]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sunrpc/xprt.c
Merge branch 'for-4.15-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[mirror_ubuntu-bionic-kernel.git] / net / sunrpc / xprt.c
1 /*
2 * linux/net/sunrpc/xprt.c
3 *
4 * This is a generic RPC call interface supporting congestion avoidance,
5 * and asynchronous calls.
6 *
7 * The interface works like this:
8 *
9 * - When a process places a call, it allocates a request slot if
10 * one is available. Otherwise, it sleeps on the backlog queue
11 * (xprt_reserve).
12 * - Next, the caller puts together the RPC message, stuffs it into
13 * the request struct, and calls xprt_transmit().
14 * - xprt_transmit sends the message and installs the caller on the
15 * transport's wait list. At the same time, if a reply is expected,
16 * it installs a timer that is run after the packet's timeout has
17 * expired.
18 * - When a packet arrives, the data_ready handler walks the list of
19 * pending requests for that transport. If a matching XID is found, the
20 * caller is woken up, and the timer removed.
21 * - When no reply arrives within the timeout interval, the timer is
22 * fired by the kernel and runs xprt_timer(). It either adjusts the
23 * timeout values (minor timeout) or wakes up the caller with a status
24 * of -ETIMEDOUT.
25 * - When the caller receives a notification from RPC that a reply arrived,
26 * it should release the RPC slot, and process the reply.
27 * If the call timed out, it may choose to retry the operation by
28 * adjusting the initial timeout value, and simply calling rpc_call
29 * again.
30 *
31 * Support for async RPC is done through a set of RPC-specific scheduling
32 * primitives that `transparently' work for processes as well as async
33 * tasks that rely on callbacks.
34 *
35 * Copyright (C) 1995-1997, Olaf Kirch <okir@monad.swb.de>
36 *
37 * Transport switch API copyright (C) 2005, Chuck Lever <cel@netapp.com>
38 */
39
40 #include <linux/module.h>
41
42 #include <linux/types.h>
43 #include <linux/interrupt.h>
44 #include <linux/workqueue.h>
45 #include <linux/net.h>
46 #include <linux/ktime.h>
47
48 #include <linux/sunrpc/clnt.h>
49 #include <linux/sunrpc/metrics.h>
50 #include <linux/sunrpc/bc_xprt.h>
51 #include <linux/rcupdate.h>
52
53 #include <trace/events/sunrpc.h>
54
55 #include "sunrpc.h"
56
57 /*
58 * Local variables
59 */
60
61 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
62 # define RPCDBG_FACILITY RPCDBG_XPRT
63 #endif
64
65 /*
66 * Local functions
67 */
68 static void xprt_init(struct rpc_xprt *xprt, struct net *net);
69 static void xprt_request_init(struct rpc_task *, struct rpc_xprt *);
70 static void xprt_connect_status(struct rpc_task *task);
71 static int __xprt_get_cong(struct rpc_xprt *, struct rpc_task *);
72 static void __xprt_put_cong(struct rpc_xprt *, struct rpc_rqst *);
73 static void xprt_destroy(struct rpc_xprt *xprt);
74
75 static DEFINE_SPINLOCK(xprt_list_lock);
76 static LIST_HEAD(xprt_list);
77
78 /**
79 * xprt_register_transport - register a transport implementation
80 * @transport: transport to register
81 *
82 * If a transport implementation is loaded as a kernel module, it can
83 * call this interface to make itself known to the RPC client.
84 *
85 * Returns:
86 * 0: transport successfully registered
87 * -EEXIST: transport already registered
88 * -EINVAL: transport module being unloaded
89 */
90 int xprt_register_transport(struct xprt_class *transport)
91 {
92 struct xprt_class *t;
93 int result;
94
95 result = -EEXIST;
96 spin_lock(&xprt_list_lock);
97 list_for_each_entry(t, &xprt_list, list) {
98 /* don't register the same transport class twice */
99 if (t->ident == transport->ident)
100 goto out;
101 }
102
103 list_add_tail(&transport->list, &xprt_list);
104 printk(KERN_INFO "RPC: Registered %s transport module.\n",
105 transport->name);
106 result = 0;
107
108 out:
109 spin_unlock(&xprt_list_lock);
110 return result;
111 }
112 EXPORT_SYMBOL_GPL(xprt_register_transport);
113
114 /**
115 * xprt_unregister_transport - unregister a transport implementation
116 * @transport: transport to unregister
117 *
118 * Returns:
119 * 0: transport successfully unregistered
120 * -ENOENT: transport never registered
121 */
122 int xprt_unregister_transport(struct xprt_class *transport)
123 {
124 struct xprt_class *t;
125 int result;
126
127 result = 0;
128 spin_lock(&xprt_list_lock);
129 list_for_each_entry(t, &xprt_list, list) {
130 if (t == transport) {
131 printk(KERN_INFO
132 "RPC: Unregistered %s transport module.\n",
133 transport->name);
134 list_del_init(&transport->list);
135 goto out;
136 }
137 }
138 result = -ENOENT;
139
140 out:
141 spin_unlock(&xprt_list_lock);
142 return result;
143 }
144 EXPORT_SYMBOL_GPL(xprt_unregister_transport);
145
146 /**
147 * xprt_load_transport - load a transport implementation
148 * @transport_name: transport to load
149 *
150 * Returns:
151 * 0: transport successfully loaded
152 * -ENOENT: transport module not available
153 */
154 int xprt_load_transport(const char *transport_name)
155 {
156 struct xprt_class *t;
157 int result;
158
159 result = 0;
160 spin_lock(&xprt_list_lock);
161 list_for_each_entry(t, &xprt_list, list) {
162 if (strcmp(t->name, transport_name) == 0) {
163 spin_unlock(&xprt_list_lock);
164 goto out;
165 }
166 }
167 spin_unlock(&xprt_list_lock);
168 result = request_module("xprt%s", transport_name);
169 out:
170 return result;
171 }
172 EXPORT_SYMBOL_GPL(xprt_load_transport);
173
174 /**
175 * xprt_reserve_xprt - serialize write access to transports
176 * @task: task that is requesting access to the transport
177 * @xprt: pointer to the target transport
178 *
179 * This prevents mixing the payload of separate requests, and prevents
180 * transport connects from colliding with writes. No congestion control
181 * is provided.
182 */
183 int xprt_reserve_xprt(struct rpc_xprt *xprt, struct rpc_task *task)
184 {
185 struct rpc_rqst *req = task->tk_rqstp;
186 int priority;
187
188 if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) {
189 if (task == xprt->snd_task)
190 return 1;
191 goto out_sleep;
192 }
193 xprt->snd_task = task;
194 if (req != NULL)
195 req->rq_ntrans++;
196
197 return 1;
198
199 out_sleep:
200 dprintk("RPC: %5u failed to lock transport %p\n",
201 task->tk_pid, xprt);
202 task->tk_timeout = 0;
203 task->tk_status = -EAGAIN;
204 if (req == NULL)
205 priority = RPC_PRIORITY_LOW;
206 else if (!req->rq_ntrans)
207 priority = RPC_PRIORITY_NORMAL;
208 else
209 priority = RPC_PRIORITY_HIGH;
210 rpc_sleep_on_priority(&xprt->sending, task, NULL, priority);
211 return 0;
212 }
213 EXPORT_SYMBOL_GPL(xprt_reserve_xprt);
214
215 static void xprt_clear_locked(struct rpc_xprt *xprt)
216 {
217 xprt->snd_task = NULL;
218 if (!test_bit(XPRT_CLOSE_WAIT, &xprt->state)) {
219 smp_mb__before_atomic();
220 clear_bit(XPRT_LOCKED, &xprt->state);
221 smp_mb__after_atomic();
222 } else
223 queue_work(xprtiod_workqueue, &xprt->task_cleanup);
224 }
225
226 /*
227 * xprt_reserve_xprt_cong - serialize write access to transports
228 * @task: task that is requesting access to the transport
229 *
230 * Same as xprt_reserve_xprt, but Van Jacobson congestion control is
231 * integrated into the decision of whether a request is allowed to be
232 * woken up and given access to the transport.
233 */
234 int xprt_reserve_xprt_cong(struct rpc_xprt *xprt, struct rpc_task *task)
235 {
236 struct rpc_rqst *req = task->tk_rqstp;
237 int priority;
238
239 if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) {
240 if (task == xprt->snd_task)
241 return 1;
242 goto out_sleep;
243 }
244 if (req == NULL) {
245 xprt->snd_task = task;
246 return 1;
247 }
248 if (__xprt_get_cong(xprt, task)) {
249 xprt->snd_task = task;
250 req->rq_ntrans++;
251 return 1;
252 }
253 xprt_clear_locked(xprt);
254 out_sleep:
255 if (req)
256 __xprt_put_cong(xprt, req);
257 dprintk("RPC: %5u failed to lock transport %p\n", task->tk_pid, xprt);
258 task->tk_timeout = 0;
259 task->tk_status = -EAGAIN;
260 if (req == NULL)
261 priority = RPC_PRIORITY_LOW;
262 else if (!req->rq_ntrans)
263 priority = RPC_PRIORITY_NORMAL;
264 else
265 priority = RPC_PRIORITY_HIGH;
266 rpc_sleep_on_priority(&xprt->sending, task, NULL, priority);
267 return 0;
268 }
269 EXPORT_SYMBOL_GPL(xprt_reserve_xprt_cong);
270
271 static inline int xprt_lock_write(struct rpc_xprt *xprt, struct rpc_task *task)
272 {
273 int retval;
274
275 spin_lock_bh(&xprt->transport_lock);
276 retval = xprt->ops->reserve_xprt(xprt, task);
277 spin_unlock_bh(&xprt->transport_lock);
278 return retval;
279 }
280
281 static bool __xprt_lock_write_func(struct rpc_task *task, void *data)
282 {
283 struct rpc_xprt *xprt = data;
284 struct rpc_rqst *req;
285
286 req = task->tk_rqstp;
287 xprt->snd_task = task;
288 if (req)
289 req->rq_ntrans++;
290 return true;
291 }
292
293 static void __xprt_lock_write_next(struct rpc_xprt *xprt)
294 {
295 if (test_and_set_bit(XPRT_LOCKED, &xprt->state))
296 return;
297
298 if (rpc_wake_up_first_on_wq(xprtiod_workqueue, &xprt->sending,
299 __xprt_lock_write_func, xprt))
300 return;
301 xprt_clear_locked(xprt);
302 }
303
304 static bool __xprt_lock_write_cong_func(struct rpc_task *task, void *data)
305 {
306 struct rpc_xprt *xprt = data;
307 struct rpc_rqst *req;
308
309 req = task->tk_rqstp;
310 if (req == NULL) {
311 xprt->snd_task = task;
312 return true;
313 }
314 if (__xprt_get_cong(xprt, task)) {
315 xprt->snd_task = task;
316 req->rq_ntrans++;
317 return true;
318 }
319 return false;
320 }
321
322 static void __xprt_lock_write_next_cong(struct rpc_xprt *xprt)
323 {
324 if (test_and_set_bit(XPRT_LOCKED, &xprt->state))
325 return;
326 if (RPCXPRT_CONGESTED(xprt))
327 goto out_unlock;
328 if (rpc_wake_up_first_on_wq(xprtiod_workqueue, &xprt->sending,
329 __xprt_lock_write_cong_func, xprt))
330 return;
331 out_unlock:
332 xprt_clear_locked(xprt);
333 }
334
335 static void xprt_task_clear_bytes_sent(struct rpc_task *task)
336 {
337 if (task != NULL) {
338 struct rpc_rqst *req = task->tk_rqstp;
339 if (req != NULL)
340 req->rq_bytes_sent = 0;
341 }
342 }
343
344 /**
345 * xprt_release_xprt - allow other requests to use a transport
346 * @xprt: transport with other tasks potentially waiting
347 * @task: task that is releasing access to the transport
348 *
349 * Note that "task" can be NULL. No congestion control is provided.
350 */
351 void xprt_release_xprt(struct rpc_xprt *xprt, struct rpc_task *task)
352 {
353 if (xprt->snd_task == task) {
354 xprt_task_clear_bytes_sent(task);
355 xprt_clear_locked(xprt);
356 __xprt_lock_write_next(xprt);
357 }
358 }
359 EXPORT_SYMBOL_GPL(xprt_release_xprt);
360
361 /**
362 * xprt_release_xprt_cong - allow other requests to use a transport
363 * @xprt: transport with other tasks potentially waiting
364 * @task: task that is releasing access to the transport
365 *
366 * Note that "task" can be NULL. Another task is awoken to use the
367 * transport if the transport's congestion window allows it.
368 */
369 void xprt_release_xprt_cong(struct rpc_xprt *xprt, struct rpc_task *task)
370 {
371 if (xprt->snd_task == task) {
372 xprt_task_clear_bytes_sent(task);
373 xprt_clear_locked(xprt);
374 __xprt_lock_write_next_cong(xprt);
375 }
376 }
377 EXPORT_SYMBOL_GPL(xprt_release_xprt_cong);
378
379 static inline void xprt_release_write(struct rpc_xprt *xprt, struct rpc_task *task)
380 {
381 spin_lock_bh(&xprt->transport_lock);
382 xprt->ops->release_xprt(xprt, task);
383 spin_unlock_bh(&xprt->transport_lock);
384 }
385
386 /*
387 * Van Jacobson congestion avoidance. Check if the congestion window
388 * overflowed. Put the task to sleep if this is the case.
389 */
390 static int
391 __xprt_get_cong(struct rpc_xprt *xprt, struct rpc_task *task)
392 {
393 struct rpc_rqst *req = task->tk_rqstp;
394
395 if (req->rq_cong)
396 return 1;
397 dprintk("RPC: %5u xprt_cwnd_limited cong = %lu cwnd = %lu\n",
398 task->tk_pid, xprt->cong, xprt->cwnd);
399 if (RPCXPRT_CONGESTED(xprt))
400 return 0;
401 req->rq_cong = 1;
402 xprt->cong += RPC_CWNDSCALE;
403 return 1;
404 }
405
406 /*
407 * Adjust the congestion window, and wake up the next task
408 * that has been sleeping due to congestion
409 */
410 static void
411 __xprt_put_cong(struct rpc_xprt *xprt, struct rpc_rqst *req)
412 {
413 if (!req->rq_cong)
414 return;
415 req->rq_cong = 0;
416 xprt->cong -= RPC_CWNDSCALE;
417 __xprt_lock_write_next_cong(xprt);
418 }
419
420 /**
421 * xprt_release_rqst_cong - housekeeping when request is complete
422 * @task: RPC request that recently completed
423 *
424 * Useful for transports that require congestion control.
425 */
426 void xprt_release_rqst_cong(struct rpc_task *task)
427 {
428 struct rpc_rqst *req = task->tk_rqstp;
429
430 __xprt_put_cong(req->rq_xprt, req);
431 }
432 EXPORT_SYMBOL_GPL(xprt_release_rqst_cong);
433
434 /**
435 * xprt_adjust_cwnd - adjust transport congestion window
436 * @xprt: pointer to xprt
437 * @task: recently completed RPC request used to adjust window
438 * @result: result code of completed RPC request
439 *
440 * The transport code maintains an estimate on the maximum number of out-
441 * standing RPC requests, using a smoothed version of the congestion
442 * avoidance implemented in 44BSD. This is basically the Van Jacobson
443 * congestion algorithm: If a retransmit occurs, the congestion window is
444 * halved; otherwise, it is incremented by 1/cwnd when
445 *
446 * - a reply is received and
447 * - a full number of requests are outstanding and
448 * - the congestion window hasn't been updated recently.
449 */
450 void xprt_adjust_cwnd(struct rpc_xprt *xprt, struct rpc_task *task, int result)
451 {
452 struct rpc_rqst *req = task->tk_rqstp;
453 unsigned long cwnd = xprt->cwnd;
454
455 if (result >= 0 && cwnd <= xprt->cong) {
456 /* The (cwnd >> 1) term makes sure
457 * the result gets rounded properly. */
458 cwnd += (RPC_CWNDSCALE * RPC_CWNDSCALE + (cwnd >> 1)) / cwnd;
459 if (cwnd > RPC_MAXCWND(xprt))
460 cwnd = RPC_MAXCWND(xprt);
461 __xprt_lock_write_next_cong(xprt);
462 } else if (result == -ETIMEDOUT) {
463 cwnd >>= 1;
464 if (cwnd < RPC_CWNDSCALE)
465 cwnd = RPC_CWNDSCALE;
466 }
467 dprintk("RPC: cong %ld, cwnd was %ld, now %ld\n",
468 xprt->cong, xprt->cwnd, cwnd);
469 xprt->cwnd = cwnd;
470 __xprt_put_cong(xprt, req);
471 }
472 EXPORT_SYMBOL_GPL(xprt_adjust_cwnd);
473
474 /**
475 * xprt_wake_pending_tasks - wake all tasks on a transport's pending queue
476 * @xprt: transport with waiting tasks
477 * @status: result code to plant in each task before waking it
478 *
479 */
480 void xprt_wake_pending_tasks(struct rpc_xprt *xprt, int status)
481 {
482 if (status < 0)
483 rpc_wake_up_status(&xprt->pending, status);
484 else
485 rpc_wake_up(&xprt->pending);
486 }
487 EXPORT_SYMBOL_GPL(xprt_wake_pending_tasks);
488
489 /**
490 * xprt_wait_for_buffer_space - wait for transport output buffer to clear
491 * @task: task to be put to sleep
492 * @action: function pointer to be executed after wait
493 *
494 * Note that we only set the timer for the case of RPC_IS_SOFT(), since
495 * we don't in general want to force a socket disconnection due to
496 * an incomplete RPC call transmission.
497 */
498 void xprt_wait_for_buffer_space(struct rpc_task *task, rpc_action action)
499 {
500 struct rpc_rqst *req = task->tk_rqstp;
501 struct rpc_xprt *xprt = req->rq_xprt;
502
503 task->tk_timeout = RPC_IS_SOFT(task) ? req->rq_timeout : 0;
504 rpc_sleep_on(&xprt->pending, task, action);
505 }
506 EXPORT_SYMBOL_GPL(xprt_wait_for_buffer_space);
507
508 /**
509 * xprt_write_space - wake the task waiting for transport output buffer space
510 * @xprt: transport with waiting tasks
511 *
512 * Can be called in a soft IRQ context, so xprt_write_space never sleeps.
513 */
514 void xprt_write_space(struct rpc_xprt *xprt)
515 {
516 spin_lock_bh(&xprt->transport_lock);
517 if (xprt->snd_task) {
518 dprintk("RPC: write space: waking waiting task on "
519 "xprt %p\n", xprt);
520 rpc_wake_up_queued_task(&xprt->pending, xprt->snd_task);
521 }
522 spin_unlock_bh(&xprt->transport_lock);
523 }
524 EXPORT_SYMBOL_GPL(xprt_write_space);
525
526 /**
527 * xprt_set_retrans_timeout_def - set a request's retransmit timeout
528 * @task: task whose timeout is to be set
529 *
530 * Set a request's retransmit timeout based on the transport's
531 * default timeout parameters. Used by transports that don't adjust
532 * the retransmit timeout based on round-trip time estimation.
533 */
534 void xprt_set_retrans_timeout_def(struct rpc_task *task)
535 {
536 task->tk_timeout = task->tk_rqstp->rq_timeout;
537 }
538 EXPORT_SYMBOL_GPL(xprt_set_retrans_timeout_def);
539
540 /**
541 * xprt_set_retrans_timeout_rtt - set a request's retransmit timeout
542 * @task: task whose timeout is to be set
543 *
544 * Set a request's retransmit timeout using the RTT estimator.
545 */
546 void xprt_set_retrans_timeout_rtt(struct rpc_task *task)
547 {
548 int timer = task->tk_msg.rpc_proc->p_timer;
549 struct rpc_clnt *clnt = task->tk_client;
550 struct rpc_rtt *rtt = clnt->cl_rtt;
551 struct rpc_rqst *req = task->tk_rqstp;
552 unsigned long max_timeout = clnt->cl_timeout->to_maxval;
553
554 task->tk_timeout = rpc_calc_rto(rtt, timer);
555 task->tk_timeout <<= rpc_ntimeo(rtt, timer) + req->rq_retries;
556 if (task->tk_timeout > max_timeout || task->tk_timeout == 0)
557 task->tk_timeout = max_timeout;
558 }
559 EXPORT_SYMBOL_GPL(xprt_set_retrans_timeout_rtt);
560
561 static void xprt_reset_majortimeo(struct rpc_rqst *req)
562 {
563 const struct rpc_timeout *to = req->rq_task->tk_client->cl_timeout;
564
565 req->rq_majortimeo = req->rq_timeout;
566 if (to->to_exponential)
567 req->rq_majortimeo <<= to->to_retries;
568 else
569 req->rq_majortimeo += to->to_increment * to->to_retries;
570 if (req->rq_majortimeo > to->to_maxval || req->rq_majortimeo == 0)
571 req->rq_majortimeo = to->to_maxval;
572 req->rq_majortimeo += jiffies;
573 }
574
575 /**
576 * xprt_adjust_timeout - adjust timeout values for next retransmit
577 * @req: RPC request containing parameters to use for the adjustment
578 *
579 */
580 int xprt_adjust_timeout(struct rpc_rqst *req)
581 {
582 struct rpc_xprt *xprt = req->rq_xprt;
583 const struct rpc_timeout *to = req->rq_task->tk_client->cl_timeout;
584 int status = 0;
585
586 if (time_before(jiffies, req->rq_majortimeo)) {
587 if (to->to_exponential)
588 req->rq_timeout <<= 1;
589 else
590 req->rq_timeout += to->to_increment;
591 if (to->to_maxval && req->rq_timeout >= to->to_maxval)
592 req->rq_timeout = to->to_maxval;
593 req->rq_retries++;
594 } else {
595 req->rq_timeout = to->to_initval;
596 req->rq_retries = 0;
597 xprt_reset_majortimeo(req);
598 /* Reset the RTT counters == "slow start" */
599 spin_lock_bh(&xprt->transport_lock);
600 rpc_init_rtt(req->rq_task->tk_client->cl_rtt, to->to_initval);
601 spin_unlock_bh(&xprt->transport_lock);
602 status = -ETIMEDOUT;
603 }
604
605 if (req->rq_timeout == 0) {
606 printk(KERN_WARNING "xprt_adjust_timeout: rq_timeout = 0!\n");
607 req->rq_timeout = 5 * HZ;
608 }
609 return status;
610 }
611
612 static void xprt_autoclose(struct work_struct *work)
613 {
614 struct rpc_xprt *xprt =
615 container_of(work, struct rpc_xprt, task_cleanup);
616
617 clear_bit(XPRT_CLOSE_WAIT, &xprt->state);
618 xprt->ops->close(xprt);
619 xprt_release_write(xprt, NULL);
620 wake_up_bit(&xprt->state, XPRT_LOCKED);
621 }
622
623 /**
624 * xprt_disconnect_done - mark a transport as disconnected
625 * @xprt: transport to flag for disconnect
626 *
627 */
628 void xprt_disconnect_done(struct rpc_xprt *xprt)
629 {
630 dprintk("RPC: disconnected transport %p\n", xprt);
631 spin_lock_bh(&xprt->transport_lock);
632 xprt_clear_connected(xprt);
633 xprt_wake_pending_tasks(xprt, -EAGAIN);
634 spin_unlock_bh(&xprt->transport_lock);
635 }
636 EXPORT_SYMBOL_GPL(xprt_disconnect_done);
637
638 /**
639 * xprt_force_disconnect - force a transport to disconnect
640 * @xprt: transport to disconnect
641 *
642 */
643 void xprt_force_disconnect(struct rpc_xprt *xprt)
644 {
645 /* Don't race with the test_bit() in xprt_clear_locked() */
646 spin_lock_bh(&xprt->transport_lock);
647 set_bit(XPRT_CLOSE_WAIT, &xprt->state);
648 /* Try to schedule an autoclose RPC call */
649 if (test_and_set_bit(XPRT_LOCKED, &xprt->state) == 0)
650 queue_work(xprtiod_workqueue, &xprt->task_cleanup);
651 xprt_wake_pending_tasks(xprt, -EAGAIN);
652 spin_unlock_bh(&xprt->transport_lock);
653 }
654 EXPORT_SYMBOL_GPL(xprt_force_disconnect);
655
656 /**
657 * xprt_conditional_disconnect - force a transport to disconnect
658 * @xprt: transport to disconnect
659 * @cookie: 'connection cookie'
660 *
661 * This attempts to break the connection if and only if 'cookie' matches
662 * the current transport 'connection cookie'. It ensures that we don't
663 * try to break the connection more than once when we need to retransmit
664 * a batch of RPC requests.
665 *
666 */
667 void xprt_conditional_disconnect(struct rpc_xprt *xprt, unsigned int cookie)
668 {
669 /* Don't race with the test_bit() in xprt_clear_locked() */
670 spin_lock_bh(&xprt->transport_lock);
671 if (cookie != xprt->connect_cookie)
672 goto out;
673 if (test_bit(XPRT_CLOSING, &xprt->state))
674 goto out;
675 set_bit(XPRT_CLOSE_WAIT, &xprt->state);
676 /* Try to schedule an autoclose RPC call */
677 if (test_and_set_bit(XPRT_LOCKED, &xprt->state) == 0)
678 queue_work(xprtiod_workqueue, &xprt->task_cleanup);
679 xprt_wake_pending_tasks(xprt, -EAGAIN);
680 out:
681 spin_unlock_bh(&xprt->transport_lock);
682 }
683
684 static bool
685 xprt_has_timer(const struct rpc_xprt *xprt)
686 {
687 return xprt->idle_timeout != 0;
688 }
689
690 static void
691 xprt_schedule_autodisconnect(struct rpc_xprt *xprt)
692 __must_hold(&xprt->transport_lock)
693 {
694 if (list_empty(&xprt->recv) && xprt_has_timer(xprt))
695 mod_timer(&xprt->timer, xprt->last_used + xprt->idle_timeout);
696 }
697
698 static void
699 xprt_init_autodisconnect(struct timer_list *t)
700 {
701 struct rpc_xprt *xprt = from_timer(xprt, t, timer);
702
703 spin_lock(&xprt->transport_lock);
704 if (!list_empty(&xprt->recv))
705 goto out_abort;
706 /* Reset xprt->last_used to avoid connect/autodisconnect cycling */
707 xprt->last_used = jiffies;
708 if (test_and_set_bit(XPRT_LOCKED, &xprt->state))
709 goto out_abort;
710 spin_unlock(&xprt->transport_lock);
711 queue_work(xprtiod_workqueue, &xprt->task_cleanup);
712 return;
713 out_abort:
714 spin_unlock(&xprt->transport_lock);
715 }
716
717 bool xprt_lock_connect(struct rpc_xprt *xprt,
718 struct rpc_task *task,
719 void *cookie)
720 {
721 bool ret = false;
722
723 spin_lock_bh(&xprt->transport_lock);
724 if (!test_bit(XPRT_LOCKED, &xprt->state))
725 goto out;
726 if (xprt->snd_task != task)
727 goto out;
728 xprt_task_clear_bytes_sent(task);
729 xprt->snd_task = cookie;
730 ret = true;
731 out:
732 spin_unlock_bh(&xprt->transport_lock);
733 return ret;
734 }
735
736 void xprt_unlock_connect(struct rpc_xprt *xprt, void *cookie)
737 {
738 spin_lock_bh(&xprt->transport_lock);
739 if (xprt->snd_task != cookie)
740 goto out;
741 if (!test_bit(XPRT_LOCKED, &xprt->state))
742 goto out;
743 xprt->snd_task =NULL;
744 xprt->ops->release_xprt(xprt, NULL);
745 xprt_schedule_autodisconnect(xprt);
746 out:
747 spin_unlock_bh(&xprt->transport_lock);
748 wake_up_bit(&xprt->state, XPRT_LOCKED);
749 }
750
751 /**
752 * xprt_connect - schedule a transport connect operation
753 * @task: RPC task that is requesting the connect
754 *
755 */
756 void xprt_connect(struct rpc_task *task)
757 {
758 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
759
760 dprintk("RPC: %5u xprt_connect xprt %p %s connected\n", task->tk_pid,
761 xprt, (xprt_connected(xprt) ? "is" : "is not"));
762
763 if (!xprt_bound(xprt)) {
764 task->tk_status = -EAGAIN;
765 return;
766 }
767 if (!xprt_lock_write(xprt, task))
768 return;
769
770 if (test_and_clear_bit(XPRT_CLOSE_WAIT, &xprt->state))
771 xprt->ops->close(xprt);
772
773 if (!xprt_connected(xprt)) {
774 task->tk_rqstp->rq_bytes_sent = 0;
775 task->tk_timeout = task->tk_rqstp->rq_timeout;
776 task->tk_rqstp->rq_connect_cookie = xprt->connect_cookie;
777 rpc_sleep_on(&xprt->pending, task, xprt_connect_status);
778
779 if (test_bit(XPRT_CLOSING, &xprt->state))
780 return;
781 if (xprt_test_and_set_connecting(xprt))
782 return;
783 xprt->stat.connect_start = jiffies;
784 xprt->ops->connect(xprt, task);
785 }
786 xprt_release_write(xprt, task);
787 }
788
789 static void xprt_connect_status(struct rpc_task *task)
790 {
791 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
792
793 if (task->tk_status == 0) {
794 xprt->stat.connect_count++;
795 xprt->stat.connect_time += (long)jiffies - xprt->stat.connect_start;
796 dprintk("RPC: %5u xprt_connect_status: connection established\n",
797 task->tk_pid);
798 return;
799 }
800
801 switch (task->tk_status) {
802 case -ECONNREFUSED:
803 case -ECONNRESET:
804 case -ECONNABORTED:
805 case -ENETUNREACH:
806 case -EHOSTUNREACH:
807 case -EPIPE:
808 case -EAGAIN:
809 dprintk("RPC: %5u xprt_connect_status: retrying\n", task->tk_pid);
810 break;
811 case -ETIMEDOUT:
812 dprintk("RPC: %5u xprt_connect_status: connect attempt timed "
813 "out\n", task->tk_pid);
814 break;
815 default:
816 dprintk("RPC: %5u xprt_connect_status: error %d connecting to "
817 "server %s\n", task->tk_pid, -task->tk_status,
818 xprt->servername);
819 task->tk_status = -EIO;
820 }
821 }
822
823 /**
824 * xprt_lookup_rqst - find an RPC request corresponding to an XID
825 * @xprt: transport on which the original request was transmitted
826 * @xid: RPC XID of incoming reply
827 *
828 */
829 struct rpc_rqst *xprt_lookup_rqst(struct rpc_xprt *xprt, __be32 xid)
830 {
831 struct rpc_rqst *entry;
832
833 list_for_each_entry(entry, &xprt->recv, rq_list)
834 if (entry->rq_xid == xid) {
835 trace_xprt_lookup_rqst(xprt, xid, 0);
836 return entry;
837 }
838
839 dprintk("RPC: xprt_lookup_rqst did not find xid %08x\n",
840 ntohl(xid));
841 trace_xprt_lookup_rqst(xprt, xid, -ENOENT);
842 xprt->stat.bad_xids++;
843 return NULL;
844 }
845 EXPORT_SYMBOL_GPL(xprt_lookup_rqst);
846
847 /**
848 * xprt_pin_rqst - Pin a request on the transport receive list
849 * @req: Request to pin
850 *
851 * Caller must ensure this is atomic with the call to xprt_lookup_rqst()
852 * so should be holding the xprt transport lock.
853 */
854 void xprt_pin_rqst(struct rpc_rqst *req)
855 {
856 set_bit(RPC_TASK_MSG_RECV, &req->rq_task->tk_runstate);
857 }
858 EXPORT_SYMBOL_GPL(xprt_pin_rqst);
859
860 /**
861 * xprt_unpin_rqst - Unpin a request on the transport receive list
862 * @req: Request to pin
863 *
864 * Caller should be holding the xprt transport lock.
865 */
866 void xprt_unpin_rqst(struct rpc_rqst *req)
867 {
868 struct rpc_task *task = req->rq_task;
869
870 clear_bit(RPC_TASK_MSG_RECV, &task->tk_runstate);
871 if (test_bit(RPC_TASK_MSG_RECV_WAIT, &task->tk_runstate))
872 wake_up_bit(&task->tk_runstate, RPC_TASK_MSG_RECV);
873 }
874 EXPORT_SYMBOL_GPL(xprt_unpin_rqst);
875
876 static void xprt_wait_on_pinned_rqst(struct rpc_rqst *req)
877 __must_hold(&req->rq_xprt->recv_lock)
878 {
879 struct rpc_task *task = req->rq_task;
880
881 if (task && test_bit(RPC_TASK_MSG_RECV, &task->tk_runstate)) {
882 spin_unlock(&req->rq_xprt->recv_lock);
883 set_bit(RPC_TASK_MSG_RECV_WAIT, &task->tk_runstate);
884 wait_on_bit(&task->tk_runstate, RPC_TASK_MSG_RECV,
885 TASK_UNINTERRUPTIBLE);
886 clear_bit(RPC_TASK_MSG_RECV_WAIT, &task->tk_runstate);
887 spin_lock(&req->rq_xprt->recv_lock);
888 }
889 }
890
891 static void xprt_update_rtt(struct rpc_task *task)
892 {
893 struct rpc_rqst *req = task->tk_rqstp;
894 struct rpc_rtt *rtt = task->tk_client->cl_rtt;
895 unsigned int timer = task->tk_msg.rpc_proc->p_timer;
896 long m = usecs_to_jiffies(ktime_to_us(req->rq_rtt));
897
898 if (timer) {
899 if (req->rq_ntrans == 1)
900 rpc_update_rtt(rtt, timer, m);
901 rpc_set_timeo(rtt, timer, req->rq_ntrans - 1);
902 }
903 }
904
905 /**
906 * xprt_complete_rqst - called when reply processing is complete
907 * @task: RPC request that recently completed
908 * @copied: actual number of bytes received from the transport
909 *
910 * Caller holds transport lock.
911 */
912 void xprt_complete_rqst(struct rpc_task *task, int copied)
913 {
914 struct rpc_rqst *req = task->tk_rqstp;
915 struct rpc_xprt *xprt = req->rq_xprt;
916
917 dprintk("RPC: %5u xid %08x complete (%d bytes received)\n",
918 task->tk_pid, ntohl(req->rq_xid), copied);
919 trace_xprt_complete_rqst(xprt, req->rq_xid, copied);
920
921 xprt->stat.recvs++;
922 req->rq_rtt = ktime_sub(ktime_get(), req->rq_xtime);
923 if (xprt->ops->timer != NULL)
924 xprt_update_rtt(task);
925
926 list_del_init(&req->rq_list);
927 req->rq_private_buf.len = copied;
928 /* Ensure all writes are done before we update */
929 /* req->rq_reply_bytes_recvd */
930 smp_wmb();
931 req->rq_reply_bytes_recvd = copied;
932 rpc_wake_up_queued_task(&xprt->pending, task);
933 }
934 EXPORT_SYMBOL_GPL(xprt_complete_rqst);
935
936 static void xprt_timer(struct rpc_task *task)
937 {
938 struct rpc_rqst *req = task->tk_rqstp;
939 struct rpc_xprt *xprt = req->rq_xprt;
940
941 if (task->tk_status != -ETIMEDOUT)
942 return;
943 dprintk("RPC: %5u xprt_timer\n", task->tk_pid);
944
945 if (!req->rq_reply_bytes_recvd) {
946 if (xprt->ops->timer)
947 xprt->ops->timer(xprt, task);
948 } else
949 task->tk_status = 0;
950 }
951
952 /**
953 * xprt_prepare_transmit - reserve the transport before sending a request
954 * @task: RPC task about to send a request
955 *
956 */
957 bool xprt_prepare_transmit(struct rpc_task *task)
958 {
959 struct rpc_rqst *req = task->tk_rqstp;
960 struct rpc_xprt *xprt = req->rq_xprt;
961 bool ret = false;
962
963 dprintk("RPC: %5u xprt_prepare_transmit\n", task->tk_pid);
964
965 spin_lock_bh(&xprt->transport_lock);
966 if (!req->rq_bytes_sent) {
967 if (req->rq_reply_bytes_recvd) {
968 task->tk_status = req->rq_reply_bytes_recvd;
969 goto out_unlock;
970 }
971 if ((task->tk_flags & RPC_TASK_NO_RETRANS_TIMEOUT)
972 && xprt_connected(xprt)
973 && req->rq_connect_cookie == xprt->connect_cookie) {
974 xprt->ops->set_retrans_timeout(task);
975 rpc_sleep_on(&xprt->pending, task, xprt_timer);
976 goto out_unlock;
977 }
978 }
979 if (!xprt->ops->reserve_xprt(xprt, task)) {
980 task->tk_status = -EAGAIN;
981 goto out_unlock;
982 }
983 ret = true;
984 out_unlock:
985 spin_unlock_bh(&xprt->transport_lock);
986 return ret;
987 }
988
989 void xprt_end_transmit(struct rpc_task *task)
990 {
991 xprt_release_write(task->tk_rqstp->rq_xprt, task);
992 }
993
994 /**
995 * xprt_transmit - send an RPC request on a transport
996 * @task: controlling RPC task
997 *
998 * We have to copy the iovec because sendmsg fiddles with its contents.
999 */
1000 void xprt_transmit(struct rpc_task *task)
1001 {
1002 struct rpc_rqst *req = task->tk_rqstp;
1003 struct rpc_xprt *xprt = req->rq_xprt;
1004 unsigned int connect_cookie;
1005 int status, numreqs;
1006
1007 dprintk("RPC: %5u xprt_transmit(%u)\n", task->tk_pid, req->rq_slen);
1008
1009 if (!req->rq_reply_bytes_recvd) {
1010 if (list_empty(&req->rq_list) && rpc_reply_expected(task)) {
1011 /*
1012 * Add to the list only if we're expecting a reply
1013 */
1014 /* Update the softirq receive buffer */
1015 memcpy(&req->rq_private_buf, &req->rq_rcv_buf,
1016 sizeof(req->rq_private_buf));
1017 /* Add request to the receive list */
1018 spin_lock(&xprt->recv_lock);
1019 list_add_tail(&req->rq_list, &xprt->recv);
1020 spin_unlock(&xprt->recv_lock);
1021 xprt_reset_majortimeo(req);
1022 /* Turn off autodisconnect */
1023 del_singleshot_timer_sync(&xprt->timer);
1024 }
1025 } else if (!req->rq_bytes_sent)
1026 return;
1027
1028 connect_cookie = xprt->connect_cookie;
1029 req->rq_xtime = ktime_get();
1030 status = xprt->ops->send_request(task);
1031 trace_xprt_transmit(xprt, req->rq_xid, status);
1032 if (status != 0) {
1033 task->tk_status = status;
1034 return;
1035 }
1036 xprt_inject_disconnect(xprt);
1037
1038 dprintk("RPC: %5u xmit complete\n", task->tk_pid);
1039 task->tk_flags |= RPC_TASK_SENT;
1040 spin_lock_bh(&xprt->transport_lock);
1041
1042 xprt->ops->set_retrans_timeout(task);
1043
1044 numreqs = atomic_read(&xprt->num_reqs);
1045 if (numreqs > xprt->stat.max_slots)
1046 xprt->stat.max_slots = numreqs;
1047 xprt->stat.sends++;
1048 xprt->stat.req_u += xprt->stat.sends - xprt->stat.recvs;
1049 xprt->stat.bklog_u += xprt->backlog.qlen;
1050 xprt->stat.sending_u += xprt->sending.qlen;
1051 xprt->stat.pending_u += xprt->pending.qlen;
1052 spin_unlock_bh(&xprt->transport_lock);
1053
1054 req->rq_connect_cookie = connect_cookie;
1055 if (rpc_reply_expected(task) && !READ_ONCE(req->rq_reply_bytes_recvd)) {
1056 /*
1057 * Sleep on the pending queue if we're expecting a reply.
1058 * The spinlock ensures atomicity between the test of
1059 * req->rq_reply_bytes_recvd, and the call to rpc_sleep_on().
1060 */
1061 spin_lock(&xprt->recv_lock);
1062 if (!req->rq_reply_bytes_recvd) {
1063 rpc_sleep_on(&xprt->pending, task, xprt_timer);
1064 /*
1065 * Send an extra queue wakeup call if the
1066 * connection was dropped in case the call to
1067 * rpc_sleep_on() raced.
1068 */
1069 if (!xprt_connected(xprt))
1070 xprt_wake_pending_tasks(xprt, -ENOTCONN);
1071 }
1072 spin_unlock(&xprt->recv_lock);
1073 }
1074 }
1075
1076 static void xprt_add_backlog(struct rpc_xprt *xprt, struct rpc_task *task)
1077 {
1078 set_bit(XPRT_CONGESTED, &xprt->state);
1079 rpc_sleep_on(&xprt->backlog, task, NULL);
1080 }
1081
1082 static void xprt_wake_up_backlog(struct rpc_xprt *xprt)
1083 {
1084 if (rpc_wake_up_next(&xprt->backlog) == NULL)
1085 clear_bit(XPRT_CONGESTED, &xprt->state);
1086 }
1087
1088 static bool xprt_throttle_congested(struct rpc_xprt *xprt, struct rpc_task *task)
1089 {
1090 bool ret = false;
1091
1092 if (!test_bit(XPRT_CONGESTED, &xprt->state))
1093 goto out;
1094 spin_lock(&xprt->reserve_lock);
1095 if (test_bit(XPRT_CONGESTED, &xprt->state)) {
1096 rpc_sleep_on(&xprt->backlog, task, NULL);
1097 ret = true;
1098 }
1099 spin_unlock(&xprt->reserve_lock);
1100 out:
1101 return ret;
1102 }
1103
1104 static struct rpc_rqst *xprt_dynamic_alloc_slot(struct rpc_xprt *xprt)
1105 {
1106 struct rpc_rqst *req = ERR_PTR(-EAGAIN);
1107
1108 if (!atomic_add_unless(&xprt->num_reqs, 1, xprt->max_reqs))
1109 goto out;
1110 spin_unlock(&xprt->reserve_lock);
1111 req = kzalloc(sizeof(struct rpc_rqst), GFP_NOFS);
1112 spin_lock(&xprt->reserve_lock);
1113 if (req != NULL)
1114 goto out;
1115 atomic_dec(&xprt->num_reqs);
1116 req = ERR_PTR(-ENOMEM);
1117 out:
1118 return req;
1119 }
1120
1121 static bool xprt_dynamic_free_slot(struct rpc_xprt *xprt, struct rpc_rqst *req)
1122 {
1123 if (atomic_add_unless(&xprt->num_reqs, -1, xprt->min_reqs)) {
1124 kfree(req);
1125 return true;
1126 }
1127 return false;
1128 }
1129
1130 void xprt_alloc_slot(struct rpc_xprt *xprt, struct rpc_task *task)
1131 {
1132 struct rpc_rqst *req;
1133
1134 spin_lock(&xprt->reserve_lock);
1135 if (!list_empty(&xprt->free)) {
1136 req = list_entry(xprt->free.next, struct rpc_rqst, rq_list);
1137 list_del(&req->rq_list);
1138 goto out_init_req;
1139 }
1140 req = xprt_dynamic_alloc_slot(xprt);
1141 if (!IS_ERR(req))
1142 goto out_init_req;
1143 switch (PTR_ERR(req)) {
1144 case -ENOMEM:
1145 dprintk("RPC: dynamic allocation of request slot "
1146 "failed! Retrying\n");
1147 task->tk_status = -ENOMEM;
1148 break;
1149 case -EAGAIN:
1150 xprt_add_backlog(xprt, task);
1151 dprintk("RPC: waiting for request slot\n");
1152 /* fall through */
1153 default:
1154 task->tk_status = -EAGAIN;
1155 }
1156 spin_unlock(&xprt->reserve_lock);
1157 return;
1158 out_init_req:
1159 task->tk_status = 0;
1160 task->tk_rqstp = req;
1161 xprt_request_init(task, xprt);
1162 spin_unlock(&xprt->reserve_lock);
1163 }
1164 EXPORT_SYMBOL_GPL(xprt_alloc_slot);
1165
1166 void xprt_lock_and_alloc_slot(struct rpc_xprt *xprt, struct rpc_task *task)
1167 {
1168 /* Note: grabbing the xprt_lock_write() ensures that we throttle
1169 * new slot allocation if the transport is congested (i.e. when
1170 * reconnecting a stream transport or when out of socket write
1171 * buffer space).
1172 */
1173 if (xprt_lock_write(xprt, task)) {
1174 xprt_alloc_slot(xprt, task);
1175 xprt_release_write(xprt, task);
1176 }
1177 }
1178 EXPORT_SYMBOL_GPL(xprt_lock_and_alloc_slot);
1179
1180 static void xprt_free_slot(struct rpc_xprt *xprt, struct rpc_rqst *req)
1181 {
1182 spin_lock(&xprt->reserve_lock);
1183 if (!xprt_dynamic_free_slot(xprt, req)) {
1184 memset(req, 0, sizeof(*req)); /* mark unused */
1185 list_add(&req->rq_list, &xprt->free);
1186 }
1187 xprt_wake_up_backlog(xprt);
1188 spin_unlock(&xprt->reserve_lock);
1189 }
1190
1191 static void xprt_free_all_slots(struct rpc_xprt *xprt)
1192 {
1193 struct rpc_rqst *req;
1194 while (!list_empty(&xprt->free)) {
1195 req = list_first_entry(&xprt->free, struct rpc_rqst, rq_list);
1196 list_del(&req->rq_list);
1197 kfree(req);
1198 }
1199 }
1200
1201 struct rpc_xprt *xprt_alloc(struct net *net, size_t size,
1202 unsigned int num_prealloc,
1203 unsigned int max_alloc)
1204 {
1205 struct rpc_xprt *xprt;
1206 struct rpc_rqst *req;
1207 int i;
1208
1209 xprt = kzalloc(size, GFP_KERNEL);
1210 if (xprt == NULL)
1211 goto out;
1212
1213 xprt_init(xprt, net);
1214
1215 for (i = 0; i < num_prealloc; i++) {
1216 req = kzalloc(sizeof(struct rpc_rqst), GFP_KERNEL);
1217 if (!req)
1218 goto out_free;
1219 list_add(&req->rq_list, &xprt->free);
1220 }
1221 if (max_alloc > num_prealloc)
1222 xprt->max_reqs = max_alloc;
1223 else
1224 xprt->max_reqs = num_prealloc;
1225 xprt->min_reqs = num_prealloc;
1226 atomic_set(&xprt->num_reqs, num_prealloc);
1227
1228 return xprt;
1229
1230 out_free:
1231 xprt_free(xprt);
1232 out:
1233 return NULL;
1234 }
1235 EXPORT_SYMBOL_GPL(xprt_alloc);
1236
1237 void xprt_free(struct rpc_xprt *xprt)
1238 {
1239 put_net(xprt->xprt_net);
1240 xprt_free_all_slots(xprt);
1241 kfree_rcu(xprt, rcu);
1242 }
1243 EXPORT_SYMBOL_GPL(xprt_free);
1244
1245 /**
1246 * xprt_reserve - allocate an RPC request slot
1247 * @task: RPC task requesting a slot allocation
1248 *
1249 * If the transport is marked as being congested, or if no more
1250 * slots are available, place the task on the transport's
1251 * backlog queue.
1252 */
1253 void xprt_reserve(struct rpc_task *task)
1254 {
1255 struct rpc_xprt *xprt = task->tk_xprt;
1256
1257 task->tk_status = 0;
1258 if (task->tk_rqstp != NULL)
1259 return;
1260
1261 task->tk_timeout = 0;
1262 task->tk_status = -EAGAIN;
1263 if (!xprt_throttle_congested(xprt, task))
1264 xprt->ops->alloc_slot(xprt, task);
1265 }
1266
1267 /**
1268 * xprt_retry_reserve - allocate an RPC request slot
1269 * @task: RPC task requesting a slot allocation
1270 *
1271 * If no more slots are available, place the task on the transport's
1272 * backlog queue.
1273 * Note that the only difference with xprt_reserve is that we now
1274 * ignore the value of the XPRT_CONGESTED flag.
1275 */
1276 void xprt_retry_reserve(struct rpc_task *task)
1277 {
1278 struct rpc_xprt *xprt = task->tk_xprt;
1279
1280 task->tk_status = 0;
1281 if (task->tk_rqstp != NULL)
1282 return;
1283
1284 task->tk_timeout = 0;
1285 task->tk_status = -EAGAIN;
1286 xprt->ops->alloc_slot(xprt, task);
1287 }
1288
1289 static inline __be32 xprt_alloc_xid(struct rpc_xprt *xprt)
1290 {
1291 return (__force __be32)xprt->xid++;
1292 }
1293
1294 static inline void xprt_init_xid(struct rpc_xprt *xprt)
1295 {
1296 xprt->xid = prandom_u32();
1297 }
1298
1299 static void xprt_request_init(struct rpc_task *task, struct rpc_xprt *xprt)
1300 {
1301 struct rpc_rqst *req = task->tk_rqstp;
1302
1303 INIT_LIST_HEAD(&req->rq_list);
1304 req->rq_timeout = task->tk_client->cl_timeout->to_initval;
1305 req->rq_task = task;
1306 req->rq_xprt = xprt;
1307 req->rq_buffer = NULL;
1308 req->rq_xid = xprt_alloc_xid(xprt);
1309 req->rq_connect_cookie = xprt->connect_cookie - 1;
1310 req->rq_bytes_sent = 0;
1311 req->rq_snd_buf.len = 0;
1312 req->rq_snd_buf.buflen = 0;
1313 req->rq_rcv_buf.len = 0;
1314 req->rq_rcv_buf.buflen = 0;
1315 req->rq_release_snd_buf = NULL;
1316 xprt_reset_majortimeo(req);
1317 dprintk("RPC: %5u reserved req %p xid %08x\n", task->tk_pid,
1318 req, ntohl(req->rq_xid));
1319 }
1320
1321 /**
1322 * xprt_release - release an RPC request slot
1323 * @task: task which is finished with the slot
1324 *
1325 */
1326 void xprt_release(struct rpc_task *task)
1327 {
1328 struct rpc_xprt *xprt;
1329 struct rpc_rqst *req = task->tk_rqstp;
1330
1331 if (req == NULL) {
1332 if (task->tk_client) {
1333 xprt = task->tk_xprt;
1334 if (xprt->snd_task == task)
1335 xprt_release_write(xprt, task);
1336 }
1337 return;
1338 }
1339
1340 xprt = req->rq_xprt;
1341 if (task->tk_ops->rpc_count_stats != NULL)
1342 task->tk_ops->rpc_count_stats(task, task->tk_calldata);
1343 else if (task->tk_client)
1344 rpc_count_iostats(task, task->tk_client->cl_metrics);
1345 spin_lock(&xprt->recv_lock);
1346 if (!list_empty(&req->rq_list)) {
1347 list_del_init(&req->rq_list);
1348 xprt_wait_on_pinned_rqst(req);
1349 }
1350 spin_unlock(&xprt->recv_lock);
1351 spin_lock_bh(&xprt->transport_lock);
1352 xprt->ops->release_xprt(xprt, task);
1353 if (xprt->ops->release_request)
1354 xprt->ops->release_request(task);
1355 xprt->last_used = jiffies;
1356 xprt_schedule_autodisconnect(xprt);
1357 spin_unlock_bh(&xprt->transport_lock);
1358 if (req->rq_buffer)
1359 xprt->ops->buf_free(task);
1360 xprt_inject_disconnect(xprt);
1361 if (req->rq_cred != NULL)
1362 put_rpccred(req->rq_cred);
1363 task->tk_rqstp = NULL;
1364 if (req->rq_release_snd_buf)
1365 req->rq_release_snd_buf(req);
1366
1367 dprintk("RPC: %5u release request %p\n", task->tk_pid, req);
1368 if (likely(!bc_prealloc(req)))
1369 xprt_free_slot(xprt, req);
1370 else
1371 xprt_free_bc_request(req);
1372 }
1373
1374 static void xprt_init(struct rpc_xprt *xprt, struct net *net)
1375 {
1376 kref_init(&xprt->kref);
1377
1378 spin_lock_init(&xprt->transport_lock);
1379 spin_lock_init(&xprt->reserve_lock);
1380 spin_lock_init(&xprt->recv_lock);
1381
1382 INIT_LIST_HEAD(&xprt->free);
1383 INIT_LIST_HEAD(&xprt->recv);
1384 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1385 spin_lock_init(&xprt->bc_pa_lock);
1386 INIT_LIST_HEAD(&xprt->bc_pa_list);
1387 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1388 INIT_LIST_HEAD(&xprt->xprt_switch);
1389
1390 xprt->last_used = jiffies;
1391 xprt->cwnd = RPC_INITCWND;
1392 xprt->bind_index = 0;
1393
1394 rpc_init_wait_queue(&xprt->binding, "xprt_binding");
1395 rpc_init_wait_queue(&xprt->pending, "xprt_pending");
1396 rpc_init_priority_wait_queue(&xprt->sending, "xprt_sending");
1397 rpc_init_priority_wait_queue(&xprt->backlog, "xprt_backlog");
1398
1399 xprt_init_xid(xprt);
1400
1401 xprt->xprt_net = get_net(net);
1402 }
1403
1404 /**
1405 * xprt_create_transport - create an RPC transport
1406 * @args: rpc transport creation arguments
1407 *
1408 */
1409 struct rpc_xprt *xprt_create_transport(struct xprt_create *args)
1410 {
1411 struct rpc_xprt *xprt;
1412 struct xprt_class *t;
1413
1414 spin_lock(&xprt_list_lock);
1415 list_for_each_entry(t, &xprt_list, list) {
1416 if (t->ident == args->ident) {
1417 spin_unlock(&xprt_list_lock);
1418 goto found;
1419 }
1420 }
1421 spin_unlock(&xprt_list_lock);
1422 dprintk("RPC: transport (%d) not supported\n", args->ident);
1423 return ERR_PTR(-EIO);
1424
1425 found:
1426 xprt = t->setup(args);
1427 if (IS_ERR(xprt)) {
1428 dprintk("RPC: xprt_create_transport: failed, %ld\n",
1429 -PTR_ERR(xprt));
1430 goto out;
1431 }
1432 if (args->flags & XPRT_CREATE_NO_IDLE_TIMEOUT)
1433 xprt->idle_timeout = 0;
1434 INIT_WORK(&xprt->task_cleanup, xprt_autoclose);
1435 if (xprt_has_timer(xprt))
1436 timer_setup(&xprt->timer, xprt_init_autodisconnect, 0);
1437 else
1438 timer_setup(&xprt->timer, NULL, 0);
1439
1440 if (strlen(args->servername) > RPC_MAXNETNAMELEN) {
1441 xprt_destroy(xprt);
1442 return ERR_PTR(-EINVAL);
1443 }
1444 xprt->servername = kstrdup(args->servername, GFP_KERNEL);
1445 if (xprt->servername == NULL) {
1446 xprt_destroy(xprt);
1447 return ERR_PTR(-ENOMEM);
1448 }
1449
1450 rpc_xprt_debugfs_register(xprt);
1451
1452 dprintk("RPC: created transport %p with %u slots\n", xprt,
1453 xprt->max_reqs);
1454 out:
1455 return xprt;
1456 }
1457
1458 static void xprt_destroy_cb(struct work_struct *work)
1459 {
1460 struct rpc_xprt *xprt =
1461 container_of(work, struct rpc_xprt, task_cleanup);
1462
1463 rpc_xprt_debugfs_unregister(xprt);
1464 rpc_destroy_wait_queue(&xprt->binding);
1465 rpc_destroy_wait_queue(&xprt->pending);
1466 rpc_destroy_wait_queue(&xprt->sending);
1467 rpc_destroy_wait_queue(&xprt->backlog);
1468 kfree(xprt->servername);
1469 /*
1470 * Tear down transport state and free the rpc_xprt
1471 */
1472 xprt->ops->destroy(xprt);
1473 }
1474
1475 /**
1476 * xprt_destroy - destroy an RPC transport, killing off all requests.
1477 * @xprt: transport to destroy
1478 *
1479 */
1480 static void xprt_destroy(struct rpc_xprt *xprt)
1481 {
1482 dprintk("RPC: destroying transport %p\n", xprt);
1483
1484 /*
1485 * Exclude transport connect/disconnect handlers and autoclose
1486 */
1487 wait_on_bit_lock(&xprt->state, XPRT_LOCKED, TASK_UNINTERRUPTIBLE);
1488
1489 del_timer_sync(&xprt->timer);
1490
1491 /*
1492 * Destroy sockets etc from the system workqueue so they can
1493 * safely flush receive work running on rpciod.
1494 */
1495 INIT_WORK(&xprt->task_cleanup, xprt_destroy_cb);
1496 schedule_work(&xprt->task_cleanup);
1497 }
1498
1499 static void xprt_destroy_kref(struct kref *kref)
1500 {
1501 xprt_destroy(container_of(kref, struct rpc_xprt, kref));
1502 }
1503
1504 /**
1505 * xprt_get - return a reference to an RPC transport.
1506 * @xprt: pointer to the transport
1507 *
1508 */
1509 struct rpc_xprt *xprt_get(struct rpc_xprt *xprt)
1510 {
1511 if (xprt != NULL && kref_get_unless_zero(&xprt->kref))
1512 return xprt;
1513 return NULL;
1514 }
1515 EXPORT_SYMBOL_GPL(xprt_get);
1516
1517 /**
1518 * xprt_put - release a reference to an RPC transport.
1519 * @xprt: pointer to the transport
1520 *
1521 */
1522 void xprt_put(struct rpc_xprt *xprt)
1523 {
1524 if (xprt != NULL)
1525 kref_put(&xprt->kref, xprt_destroy_kref);
1526 }
1527 EXPORT_SYMBOL_GPL(xprt_put);