <= 0)
1344 break;
1345
1346 pos += len;
1347 totlen += len;
1348 }
1349
1350 spin_unlock_bh(&serv->sv_lock);
1351 return totlen;
1352 }
1353 EXPORT_SYMBOL_GPL(svc_xprt_names);
1354
1355
1356 /*----------------------------------------------------------------------------*/
1357
1358 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1359 {
1360 unsigned int pidx = (unsigned int)*pos;
1361 struct svc_serv *serv = m->private;
1362
1363 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1364
1365 if (!pidx)
1366 return SEQ_START_TOKEN;
1367 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1368 }
1369
1370 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1371 {
1372 struct svc_pool *pool = p;
1373 struct svc_serv *serv = m->private;
1374
1375 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1376
1377 if (p == SEQ_START_TOKEN) {
1378 pool = &serv->sv_pools[0];
1379 } else {
1380 unsigned int pidx = (pool - &serv->sv_pools[0]);
1381 if (pidx < serv->sv_nrpools-1)
1382 pool = &serv->sv_pools[pidx+1];
1383 else
1384 pool = NULL;
1385 }
1386 ++*pos;
1387 return pool;
1388 }
1389
1390 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1391 {
1392 }
1393
1394 static int svc_pool_stats_show(struct seq_file *m, void *p)
1395 {
1396 struct svc_pool *pool = p;
1397
1398 if (p == SEQ_START_TOKEN) {
1399 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1400 return 0;
1401 }
1402
1403 seq_printf(m, "%u %lu %lu %lu %lu\n",
1404 pool->sp_id,
1405 (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1406 pool->sp_stats.sockets_queued,
1407 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1408 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1409
1410 return 0;
1411 }
1412
1413 static const struct seq_operations svc_pool_stats_seq_ops = {
1414 .start = svc_pool_stats_start,
1415 .next = svc_pool_stats_next,
1416 .stop = svc_pool_stats_stop,
1417 .show = svc_pool_stats_show,
1418 };
1419
1420 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1421 {
1422 int err;
1423
1424 err = seq_open(file, &svc_pool_stats_seq_ops);
1425 if (!err)
1426 ((struct seq_file *) file->private_data)->private = serv;
1427 return err;
1428 }
1429 EXPORT_SYMBOL(svc_pool_stats_open);
1430
1431 /*----------------------------------------------------------------------------*/