]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/sunrpc/svcsock.c
net/sched: act_api: Notify user space if any actions were flushed before error
[mirror_ubuntu-jammy-kernel.git] / net / sunrpc / svcsock.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/net/sunrpc/svcsock.c
4 *
5 * These are the RPC server socket internals.
6 *
7 * The server scheduling algorithm does not always distribute the load
8 * evenly when servicing a single client. May need to modify the
9 * svc_xprt_enqueue procedure...
10 *
11 * TCP support is largely untested and may be a little slow. The problem
12 * is that we currently do two separate recvfrom's, one for the 4-byte
13 * record length, and the second for the actual record. This could possibly
14 * be improved by always reading a minimum size of around 100 bytes and
15 * tucking any superfluous bytes away in a temporary store. Still, that
16 * leaves write requests out in the rain. An alternative may be to peek at
17 * the first skb in the queue, and if it matches the next TCP sequence
18 * number, to extract the record marker. Yuck.
19 *
20 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
21 */
22
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/module.h>
26 #include <linux/errno.h>
27 #include <linux/fcntl.h>
28 #include <linux/net.h>
29 #include <linux/in.h>
30 #include <linux/inet.h>
31 #include <linux/udp.h>
32 #include <linux/tcp.h>
33 #include <linux/unistd.h>
34 #include <linux/slab.h>
35 #include <linux/netdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/file.h>
38 #include <linux/freezer.h>
39 #include <net/sock.h>
40 #include <net/checksum.h>
41 #include <net/ip.h>
42 #include <net/ipv6.h>
43 #include <net/udp.h>
44 #include <net/tcp.h>
45 #include <net/tcp_states.h>
46 #include <linux/uaccess.h>
47 #include <linux/highmem.h>
48 #include <asm/ioctls.h>
49
50 #include <linux/sunrpc/types.h>
51 #include <linux/sunrpc/clnt.h>
52 #include <linux/sunrpc/xdr.h>
53 #include <linux/sunrpc/msg_prot.h>
54 #include <linux/sunrpc/svcsock.h>
55 #include <linux/sunrpc/stats.h>
56 #include <linux/sunrpc/xprt.h>
57
58 #include <trace/events/sunrpc.h>
59
60 #include "socklib.h"
61 #include "sunrpc.h"
62
63 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
64
65
66 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
67 int flags);
68 static int svc_udp_recvfrom(struct svc_rqst *);
69 static int svc_udp_sendto(struct svc_rqst *);
70 static void svc_sock_detach(struct svc_xprt *);
71 static void svc_tcp_sock_detach(struct svc_xprt *);
72 static void svc_sock_free(struct svc_xprt *);
73
74 static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
75 struct net *, struct sockaddr *,
76 int, int);
77 #ifdef CONFIG_DEBUG_LOCK_ALLOC
78 static struct lock_class_key svc_key[2];
79 static struct lock_class_key svc_slock_key[2];
80
81 static void svc_reclassify_socket(struct socket *sock)
82 {
83 struct sock *sk = sock->sk;
84
85 if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
86 return;
87
88 switch (sk->sk_family) {
89 case AF_INET:
90 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
91 &svc_slock_key[0],
92 "sk_xprt.xpt_lock-AF_INET-NFSD",
93 &svc_key[0]);
94 break;
95
96 case AF_INET6:
97 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
98 &svc_slock_key[1],
99 "sk_xprt.xpt_lock-AF_INET6-NFSD",
100 &svc_key[1]);
101 break;
102
103 default:
104 BUG();
105 }
106 }
107 #else
108 static void svc_reclassify_socket(struct socket *sock)
109 {
110 }
111 #endif
112
113 /**
114 * svc_tcp_release_rqst - Release transport-related resources
115 * @rqstp: request structure with resources to be released
116 *
117 */
118 static void svc_tcp_release_rqst(struct svc_rqst *rqstp)
119 {
120 struct sk_buff *skb = rqstp->rq_xprt_ctxt;
121
122 if (skb) {
123 struct svc_sock *svsk =
124 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
125
126 rqstp->rq_xprt_ctxt = NULL;
127 skb_free_datagram_locked(svsk->sk_sk, skb);
128 }
129 }
130
131 /**
132 * svc_udp_release_rqst - Release transport-related resources
133 * @rqstp: request structure with resources to be released
134 *
135 */
136 static void svc_udp_release_rqst(struct svc_rqst *rqstp)
137 {
138 struct sk_buff *skb = rqstp->rq_xprt_ctxt;
139
140 if (skb) {
141 rqstp->rq_xprt_ctxt = NULL;
142 consume_skb(skb);
143 }
144 }
145
146 union svc_pktinfo_u {
147 struct in_pktinfo pkti;
148 struct in6_pktinfo pkti6;
149 };
150 #define SVC_PKTINFO_SPACE \
151 CMSG_SPACE(sizeof(union svc_pktinfo_u))
152
153 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
154 {
155 struct svc_sock *svsk =
156 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
157 switch (svsk->sk_sk->sk_family) {
158 case AF_INET: {
159 struct in_pktinfo *pki = CMSG_DATA(cmh);
160
161 cmh->cmsg_level = SOL_IP;
162 cmh->cmsg_type = IP_PKTINFO;
163 pki->ipi_ifindex = 0;
164 pki->ipi_spec_dst.s_addr =
165 svc_daddr_in(rqstp)->sin_addr.s_addr;
166 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
167 }
168 break;
169
170 case AF_INET6: {
171 struct in6_pktinfo *pki = CMSG_DATA(cmh);
172 struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp);
173
174 cmh->cmsg_level = SOL_IPV6;
175 cmh->cmsg_type = IPV6_PKTINFO;
176 pki->ipi6_ifindex = daddr->sin6_scope_id;
177 pki->ipi6_addr = daddr->sin6_addr;
178 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
179 }
180 break;
181 }
182 }
183
184 static int svc_sock_result_payload(struct svc_rqst *rqstp, unsigned int offset,
185 unsigned int length)
186 {
187 return 0;
188 }
189
190 /*
191 * Report socket names for nfsdfs
192 */
193 static int svc_one_sock_name(struct svc_sock *svsk, char *buf, int remaining)
194 {
195 const struct sock *sk = svsk->sk_sk;
196 const char *proto_name = sk->sk_protocol == IPPROTO_UDP ?
197 "udp" : "tcp";
198 int len;
199
200 switch (sk->sk_family) {
201 case PF_INET:
202 len = snprintf(buf, remaining, "ipv4 %s %pI4 %d\n",
203 proto_name,
204 &inet_sk(sk)->inet_rcv_saddr,
205 inet_sk(sk)->inet_num);
206 break;
207 #if IS_ENABLED(CONFIG_IPV6)
208 case PF_INET6:
209 len = snprintf(buf, remaining, "ipv6 %s %pI6 %d\n",
210 proto_name,
211 &sk->sk_v6_rcv_saddr,
212 inet_sk(sk)->inet_num);
213 break;
214 #endif
215 default:
216 len = snprintf(buf, remaining, "*unknown-%d*\n",
217 sk->sk_family);
218 }
219
220 if (len >= remaining) {
221 *buf = '\0';
222 return -ENAMETOOLONG;
223 }
224 return len;
225 }
226
227 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
228 static void svc_flush_bvec(const struct bio_vec *bvec, size_t size, size_t seek)
229 {
230 struct bvec_iter bi = {
231 .bi_size = size + seek,
232 };
233 struct bio_vec bv;
234
235 bvec_iter_advance(bvec, &bi, seek & PAGE_MASK);
236 for_each_bvec(bv, bvec, bi, bi)
237 flush_dcache_page(bv.bv_page);
238 }
239 #else
240 static inline void svc_flush_bvec(const struct bio_vec *bvec, size_t size,
241 size_t seek)
242 {
243 }
244 #endif
245
246 /*
247 * Read from @rqstp's transport socket. The incoming message fills whole
248 * pages in @rqstp's rq_pages array until the last page of the message
249 * has been received into a partial page.
250 */
251 static ssize_t svc_tcp_read_msg(struct svc_rqst *rqstp, size_t buflen,
252 size_t seek)
253 {
254 struct svc_sock *svsk =
255 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
256 struct bio_vec *bvec = rqstp->rq_bvec;
257 struct msghdr msg = { NULL };
258 unsigned int i;
259 ssize_t len;
260 size_t t;
261
262 rqstp->rq_xprt_hlen = 0;
263
264 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
265
266 for (i = 0, t = 0; t < buflen; i++, t += PAGE_SIZE) {
267 bvec[i].bv_page = rqstp->rq_pages[i];
268 bvec[i].bv_len = PAGE_SIZE;
269 bvec[i].bv_offset = 0;
270 }
271 rqstp->rq_respages = &rqstp->rq_pages[i];
272 rqstp->rq_next_page = rqstp->rq_respages + 1;
273
274 iov_iter_bvec(&msg.msg_iter, READ, bvec, i, buflen);
275 if (seek) {
276 iov_iter_advance(&msg.msg_iter, seek);
277 buflen -= seek;
278 }
279 len = sock_recvmsg(svsk->sk_sock, &msg, MSG_DONTWAIT);
280 if (len > 0)
281 svc_flush_bvec(bvec, len, seek);
282
283 /* If we read a full record, then assume there may be more
284 * data to read (stream based sockets only!)
285 */
286 if (len == buflen)
287 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
288
289 return len;
290 }
291
292 /*
293 * Set socket snd and rcv buffer lengths
294 */
295 static void svc_sock_setbufsize(struct svc_sock *svsk, unsigned int nreqs)
296 {
297 unsigned int max_mesg = svsk->sk_xprt.xpt_server->sv_max_mesg;
298 struct socket *sock = svsk->sk_sock;
299
300 nreqs = min(nreqs, INT_MAX / 2 / max_mesg);
301
302 lock_sock(sock->sk);
303 sock->sk->sk_sndbuf = nreqs * max_mesg * 2;
304 sock->sk->sk_rcvbuf = nreqs * max_mesg * 2;
305 sock->sk->sk_write_space(sock->sk);
306 release_sock(sock->sk);
307 }
308
309 static void svc_sock_secure_port(struct svc_rqst *rqstp)
310 {
311 if (svc_port_is_privileged(svc_addr(rqstp)))
312 set_bit(RQ_SECURE, &rqstp->rq_flags);
313 else
314 clear_bit(RQ_SECURE, &rqstp->rq_flags);
315 }
316
317 /*
318 * INET callback when data has been received on the socket.
319 */
320 static void svc_data_ready(struct sock *sk)
321 {
322 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
323
324 if (svsk) {
325 /* Refer to svc_setup_socket() for details. */
326 rmb();
327 svsk->sk_odata(sk);
328 trace_svcsock_data_ready(&svsk->sk_xprt, 0);
329 if (!test_and_set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags))
330 svc_xprt_enqueue(&svsk->sk_xprt);
331 }
332 }
333
334 /*
335 * INET callback when space is newly available on the socket.
336 */
337 static void svc_write_space(struct sock *sk)
338 {
339 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
340
341 if (svsk) {
342 /* Refer to svc_setup_socket() for details. */
343 rmb();
344 trace_svcsock_write_space(&svsk->sk_xprt, 0);
345 svsk->sk_owspace(sk);
346 svc_xprt_enqueue(&svsk->sk_xprt);
347 }
348 }
349
350 static int svc_tcp_has_wspace(struct svc_xprt *xprt)
351 {
352 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
353
354 if (test_bit(XPT_LISTENER, &xprt->xpt_flags))
355 return 1;
356 return !test_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
357 }
358
359 static void svc_tcp_kill_temp_xprt(struct svc_xprt *xprt)
360 {
361 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
362
363 sock_no_linger(svsk->sk_sock->sk);
364 }
365
366 /*
367 * See net/ipv6/ip_sockglue.c : ip_cmsg_recv_pktinfo
368 */
369 static int svc_udp_get_dest_address4(struct svc_rqst *rqstp,
370 struct cmsghdr *cmh)
371 {
372 struct in_pktinfo *pki = CMSG_DATA(cmh);
373 struct sockaddr_in *daddr = svc_daddr_in(rqstp);
374
375 if (cmh->cmsg_type != IP_PKTINFO)
376 return 0;
377
378 daddr->sin_family = AF_INET;
379 daddr->sin_addr.s_addr = pki->ipi_spec_dst.s_addr;
380 return 1;
381 }
382
383 /*
384 * See net/ipv6/datagram.c : ip6_datagram_recv_ctl
385 */
386 static int svc_udp_get_dest_address6(struct svc_rqst *rqstp,
387 struct cmsghdr *cmh)
388 {
389 struct in6_pktinfo *pki = CMSG_DATA(cmh);
390 struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp);
391
392 if (cmh->cmsg_type != IPV6_PKTINFO)
393 return 0;
394
395 daddr->sin6_family = AF_INET6;
396 daddr->sin6_addr = pki->ipi6_addr;
397 daddr->sin6_scope_id = pki->ipi6_ifindex;
398 return 1;
399 }
400
401 /*
402 * Copy the UDP datagram's destination address to the rqstp structure.
403 * The 'destination' address in this case is the address to which the
404 * peer sent the datagram, i.e. our local address. For multihomed
405 * hosts, this can change from msg to msg. Note that only the IP
406 * address changes, the port number should remain the same.
407 */
408 static int svc_udp_get_dest_address(struct svc_rqst *rqstp,
409 struct cmsghdr *cmh)
410 {
411 switch (cmh->cmsg_level) {
412 case SOL_IP:
413 return svc_udp_get_dest_address4(rqstp, cmh);
414 case SOL_IPV6:
415 return svc_udp_get_dest_address6(rqstp, cmh);
416 }
417
418 return 0;
419 }
420
421 /**
422 * svc_udp_recvfrom - Receive a datagram from a UDP socket.
423 * @rqstp: request structure into which to receive an RPC Call
424 *
425 * Called in a loop when XPT_DATA has been set.
426 *
427 * Returns:
428 * On success, the number of bytes in a received RPC Call, or
429 * %0 if a complete RPC Call message was not ready to return
430 */
431 static int svc_udp_recvfrom(struct svc_rqst *rqstp)
432 {
433 struct svc_sock *svsk =
434 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
435 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
436 struct sk_buff *skb;
437 union {
438 struct cmsghdr hdr;
439 long all[SVC_PKTINFO_SPACE / sizeof(long)];
440 } buffer;
441 struct cmsghdr *cmh = &buffer.hdr;
442 struct msghdr msg = {
443 .msg_name = svc_addr(rqstp),
444 .msg_control = cmh,
445 .msg_controllen = sizeof(buffer),
446 .msg_flags = MSG_DONTWAIT,
447 };
448 size_t len;
449 int err;
450
451 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
452 /* udp sockets need large rcvbuf as all pending
453 * requests are still in that buffer. sndbuf must
454 * also be large enough that there is enough space
455 * for one reply per thread. We count all threads
456 * rather than threads in a particular pool, which
457 * provides an upper bound on the number of threads
458 * which will access the socket.
459 */
460 svc_sock_setbufsize(svsk, serv->sv_nrthreads + 3);
461
462 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
463 err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
464 0, 0, MSG_PEEK | MSG_DONTWAIT);
465 if (err < 0)
466 goto out_recv_err;
467 skb = skb_recv_udp(svsk->sk_sk, 0, 1, &err);
468 if (!skb)
469 goto out_recv_err;
470
471 len = svc_addr_len(svc_addr(rqstp));
472 rqstp->rq_addrlen = len;
473 if (skb->tstamp == 0) {
474 skb->tstamp = ktime_get_real();
475 /* Don't enable netstamp, sunrpc doesn't
476 need that much accuracy */
477 }
478 sock_write_timestamp(svsk->sk_sk, skb->tstamp);
479 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
480
481 len = skb->len;
482 rqstp->rq_arg.len = len;
483 trace_svcsock_udp_recv(&svsk->sk_xprt, len);
484
485 rqstp->rq_prot = IPPROTO_UDP;
486
487 if (!svc_udp_get_dest_address(rqstp, cmh))
488 goto out_cmsg_err;
489 rqstp->rq_daddrlen = svc_addr_len(svc_daddr(rqstp));
490
491 if (skb_is_nonlinear(skb)) {
492 /* we have to copy */
493 local_bh_disable();
494 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb))
495 goto out_bh_enable;
496 local_bh_enable();
497 consume_skb(skb);
498 } else {
499 /* we can use it in-place */
500 rqstp->rq_arg.head[0].iov_base = skb->data;
501 rqstp->rq_arg.head[0].iov_len = len;
502 if (skb_checksum_complete(skb))
503 goto out_free;
504 rqstp->rq_xprt_ctxt = skb;
505 }
506
507 rqstp->rq_arg.page_base = 0;
508 if (len <= rqstp->rq_arg.head[0].iov_len) {
509 rqstp->rq_arg.head[0].iov_len = len;
510 rqstp->rq_arg.page_len = 0;
511 rqstp->rq_respages = rqstp->rq_pages+1;
512 } else {
513 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
514 rqstp->rq_respages = rqstp->rq_pages + 1 +
515 DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
516 }
517 rqstp->rq_next_page = rqstp->rq_respages+1;
518
519 if (serv->sv_stats)
520 serv->sv_stats->netudpcnt++;
521
522 svc_xprt_received(rqstp->rq_xprt);
523 return len;
524
525 out_recv_err:
526 if (err != -EAGAIN) {
527 /* possibly an icmp error */
528 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
529 }
530 trace_svcsock_udp_recv_err(&svsk->sk_xprt, err);
531 goto out_clear_busy;
532 out_cmsg_err:
533 net_warn_ratelimited("svc: received unknown control message %d/%d; dropping RPC reply datagram\n",
534 cmh->cmsg_level, cmh->cmsg_type);
535 goto out_free;
536 out_bh_enable:
537 local_bh_enable();
538 out_free:
539 kfree_skb(skb);
540 out_clear_busy:
541 svc_xprt_received(rqstp->rq_xprt);
542 return 0;
543 }
544
545 /**
546 * svc_udp_sendto - Send out a reply on a UDP socket
547 * @rqstp: completed svc_rqst
548 *
549 * xpt_mutex ensures @rqstp's whole message is written to the socket
550 * without interruption.
551 *
552 * Returns the number of bytes sent, or a negative errno.
553 */
554 static int svc_udp_sendto(struct svc_rqst *rqstp)
555 {
556 struct svc_xprt *xprt = rqstp->rq_xprt;
557 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
558 struct xdr_buf *xdr = &rqstp->rq_res;
559 union {
560 struct cmsghdr hdr;
561 long all[SVC_PKTINFO_SPACE / sizeof(long)];
562 } buffer;
563 struct cmsghdr *cmh = &buffer.hdr;
564 struct msghdr msg = {
565 .msg_name = &rqstp->rq_addr,
566 .msg_namelen = rqstp->rq_addrlen,
567 .msg_control = cmh,
568 .msg_controllen = sizeof(buffer),
569 };
570 unsigned int sent;
571 int err;
572
573 svc_udp_release_rqst(rqstp);
574
575 svc_set_cmsg_data(rqstp, cmh);
576
577 mutex_lock(&xprt->xpt_mutex);
578
579 if (svc_xprt_is_dead(xprt))
580 goto out_notconn;
581
582 err = xprt_sock_sendmsg(svsk->sk_sock, &msg, xdr, 0, 0, &sent);
583 xdr_free_bvec(xdr);
584 if (err == -ECONNREFUSED) {
585 /* ICMP error on earlier request. */
586 err = xprt_sock_sendmsg(svsk->sk_sock, &msg, xdr, 0, 0, &sent);
587 xdr_free_bvec(xdr);
588 }
589 trace_svcsock_udp_send(xprt, err);
590
591 mutex_unlock(&xprt->xpt_mutex);
592 if (err < 0)
593 return err;
594 return sent;
595
596 out_notconn:
597 mutex_unlock(&xprt->xpt_mutex);
598 return -ENOTCONN;
599 }
600
601 static int svc_udp_has_wspace(struct svc_xprt *xprt)
602 {
603 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
604 struct svc_serv *serv = xprt->xpt_server;
605 unsigned long required;
606
607 /*
608 * Set the SOCK_NOSPACE flag before checking the available
609 * sock space.
610 */
611 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
612 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
613 if (required*2 > sock_wspace(svsk->sk_sk))
614 return 0;
615 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
616 return 1;
617 }
618
619 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
620 {
621 BUG();
622 return NULL;
623 }
624
625 static void svc_udp_kill_temp_xprt(struct svc_xprt *xprt)
626 {
627 }
628
629 static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
630 struct net *net,
631 struct sockaddr *sa, int salen,
632 int flags)
633 {
634 return svc_create_socket(serv, IPPROTO_UDP, net, sa, salen, flags);
635 }
636
637 static const struct svc_xprt_ops svc_udp_ops = {
638 .xpo_create = svc_udp_create,
639 .xpo_recvfrom = svc_udp_recvfrom,
640 .xpo_sendto = svc_udp_sendto,
641 .xpo_result_payload = svc_sock_result_payload,
642 .xpo_release_rqst = svc_udp_release_rqst,
643 .xpo_detach = svc_sock_detach,
644 .xpo_free = svc_sock_free,
645 .xpo_has_wspace = svc_udp_has_wspace,
646 .xpo_accept = svc_udp_accept,
647 .xpo_secure_port = svc_sock_secure_port,
648 .xpo_kill_temp_xprt = svc_udp_kill_temp_xprt,
649 };
650
651 static struct svc_xprt_class svc_udp_class = {
652 .xcl_name = "udp",
653 .xcl_owner = THIS_MODULE,
654 .xcl_ops = &svc_udp_ops,
655 .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
656 .xcl_ident = XPRT_TRANSPORT_UDP,
657 };
658
659 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
660 {
661 svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_udp_class,
662 &svsk->sk_xprt, serv);
663 clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
664 svsk->sk_sk->sk_data_ready = svc_data_ready;
665 svsk->sk_sk->sk_write_space = svc_write_space;
666
667 /* initialise setting must have enough space to
668 * receive and respond to one request.
669 * svc_udp_recvfrom will re-adjust if necessary
670 */
671 svc_sock_setbufsize(svsk, 3);
672
673 /* data might have come in before data_ready set up */
674 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
675 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
676
677 /* make sure we get destination address info */
678 switch (svsk->sk_sk->sk_family) {
679 case AF_INET:
680 ip_sock_set_pktinfo(svsk->sk_sock->sk);
681 break;
682 case AF_INET6:
683 ip6_sock_set_recvpktinfo(svsk->sk_sock->sk);
684 break;
685 default:
686 BUG();
687 }
688 }
689
690 /*
691 * A data_ready event on a listening socket means there's a connection
692 * pending. Do not use state_change as a substitute for it.
693 */
694 static void svc_tcp_listen_data_ready(struct sock *sk)
695 {
696 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
697
698 if (svsk) {
699 /* Refer to svc_setup_socket() for details. */
700 rmb();
701 svsk->sk_odata(sk);
702 }
703
704 /*
705 * This callback may called twice when a new connection
706 * is established as a child socket inherits everything
707 * from a parent LISTEN socket.
708 * 1) data_ready method of the parent socket will be called
709 * when one of child sockets become ESTABLISHED.
710 * 2) data_ready method of the child socket may be called
711 * when it receives data before the socket is accepted.
712 * In case of 2, we should ignore it silently.
713 */
714 if (sk->sk_state == TCP_LISTEN) {
715 if (svsk) {
716 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
717 svc_xprt_enqueue(&svsk->sk_xprt);
718 }
719 }
720 }
721
722 /*
723 * A state change on a connected socket means it's dying or dead.
724 */
725 static void svc_tcp_state_change(struct sock *sk)
726 {
727 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
728
729 if (svsk) {
730 /* Refer to svc_setup_socket() for details. */
731 rmb();
732 svsk->sk_ostate(sk);
733 trace_svcsock_tcp_state(&svsk->sk_xprt, svsk->sk_sock);
734 if (sk->sk_state != TCP_ESTABLISHED)
735 svc_xprt_deferred_close(&svsk->sk_xprt);
736 }
737 }
738
739 /*
740 * Accept a TCP connection
741 */
742 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
743 {
744 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
745 struct sockaddr_storage addr;
746 struct sockaddr *sin = (struct sockaddr *) &addr;
747 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
748 struct socket *sock = svsk->sk_sock;
749 struct socket *newsock;
750 struct svc_sock *newsvsk;
751 int err, slen;
752
753 if (!sock)
754 return NULL;
755
756 clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
757 err = kernel_accept(sock, &newsock, O_NONBLOCK);
758 if (err < 0) {
759 if (err == -ENOMEM)
760 printk(KERN_WARNING "%s: no more sockets!\n",
761 serv->sv_name);
762 else if (err != -EAGAIN)
763 net_warn_ratelimited("%s: accept failed (err %d)!\n",
764 serv->sv_name, -err);
765 trace_svcsock_accept_err(xprt, serv->sv_name, err);
766 return NULL;
767 }
768 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
769
770 err = kernel_getpeername(newsock, sin);
771 if (err < 0) {
772 trace_svcsock_getpeername_err(xprt, serv->sv_name, err);
773 goto failed; /* aborted connection or whatever */
774 }
775 slen = err;
776
777 /* Reset the inherited callbacks before calling svc_setup_socket */
778 newsock->sk->sk_state_change = svsk->sk_ostate;
779 newsock->sk->sk_data_ready = svsk->sk_odata;
780 newsock->sk->sk_write_space = svsk->sk_owspace;
781
782 /* make sure that a write doesn't block forever when
783 * low on memory
784 */
785 newsock->sk->sk_sndtimeo = HZ*30;
786
787 newsvsk = svc_setup_socket(serv, newsock,
788 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY));
789 if (IS_ERR(newsvsk))
790 goto failed;
791 svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen);
792 err = kernel_getsockname(newsock, sin);
793 slen = err;
794 if (unlikely(err < 0))
795 slen = offsetof(struct sockaddr, sa_data);
796 svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen);
797
798 if (sock_is_loopback(newsock->sk))
799 set_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags);
800 else
801 clear_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags);
802 if (serv->sv_stats)
803 serv->sv_stats->nettcpconn++;
804
805 return &newsvsk->sk_xprt;
806
807 failed:
808 sock_release(newsock);
809 return NULL;
810 }
811
812 static size_t svc_tcp_restore_pages(struct svc_sock *svsk,
813 struct svc_rqst *rqstp)
814 {
815 size_t len = svsk->sk_datalen;
816 unsigned int i, npages;
817
818 if (!len)
819 return 0;
820 npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
821 for (i = 0; i < npages; i++) {
822 if (rqstp->rq_pages[i] != NULL)
823 put_page(rqstp->rq_pages[i]);
824 BUG_ON(svsk->sk_pages[i] == NULL);
825 rqstp->rq_pages[i] = svsk->sk_pages[i];
826 svsk->sk_pages[i] = NULL;
827 }
828 rqstp->rq_arg.head[0].iov_base = page_address(rqstp->rq_pages[0]);
829 return len;
830 }
831
832 static void svc_tcp_save_pages(struct svc_sock *svsk, struct svc_rqst *rqstp)
833 {
834 unsigned int i, len, npages;
835
836 if (svsk->sk_datalen == 0)
837 return;
838 len = svsk->sk_datalen;
839 npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
840 for (i = 0; i < npages; i++) {
841 svsk->sk_pages[i] = rqstp->rq_pages[i];
842 rqstp->rq_pages[i] = NULL;
843 }
844 }
845
846 static void svc_tcp_clear_pages(struct svc_sock *svsk)
847 {
848 unsigned int i, len, npages;
849
850 if (svsk->sk_datalen == 0)
851 goto out;
852 len = svsk->sk_datalen;
853 npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
854 for (i = 0; i < npages; i++) {
855 if (svsk->sk_pages[i] == NULL) {
856 WARN_ON_ONCE(1);
857 continue;
858 }
859 put_page(svsk->sk_pages[i]);
860 svsk->sk_pages[i] = NULL;
861 }
862 out:
863 svsk->sk_tcplen = 0;
864 svsk->sk_datalen = 0;
865 }
866
867 /*
868 * Receive fragment record header into sk_marker.
869 */
870 static ssize_t svc_tcp_read_marker(struct svc_sock *svsk,
871 struct svc_rqst *rqstp)
872 {
873 ssize_t want, len;
874
875 /* If we haven't gotten the record length yet,
876 * get the next four bytes.
877 */
878 if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) {
879 struct msghdr msg = { NULL };
880 struct kvec iov;
881
882 want = sizeof(rpc_fraghdr) - svsk->sk_tcplen;
883 iov.iov_base = ((char *)&svsk->sk_marker) + svsk->sk_tcplen;
884 iov.iov_len = want;
885 iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, want);
886 len = sock_recvmsg(svsk->sk_sock, &msg, MSG_DONTWAIT);
887 if (len < 0)
888 return len;
889 svsk->sk_tcplen += len;
890 if (len < want) {
891 /* call again to read the remaining bytes */
892 goto err_short;
893 }
894 trace_svcsock_marker(&svsk->sk_xprt, svsk->sk_marker);
895 if (svc_sock_reclen(svsk) + svsk->sk_datalen >
896 svsk->sk_xprt.xpt_server->sv_max_mesg)
897 goto err_too_large;
898 }
899 return svc_sock_reclen(svsk);
900
901 err_too_large:
902 net_notice_ratelimited("svc: %s %s RPC fragment too large: %d\n",
903 __func__, svsk->sk_xprt.xpt_server->sv_name,
904 svc_sock_reclen(svsk));
905 svc_xprt_deferred_close(&svsk->sk_xprt);
906 err_short:
907 return -EAGAIN;
908 }
909
910 static int receive_cb_reply(struct svc_sock *svsk, struct svc_rqst *rqstp)
911 {
912 struct rpc_xprt *bc_xprt = svsk->sk_xprt.xpt_bc_xprt;
913 struct rpc_rqst *req = NULL;
914 struct kvec *src, *dst;
915 __be32 *p = (__be32 *)rqstp->rq_arg.head[0].iov_base;
916 __be32 xid;
917 __be32 calldir;
918
919 xid = *p++;
920 calldir = *p;
921
922 if (!bc_xprt)
923 return -EAGAIN;
924 spin_lock(&bc_xprt->queue_lock);
925 req = xprt_lookup_rqst(bc_xprt, xid);
926 if (!req)
927 goto unlock_notfound;
928
929 memcpy(&req->rq_private_buf, &req->rq_rcv_buf, sizeof(struct xdr_buf));
930 /*
931 * XXX!: cheating for now! Only copying HEAD.
932 * But we know this is good enough for now (in fact, for any
933 * callback reply in the forseeable future).
934 */
935 dst = &req->rq_private_buf.head[0];
936 src = &rqstp->rq_arg.head[0];
937 if (dst->iov_len < src->iov_len)
938 goto unlock_eagain; /* whatever; just giving up. */
939 memcpy(dst->iov_base, src->iov_base, src->iov_len);
940 xprt_complete_rqst(req->rq_task, rqstp->rq_arg.len);
941 rqstp->rq_arg.len = 0;
942 spin_unlock(&bc_xprt->queue_lock);
943 return 0;
944 unlock_notfound:
945 printk(KERN_NOTICE
946 "%s: Got unrecognized reply: "
947 "calldir 0x%x xpt_bc_xprt %p xid %08x\n",
948 __func__, ntohl(calldir),
949 bc_xprt, ntohl(xid));
950 unlock_eagain:
951 spin_unlock(&bc_xprt->queue_lock);
952 return -EAGAIN;
953 }
954
955 static void svc_tcp_fragment_received(struct svc_sock *svsk)
956 {
957 /* If we have more data, signal svc_xprt_enqueue() to try again */
958 svsk->sk_tcplen = 0;
959 svsk->sk_marker = xdr_zero;
960 }
961
962 /**
963 * svc_tcp_recvfrom - Receive data from a TCP socket
964 * @rqstp: request structure into which to receive an RPC Call
965 *
966 * Called in a loop when XPT_DATA has been set.
967 *
968 * Read the 4-byte stream record marker, then use the record length
969 * in that marker to set up exactly the resources needed to receive
970 * the next RPC message into @rqstp.
971 *
972 * Returns:
973 * On success, the number of bytes in a received RPC Call, or
974 * %0 if a complete RPC Call message was not ready to return
975 *
976 * The zero return case handles partial receives and callback Replies.
977 * The state of a partial receive is preserved in the svc_sock for
978 * the next call to svc_tcp_recvfrom.
979 */
980 static int svc_tcp_recvfrom(struct svc_rqst *rqstp)
981 {
982 struct svc_sock *svsk =
983 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
984 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
985 size_t want, base;
986 ssize_t len;
987 __be32 *p;
988 __be32 calldir;
989
990 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
991 len = svc_tcp_read_marker(svsk, rqstp);
992 if (len < 0)
993 goto error;
994
995 base = svc_tcp_restore_pages(svsk, rqstp);
996 want = len - (svsk->sk_tcplen - sizeof(rpc_fraghdr));
997 len = svc_tcp_read_msg(rqstp, base + want, base);
998 if (len >= 0) {
999 trace_svcsock_tcp_recv(&svsk->sk_xprt, len);
1000 svsk->sk_tcplen += len;
1001 svsk->sk_datalen += len;
1002 }
1003 if (len != want || !svc_sock_final_rec(svsk))
1004 goto err_incomplete;
1005 if (svsk->sk_datalen < 8)
1006 goto err_nuts;
1007
1008 rqstp->rq_arg.len = svsk->sk_datalen;
1009 rqstp->rq_arg.page_base = 0;
1010 if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1011 rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1012 rqstp->rq_arg.page_len = 0;
1013 } else
1014 rqstp->rq_arg.page_len = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1015
1016 rqstp->rq_xprt_ctxt = NULL;
1017 rqstp->rq_prot = IPPROTO_TCP;
1018 if (test_bit(XPT_LOCAL, &svsk->sk_xprt.xpt_flags))
1019 set_bit(RQ_LOCAL, &rqstp->rq_flags);
1020 else
1021 clear_bit(RQ_LOCAL, &rqstp->rq_flags);
1022
1023 p = (__be32 *)rqstp->rq_arg.head[0].iov_base;
1024 calldir = p[1];
1025 if (calldir)
1026 len = receive_cb_reply(svsk, rqstp);
1027
1028 /* Reset TCP read info */
1029 svsk->sk_datalen = 0;
1030 svc_tcp_fragment_received(svsk);
1031
1032 if (len < 0)
1033 goto error;
1034
1035 svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt);
1036 if (serv->sv_stats)
1037 serv->sv_stats->nettcpcnt++;
1038
1039 svc_xprt_received(rqstp->rq_xprt);
1040 return rqstp->rq_arg.len;
1041
1042 err_incomplete:
1043 svc_tcp_save_pages(svsk, rqstp);
1044 if (len < 0 && len != -EAGAIN)
1045 goto err_delete;
1046 if (len == want)
1047 svc_tcp_fragment_received(svsk);
1048 else
1049 trace_svcsock_tcp_recv_short(&svsk->sk_xprt,
1050 svc_sock_reclen(svsk),
1051 svsk->sk_tcplen - sizeof(rpc_fraghdr));
1052 goto err_noclose;
1053 error:
1054 if (len != -EAGAIN)
1055 goto err_delete;
1056 trace_svcsock_tcp_recv_eagain(&svsk->sk_xprt, 0);
1057 goto err_noclose;
1058 err_nuts:
1059 svsk->sk_datalen = 0;
1060 err_delete:
1061 trace_svcsock_tcp_recv_err(&svsk->sk_xprt, len);
1062 svc_xprt_deferred_close(&svsk->sk_xprt);
1063 err_noclose:
1064 svc_xprt_received(rqstp->rq_xprt);
1065 return 0; /* record not complete */
1066 }
1067
1068 static int svc_tcp_send_kvec(struct socket *sock, const struct kvec *vec,
1069 int flags)
1070 {
1071 return kernel_sendpage(sock, virt_to_page(vec->iov_base),
1072 offset_in_page(vec->iov_base),
1073 vec->iov_len, flags);
1074 }
1075
1076 /*
1077 * kernel_sendpage() is used exclusively to reduce the number of
1078 * copy operations in this path. Therefore the caller must ensure
1079 * that the pages backing @xdr are unchanging.
1080 *
1081 * In addition, the logic assumes that * .bv_len is never larger
1082 * than PAGE_SIZE.
1083 */
1084 static int svc_tcp_sendmsg(struct socket *sock, struct xdr_buf *xdr,
1085 rpc_fraghdr marker, unsigned int *sentp)
1086 {
1087 const struct kvec *head = xdr->head;
1088 const struct kvec *tail = xdr->tail;
1089 struct kvec rm = {
1090 .iov_base = &marker,
1091 .iov_len = sizeof(marker),
1092 };
1093 struct msghdr msg = {
1094 .msg_flags = 0,
1095 };
1096 int ret;
1097
1098 *sentp = 0;
1099 ret = xdr_alloc_bvec(xdr, GFP_KERNEL);
1100 if (ret < 0)
1101 return ret;
1102
1103 ret = kernel_sendmsg(sock, &msg, &rm, 1, rm.iov_len);
1104 if (ret < 0)
1105 return ret;
1106 *sentp += ret;
1107 if (ret != rm.iov_len)
1108 return -EAGAIN;
1109
1110 ret = svc_tcp_send_kvec(sock, head, 0);
1111 if (ret < 0)
1112 return ret;
1113 *sentp += ret;
1114 if (ret != head->iov_len)
1115 goto out;
1116
1117 if (xdr->page_len) {
1118 unsigned int offset, len, remaining;
1119 struct bio_vec *bvec;
1120
1121 bvec = xdr->bvec + (xdr->page_base >> PAGE_SHIFT);
1122 offset = offset_in_page(xdr->page_base);
1123 remaining = xdr->page_len;
1124 while (remaining > 0) {
1125 len = min(remaining, bvec->bv_len - offset);
1126 ret = kernel_sendpage(sock, bvec->bv_page,
1127 bvec->bv_offset + offset,
1128 len, 0);
1129 if (ret < 0)
1130 return ret;
1131 *sentp += ret;
1132 if (ret != len)
1133 goto out;
1134 remaining -= len;
1135 offset = 0;
1136 bvec++;
1137 }
1138 }
1139
1140 if (tail->iov_len) {
1141 ret = svc_tcp_send_kvec(sock, tail, 0);
1142 if (ret < 0)
1143 return ret;
1144 *sentp += ret;
1145 }
1146
1147 out:
1148 return 0;
1149 }
1150
1151 /**
1152 * svc_tcp_sendto - Send out a reply on a TCP socket
1153 * @rqstp: completed svc_rqst
1154 *
1155 * xpt_mutex ensures @rqstp's whole message is written to the socket
1156 * without interruption.
1157 *
1158 * Returns the number of bytes sent, or a negative errno.
1159 */
1160 static int svc_tcp_sendto(struct svc_rqst *rqstp)
1161 {
1162 struct svc_xprt *xprt = rqstp->rq_xprt;
1163 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1164 struct xdr_buf *xdr = &rqstp->rq_res;
1165 rpc_fraghdr marker = cpu_to_be32(RPC_LAST_STREAM_FRAGMENT |
1166 (u32)xdr->len);
1167 unsigned int sent;
1168 int err;
1169
1170 svc_tcp_release_rqst(rqstp);
1171
1172 atomic_inc(&svsk->sk_sendqlen);
1173 mutex_lock(&xprt->xpt_mutex);
1174 if (svc_xprt_is_dead(xprt))
1175 goto out_notconn;
1176 tcp_sock_set_cork(svsk->sk_sk, true);
1177 err = svc_tcp_sendmsg(svsk->sk_sock, xdr, marker, &sent);
1178 xdr_free_bvec(xdr);
1179 trace_svcsock_tcp_send(xprt, err < 0 ? (long)err : sent);
1180 if (err < 0 || sent != (xdr->len + sizeof(marker)))
1181 goto out_close;
1182 if (atomic_dec_and_test(&svsk->sk_sendqlen))
1183 tcp_sock_set_cork(svsk->sk_sk, false);
1184 mutex_unlock(&xprt->xpt_mutex);
1185 return sent;
1186
1187 out_notconn:
1188 atomic_dec(&svsk->sk_sendqlen);
1189 mutex_unlock(&xprt->xpt_mutex);
1190 return -ENOTCONN;
1191 out_close:
1192 pr_notice("rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1193 xprt->xpt_server->sv_name,
1194 (err < 0) ? "got error" : "sent",
1195 (err < 0) ? err : sent, xdr->len);
1196 svc_xprt_deferred_close(xprt);
1197 atomic_dec(&svsk->sk_sendqlen);
1198 mutex_unlock(&xprt->xpt_mutex);
1199 return -EAGAIN;
1200 }
1201
1202 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
1203 struct net *net,
1204 struct sockaddr *sa, int salen,
1205 int flags)
1206 {
1207 return svc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags);
1208 }
1209
1210 static const struct svc_xprt_ops svc_tcp_ops = {
1211 .xpo_create = svc_tcp_create,
1212 .xpo_recvfrom = svc_tcp_recvfrom,
1213 .xpo_sendto = svc_tcp_sendto,
1214 .xpo_result_payload = svc_sock_result_payload,
1215 .xpo_release_rqst = svc_tcp_release_rqst,
1216 .xpo_detach = svc_tcp_sock_detach,
1217 .xpo_free = svc_sock_free,
1218 .xpo_has_wspace = svc_tcp_has_wspace,
1219 .xpo_accept = svc_tcp_accept,
1220 .xpo_secure_port = svc_sock_secure_port,
1221 .xpo_kill_temp_xprt = svc_tcp_kill_temp_xprt,
1222 };
1223
1224 static struct svc_xprt_class svc_tcp_class = {
1225 .xcl_name = "tcp",
1226 .xcl_owner = THIS_MODULE,
1227 .xcl_ops = &svc_tcp_ops,
1228 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
1229 .xcl_ident = XPRT_TRANSPORT_TCP,
1230 };
1231
1232 void svc_init_xprt_sock(void)
1233 {
1234 svc_reg_xprt_class(&svc_tcp_class);
1235 svc_reg_xprt_class(&svc_udp_class);
1236 }
1237
1238 void svc_cleanup_xprt_sock(void)
1239 {
1240 svc_unreg_xprt_class(&svc_tcp_class);
1241 svc_unreg_xprt_class(&svc_udp_class);
1242 }
1243
1244 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
1245 {
1246 struct sock *sk = svsk->sk_sk;
1247
1248 svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_tcp_class,
1249 &svsk->sk_xprt, serv);
1250 set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
1251 set_bit(XPT_CONG_CTRL, &svsk->sk_xprt.xpt_flags);
1252 if (sk->sk_state == TCP_LISTEN) {
1253 strcpy(svsk->sk_xprt.xpt_remotebuf, "listener");
1254 set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
1255 sk->sk_data_ready = svc_tcp_listen_data_ready;
1256 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1257 } else {
1258 sk->sk_state_change = svc_tcp_state_change;
1259 sk->sk_data_ready = svc_data_ready;
1260 sk->sk_write_space = svc_write_space;
1261
1262 svsk->sk_marker = xdr_zero;
1263 svsk->sk_tcplen = 0;
1264 svsk->sk_datalen = 0;
1265 memset(&svsk->sk_pages[0], 0, sizeof(svsk->sk_pages));
1266
1267 tcp_sock_set_nodelay(sk);
1268
1269 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1270 switch (sk->sk_state) {
1271 case TCP_SYN_RECV:
1272 case TCP_ESTABLISHED:
1273 break;
1274 default:
1275 svc_xprt_deferred_close(&svsk->sk_xprt);
1276 }
1277 }
1278 }
1279
1280 void svc_sock_update_bufs(struct svc_serv *serv)
1281 {
1282 /*
1283 * The number of server threads has changed. Update
1284 * rcvbuf and sndbuf accordingly on all sockets
1285 */
1286 struct svc_sock *svsk;
1287
1288 spin_lock_bh(&serv->sv_lock);
1289 list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list)
1290 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1291 spin_unlock_bh(&serv->sv_lock);
1292 }
1293 EXPORT_SYMBOL_GPL(svc_sock_update_bufs);
1294
1295 /*
1296 * Initialize socket for RPC use and create svc_sock struct
1297 */
1298 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1299 struct socket *sock,
1300 int flags)
1301 {
1302 struct svc_sock *svsk;
1303 struct sock *inet;
1304 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1305 int err = 0;
1306
1307 svsk = kzalloc(sizeof(*svsk), GFP_KERNEL);
1308 if (!svsk)
1309 return ERR_PTR(-ENOMEM);
1310
1311 inet = sock->sk;
1312
1313 /* Register socket with portmapper */
1314 if (pmap_register)
1315 err = svc_register(serv, sock_net(sock->sk), inet->sk_family,
1316 inet->sk_protocol,
1317 ntohs(inet_sk(inet)->inet_sport));
1318
1319 if (err < 0) {
1320 kfree(svsk);
1321 return ERR_PTR(err);
1322 }
1323
1324 svsk->sk_sock = sock;
1325 svsk->sk_sk = inet;
1326 svsk->sk_ostate = inet->sk_state_change;
1327 svsk->sk_odata = inet->sk_data_ready;
1328 svsk->sk_owspace = inet->sk_write_space;
1329 /*
1330 * This barrier is necessary in order to prevent race condition
1331 * with svc_data_ready(), svc_listen_data_ready() and others
1332 * when calling callbacks above.
1333 */
1334 wmb();
1335 inet->sk_user_data = svsk;
1336
1337 /* Initialize the socket */
1338 if (sock->type == SOCK_DGRAM)
1339 svc_udp_init(svsk, serv);
1340 else
1341 svc_tcp_init(svsk, serv);
1342
1343 trace_svcsock_new_socket(sock);
1344 return svsk;
1345 }
1346
1347 bool svc_alien_sock(struct net *net, int fd)
1348 {
1349 int err;
1350 struct socket *sock = sockfd_lookup(fd, &err);
1351 bool ret = false;
1352
1353 if (!sock)
1354 goto out;
1355 if (sock_net(sock->sk) != net)
1356 ret = true;
1357 sockfd_put(sock);
1358 out:
1359 return ret;
1360 }
1361 EXPORT_SYMBOL_GPL(svc_alien_sock);
1362
1363 /**
1364 * svc_addsock - add a listener socket to an RPC service
1365 * @serv: pointer to RPC service to which to add a new listener
1366 * @fd: file descriptor of the new listener
1367 * @name_return: pointer to buffer to fill in with name of listener
1368 * @len: size of the buffer
1369 * @cred: credential
1370 *
1371 * Fills in socket name and returns positive length of name if successful.
1372 * Name is terminated with '\n'. On error, returns a negative errno
1373 * value.
1374 */
1375 int svc_addsock(struct svc_serv *serv, const int fd, char *name_return,
1376 const size_t len, const struct cred *cred)
1377 {
1378 int err = 0;
1379 struct socket *so = sockfd_lookup(fd, &err);
1380 struct svc_sock *svsk = NULL;
1381 struct sockaddr_storage addr;
1382 struct sockaddr *sin = (struct sockaddr *)&addr;
1383 int salen;
1384
1385 if (!so)
1386 return err;
1387 err = -EAFNOSUPPORT;
1388 if ((so->sk->sk_family != PF_INET) && (so->sk->sk_family != PF_INET6))
1389 goto out;
1390 err = -EPROTONOSUPPORT;
1391 if (so->sk->sk_protocol != IPPROTO_TCP &&
1392 so->sk->sk_protocol != IPPROTO_UDP)
1393 goto out;
1394 err = -EISCONN;
1395 if (so->state > SS_UNCONNECTED)
1396 goto out;
1397 err = -ENOENT;
1398 if (!try_module_get(THIS_MODULE))
1399 goto out;
1400 svsk = svc_setup_socket(serv, so, SVC_SOCK_DEFAULTS);
1401 if (IS_ERR(svsk)) {
1402 module_put(THIS_MODULE);
1403 err = PTR_ERR(svsk);
1404 goto out;
1405 }
1406 salen = kernel_getsockname(svsk->sk_sock, sin);
1407 if (salen >= 0)
1408 svc_xprt_set_local(&svsk->sk_xprt, sin, salen);
1409 svsk->sk_xprt.xpt_cred = get_cred(cred);
1410 svc_add_new_perm_xprt(serv, &svsk->sk_xprt);
1411 return svc_one_sock_name(svsk, name_return, len);
1412 out:
1413 sockfd_put(so);
1414 return err;
1415 }
1416 EXPORT_SYMBOL_GPL(svc_addsock);
1417
1418 /*
1419 * Create socket for RPC service.
1420 */
1421 static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
1422 int protocol,
1423 struct net *net,
1424 struct sockaddr *sin, int len,
1425 int flags)
1426 {
1427 struct svc_sock *svsk;
1428 struct socket *sock;
1429 int error;
1430 int type;
1431 struct sockaddr_storage addr;
1432 struct sockaddr *newsin = (struct sockaddr *)&addr;
1433 int newlen;
1434 int family;
1435
1436 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1437 printk(KERN_WARNING "svc: only UDP and TCP "
1438 "sockets supported\n");
1439 return ERR_PTR(-EINVAL);
1440 }
1441
1442 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1443 switch (sin->sa_family) {
1444 case AF_INET6:
1445 family = PF_INET6;
1446 break;
1447 case AF_INET:
1448 family = PF_INET;
1449 break;
1450 default:
1451 return ERR_PTR(-EINVAL);
1452 }
1453
1454 error = __sock_create(net, family, type, protocol, &sock, 1);
1455 if (error < 0)
1456 return ERR_PTR(error);
1457
1458 svc_reclassify_socket(sock);
1459
1460 /*
1461 * If this is an PF_INET6 listener, we want to avoid
1462 * getting requests from IPv4 remotes. Those should
1463 * be shunted to a PF_INET listener via rpcbind.
1464 */
1465 if (family == PF_INET6)
1466 ip6_sock_set_v6only(sock->sk);
1467 if (type == SOCK_STREAM)
1468 sock->sk->sk_reuse = SK_CAN_REUSE; /* allow address reuse */
1469 error = kernel_bind(sock, sin, len);
1470 if (error < 0)
1471 goto bummer;
1472
1473 error = kernel_getsockname(sock, newsin);
1474 if (error < 0)
1475 goto bummer;
1476 newlen = error;
1477
1478 if (protocol == IPPROTO_TCP) {
1479 if ((error = kernel_listen(sock, 64)) < 0)
1480 goto bummer;
1481 }
1482
1483 svsk = svc_setup_socket(serv, sock, flags);
1484 if (IS_ERR(svsk)) {
1485 error = PTR_ERR(svsk);
1486 goto bummer;
1487 }
1488 svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen);
1489 return (struct svc_xprt *)svsk;
1490 bummer:
1491 sock_release(sock);
1492 return ERR_PTR(error);
1493 }
1494
1495 /*
1496 * Detach the svc_sock from the socket so that no
1497 * more callbacks occur.
1498 */
1499 static void svc_sock_detach(struct svc_xprt *xprt)
1500 {
1501 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1502 struct sock *sk = svsk->sk_sk;
1503
1504 /* put back the old socket callbacks */
1505 lock_sock(sk);
1506 sk->sk_state_change = svsk->sk_ostate;
1507 sk->sk_data_ready = svsk->sk_odata;
1508 sk->sk_write_space = svsk->sk_owspace;
1509 sk->sk_user_data = NULL;
1510 release_sock(sk);
1511 }
1512
1513 /*
1514 * Disconnect the socket, and reset the callbacks
1515 */
1516 static void svc_tcp_sock_detach(struct svc_xprt *xprt)
1517 {
1518 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1519
1520 svc_sock_detach(xprt);
1521
1522 if (!test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
1523 svc_tcp_clear_pages(svsk);
1524 kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR);
1525 }
1526 }
1527
1528 /*
1529 * Free the svc_sock's socket resources and the svc_sock itself.
1530 */
1531 static void svc_sock_free(struct svc_xprt *xprt)
1532 {
1533 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1534
1535 if (svsk->sk_sock->file)
1536 sockfd_put(svsk->sk_sock);
1537 else
1538 sock_release(svsk->sk_sock);
1539 kfree(svsk);
1540 }