]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/sunrpc/xprt.c
SUNRPC/call_alloc: async tasks mustn't block waiting for memory
[mirror_ubuntu-jammy-kernel.git] / net / sunrpc / xprt.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/net/sunrpc/xprt.c
4 *
5 * This is a generic RPC call interface supporting congestion avoidance,
6 * and asynchronous calls.
7 *
8 * The interface works like this:
9 *
10 * - When a process places a call, it allocates a request slot if
11 * one is available. Otherwise, it sleeps on the backlog queue
12 * (xprt_reserve).
13 * - Next, the caller puts together the RPC message, stuffs it into
14 * the request struct, and calls xprt_transmit().
15 * - xprt_transmit sends the message and installs the caller on the
16 * transport's wait list. At the same time, if a reply is expected,
17 * it installs a timer that is run after the packet's timeout has
18 * expired.
19 * - When a packet arrives, the data_ready handler walks the list of
20 * pending requests for that transport. If a matching XID is found, the
21 * caller is woken up, and the timer removed.
22 * - When no reply arrives within the timeout interval, the timer is
23 * fired by the kernel and runs xprt_timer(). It either adjusts the
24 * timeout values (minor timeout) or wakes up the caller with a status
25 * of -ETIMEDOUT.
26 * - When the caller receives a notification from RPC that a reply arrived,
27 * it should release the RPC slot, and process the reply.
28 * If the call timed out, it may choose to retry the operation by
29 * adjusting the initial timeout value, and simply calling rpc_call
30 * again.
31 *
32 * Support for async RPC is done through a set of RPC-specific scheduling
33 * primitives that `transparently' work for processes as well as async
34 * tasks that rely on callbacks.
35 *
36 * Copyright (C) 1995-1997, Olaf Kirch <okir@monad.swb.de>
37 *
38 * Transport switch API copyright (C) 2005, Chuck Lever <cel@netapp.com>
39 */
40
41 #include <linux/module.h>
42
43 #include <linux/types.h>
44 #include <linux/interrupt.h>
45 #include <linux/workqueue.h>
46 #include <linux/net.h>
47 #include <linux/ktime.h>
48
49 #include <linux/sunrpc/clnt.h>
50 #include <linux/sunrpc/metrics.h>
51 #include <linux/sunrpc/bc_xprt.h>
52 #include <linux/rcupdate.h>
53 #include <linux/sched/mm.h>
54
55 #include <trace/events/sunrpc.h>
56
57 #include "sunrpc.h"
58 #include "sysfs.h"
59 #include "fail.h"
60
61 /*
62 * Local variables
63 */
64
65 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
66 # define RPCDBG_FACILITY RPCDBG_XPRT
67 #endif
68
69 /*
70 * Local functions
71 */
72 static void xprt_init(struct rpc_xprt *xprt, struct net *net);
73 static __be32 xprt_alloc_xid(struct rpc_xprt *xprt);
74 static void xprt_destroy(struct rpc_xprt *xprt);
75 static void xprt_request_init(struct rpc_task *task);
76
77 static DEFINE_SPINLOCK(xprt_list_lock);
78 static LIST_HEAD(xprt_list);
79
80 static unsigned long xprt_request_timeout(const struct rpc_rqst *req)
81 {
82 unsigned long timeout = jiffies + req->rq_timeout;
83
84 if (time_before(timeout, req->rq_majortimeo))
85 return timeout;
86 return req->rq_majortimeo;
87 }
88
89 /**
90 * xprt_register_transport - register a transport implementation
91 * @transport: transport to register
92 *
93 * If a transport implementation is loaded as a kernel module, it can
94 * call this interface to make itself known to the RPC client.
95 *
96 * Returns:
97 * 0: transport successfully registered
98 * -EEXIST: transport already registered
99 * -EINVAL: transport module being unloaded
100 */
101 int xprt_register_transport(struct xprt_class *transport)
102 {
103 struct xprt_class *t;
104 int result;
105
106 result = -EEXIST;
107 spin_lock(&xprt_list_lock);
108 list_for_each_entry(t, &xprt_list, list) {
109 /* don't register the same transport class twice */
110 if (t->ident == transport->ident)
111 goto out;
112 }
113
114 list_add_tail(&transport->list, &xprt_list);
115 printk(KERN_INFO "RPC: Registered %s transport module.\n",
116 transport->name);
117 result = 0;
118
119 out:
120 spin_unlock(&xprt_list_lock);
121 return result;
122 }
123 EXPORT_SYMBOL_GPL(xprt_register_transport);
124
125 /**
126 * xprt_unregister_transport - unregister a transport implementation
127 * @transport: transport to unregister
128 *
129 * Returns:
130 * 0: transport successfully unregistered
131 * -ENOENT: transport never registered
132 */
133 int xprt_unregister_transport(struct xprt_class *transport)
134 {
135 struct xprt_class *t;
136 int result;
137
138 result = 0;
139 spin_lock(&xprt_list_lock);
140 list_for_each_entry(t, &xprt_list, list) {
141 if (t == transport) {
142 printk(KERN_INFO
143 "RPC: Unregistered %s transport module.\n",
144 transport->name);
145 list_del_init(&transport->list);
146 goto out;
147 }
148 }
149 result = -ENOENT;
150
151 out:
152 spin_unlock(&xprt_list_lock);
153 return result;
154 }
155 EXPORT_SYMBOL_GPL(xprt_unregister_transport);
156
157 static void
158 xprt_class_release(const struct xprt_class *t)
159 {
160 module_put(t->owner);
161 }
162
163 static const struct xprt_class *
164 xprt_class_find_by_ident_locked(int ident)
165 {
166 const struct xprt_class *t;
167
168 list_for_each_entry(t, &xprt_list, list) {
169 if (t->ident != ident)
170 continue;
171 if (!try_module_get(t->owner))
172 continue;
173 return t;
174 }
175 return NULL;
176 }
177
178 static const struct xprt_class *
179 xprt_class_find_by_ident(int ident)
180 {
181 const struct xprt_class *t;
182
183 spin_lock(&xprt_list_lock);
184 t = xprt_class_find_by_ident_locked(ident);
185 spin_unlock(&xprt_list_lock);
186 return t;
187 }
188
189 static const struct xprt_class *
190 xprt_class_find_by_netid_locked(const char *netid)
191 {
192 const struct xprt_class *t;
193 unsigned int i;
194
195 list_for_each_entry(t, &xprt_list, list) {
196 for (i = 0; t->netid[i][0] != '\0'; i++) {
197 if (strcmp(t->netid[i], netid) != 0)
198 continue;
199 if (!try_module_get(t->owner))
200 continue;
201 return t;
202 }
203 }
204 return NULL;
205 }
206
207 static const struct xprt_class *
208 xprt_class_find_by_netid(const char *netid)
209 {
210 const struct xprt_class *t;
211
212 spin_lock(&xprt_list_lock);
213 t = xprt_class_find_by_netid_locked(netid);
214 if (!t) {
215 spin_unlock(&xprt_list_lock);
216 request_module("rpc%s", netid);
217 spin_lock(&xprt_list_lock);
218 t = xprt_class_find_by_netid_locked(netid);
219 }
220 spin_unlock(&xprt_list_lock);
221 return t;
222 }
223
224 /**
225 * xprt_find_transport_ident - convert a netid into a transport identifier
226 * @netid: transport to load
227 *
228 * Returns:
229 * > 0: transport identifier
230 * -ENOENT: transport module not available
231 */
232 int xprt_find_transport_ident(const char *netid)
233 {
234 const struct xprt_class *t;
235 int ret;
236
237 t = xprt_class_find_by_netid(netid);
238 if (!t)
239 return -ENOENT;
240 ret = t->ident;
241 xprt_class_release(t);
242 return ret;
243 }
244 EXPORT_SYMBOL_GPL(xprt_find_transport_ident);
245
246 static void xprt_clear_locked(struct rpc_xprt *xprt)
247 {
248 xprt->snd_task = NULL;
249 if (!test_bit(XPRT_CLOSE_WAIT, &xprt->state)) {
250 smp_mb__before_atomic();
251 clear_bit(XPRT_LOCKED, &xprt->state);
252 smp_mb__after_atomic();
253 } else
254 queue_work(xprtiod_workqueue, &xprt->task_cleanup);
255 }
256
257 /**
258 * xprt_reserve_xprt - serialize write access to transports
259 * @task: task that is requesting access to the transport
260 * @xprt: pointer to the target transport
261 *
262 * This prevents mixing the payload of separate requests, and prevents
263 * transport connects from colliding with writes. No congestion control
264 * is provided.
265 */
266 int xprt_reserve_xprt(struct rpc_xprt *xprt, struct rpc_task *task)
267 {
268 struct rpc_rqst *req = task->tk_rqstp;
269
270 if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) {
271 if (task == xprt->snd_task)
272 goto out_locked;
273 goto out_sleep;
274 }
275 if (test_bit(XPRT_WRITE_SPACE, &xprt->state))
276 goto out_unlock;
277 xprt->snd_task = task;
278
279 out_locked:
280 trace_xprt_reserve_xprt(xprt, task);
281 return 1;
282
283 out_unlock:
284 xprt_clear_locked(xprt);
285 out_sleep:
286 task->tk_status = -EAGAIN;
287 if (RPC_IS_SOFT(task))
288 rpc_sleep_on_timeout(&xprt->sending, task, NULL,
289 xprt_request_timeout(req));
290 else
291 rpc_sleep_on(&xprt->sending, task, NULL);
292 return 0;
293 }
294 EXPORT_SYMBOL_GPL(xprt_reserve_xprt);
295
296 static bool
297 xprt_need_congestion_window_wait(struct rpc_xprt *xprt)
298 {
299 return test_bit(XPRT_CWND_WAIT, &xprt->state);
300 }
301
302 static void
303 xprt_set_congestion_window_wait(struct rpc_xprt *xprt)
304 {
305 if (!list_empty(&xprt->xmit_queue)) {
306 /* Peek at head of queue to see if it can make progress */
307 if (list_first_entry(&xprt->xmit_queue, struct rpc_rqst,
308 rq_xmit)->rq_cong)
309 return;
310 }
311 set_bit(XPRT_CWND_WAIT, &xprt->state);
312 }
313
314 static void
315 xprt_test_and_clear_congestion_window_wait(struct rpc_xprt *xprt)
316 {
317 if (!RPCXPRT_CONGESTED(xprt))
318 clear_bit(XPRT_CWND_WAIT, &xprt->state);
319 }
320
321 /*
322 * xprt_reserve_xprt_cong - serialize write access to transports
323 * @task: task that is requesting access to the transport
324 *
325 * Same as xprt_reserve_xprt, but Van Jacobson congestion control is
326 * integrated into the decision of whether a request is allowed to be
327 * woken up and given access to the transport.
328 * Note that the lock is only granted if we know there are free slots.
329 */
330 int xprt_reserve_xprt_cong(struct rpc_xprt *xprt, struct rpc_task *task)
331 {
332 struct rpc_rqst *req = task->tk_rqstp;
333
334 if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) {
335 if (task == xprt->snd_task)
336 goto out_locked;
337 goto out_sleep;
338 }
339 if (req == NULL) {
340 xprt->snd_task = task;
341 goto out_locked;
342 }
343 if (test_bit(XPRT_WRITE_SPACE, &xprt->state))
344 goto out_unlock;
345 if (!xprt_need_congestion_window_wait(xprt)) {
346 xprt->snd_task = task;
347 goto out_locked;
348 }
349 out_unlock:
350 xprt_clear_locked(xprt);
351 out_sleep:
352 task->tk_status = -EAGAIN;
353 if (RPC_IS_SOFT(task))
354 rpc_sleep_on_timeout(&xprt->sending, task, NULL,
355 xprt_request_timeout(req));
356 else
357 rpc_sleep_on(&xprt->sending, task, NULL);
358 return 0;
359 out_locked:
360 trace_xprt_reserve_cong(xprt, task);
361 return 1;
362 }
363 EXPORT_SYMBOL_GPL(xprt_reserve_xprt_cong);
364
365 static inline int xprt_lock_write(struct rpc_xprt *xprt, struct rpc_task *task)
366 {
367 int retval;
368
369 if (test_bit(XPRT_LOCKED, &xprt->state) && xprt->snd_task == task)
370 return 1;
371 spin_lock(&xprt->transport_lock);
372 retval = xprt->ops->reserve_xprt(xprt, task);
373 spin_unlock(&xprt->transport_lock);
374 return retval;
375 }
376
377 static bool __xprt_lock_write_func(struct rpc_task *task, void *data)
378 {
379 struct rpc_xprt *xprt = data;
380
381 xprt->snd_task = task;
382 return true;
383 }
384
385 static void __xprt_lock_write_next(struct rpc_xprt *xprt)
386 {
387 if (test_and_set_bit(XPRT_LOCKED, &xprt->state))
388 return;
389 if (test_bit(XPRT_WRITE_SPACE, &xprt->state))
390 goto out_unlock;
391 if (rpc_wake_up_first_on_wq(xprtiod_workqueue, &xprt->sending,
392 __xprt_lock_write_func, xprt))
393 return;
394 out_unlock:
395 xprt_clear_locked(xprt);
396 }
397
398 static void __xprt_lock_write_next_cong(struct rpc_xprt *xprt)
399 {
400 if (test_and_set_bit(XPRT_LOCKED, &xprt->state))
401 return;
402 if (test_bit(XPRT_WRITE_SPACE, &xprt->state))
403 goto out_unlock;
404 if (xprt_need_congestion_window_wait(xprt))
405 goto out_unlock;
406 if (rpc_wake_up_first_on_wq(xprtiod_workqueue, &xprt->sending,
407 __xprt_lock_write_func, xprt))
408 return;
409 out_unlock:
410 xprt_clear_locked(xprt);
411 }
412
413 /**
414 * xprt_release_xprt - allow other requests to use a transport
415 * @xprt: transport with other tasks potentially waiting
416 * @task: task that is releasing access to the transport
417 *
418 * Note that "task" can be NULL. No congestion control is provided.
419 */
420 void xprt_release_xprt(struct rpc_xprt *xprt, struct rpc_task *task)
421 {
422 if (xprt->snd_task == task) {
423 xprt_clear_locked(xprt);
424 __xprt_lock_write_next(xprt);
425 }
426 trace_xprt_release_xprt(xprt, task);
427 }
428 EXPORT_SYMBOL_GPL(xprt_release_xprt);
429
430 /**
431 * xprt_release_xprt_cong - allow other requests to use a transport
432 * @xprt: transport with other tasks potentially waiting
433 * @task: task that is releasing access to the transport
434 *
435 * Note that "task" can be NULL. Another task is awoken to use the
436 * transport if the transport's congestion window allows it.
437 */
438 void xprt_release_xprt_cong(struct rpc_xprt *xprt, struct rpc_task *task)
439 {
440 if (xprt->snd_task == task) {
441 xprt_clear_locked(xprt);
442 __xprt_lock_write_next_cong(xprt);
443 }
444 trace_xprt_release_cong(xprt, task);
445 }
446 EXPORT_SYMBOL_GPL(xprt_release_xprt_cong);
447
448 void xprt_release_write(struct rpc_xprt *xprt, struct rpc_task *task)
449 {
450 if (xprt->snd_task != task)
451 return;
452 spin_lock(&xprt->transport_lock);
453 xprt->ops->release_xprt(xprt, task);
454 spin_unlock(&xprt->transport_lock);
455 }
456
457 /*
458 * Van Jacobson congestion avoidance. Check if the congestion window
459 * overflowed. Put the task to sleep if this is the case.
460 */
461 static int
462 __xprt_get_cong(struct rpc_xprt *xprt, struct rpc_rqst *req)
463 {
464 if (req->rq_cong)
465 return 1;
466 trace_xprt_get_cong(xprt, req->rq_task);
467 if (RPCXPRT_CONGESTED(xprt)) {
468 xprt_set_congestion_window_wait(xprt);
469 return 0;
470 }
471 req->rq_cong = 1;
472 xprt->cong += RPC_CWNDSCALE;
473 return 1;
474 }
475
476 /*
477 * Adjust the congestion window, and wake up the next task
478 * that has been sleeping due to congestion
479 */
480 static void
481 __xprt_put_cong(struct rpc_xprt *xprt, struct rpc_rqst *req)
482 {
483 if (!req->rq_cong)
484 return;
485 req->rq_cong = 0;
486 xprt->cong -= RPC_CWNDSCALE;
487 xprt_test_and_clear_congestion_window_wait(xprt);
488 trace_xprt_put_cong(xprt, req->rq_task);
489 __xprt_lock_write_next_cong(xprt);
490 }
491
492 /**
493 * xprt_request_get_cong - Request congestion control credits
494 * @xprt: pointer to transport
495 * @req: pointer to RPC request
496 *
497 * Useful for transports that require congestion control.
498 */
499 bool
500 xprt_request_get_cong(struct rpc_xprt *xprt, struct rpc_rqst *req)
501 {
502 bool ret = false;
503
504 if (req->rq_cong)
505 return true;
506 spin_lock(&xprt->transport_lock);
507 ret = __xprt_get_cong(xprt, req) != 0;
508 spin_unlock(&xprt->transport_lock);
509 return ret;
510 }
511 EXPORT_SYMBOL_GPL(xprt_request_get_cong);
512
513 /**
514 * xprt_release_rqst_cong - housekeeping when request is complete
515 * @task: RPC request that recently completed
516 *
517 * Useful for transports that require congestion control.
518 */
519 void xprt_release_rqst_cong(struct rpc_task *task)
520 {
521 struct rpc_rqst *req = task->tk_rqstp;
522
523 __xprt_put_cong(req->rq_xprt, req);
524 }
525 EXPORT_SYMBOL_GPL(xprt_release_rqst_cong);
526
527 static void xprt_clear_congestion_window_wait_locked(struct rpc_xprt *xprt)
528 {
529 if (test_and_clear_bit(XPRT_CWND_WAIT, &xprt->state))
530 __xprt_lock_write_next_cong(xprt);
531 }
532
533 /*
534 * Clear the congestion window wait flag and wake up the next
535 * entry on xprt->sending
536 */
537 static void
538 xprt_clear_congestion_window_wait(struct rpc_xprt *xprt)
539 {
540 if (test_and_clear_bit(XPRT_CWND_WAIT, &xprt->state)) {
541 spin_lock(&xprt->transport_lock);
542 __xprt_lock_write_next_cong(xprt);
543 spin_unlock(&xprt->transport_lock);
544 }
545 }
546
547 /**
548 * xprt_adjust_cwnd - adjust transport congestion window
549 * @xprt: pointer to xprt
550 * @task: recently completed RPC request used to adjust window
551 * @result: result code of completed RPC request
552 *
553 * The transport code maintains an estimate on the maximum number of out-
554 * standing RPC requests, using a smoothed version of the congestion
555 * avoidance implemented in 44BSD. This is basically the Van Jacobson
556 * congestion algorithm: If a retransmit occurs, the congestion window is
557 * halved; otherwise, it is incremented by 1/cwnd when
558 *
559 * - a reply is received and
560 * - a full number of requests are outstanding and
561 * - the congestion window hasn't been updated recently.
562 */
563 void xprt_adjust_cwnd(struct rpc_xprt *xprt, struct rpc_task *task, int result)
564 {
565 struct rpc_rqst *req = task->tk_rqstp;
566 unsigned long cwnd = xprt->cwnd;
567
568 if (result >= 0 && cwnd <= xprt->cong) {
569 /* The (cwnd >> 1) term makes sure
570 * the result gets rounded properly. */
571 cwnd += (RPC_CWNDSCALE * RPC_CWNDSCALE + (cwnd >> 1)) / cwnd;
572 if (cwnd > RPC_MAXCWND(xprt))
573 cwnd = RPC_MAXCWND(xprt);
574 __xprt_lock_write_next_cong(xprt);
575 } else if (result == -ETIMEDOUT) {
576 cwnd >>= 1;
577 if (cwnd < RPC_CWNDSCALE)
578 cwnd = RPC_CWNDSCALE;
579 }
580 dprintk("RPC: cong %ld, cwnd was %ld, now %ld\n",
581 xprt->cong, xprt->cwnd, cwnd);
582 xprt->cwnd = cwnd;
583 __xprt_put_cong(xprt, req);
584 }
585 EXPORT_SYMBOL_GPL(xprt_adjust_cwnd);
586
587 /**
588 * xprt_wake_pending_tasks - wake all tasks on a transport's pending queue
589 * @xprt: transport with waiting tasks
590 * @status: result code to plant in each task before waking it
591 *
592 */
593 void xprt_wake_pending_tasks(struct rpc_xprt *xprt, int status)
594 {
595 if (status < 0)
596 rpc_wake_up_status(&xprt->pending, status);
597 else
598 rpc_wake_up(&xprt->pending);
599 }
600 EXPORT_SYMBOL_GPL(xprt_wake_pending_tasks);
601
602 /**
603 * xprt_wait_for_buffer_space - wait for transport output buffer to clear
604 * @xprt: transport
605 *
606 * Note that we only set the timer for the case of RPC_IS_SOFT(), since
607 * we don't in general want to force a socket disconnection due to
608 * an incomplete RPC call transmission.
609 */
610 void xprt_wait_for_buffer_space(struct rpc_xprt *xprt)
611 {
612 set_bit(XPRT_WRITE_SPACE, &xprt->state);
613 }
614 EXPORT_SYMBOL_GPL(xprt_wait_for_buffer_space);
615
616 static bool
617 xprt_clear_write_space_locked(struct rpc_xprt *xprt)
618 {
619 if (test_and_clear_bit(XPRT_WRITE_SPACE, &xprt->state)) {
620 __xprt_lock_write_next(xprt);
621 dprintk("RPC: write space: waking waiting task on "
622 "xprt %p\n", xprt);
623 return true;
624 }
625 return false;
626 }
627
628 /**
629 * xprt_write_space - wake the task waiting for transport output buffer space
630 * @xprt: transport with waiting tasks
631 *
632 * Can be called in a soft IRQ context, so xprt_write_space never sleeps.
633 */
634 bool xprt_write_space(struct rpc_xprt *xprt)
635 {
636 bool ret;
637
638 if (!test_bit(XPRT_WRITE_SPACE, &xprt->state))
639 return false;
640 spin_lock(&xprt->transport_lock);
641 ret = xprt_clear_write_space_locked(xprt);
642 spin_unlock(&xprt->transport_lock);
643 return ret;
644 }
645 EXPORT_SYMBOL_GPL(xprt_write_space);
646
647 static unsigned long xprt_abs_ktime_to_jiffies(ktime_t abstime)
648 {
649 s64 delta = ktime_to_ns(ktime_get() - abstime);
650 return likely(delta >= 0) ?
651 jiffies - nsecs_to_jiffies(delta) :
652 jiffies + nsecs_to_jiffies(-delta);
653 }
654
655 static unsigned long xprt_calc_majortimeo(struct rpc_rqst *req)
656 {
657 const struct rpc_timeout *to = req->rq_task->tk_client->cl_timeout;
658 unsigned long majortimeo = req->rq_timeout;
659
660 if (to->to_exponential)
661 majortimeo <<= to->to_retries;
662 else
663 majortimeo += to->to_increment * to->to_retries;
664 if (majortimeo > to->to_maxval || majortimeo == 0)
665 majortimeo = to->to_maxval;
666 return majortimeo;
667 }
668
669 static void xprt_reset_majortimeo(struct rpc_rqst *req)
670 {
671 req->rq_majortimeo += xprt_calc_majortimeo(req);
672 }
673
674 static void xprt_reset_minortimeo(struct rpc_rqst *req)
675 {
676 req->rq_minortimeo += req->rq_timeout;
677 }
678
679 static void xprt_init_majortimeo(struct rpc_task *task, struct rpc_rqst *req)
680 {
681 unsigned long time_init;
682 struct rpc_xprt *xprt = req->rq_xprt;
683
684 if (likely(xprt && xprt_connected(xprt)))
685 time_init = jiffies;
686 else
687 time_init = xprt_abs_ktime_to_jiffies(task->tk_start);
688 req->rq_timeout = task->tk_client->cl_timeout->to_initval;
689 req->rq_majortimeo = time_init + xprt_calc_majortimeo(req);
690 req->rq_minortimeo = time_init + req->rq_timeout;
691 }
692
693 /**
694 * xprt_adjust_timeout - adjust timeout values for next retransmit
695 * @req: RPC request containing parameters to use for the adjustment
696 *
697 */
698 int xprt_adjust_timeout(struct rpc_rqst *req)
699 {
700 struct rpc_xprt *xprt = req->rq_xprt;
701 const struct rpc_timeout *to = req->rq_task->tk_client->cl_timeout;
702 int status = 0;
703
704 if (time_before(jiffies, req->rq_majortimeo)) {
705 if (time_before(jiffies, req->rq_minortimeo))
706 return status;
707 if (to->to_exponential)
708 req->rq_timeout <<= 1;
709 else
710 req->rq_timeout += to->to_increment;
711 if (to->to_maxval && req->rq_timeout >= to->to_maxval)
712 req->rq_timeout = to->to_maxval;
713 req->rq_retries++;
714 } else {
715 req->rq_timeout = to->to_initval;
716 req->rq_retries = 0;
717 xprt_reset_majortimeo(req);
718 /* Reset the RTT counters == "slow start" */
719 spin_lock(&xprt->transport_lock);
720 rpc_init_rtt(req->rq_task->tk_client->cl_rtt, to->to_initval);
721 spin_unlock(&xprt->transport_lock);
722 status = -ETIMEDOUT;
723 }
724 xprt_reset_minortimeo(req);
725
726 if (req->rq_timeout == 0) {
727 printk(KERN_WARNING "xprt_adjust_timeout: rq_timeout = 0!\n");
728 req->rq_timeout = 5 * HZ;
729 }
730 return status;
731 }
732
733 static void xprt_autoclose(struct work_struct *work)
734 {
735 struct rpc_xprt *xprt =
736 container_of(work, struct rpc_xprt, task_cleanup);
737 unsigned int pflags = memalloc_nofs_save();
738
739 trace_xprt_disconnect_auto(xprt);
740 clear_bit(XPRT_CLOSE_WAIT, &xprt->state);
741 xprt->ops->close(xprt);
742 xprt_release_write(xprt, NULL);
743 wake_up_bit(&xprt->state, XPRT_LOCKED);
744 memalloc_nofs_restore(pflags);
745 }
746
747 /**
748 * xprt_disconnect_done - mark a transport as disconnected
749 * @xprt: transport to flag for disconnect
750 *
751 */
752 void xprt_disconnect_done(struct rpc_xprt *xprt)
753 {
754 trace_xprt_disconnect_done(xprt);
755 spin_lock(&xprt->transport_lock);
756 xprt_clear_connected(xprt);
757 xprt_clear_write_space_locked(xprt);
758 xprt_clear_congestion_window_wait_locked(xprt);
759 xprt_wake_pending_tasks(xprt, -ENOTCONN);
760 spin_unlock(&xprt->transport_lock);
761 }
762 EXPORT_SYMBOL_GPL(xprt_disconnect_done);
763
764 /**
765 * xprt_schedule_autoclose_locked - Try to schedule an autoclose RPC call
766 * @xprt: transport to disconnect
767 */
768 static void xprt_schedule_autoclose_locked(struct rpc_xprt *xprt)
769 {
770 set_bit(XPRT_CLOSE_WAIT, &xprt->state);
771 if (test_and_set_bit(XPRT_LOCKED, &xprt->state) == 0)
772 queue_work(xprtiod_workqueue, &xprt->task_cleanup);
773 else if (xprt->snd_task && !test_bit(XPRT_SND_IS_COOKIE, &xprt->state))
774 rpc_wake_up_queued_task_set_status(&xprt->pending,
775 xprt->snd_task, -ENOTCONN);
776 }
777
778 /**
779 * xprt_force_disconnect - force a transport to disconnect
780 * @xprt: transport to disconnect
781 *
782 */
783 void xprt_force_disconnect(struct rpc_xprt *xprt)
784 {
785 trace_xprt_disconnect_force(xprt);
786
787 /* Don't race with the test_bit() in xprt_clear_locked() */
788 spin_lock(&xprt->transport_lock);
789 xprt_schedule_autoclose_locked(xprt);
790 spin_unlock(&xprt->transport_lock);
791 }
792 EXPORT_SYMBOL_GPL(xprt_force_disconnect);
793
794 static unsigned int
795 xprt_connect_cookie(struct rpc_xprt *xprt)
796 {
797 return READ_ONCE(xprt->connect_cookie);
798 }
799
800 static bool
801 xprt_request_retransmit_after_disconnect(struct rpc_task *task)
802 {
803 struct rpc_rqst *req = task->tk_rqstp;
804 struct rpc_xprt *xprt = req->rq_xprt;
805
806 return req->rq_connect_cookie != xprt_connect_cookie(xprt) ||
807 !xprt_connected(xprt);
808 }
809
810 /**
811 * xprt_conditional_disconnect - force a transport to disconnect
812 * @xprt: transport to disconnect
813 * @cookie: 'connection cookie'
814 *
815 * This attempts to break the connection if and only if 'cookie' matches
816 * the current transport 'connection cookie'. It ensures that we don't
817 * try to break the connection more than once when we need to retransmit
818 * a batch of RPC requests.
819 *
820 */
821 void xprt_conditional_disconnect(struct rpc_xprt *xprt, unsigned int cookie)
822 {
823 /* Don't race with the test_bit() in xprt_clear_locked() */
824 spin_lock(&xprt->transport_lock);
825 if (cookie != xprt->connect_cookie)
826 goto out;
827 if (test_bit(XPRT_CLOSING, &xprt->state))
828 goto out;
829 xprt_schedule_autoclose_locked(xprt);
830 out:
831 spin_unlock(&xprt->transport_lock);
832 }
833
834 static bool
835 xprt_has_timer(const struct rpc_xprt *xprt)
836 {
837 return xprt->idle_timeout != 0;
838 }
839
840 static void
841 xprt_schedule_autodisconnect(struct rpc_xprt *xprt)
842 __must_hold(&xprt->transport_lock)
843 {
844 xprt->last_used = jiffies;
845 if (RB_EMPTY_ROOT(&xprt->recv_queue) && xprt_has_timer(xprt))
846 mod_timer(&xprt->timer, xprt->last_used + xprt->idle_timeout);
847 }
848
849 static void
850 xprt_init_autodisconnect(struct timer_list *t)
851 {
852 struct rpc_xprt *xprt = from_timer(xprt, t, timer);
853
854 if (!RB_EMPTY_ROOT(&xprt->recv_queue))
855 return;
856 /* Reset xprt->last_used to avoid connect/autodisconnect cycling */
857 xprt->last_used = jiffies;
858 if (test_and_set_bit(XPRT_LOCKED, &xprt->state))
859 return;
860 queue_work(xprtiod_workqueue, &xprt->task_cleanup);
861 }
862
863 #if IS_ENABLED(CONFIG_FAIL_SUNRPC)
864 static void xprt_inject_disconnect(struct rpc_xprt *xprt)
865 {
866 if (!fail_sunrpc.ignore_client_disconnect &&
867 should_fail(&fail_sunrpc.attr, 1))
868 xprt->ops->inject_disconnect(xprt);
869 }
870 #else
871 static inline void xprt_inject_disconnect(struct rpc_xprt *xprt)
872 {
873 }
874 #endif
875
876 bool xprt_lock_connect(struct rpc_xprt *xprt,
877 struct rpc_task *task,
878 void *cookie)
879 {
880 bool ret = false;
881
882 spin_lock(&xprt->transport_lock);
883 if (!test_bit(XPRT_LOCKED, &xprt->state))
884 goto out;
885 if (xprt->snd_task != task)
886 goto out;
887 set_bit(XPRT_SND_IS_COOKIE, &xprt->state);
888 xprt->snd_task = cookie;
889 ret = true;
890 out:
891 spin_unlock(&xprt->transport_lock);
892 return ret;
893 }
894 EXPORT_SYMBOL_GPL(xprt_lock_connect);
895
896 void xprt_unlock_connect(struct rpc_xprt *xprt, void *cookie)
897 {
898 spin_lock(&xprt->transport_lock);
899 if (xprt->snd_task != cookie)
900 goto out;
901 if (!test_bit(XPRT_LOCKED, &xprt->state))
902 goto out;
903 xprt->snd_task =NULL;
904 clear_bit(XPRT_SND_IS_COOKIE, &xprt->state);
905 xprt->ops->release_xprt(xprt, NULL);
906 xprt_schedule_autodisconnect(xprt);
907 out:
908 spin_unlock(&xprt->transport_lock);
909 wake_up_bit(&xprt->state, XPRT_LOCKED);
910 }
911 EXPORT_SYMBOL_GPL(xprt_unlock_connect);
912
913 /**
914 * xprt_connect - schedule a transport connect operation
915 * @task: RPC task that is requesting the connect
916 *
917 */
918 void xprt_connect(struct rpc_task *task)
919 {
920 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
921
922 trace_xprt_connect(xprt);
923
924 if (!xprt_bound(xprt)) {
925 task->tk_status = -EAGAIN;
926 return;
927 }
928 if (!xprt_lock_write(xprt, task))
929 return;
930
931 if (test_and_clear_bit(XPRT_CLOSE_WAIT, &xprt->state)) {
932 trace_xprt_disconnect_cleanup(xprt);
933 xprt->ops->close(xprt);
934 }
935
936 if (!xprt_connected(xprt)) {
937 task->tk_rqstp->rq_connect_cookie = xprt->connect_cookie;
938 rpc_sleep_on_timeout(&xprt->pending, task, NULL,
939 xprt_request_timeout(task->tk_rqstp));
940
941 if (test_bit(XPRT_CLOSING, &xprt->state))
942 return;
943 if (xprt_test_and_set_connecting(xprt))
944 return;
945 /* Race breaker */
946 if (!xprt_connected(xprt)) {
947 xprt->stat.connect_start = jiffies;
948 xprt->ops->connect(xprt, task);
949 } else {
950 xprt_clear_connecting(xprt);
951 task->tk_status = 0;
952 rpc_wake_up_queued_task(&xprt->pending, task);
953 }
954 }
955 xprt_release_write(xprt, task);
956 }
957
958 /**
959 * xprt_reconnect_delay - compute the wait before scheduling a connect
960 * @xprt: transport instance
961 *
962 */
963 unsigned long xprt_reconnect_delay(const struct rpc_xprt *xprt)
964 {
965 unsigned long start, now = jiffies;
966
967 start = xprt->stat.connect_start + xprt->reestablish_timeout;
968 if (time_after(start, now))
969 return start - now;
970 return 0;
971 }
972 EXPORT_SYMBOL_GPL(xprt_reconnect_delay);
973
974 /**
975 * xprt_reconnect_backoff - compute the new re-establish timeout
976 * @xprt: transport instance
977 * @init_to: initial reestablish timeout
978 *
979 */
980 void xprt_reconnect_backoff(struct rpc_xprt *xprt, unsigned long init_to)
981 {
982 xprt->reestablish_timeout <<= 1;
983 if (xprt->reestablish_timeout > xprt->max_reconnect_timeout)
984 xprt->reestablish_timeout = xprt->max_reconnect_timeout;
985 if (xprt->reestablish_timeout < init_to)
986 xprt->reestablish_timeout = init_to;
987 }
988 EXPORT_SYMBOL_GPL(xprt_reconnect_backoff);
989
990 enum xprt_xid_rb_cmp {
991 XID_RB_EQUAL,
992 XID_RB_LEFT,
993 XID_RB_RIGHT,
994 };
995 static enum xprt_xid_rb_cmp
996 xprt_xid_cmp(__be32 xid1, __be32 xid2)
997 {
998 if (xid1 == xid2)
999 return XID_RB_EQUAL;
1000 if ((__force u32)xid1 < (__force u32)xid2)
1001 return XID_RB_LEFT;
1002 return XID_RB_RIGHT;
1003 }
1004
1005 static struct rpc_rqst *
1006 xprt_request_rb_find(struct rpc_xprt *xprt, __be32 xid)
1007 {
1008 struct rb_node *n = xprt->recv_queue.rb_node;
1009 struct rpc_rqst *req;
1010
1011 while (n != NULL) {
1012 req = rb_entry(n, struct rpc_rqst, rq_recv);
1013 switch (xprt_xid_cmp(xid, req->rq_xid)) {
1014 case XID_RB_LEFT:
1015 n = n->rb_left;
1016 break;
1017 case XID_RB_RIGHT:
1018 n = n->rb_right;
1019 break;
1020 case XID_RB_EQUAL:
1021 return req;
1022 }
1023 }
1024 return NULL;
1025 }
1026
1027 static void
1028 xprt_request_rb_insert(struct rpc_xprt *xprt, struct rpc_rqst *new)
1029 {
1030 struct rb_node **p = &xprt->recv_queue.rb_node;
1031 struct rb_node *n = NULL;
1032 struct rpc_rqst *req;
1033
1034 while (*p != NULL) {
1035 n = *p;
1036 req = rb_entry(n, struct rpc_rqst, rq_recv);
1037 switch(xprt_xid_cmp(new->rq_xid, req->rq_xid)) {
1038 case XID_RB_LEFT:
1039 p = &n->rb_left;
1040 break;
1041 case XID_RB_RIGHT:
1042 p = &n->rb_right;
1043 break;
1044 case XID_RB_EQUAL:
1045 WARN_ON_ONCE(new != req);
1046 return;
1047 }
1048 }
1049 rb_link_node(&new->rq_recv, n, p);
1050 rb_insert_color(&new->rq_recv, &xprt->recv_queue);
1051 }
1052
1053 static void
1054 xprt_request_rb_remove(struct rpc_xprt *xprt, struct rpc_rqst *req)
1055 {
1056 rb_erase(&req->rq_recv, &xprt->recv_queue);
1057 }
1058
1059 /**
1060 * xprt_lookup_rqst - find an RPC request corresponding to an XID
1061 * @xprt: transport on which the original request was transmitted
1062 * @xid: RPC XID of incoming reply
1063 *
1064 * Caller holds xprt->queue_lock.
1065 */
1066 struct rpc_rqst *xprt_lookup_rqst(struct rpc_xprt *xprt, __be32 xid)
1067 {
1068 struct rpc_rqst *entry;
1069
1070 entry = xprt_request_rb_find(xprt, xid);
1071 if (entry != NULL) {
1072 trace_xprt_lookup_rqst(xprt, xid, 0);
1073 entry->rq_rtt = ktime_sub(ktime_get(), entry->rq_xtime);
1074 return entry;
1075 }
1076
1077 dprintk("RPC: xprt_lookup_rqst did not find xid %08x\n",
1078 ntohl(xid));
1079 trace_xprt_lookup_rqst(xprt, xid, -ENOENT);
1080 xprt->stat.bad_xids++;
1081 return NULL;
1082 }
1083 EXPORT_SYMBOL_GPL(xprt_lookup_rqst);
1084
1085 static bool
1086 xprt_is_pinned_rqst(struct rpc_rqst *req)
1087 {
1088 return atomic_read(&req->rq_pin) != 0;
1089 }
1090
1091 /**
1092 * xprt_pin_rqst - Pin a request on the transport receive list
1093 * @req: Request to pin
1094 *
1095 * Caller must ensure this is atomic with the call to xprt_lookup_rqst()
1096 * so should be holding xprt->queue_lock.
1097 */
1098 void xprt_pin_rqst(struct rpc_rqst *req)
1099 {
1100 atomic_inc(&req->rq_pin);
1101 }
1102 EXPORT_SYMBOL_GPL(xprt_pin_rqst);
1103
1104 /**
1105 * xprt_unpin_rqst - Unpin a request on the transport receive list
1106 * @req: Request to pin
1107 *
1108 * Caller should be holding xprt->queue_lock.
1109 */
1110 void xprt_unpin_rqst(struct rpc_rqst *req)
1111 {
1112 if (!test_bit(RPC_TASK_MSG_PIN_WAIT, &req->rq_task->tk_runstate)) {
1113 atomic_dec(&req->rq_pin);
1114 return;
1115 }
1116 if (atomic_dec_and_test(&req->rq_pin))
1117 wake_up_var(&req->rq_pin);
1118 }
1119 EXPORT_SYMBOL_GPL(xprt_unpin_rqst);
1120
1121 static void xprt_wait_on_pinned_rqst(struct rpc_rqst *req)
1122 {
1123 wait_var_event(&req->rq_pin, !xprt_is_pinned_rqst(req));
1124 }
1125
1126 static bool
1127 xprt_request_data_received(struct rpc_task *task)
1128 {
1129 return !test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate) &&
1130 READ_ONCE(task->tk_rqstp->rq_reply_bytes_recvd) != 0;
1131 }
1132
1133 static bool
1134 xprt_request_need_enqueue_receive(struct rpc_task *task, struct rpc_rqst *req)
1135 {
1136 return !test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate) &&
1137 READ_ONCE(task->tk_rqstp->rq_reply_bytes_recvd) == 0;
1138 }
1139
1140 /**
1141 * xprt_request_enqueue_receive - Add an request to the receive queue
1142 * @task: RPC task
1143 *
1144 */
1145 void
1146 xprt_request_enqueue_receive(struct rpc_task *task)
1147 {
1148 struct rpc_rqst *req = task->tk_rqstp;
1149 struct rpc_xprt *xprt = req->rq_xprt;
1150
1151 if (!xprt_request_need_enqueue_receive(task, req))
1152 return;
1153
1154 xprt_request_prepare(task->tk_rqstp);
1155 spin_lock(&xprt->queue_lock);
1156
1157 /* Update the softirq receive buffer */
1158 memcpy(&req->rq_private_buf, &req->rq_rcv_buf,
1159 sizeof(req->rq_private_buf));
1160
1161 /* Add request to the receive list */
1162 xprt_request_rb_insert(xprt, req);
1163 set_bit(RPC_TASK_NEED_RECV, &task->tk_runstate);
1164 spin_unlock(&xprt->queue_lock);
1165
1166 /* Turn off autodisconnect */
1167 del_singleshot_timer_sync(&xprt->timer);
1168 }
1169
1170 /**
1171 * xprt_request_dequeue_receive_locked - Remove a request from the receive queue
1172 * @task: RPC task
1173 *
1174 * Caller must hold xprt->queue_lock.
1175 */
1176 static void
1177 xprt_request_dequeue_receive_locked(struct rpc_task *task)
1178 {
1179 struct rpc_rqst *req = task->tk_rqstp;
1180
1181 if (test_and_clear_bit(RPC_TASK_NEED_RECV, &task->tk_runstate))
1182 xprt_request_rb_remove(req->rq_xprt, req);
1183 }
1184
1185 /**
1186 * xprt_update_rtt - Update RPC RTT statistics
1187 * @task: RPC request that recently completed
1188 *
1189 * Caller holds xprt->queue_lock.
1190 */
1191 void xprt_update_rtt(struct rpc_task *task)
1192 {
1193 struct rpc_rqst *req = task->tk_rqstp;
1194 struct rpc_rtt *rtt = task->tk_client->cl_rtt;
1195 unsigned int timer = task->tk_msg.rpc_proc->p_timer;
1196 long m = usecs_to_jiffies(ktime_to_us(req->rq_rtt));
1197
1198 if (timer) {
1199 if (req->rq_ntrans == 1)
1200 rpc_update_rtt(rtt, timer, m);
1201 rpc_set_timeo(rtt, timer, req->rq_ntrans - 1);
1202 }
1203 }
1204 EXPORT_SYMBOL_GPL(xprt_update_rtt);
1205
1206 /**
1207 * xprt_complete_rqst - called when reply processing is complete
1208 * @task: RPC request that recently completed
1209 * @copied: actual number of bytes received from the transport
1210 *
1211 * Caller holds xprt->queue_lock.
1212 */
1213 void xprt_complete_rqst(struct rpc_task *task, int copied)
1214 {
1215 struct rpc_rqst *req = task->tk_rqstp;
1216 struct rpc_xprt *xprt = req->rq_xprt;
1217
1218 xprt->stat.recvs++;
1219
1220 req->rq_private_buf.len = copied;
1221 /* Ensure all writes are done before we update */
1222 /* req->rq_reply_bytes_recvd */
1223 smp_wmb();
1224 req->rq_reply_bytes_recvd = copied;
1225 xprt_request_dequeue_receive_locked(task);
1226 rpc_wake_up_queued_task(&xprt->pending, task);
1227 }
1228 EXPORT_SYMBOL_GPL(xprt_complete_rqst);
1229
1230 static void xprt_timer(struct rpc_task *task)
1231 {
1232 struct rpc_rqst *req = task->tk_rqstp;
1233 struct rpc_xprt *xprt = req->rq_xprt;
1234
1235 if (task->tk_status != -ETIMEDOUT)
1236 return;
1237
1238 trace_xprt_timer(xprt, req->rq_xid, task->tk_status);
1239 if (!req->rq_reply_bytes_recvd) {
1240 if (xprt->ops->timer)
1241 xprt->ops->timer(xprt, task);
1242 } else
1243 task->tk_status = 0;
1244 }
1245
1246 /**
1247 * xprt_wait_for_reply_request_def - wait for reply
1248 * @task: pointer to rpc_task
1249 *
1250 * Set a request's retransmit timeout based on the transport's
1251 * default timeout parameters. Used by transports that don't adjust
1252 * the retransmit timeout based on round-trip time estimation,
1253 * and put the task to sleep on the pending queue.
1254 */
1255 void xprt_wait_for_reply_request_def(struct rpc_task *task)
1256 {
1257 struct rpc_rqst *req = task->tk_rqstp;
1258
1259 rpc_sleep_on_timeout(&req->rq_xprt->pending, task, xprt_timer,
1260 xprt_request_timeout(req));
1261 }
1262 EXPORT_SYMBOL_GPL(xprt_wait_for_reply_request_def);
1263
1264 /**
1265 * xprt_wait_for_reply_request_rtt - wait for reply using RTT estimator
1266 * @task: pointer to rpc_task
1267 *
1268 * Set a request's retransmit timeout using the RTT estimator,
1269 * and put the task to sleep on the pending queue.
1270 */
1271 void xprt_wait_for_reply_request_rtt(struct rpc_task *task)
1272 {
1273 int timer = task->tk_msg.rpc_proc->p_timer;
1274 struct rpc_clnt *clnt = task->tk_client;
1275 struct rpc_rtt *rtt = clnt->cl_rtt;
1276 struct rpc_rqst *req = task->tk_rqstp;
1277 unsigned long max_timeout = clnt->cl_timeout->to_maxval;
1278 unsigned long timeout;
1279
1280 timeout = rpc_calc_rto(rtt, timer);
1281 timeout <<= rpc_ntimeo(rtt, timer) + req->rq_retries;
1282 if (timeout > max_timeout || timeout == 0)
1283 timeout = max_timeout;
1284 rpc_sleep_on_timeout(&req->rq_xprt->pending, task, xprt_timer,
1285 jiffies + timeout);
1286 }
1287 EXPORT_SYMBOL_GPL(xprt_wait_for_reply_request_rtt);
1288
1289 /**
1290 * xprt_request_wait_receive - wait for the reply to an RPC request
1291 * @task: RPC task about to send a request
1292 *
1293 */
1294 void xprt_request_wait_receive(struct rpc_task *task)
1295 {
1296 struct rpc_rqst *req = task->tk_rqstp;
1297 struct rpc_xprt *xprt = req->rq_xprt;
1298
1299 if (!test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate))
1300 return;
1301 /*
1302 * Sleep on the pending queue if we're expecting a reply.
1303 * The spinlock ensures atomicity between the test of
1304 * req->rq_reply_bytes_recvd, and the call to rpc_sleep_on().
1305 */
1306 spin_lock(&xprt->queue_lock);
1307 if (test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate)) {
1308 xprt->ops->wait_for_reply_request(task);
1309 /*
1310 * Send an extra queue wakeup call if the
1311 * connection was dropped in case the call to
1312 * rpc_sleep_on() raced.
1313 */
1314 if (xprt_request_retransmit_after_disconnect(task))
1315 rpc_wake_up_queued_task_set_status(&xprt->pending,
1316 task, -ENOTCONN);
1317 }
1318 spin_unlock(&xprt->queue_lock);
1319 }
1320
1321 static bool
1322 xprt_request_need_enqueue_transmit(struct rpc_task *task, struct rpc_rqst *req)
1323 {
1324 return !test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate);
1325 }
1326
1327 /**
1328 * xprt_request_enqueue_transmit - queue a task for transmission
1329 * @task: pointer to rpc_task
1330 *
1331 * Add a task to the transmission queue.
1332 */
1333 void
1334 xprt_request_enqueue_transmit(struct rpc_task *task)
1335 {
1336 struct rpc_rqst *pos, *req = task->tk_rqstp;
1337 struct rpc_xprt *xprt = req->rq_xprt;
1338
1339 if (xprt_request_need_enqueue_transmit(task, req)) {
1340 req->rq_bytes_sent = 0;
1341 spin_lock(&xprt->queue_lock);
1342 /*
1343 * Requests that carry congestion control credits are added
1344 * to the head of the list to avoid starvation issues.
1345 */
1346 if (req->rq_cong) {
1347 xprt_clear_congestion_window_wait(xprt);
1348 list_for_each_entry(pos, &xprt->xmit_queue, rq_xmit) {
1349 if (pos->rq_cong)
1350 continue;
1351 /* Note: req is added _before_ pos */
1352 list_add_tail(&req->rq_xmit, &pos->rq_xmit);
1353 INIT_LIST_HEAD(&req->rq_xmit2);
1354 goto out;
1355 }
1356 } else if (RPC_IS_SWAPPER(task)) {
1357 list_for_each_entry(pos, &xprt->xmit_queue, rq_xmit) {
1358 if (pos->rq_cong || pos->rq_bytes_sent)
1359 continue;
1360 if (RPC_IS_SWAPPER(pos->rq_task))
1361 continue;
1362 /* Note: req is added _before_ pos */
1363 list_add_tail(&req->rq_xmit, &pos->rq_xmit);
1364 INIT_LIST_HEAD(&req->rq_xmit2);
1365 goto out;
1366 }
1367 } else if (!req->rq_seqno) {
1368 list_for_each_entry(pos, &xprt->xmit_queue, rq_xmit) {
1369 if (pos->rq_task->tk_owner != task->tk_owner)
1370 continue;
1371 list_add_tail(&req->rq_xmit2, &pos->rq_xmit2);
1372 INIT_LIST_HEAD(&req->rq_xmit);
1373 goto out;
1374 }
1375 }
1376 list_add_tail(&req->rq_xmit, &xprt->xmit_queue);
1377 INIT_LIST_HEAD(&req->rq_xmit2);
1378 out:
1379 atomic_long_inc(&xprt->xmit_queuelen);
1380 set_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate);
1381 spin_unlock(&xprt->queue_lock);
1382 }
1383 }
1384
1385 /**
1386 * xprt_request_dequeue_transmit_locked - remove a task from the transmission queue
1387 * @task: pointer to rpc_task
1388 *
1389 * Remove a task from the transmission queue
1390 * Caller must hold xprt->queue_lock
1391 */
1392 static void
1393 xprt_request_dequeue_transmit_locked(struct rpc_task *task)
1394 {
1395 struct rpc_rqst *req = task->tk_rqstp;
1396
1397 if (!test_and_clear_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate))
1398 return;
1399 if (!list_empty(&req->rq_xmit)) {
1400 list_del(&req->rq_xmit);
1401 if (!list_empty(&req->rq_xmit2)) {
1402 struct rpc_rqst *next = list_first_entry(&req->rq_xmit2,
1403 struct rpc_rqst, rq_xmit2);
1404 list_del(&req->rq_xmit2);
1405 list_add_tail(&next->rq_xmit, &next->rq_xprt->xmit_queue);
1406 }
1407 } else
1408 list_del(&req->rq_xmit2);
1409 atomic_long_dec(&req->rq_xprt->xmit_queuelen);
1410 }
1411
1412 /**
1413 * xprt_request_dequeue_transmit - remove a task from the transmission queue
1414 * @task: pointer to rpc_task
1415 *
1416 * Remove a task from the transmission queue
1417 */
1418 static void
1419 xprt_request_dequeue_transmit(struct rpc_task *task)
1420 {
1421 struct rpc_rqst *req = task->tk_rqstp;
1422 struct rpc_xprt *xprt = req->rq_xprt;
1423
1424 spin_lock(&xprt->queue_lock);
1425 xprt_request_dequeue_transmit_locked(task);
1426 spin_unlock(&xprt->queue_lock);
1427 }
1428
1429 /**
1430 * xprt_request_dequeue_xprt - remove a task from the transmit+receive queue
1431 * @task: pointer to rpc_task
1432 *
1433 * Remove a task from the transmit and receive queues, and ensure that
1434 * it is not pinned by the receive work item.
1435 */
1436 void
1437 xprt_request_dequeue_xprt(struct rpc_task *task)
1438 {
1439 struct rpc_rqst *req = task->tk_rqstp;
1440 struct rpc_xprt *xprt = req->rq_xprt;
1441
1442 if (test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate) ||
1443 test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate) ||
1444 xprt_is_pinned_rqst(req)) {
1445 spin_lock(&xprt->queue_lock);
1446 xprt_request_dequeue_transmit_locked(task);
1447 xprt_request_dequeue_receive_locked(task);
1448 while (xprt_is_pinned_rqst(req)) {
1449 set_bit(RPC_TASK_MSG_PIN_WAIT, &task->tk_runstate);
1450 spin_unlock(&xprt->queue_lock);
1451 xprt_wait_on_pinned_rqst(req);
1452 spin_lock(&xprt->queue_lock);
1453 clear_bit(RPC_TASK_MSG_PIN_WAIT, &task->tk_runstate);
1454 }
1455 spin_unlock(&xprt->queue_lock);
1456 }
1457 }
1458
1459 /**
1460 * xprt_request_prepare - prepare an encoded request for transport
1461 * @req: pointer to rpc_rqst
1462 *
1463 * Calls into the transport layer to do whatever is needed to prepare
1464 * the request for transmission or receive.
1465 */
1466 void
1467 xprt_request_prepare(struct rpc_rqst *req)
1468 {
1469 struct rpc_xprt *xprt = req->rq_xprt;
1470
1471 if (xprt->ops->prepare_request)
1472 xprt->ops->prepare_request(req);
1473 }
1474
1475 /**
1476 * xprt_request_need_retransmit - Test if a task needs retransmission
1477 * @task: pointer to rpc_task
1478 *
1479 * Test for whether a connection breakage requires the task to retransmit
1480 */
1481 bool
1482 xprt_request_need_retransmit(struct rpc_task *task)
1483 {
1484 return xprt_request_retransmit_after_disconnect(task);
1485 }
1486
1487 /**
1488 * xprt_prepare_transmit - reserve the transport before sending a request
1489 * @task: RPC task about to send a request
1490 *
1491 */
1492 bool xprt_prepare_transmit(struct rpc_task *task)
1493 {
1494 struct rpc_rqst *req = task->tk_rqstp;
1495 struct rpc_xprt *xprt = req->rq_xprt;
1496
1497 if (!xprt_lock_write(xprt, task)) {
1498 /* Race breaker: someone may have transmitted us */
1499 if (!test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate))
1500 rpc_wake_up_queued_task_set_status(&xprt->sending,
1501 task, 0);
1502 return false;
1503
1504 }
1505 return true;
1506 }
1507
1508 void xprt_end_transmit(struct rpc_task *task)
1509 {
1510 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
1511
1512 xprt_inject_disconnect(xprt);
1513 xprt_release_write(xprt, task);
1514 }
1515
1516 /**
1517 * xprt_request_transmit - send an RPC request on a transport
1518 * @req: pointer to request to transmit
1519 * @snd_task: RPC task that owns the transport lock
1520 *
1521 * This performs the transmission of a single request.
1522 * Note that if the request is not the same as snd_task, then it
1523 * does need to be pinned.
1524 * Returns '0' on success.
1525 */
1526 static int
1527 xprt_request_transmit(struct rpc_rqst *req, struct rpc_task *snd_task)
1528 {
1529 struct rpc_xprt *xprt = req->rq_xprt;
1530 struct rpc_task *task = req->rq_task;
1531 unsigned int connect_cookie;
1532 int is_retrans = RPC_WAS_SENT(task);
1533 int status;
1534
1535 if (!req->rq_bytes_sent) {
1536 if (xprt_request_data_received(task)) {
1537 status = 0;
1538 goto out_dequeue;
1539 }
1540 /* Verify that our message lies in the RPCSEC_GSS window */
1541 if (rpcauth_xmit_need_reencode(task)) {
1542 status = -EBADMSG;
1543 goto out_dequeue;
1544 }
1545 if (RPC_SIGNALLED(task)) {
1546 status = -ERESTARTSYS;
1547 goto out_dequeue;
1548 }
1549 }
1550
1551 /*
1552 * Update req->rq_ntrans before transmitting to avoid races with
1553 * xprt_update_rtt(), which needs to know that it is recording a
1554 * reply to the first transmission.
1555 */
1556 req->rq_ntrans++;
1557
1558 trace_rpc_xdr_sendto(task, &req->rq_snd_buf);
1559 connect_cookie = xprt->connect_cookie;
1560 status = xprt->ops->send_request(req);
1561 if (status != 0) {
1562 req->rq_ntrans--;
1563 trace_xprt_transmit(req, status);
1564 return status;
1565 }
1566
1567 if (is_retrans) {
1568 task->tk_client->cl_stats->rpcretrans++;
1569 trace_xprt_retransmit(req);
1570 }
1571
1572 xprt_inject_disconnect(xprt);
1573
1574 task->tk_flags |= RPC_TASK_SENT;
1575 spin_lock(&xprt->transport_lock);
1576
1577 xprt->stat.sends++;
1578 xprt->stat.req_u += xprt->stat.sends - xprt->stat.recvs;
1579 xprt->stat.bklog_u += xprt->backlog.qlen;
1580 xprt->stat.sending_u += xprt->sending.qlen;
1581 xprt->stat.pending_u += xprt->pending.qlen;
1582 spin_unlock(&xprt->transport_lock);
1583
1584 req->rq_connect_cookie = connect_cookie;
1585 out_dequeue:
1586 trace_xprt_transmit(req, status);
1587 xprt_request_dequeue_transmit(task);
1588 rpc_wake_up_queued_task_set_status(&xprt->sending, task, status);
1589 return status;
1590 }
1591
1592 /**
1593 * xprt_transmit - send an RPC request on a transport
1594 * @task: controlling RPC task
1595 *
1596 * Attempts to drain the transmit queue. On exit, either the transport
1597 * signalled an error that needs to be handled before transmission can
1598 * resume, or @task finished transmitting, and detected that it already
1599 * received a reply.
1600 */
1601 void
1602 xprt_transmit(struct rpc_task *task)
1603 {
1604 struct rpc_rqst *next, *req = task->tk_rqstp;
1605 struct rpc_xprt *xprt = req->rq_xprt;
1606 int status;
1607
1608 spin_lock(&xprt->queue_lock);
1609 for (;;) {
1610 next = list_first_entry_or_null(&xprt->xmit_queue,
1611 struct rpc_rqst, rq_xmit);
1612 if (!next)
1613 break;
1614 xprt_pin_rqst(next);
1615 spin_unlock(&xprt->queue_lock);
1616 status = xprt_request_transmit(next, task);
1617 if (status == -EBADMSG && next != req)
1618 status = 0;
1619 spin_lock(&xprt->queue_lock);
1620 xprt_unpin_rqst(next);
1621 if (status < 0) {
1622 if (test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate))
1623 task->tk_status = status;
1624 break;
1625 }
1626 /* Was @task transmitted, and has it received a reply? */
1627 if (xprt_request_data_received(task) &&
1628 !test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate))
1629 break;
1630 cond_resched_lock(&xprt->queue_lock);
1631 }
1632 spin_unlock(&xprt->queue_lock);
1633 }
1634
1635 static void xprt_complete_request_init(struct rpc_task *task)
1636 {
1637 if (task->tk_rqstp)
1638 xprt_request_init(task);
1639 }
1640
1641 void xprt_add_backlog(struct rpc_xprt *xprt, struct rpc_task *task)
1642 {
1643 set_bit(XPRT_CONGESTED, &xprt->state);
1644 rpc_sleep_on(&xprt->backlog, task, xprt_complete_request_init);
1645 }
1646 EXPORT_SYMBOL_GPL(xprt_add_backlog);
1647
1648 static bool __xprt_set_rq(struct rpc_task *task, void *data)
1649 {
1650 struct rpc_rqst *req = data;
1651
1652 if (task->tk_rqstp == NULL) {
1653 memset(req, 0, sizeof(*req)); /* mark unused */
1654 task->tk_rqstp = req;
1655 return true;
1656 }
1657 return false;
1658 }
1659
1660 bool xprt_wake_up_backlog(struct rpc_xprt *xprt, struct rpc_rqst *req)
1661 {
1662 if (rpc_wake_up_first(&xprt->backlog, __xprt_set_rq, req) == NULL) {
1663 clear_bit(XPRT_CONGESTED, &xprt->state);
1664 return false;
1665 }
1666 return true;
1667 }
1668 EXPORT_SYMBOL_GPL(xprt_wake_up_backlog);
1669
1670 static bool xprt_throttle_congested(struct rpc_xprt *xprt, struct rpc_task *task)
1671 {
1672 bool ret = false;
1673
1674 if (!test_bit(XPRT_CONGESTED, &xprt->state))
1675 goto out;
1676 spin_lock(&xprt->reserve_lock);
1677 if (test_bit(XPRT_CONGESTED, &xprt->state)) {
1678 xprt_add_backlog(xprt, task);
1679 ret = true;
1680 }
1681 spin_unlock(&xprt->reserve_lock);
1682 out:
1683 return ret;
1684 }
1685
1686 static struct rpc_rqst *xprt_dynamic_alloc_slot(struct rpc_xprt *xprt)
1687 {
1688 struct rpc_rqst *req = ERR_PTR(-EAGAIN);
1689
1690 if (xprt->num_reqs >= xprt->max_reqs)
1691 goto out;
1692 ++xprt->num_reqs;
1693 spin_unlock(&xprt->reserve_lock);
1694 req = kzalloc(sizeof(struct rpc_rqst), GFP_NOFS);
1695 spin_lock(&xprt->reserve_lock);
1696 if (req != NULL)
1697 goto out;
1698 --xprt->num_reqs;
1699 req = ERR_PTR(-ENOMEM);
1700 out:
1701 return req;
1702 }
1703
1704 static bool xprt_dynamic_free_slot(struct rpc_xprt *xprt, struct rpc_rqst *req)
1705 {
1706 if (xprt->num_reqs > xprt->min_reqs) {
1707 --xprt->num_reqs;
1708 kfree(req);
1709 return true;
1710 }
1711 return false;
1712 }
1713
1714 void xprt_alloc_slot(struct rpc_xprt *xprt, struct rpc_task *task)
1715 {
1716 struct rpc_rqst *req;
1717
1718 spin_lock(&xprt->reserve_lock);
1719 if (!list_empty(&xprt->free)) {
1720 req = list_entry(xprt->free.next, struct rpc_rqst, rq_list);
1721 list_del(&req->rq_list);
1722 goto out_init_req;
1723 }
1724 req = xprt_dynamic_alloc_slot(xprt);
1725 if (!IS_ERR(req))
1726 goto out_init_req;
1727 switch (PTR_ERR(req)) {
1728 case -ENOMEM:
1729 dprintk("RPC: dynamic allocation of request slot "
1730 "failed! Retrying\n");
1731 task->tk_status = -ENOMEM;
1732 break;
1733 case -EAGAIN:
1734 xprt_add_backlog(xprt, task);
1735 dprintk("RPC: waiting for request slot\n");
1736 fallthrough;
1737 default:
1738 task->tk_status = -EAGAIN;
1739 }
1740 spin_unlock(&xprt->reserve_lock);
1741 return;
1742 out_init_req:
1743 xprt->stat.max_slots = max_t(unsigned int, xprt->stat.max_slots,
1744 xprt->num_reqs);
1745 spin_unlock(&xprt->reserve_lock);
1746
1747 task->tk_status = 0;
1748 task->tk_rqstp = req;
1749 }
1750 EXPORT_SYMBOL_GPL(xprt_alloc_slot);
1751
1752 void xprt_free_slot(struct rpc_xprt *xprt, struct rpc_rqst *req)
1753 {
1754 spin_lock(&xprt->reserve_lock);
1755 if (!xprt_wake_up_backlog(xprt, req) &&
1756 !xprt_dynamic_free_slot(xprt, req)) {
1757 memset(req, 0, sizeof(*req)); /* mark unused */
1758 list_add(&req->rq_list, &xprt->free);
1759 }
1760 spin_unlock(&xprt->reserve_lock);
1761 }
1762 EXPORT_SYMBOL_GPL(xprt_free_slot);
1763
1764 static void xprt_free_all_slots(struct rpc_xprt *xprt)
1765 {
1766 struct rpc_rqst *req;
1767 while (!list_empty(&xprt->free)) {
1768 req = list_first_entry(&xprt->free, struct rpc_rqst, rq_list);
1769 list_del(&req->rq_list);
1770 kfree(req);
1771 }
1772 }
1773
1774 static DEFINE_IDA(rpc_xprt_ids);
1775
1776 void xprt_cleanup_ids(void)
1777 {
1778 ida_destroy(&rpc_xprt_ids);
1779 }
1780
1781 static int xprt_alloc_id(struct rpc_xprt *xprt)
1782 {
1783 int id;
1784
1785 id = ida_simple_get(&rpc_xprt_ids, 0, 0, GFP_KERNEL);
1786 if (id < 0)
1787 return id;
1788
1789 xprt->id = id;
1790 return 0;
1791 }
1792
1793 static void xprt_free_id(struct rpc_xprt *xprt)
1794 {
1795 ida_simple_remove(&rpc_xprt_ids, xprt->id);
1796 }
1797
1798 struct rpc_xprt *xprt_alloc(struct net *net, size_t size,
1799 unsigned int num_prealloc,
1800 unsigned int max_alloc)
1801 {
1802 struct rpc_xprt *xprt;
1803 struct rpc_rqst *req;
1804 int i;
1805
1806 xprt = kzalloc(size, GFP_KERNEL);
1807 if (xprt == NULL)
1808 goto out;
1809
1810 xprt_alloc_id(xprt);
1811 xprt_init(xprt, net);
1812
1813 for (i = 0; i < num_prealloc; i++) {
1814 req = kzalloc(sizeof(struct rpc_rqst), GFP_KERNEL);
1815 if (!req)
1816 goto out_free;
1817 list_add(&req->rq_list, &xprt->free);
1818 }
1819 if (max_alloc > num_prealloc)
1820 xprt->max_reqs = max_alloc;
1821 else
1822 xprt->max_reqs = num_prealloc;
1823 xprt->min_reqs = num_prealloc;
1824 xprt->num_reqs = num_prealloc;
1825
1826 return xprt;
1827
1828 out_free:
1829 xprt_free(xprt);
1830 out:
1831 return NULL;
1832 }
1833 EXPORT_SYMBOL_GPL(xprt_alloc);
1834
1835 void xprt_free(struct rpc_xprt *xprt)
1836 {
1837 put_net(xprt->xprt_net);
1838 xprt_free_all_slots(xprt);
1839 xprt_free_id(xprt);
1840 rpc_sysfs_xprt_destroy(xprt);
1841 kfree_rcu(xprt, rcu);
1842 }
1843 EXPORT_SYMBOL_GPL(xprt_free);
1844
1845 static void
1846 xprt_init_connect_cookie(struct rpc_rqst *req, struct rpc_xprt *xprt)
1847 {
1848 req->rq_connect_cookie = xprt_connect_cookie(xprt) - 1;
1849 }
1850
1851 static __be32
1852 xprt_alloc_xid(struct rpc_xprt *xprt)
1853 {
1854 __be32 xid;
1855
1856 spin_lock(&xprt->reserve_lock);
1857 xid = (__force __be32)xprt->xid++;
1858 spin_unlock(&xprt->reserve_lock);
1859 return xid;
1860 }
1861
1862 static void
1863 xprt_init_xid(struct rpc_xprt *xprt)
1864 {
1865 xprt->xid = prandom_u32();
1866 }
1867
1868 static void
1869 xprt_request_init(struct rpc_task *task)
1870 {
1871 struct rpc_xprt *xprt = task->tk_xprt;
1872 struct rpc_rqst *req = task->tk_rqstp;
1873
1874 req->rq_task = task;
1875 req->rq_xprt = xprt;
1876 req->rq_buffer = NULL;
1877 req->rq_xid = xprt_alloc_xid(xprt);
1878 xprt_init_connect_cookie(req, xprt);
1879 req->rq_snd_buf.len = 0;
1880 req->rq_snd_buf.buflen = 0;
1881 req->rq_rcv_buf.len = 0;
1882 req->rq_rcv_buf.buflen = 0;
1883 req->rq_snd_buf.bvec = NULL;
1884 req->rq_rcv_buf.bvec = NULL;
1885 req->rq_release_snd_buf = NULL;
1886 xprt_init_majortimeo(task, req);
1887
1888 trace_xprt_reserve(req);
1889 }
1890
1891 static void
1892 xprt_do_reserve(struct rpc_xprt *xprt, struct rpc_task *task)
1893 {
1894 xprt->ops->alloc_slot(xprt, task);
1895 if (task->tk_rqstp != NULL)
1896 xprt_request_init(task);
1897 }
1898
1899 /**
1900 * xprt_reserve - allocate an RPC request slot
1901 * @task: RPC task requesting a slot allocation
1902 *
1903 * If the transport is marked as being congested, or if no more
1904 * slots are available, place the task on the transport's
1905 * backlog queue.
1906 */
1907 void xprt_reserve(struct rpc_task *task)
1908 {
1909 struct rpc_xprt *xprt = task->tk_xprt;
1910
1911 task->tk_status = 0;
1912 if (task->tk_rqstp != NULL)
1913 return;
1914
1915 task->tk_status = -EAGAIN;
1916 if (!xprt_throttle_congested(xprt, task))
1917 xprt_do_reserve(xprt, task);
1918 }
1919
1920 /**
1921 * xprt_retry_reserve - allocate an RPC request slot
1922 * @task: RPC task requesting a slot allocation
1923 *
1924 * If no more slots are available, place the task on the transport's
1925 * backlog queue.
1926 * Note that the only difference with xprt_reserve is that we now
1927 * ignore the value of the XPRT_CONGESTED flag.
1928 */
1929 void xprt_retry_reserve(struct rpc_task *task)
1930 {
1931 struct rpc_xprt *xprt = task->tk_xprt;
1932
1933 task->tk_status = 0;
1934 if (task->tk_rqstp != NULL)
1935 return;
1936
1937 task->tk_status = -EAGAIN;
1938 xprt_do_reserve(xprt, task);
1939 }
1940
1941 /**
1942 * xprt_release - release an RPC request slot
1943 * @task: task which is finished with the slot
1944 *
1945 */
1946 void xprt_release(struct rpc_task *task)
1947 {
1948 struct rpc_xprt *xprt;
1949 struct rpc_rqst *req = task->tk_rqstp;
1950
1951 if (req == NULL) {
1952 if (task->tk_client) {
1953 xprt = task->tk_xprt;
1954 xprt_release_write(xprt, task);
1955 }
1956 return;
1957 }
1958
1959 xprt = req->rq_xprt;
1960 xprt_request_dequeue_xprt(task);
1961 spin_lock(&xprt->transport_lock);
1962 xprt->ops->release_xprt(xprt, task);
1963 if (xprt->ops->release_request)
1964 xprt->ops->release_request(task);
1965 xprt_schedule_autodisconnect(xprt);
1966 spin_unlock(&xprt->transport_lock);
1967 if (req->rq_buffer)
1968 xprt->ops->buf_free(task);
1969 xdr_free_bvec(&req->rq_rcv_buf);
1970 xdr_free_bvec(&req->rq_snd_buf);
1971 if (req->rq_cred != NULL)
1972 put_rpccred(req->rq_cred);
1973 if (req->rq_release_snd_buf)
1974 req->rq_release_snd_buf(req);
1975
1976 task->tk_rqstp = NULL;
1977 if (likely(!bc_prealloc(req)))
1978 xprt->ops->free_slot(xprt, req);
1979 else
1980 xprt_free_bc_request(req);
1981 }
1982
1983 #ifdef CONFIG_SUNRPC_BACKCHANNEL
1984 void
1985 xprt_init_bc_request(struct rpc_rqst *req, struct rpc_task *task)
1986 {
1987 struct xdr_buf *xbufp = &req->rq_snd_buf;
1988
1989 task->tk_rqstp = req;
1990 req->rq_task = task;
1991 xprt_init_connect_cookie(req, req->rq_xprt);
1992 /*
1993 * Set up the xdr_buf length.
1994 * This also indicates that the buffer is XDR encoded already.
1995 */
1996 xbufp->len = xbufp->head[0].iov_len + xbufp->page_len +
1997 xbufp->tail[0].iov_len;
1998 }
1999 #endif
2000
2001 static void xprt_init(struct rpc_xprt *xprt, struct net *net)
2002 {
2003 kref_init(&xprt->kref);
2004
2005 spin_lock_init(&xprt->transport_lock);
2006 spin_lock_init(&xprt->reserve_lock);
2007 spin_lock_init(&xprt->queue_lock);
2008
2009 INIT_LIST_HEAD(&xprt->free);
2010 xprt->recv_queue = RB_ROOT;
2011 INIT_LIST_HEAD(&xprt->xmit_queue);
2012 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
2013 spin_lock_init(&xprt->bc_pa_lock);
2014 INIT_LIST_HEAD(&xprt->bc_pa_list);
2015 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
2016 INIT_LIST_HEAD(&xprt->xprt_switch);
2017
2018 xprt->last_used = jiffies;
2019 xprt->cwnd = RPC_INITCWND;
2020 xprt->bind_index = 0;
2021
2022 rpc_init_wait_queue(&xprt->binding, "xprt_binding");
2023 rpc_init_wait_queue(&xprt->pending, "xprt_pending");
2024 rpc_init_wait_queue(&xprt->sending, "xprt_sending");
2025 rpc_init_priority_wait_queue(&xprt->backlog, "xprt_backlog");
2026
2027 xprt_init_xid(xprt);
2028
2029 xprt->xprt_net = get_net(net);
2030 }
2031
2032 /**
2033 * xprt_create_transport - create an RPC transport
2034 * @args: rpc transport creation arguments
2035 *
2036 */
2037 struct rpc_xprt *xprt_create_transport(struct xprt_create *args)
2038 {
2039 struct rpc_xprt *xprt;
2040 const struct xprt_class *t;
2041
2042 t = xprt_class_find_by_ident(args->ident);
2043 if (!t) {
2044 dprintk("RPC: transport (%d) not supported\n", args->ident);
2045 return ERR_PTR(-EIO);
2046 }
2047
2048 xprt = t->setup(args);
2049 xprt_class_release(t);
2050
2051 if (IS_ERR(xprt))
2052 goto out;
2053 if (args->flags & XPRT_CREATE_NO_IDLE_TIMEOUT)
2054 xprt->idle_timeout = 0;
2055 INIT_WORK(&xprt->task_cleanup, xprt_autoclose);
2056 if (xprt_has_timer(xprt))
2057 timer_setup(&xprt->timer, xprt_init_autodisconnect, 0);
2058 else
2059 timer_setup(&xprt->timer, NULL, 0);
2060
2061 if (strlen(args->servername) > RPC_MAXNETNAMELEN) {
2062 xprt_destroy(xprt);
2063 return ERR_PTR(-EINVAL);
2064 }
2065 xprt->servername = kstrdup(args->servername, GFP_KERNEL);
2066 if (xprt->servername == NULL) {
2067 xprt_destroy(xprt);
2068 return ERR_PTR(-ENOMEM);
2069 }
2070
2071 rpc_xprt_debugfs_register(xprt);
2072
2073 trace_xprt_create(xprt);
2074 out:
2075 return xprt;
2076 }
2077
2078 static void xprt_destroy_cb(struct work_struct *work)
2079 {
2080 struct rpc_xprt *xprt =
2081 container_of(work, struct rpc_xprt, task_cleanup);
2082
2083 trace_xprt_destroy(xprt);
2084
2085 rpc_xprt_debugfs_unregister(xprt);
2086 rpc_destroy_wait_queue(&xprt->binding);
2087 rpc_destroy_wait_queue(&xprt->pending);
2088 rpc_destroy_wait_queue(&xprt->sending);
2089 rpc_destroy_wait_queue(&xprt->backlog);
2090 kfree(xprt->servername);
2091 /*
2092 * Destroy any existing back channel
2093 */
2094 xprt_destroy_backchannel(xprt, UINT_MAX);
2095
2096 /*
2097 * Tear down transport state and free the rpc_xprt
2098 */
2099 xprt->ops->destroy(xprt);
2100 }
2101
2102 /**
2103 * xprt_destroy - destroy an RPC transport, killing off all requests.
2104 * @xprt: transport to destroy
2105 *
2106 */
2107 static void xprt_destroy(struct rpc_xprt *xprt)
2108 {
2109 /*
2110 * Exclude transport connect/disconnect handlers and autoclose
2111 */
2112 wait_on_bit_lock(&xprt->state, XPRT_LOCKED, TASK_UNINTERRUPTIBLE);
2113
2114 /*
2115 * xprt_schedule_autodisconnect() can run after XPRT_LOCKED
2116 * is cleared. We use ->transport_lock to ensure the mod_timer()
2117 * can only run *before* del_time_sync(), never after.
2118 */
2119 spin_lock(&xprt->transport_lock);
2120 del_timer_sync(&xprt->timer);
2121 spin_unlock(&xprt->transport_lock);
2122
2123 /*
2124 * Destroy sockets etc from the system workqueue so they can
2125 * safely flush receive work running on rpciod.
2126 */
2127 INIT_WORK(&xprt->task_cleanup, xprt_destroy_cb);
2128 schedule_work(&xprt->task_cleanup);
2129 }
2130
2131 static void xprt_destroy_kref(struct kref *kref)
2132 {
2133 xprt_destroy(container_of(kref, struct rpc_xprt, kref));
2134 }
2135
2136 /**
2137 * xprt_get - return a reference to an RPC transport.
2138 * @xprt: pointer to the transport
2139 *
2140 */
2141 struct rpc_xprt *xprt_get(struct rpc_xprt *xprt)
2142 {
2143 if (xprt != NULL && kref_get_unless_zero(&xprt->kref))
2144 return xprt;
2145 return NULL;
2146 }
2147 EXPORT_SYMBOL_GPL(xprt_get);
2148
2149 /**
2150 * xprt_put - release a reference to an RPC transport.
2151 * @xprt: pointer to the transport
2152 *
2153 */
2154 void xprt_put(struct rpc_xprt *xprt)
2155 {
2156 if (xprt != NULL)
2157 kref_put(&xprt->kref, xprt_destroy_kref);
2158 }
2159 EXPORT_SYMBOL_GPL(xprt_put);