]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/sunrpc/xprtrdma/rpc_rdma.c
Merge branch 'pm-cpufreq'
[mirror_ubuntu-artful-kernel.git] / net / sunrpc / xprtrdma / rpc_rdma.c
1 /*
2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
8 * license below:
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 *
17 * Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials provided
20 * with the distribution.
21 *
22 * Neither the name of the Network Appliance, Inc. nor the names of
23 * its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written
25 * permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * rpc_rdma.c
42 *
43 * This file contains the guts of the RPC RDMA protocol, and
44 * does marshaling/unmarshaling, etc. It is also where interfacing
45 * to the Linux RPC framework lives.
46 */
47
48 #include "xprt_rdma.h"
49
50 #include <linux/highmem.h>
51
52 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
53 # define RPCDBG_FACILITY RPCDBG_TRANS
54 #endif
55
56 static const char transfertypes[][12] = {
57 "inline", /* no chunks */
58 "read list", /* some argument via rdma read */
59 "*read list", /* entire request via rdma read */
60 "write list", /* some result via rdma write */
61 "reply chunk" /* entire reply via rdma write */
62 };
63
64 /* Returns size of largest RPC-over-RDMA header in a Call message
65 *
66 * The largest Call header contains a full-size Read list and a
67 * minimal Reply chunk.
68 */
69 static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
70 {
71 unsigned int size;
72
73 /* Fixed header fields and list discriminators */
74 size = RPCRDMA_HDRLEN_MIN;
75
76 /* Maximum Read list size */
77 maxsegs += 2; /* segment for head and tail buffers */
78 size = maxsegs * sizeof(struct rpcrdma_read_chunk);
79
80 /* Minimal Read chunk size */
81 size += sizeof(__be32); /* segment count */
82 size += sizeof(struct rpcrdma_segment);
83 size += sizeof(__be32); /* list discriminator */
84
85 dprintk("RPC: %s: max call header size = %u\n",
86 __func__, size);
87 return size;
88 }
89
90 /* Returns size of largest RPC-over-RDMA header in a Reply message
91 *
92 * There is only one Write list or one Reply chunk per Reply
93 * message. The larger list is the Write list.
94 */
95 static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
96 {
97 unsigned int size;
98
99 /* Fixed header fields and list discriminators */
100 size = RPCRDMA_HDRLEN_MIN;
101
102 /* Maximum Write list size */
103 maxsegs += 2; /* segment for head and tail buffers */
104 size = sizeof(__be32); /* segment count */
105 size += maxsegs * sizeof(struct rpcrdma_segment);
106 size += sizeof(__be32); /* list discriminator */
107
108 dprintk("RPC: %s: max reply header size = %u\n",
109 __func__, size);
110 return size;
111 }
112
113 void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt)
114 {
115 struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
116 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
117 unsigned int maxsegs = ia->ri_max_segs;
118
119 ia->ri_max_inline_write = cdata->inline_wsize -
120 rpcrdma_max_call_header_size(maxsegs);
121 ia->ri_max_inline_read = cdata->inline_rsize -
122 rpcrdma_max_reply_header_size(maxsegs);
123 }
124
125 /* The client can send a request inline as long as the RPCRDMA header
126 * plus the RPC call fit under the transport's inline limit. If the
127 * combined call message size exceeds that limit, the client must use
128 * the read chunk list for this operation.
129 */
130 static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
131 struct rpc_rqst *rqst)
132 {
133 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
134
135 return rqst->rq_snd_buf.len <= ia->ri_max_inline_write;
136 }
137
138 /* The client can't know how large the actual reply will be. Thus it
139 * plans for the largest possible reply for that particular ULP
140 * operation. If the maximum combined reply message size exceeds that
141 * limit, the client must provide a write list or a reply chunk for
142 * this request.
143 */
144 static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
145 struct rpc_rqst *rqst)
146 {
147 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
148
149 return rqst->rq_rcv_buf.buflen <= ia->ri_max_inline_read;
150 }
151
152 /* Split "vec" on page boundaries into segments. FMR registers pages,
153 * not a byte range. Other modes coalesce these segments into a single
154 * MR when they can.
155 */
156 static int
157 rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg, int n)
158 {
159 size_t page_offset;
160 u32 remaining;
161 char *base;
162
163 base = vec->iov_base;
164 page_offset = offset_in_page(base);
165 remaining = vec->iov_len;
166 while (remaining && n < RPCRDMA_MAX_SEGS) {
167 seg[n].mr_page = NULL;
168 seg[n].mr_offset = base;
169 seg[n].mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
170 remaining -= seg[n].mr_len;
171 base += seg[n].mr_len;
172 ++n;
173 page_offset = 0;
174 }
175 return n;
176 }
177
178 /*
179 * Chunk assembly from upper layer xdr_buf.
180 *
181 * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
182 * elements. Segments are then coalesced when registered, if possible
183 * within the selected memreg mode.
184 *
185 * Returns positive number of segments converted, or a negative errno.
186 */
187
188 static int
189 rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
190 enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg,
191 bool reminv_expected)
192 {
193 int len, n, p, page_base;
194 struct page **ppages;
195
196 n = 0;
197 if (pos == 0) {
198 n = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, n);
199 if (n == RPCRDMA_MAX_SEGS)
200 goto out_overflow;
201 }
202
203 len = xdrbuf->page_len;
204 ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
205 page_base = xdrbuf->page_base & ~PAGE_MASK;
206 p = 0;
207 while (len && n < RPCRDMA_MAX_SEGS) {
208 if (!ppages[p]) {
209 /* alloc the pagelist for receiving buffer */
210 ppages[p] = alloc_page(GFP_ATOMIC);
211 if (!ppages[p])
212 return -EAGAIN;
213 }
214 seg[n].mr_page = ppages[p];
215 seg[n].mr_offset = (void *)(unsigned long) page_base;
216 seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
217 if (seg[n].mr_len > PAGE_SIZE)
218 goto out_overflow;
219 len -= seg[n].mr_len;
220 ++n;
221 ++p;
222 page_base = 0; /* page offset only applies to first page */
223 }
224
225 /* Message overflows the seg array */
226 if (len && n == RPCRDMA_MAX_SEGS)
227 goto out_overflow;
228
229 /* When encoding the read list, the tail is always sent inline */
230 if (type == rpcrdma_readch)
231 return n;
232
233 /* When encoding the Write list, some servers need to see an extra
234 * segment for odd-length Write chunks. The upper layer provides
235 * space in the tail iovec for this purpose.
236 */
237 if (type == rpcrdma_writech && reminv_expected)
238 return n;
239
240 if (xdrbuf->tail[0].iov_len) {
241 /* the rpcrdma protocol allows us to omit any trailing
242 * xdr pad bytes, saving the server an RDMA operation. */
243 if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
244 return n;
245 n = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, n);
246 if (n == RPCRDMA_MAX_SEGS)
247 goto out_overflow;
248 }
249
250 return n;
251
252 out_overflow:
253 pr_err("rpcrdma: segment array overflow\n");
254 return -EIO;
255 }
256
257 static inline __be32 *
258 xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mw *mw)
259 {
260 *iptr++ = cpu_to_be32(mw->mw_handle);
261 *iptr++ = cpu_to_be32(mw->mw_length);
262 return xdr_encode_hyper(iptr, mw->mw_offset);
263 }
264
265 /* XDR-encode the Read list. Supports encoding a list of read
266 * segments that belong to a single read chunk.
267 *
268 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
269 *
270 * Read chunklist (a linked list):
271 * N elements, position P (same P for all chunks of same arg!):
272 * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
273 *
274 * Returns a pointer to the XDR word in the RDMA header following
275 * the end of the Read list, or an error pointer.
276 */
277 static __be32 *
278 rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt,
279 struct rpcrdma_req *req, struct rpc_rqst *rqst,
280 __be32 *iptr, enum rpcrdma_chunktype rtype)
281 {
282 struct rpcrdma_mr_seg *seg;
283 struct rpcrdma_mw *mw;
284 unsigned int pos;
285 int n, nsegs;
286
287 if (rtype == rpcrdma_noch) {
288 *iptr++ = xdr_zero; /* item not present */
289 return iptr;
290 }
291
292 pos = rqst->rq_snd_buf.head[0].iov_len;
293 if (rtype == rpcrdma_areadch)
294 pos = 0;
295 seg = req->rl_segments;
296 nsegs = rpcrdma_convert_iovs(&rqst->rq_snd_buf, pos, rtype, seg, false);
297 if (nsegs < 0)
298 return ERR_PTR(nsegs);
299
300 do {
301 n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
302 false, &mw);
303 if (n < 0)
304 return ERR_PTR(n);
305 list_add(&mw->mw_list, &req->rl_registered);
306
307 *iptr++ = xdr_one; /* item present */
308
309 /* All read segments in this chunk
310 * have the same "position".
311 */
312 *iptr++ = cpu_to_be32(pos);
313 iptr = xdr_encode_rdma_segment(iptr, mw);
314
315 dprintk("RPC: %5u %s: pos %u %u@0x%016llx:0x%08x (%s)\n",
316 rqst->rq_task->tk_pid, __func__, pos,
317 mw->mw_length, (unsigned long long)mw->mw_offset,
318 mw->mw_handle, n < nsegs ? "more" : "last");
319
320 r_xprt->rx_stats.read_chunk_count++;
321 seg += n;
322 nsegs -= n;
323 } while (nsegs);
324
325 /* Finish Read list */
326 *iptr++ = xdr_zero; /* Next item not present */
327 return iptr;
328 }
329
330 /* XDR-encode the Write list. Supports encoding a list containing
331 * one array of plain segments that belong to a single write chunk.
332 *
333 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
334 *
335 * Write chunklist (a list of (one) counted array):
336 * N elements:
337 * 1 - N - HLOO - HLOO - ... - HLOO - 0
338 *
339 * Returns a pointer to the XDR word in the RDMA header following
340 * the end of the Write list, or an error pointer.
341 */
342 static __be32 *
343 rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
344 struct rpc_rqst *rqst, __be32 *iptr,
345 enum rpcrdma_chunktype wtype)
346 {
347 struct rpcrdma_mr_seg *seg;
348 struct rpcrdma_mw *mw;
349 int n, nsegs, nchunks;
350 __be32 *segcount;
351
352 if (wtype != rpcrdma_writech) {
353 *iptr++ = xdr_zero; /* no Write list present */
354 return iptr;
355 }
356
357 seg = req->rl_segments;
358 nsegs = rpcrdma_convert_iovs(&rqst->rq_rcv_buf,
359 rqst->rq_rcv_buf.head[0].iov_len,
360 wtype, seg,
361 r_xprt->rx_ia.ri_reminv_expected);
362 if (nsegs < 0)
363 return ERR_PTR(nsegs);
364
365 *iptr++ = xdr_one; /* Write list present */
366 segcount = iptr++; /* save location of segment count */
367
368 nchunks = 0;
369 do {
370 n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
371 true, &mw);
372 if (n < 0)
373 return ERR_PTR(n);
374 list_add(&mw->mw_list, &req->rl_registered);
375
376 iptr = xdr_encode_rdma_segment(iptr, mw);
377
378 dprintk("RPC: %5u %s: %u@0x016%llx:0x%08x (%s)\n",
379 rqst->rq_task->tk_pid, __func__,
380 mw->mw_length, (unsigned long long)mw->mw_offset,
381 mw->mw_handle, n < nsegs ? "more" : "last");
382
383 r_xprt->rx_stats.write_chunk_count++;
384 r_xprt->rx_stats.total_rdma_request += seg->mr_len;
385 nchunks++;
386 seg += n;
387 nsegs -= n;
388 } while (nsegs);
389
390 /* Update count of segments in this Write chunk */
391 *segcount = cpu_to_be32(nchunks);
392
393 /* Finish Write list */
394 *iptr++ = xdr_zero; /* Next item not present */
395 return iptr;
396 }
397
398 /* XDR-encode the Reply chunk. Supports encoding an array of plain
399 * segments that belong to a single write (reply) chunk.
400 *
401 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
402 *
403 * Reply chunk (a counted array):
404 * N elements:
405 * 1 - N - HLOO - HLOO - ... - HLOO
406 *
407 * Returns a pointer to the XDR word in the RDMA header following
408 * the end of the Reply chunk, or an error pointer.
409 */
410 static __be32 *
411 rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt,
412 struct rpcrdma_req *req, struct rpc_rqst *rqst,
413 __be32 *iptr, enum rpcrdma_chunktype wtype)
414 {
415 struct rpcrdma_mr_seg *seg;
416 struct rpcrdma_mw *mw;
417 int n, nsegs, nchunks;
418 __be32 *segcount;
419
420 if (wtype != rpcrdma_replych) {
421 *iptr++ = xdr_zero; /* no Reply chunk present */
422 return iptr;
423 }
424
425 seg = req->rl_segments;
426 nsegs = rpcrdma_convert_iovs(&rqst->rq_rcv_buf, 0, wtype, seg,
427 r_xprt->rx_ia.ri_reminv_expected);
428 if (nsegs < 0)
429 return ERR_PTR(nsegs);
430
431 *iptr++ = xdr_one; /* Reply chunk present */
432 segcount = iptr++; /* save location of segment count */
433
434 nchunks = 0;
435 do {
436 n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
437 true, &mw);
438 if (n < 0)
439 return ERR_PTR(n);
440 list_add(&mw->mw_list, &req->rl_registered);
441
442 iptr = xdr_encode_rdma_segment(iptr, mw);
443
444 dprintk("RPC: %5u %s: %u@0x%016llx:0x%08x (%s)\n",
445 rqst->rq_task->tk_pid, __func__,
446 mw->mw_length, (unsigned long long)mw->mw_offset,
447 mw->mw_handle, n < nsegs ? "more" : "last");
448
449 r_xprt->rx_stats.reply_chunk_count++;
450 r_xprt->rx_stats.total_rdma_request += seg->mr_len;
451 nchunks++;
452 seg += n;
453 nsegs -= n;
454 } while (nsegs);
455
456 /* Update count of segments in the Reply chunk */
457 *segcount = cpu_to_be32(nchunks);
458
459 return iptr;
460 }
461
462 /* Prepare the RPC-over-RDMA header SGE.
463 */
464 static bool
465 rpcrdma_prepare_hdr_sge(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
466 u32 len)
467 {
468 struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
469 struct ib_sge *sge = &req->rl_send_sge[0];
470
471 if (unlikely(!rpcrdma_regbuf_is_mapped(rb))) {
472 if (!__rpcrdma_dma_map_regbuf(ia, rb))
473 return false;
474 sge->addr = rdmab_addr(rb);
475 sge->lkey = rdmab_lkey(rb);
476 }
477 sge->length = len;
478
479 ib_dma_sync_single_for_device(ia->ri_device, sge->addr,
480 sge->length, DMA_TO_DEVICE);
481 req->rl_send_wr.num_sge++;
482 return true;
483 }
484
485 /* Prepare the Send SGEs. The head and tail iovec, and each entry
486 * in the page list, gets its own SGE.
487 */
488 static bool
489 rpcrdma_prepare_msg_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
490 struct xdr_buf *xdr, enum rpcrdma_chunktype rtype)
491 {
492 unsigned int sge_no, page_base, len, remaining;
493 struct rpcrdma_regbuf *rb = req->rl_sendbuf;
494 struct ib_device *device = ia->ri_device;
495 struct ib_sge *sge = req->rl_send_sge;
496 u32 lkey = ia->ri_pd->local_dma_lkey;
497 struct page *page, **ppages;
498
499 /* The head iovec is straightforward, as it is already
500 * DMA-mapped. Sync the content that has changed.
501 */
502 if (!rpcrdma_dma_map_regbuf(ia, rb))
503 return false;
504 sge_no = 1;
505 sge[sge_no].addr = rdmab_addr(rb);
506 sge[sge_no].length = xdr->head[0].iov_len;
507 sge[sge_no].lkey = rdmab_lkey(rb);
508 ib_dma_sync_single_for_device(device, sge[sge_no].addr,
509 sge[sge_no].length, DMA_TO_DEVICE);
510
511 /* If there is a Read chunk, the page list is being handled
512 * via explicit RDMA, and thus is skipped here. However, the
513 * tail iovec may include an XDR pad for the page list, as
514 * well as additional content, and may not reside in the
515 * same page as the head iovec.
516 */
517 if (rtype == rpcrdma_readch) {
518 len = xdr->tail[0].iov_len;
519
520 /* Do not include the tail if it is only an XDR pad */
521 if (len < 4)
522 goto out;
523
524 page = virt_to_page(xdr->tail[0].iov_base);
525 page_base = (unsigned long)xdr->tail[0].iov_base & ~PAGE_MASK;
526
527 /* If the content in the page list is an odd length,
528 * xdr_write_pages() has added a pad at the beginning
529 * of the tail iovec. Force the tail's non-pad content
530 * to land at the next XDR position in the Send message.
531 */
532 page_base += len & 3;
533 len -= len & 3;
534 goto map_tail;
535 }
536
537 /* If there is a page list present, temporarily DMA map
538 * and prepare an SGE for each page to be sent.
539 */
540 if (xdr->page_len) {
541 ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
542 page_base = xdr->page_base & ~PAGE_MASK;
543 remaining = xdr->page_len;
544 while (remaining) {
545 sge_no++;
546 if (sge_no > RPCRDMA_MAX_SEND_SGES - 2)
547 goto out_mapping_overflow;
548
549 len = min_t(u32, PAGE_SIZE - page_base, remaining);
550 sge[sge_no].addr = ib_dma_map_page(device, *ppages,
551 page_base, len,
552 DMA_TO_DEVICE);
553 if (ib_dma_mapping_error(device, sge[sge_no].addr))
554 goto out_mapping_err;
555 sge[sge_no].length = len;
556 sge[sge_no].lkey = lkey;
557
558 req->rl_mapped_sges++;
559 ppages++;
560 remaining -= len;
561 page_base = 0;
562 }
563 }
564
565 /* The tail iovec is not always constructed in the same
566 * page where the head iovec resides (see, for example,
567 * gss_wrap_req_priv). To neatly accommodate that case,
568 * DMA map it separately.
569 */
570 if (xdr->tail[0].iov_len) {
571 page = virt_to_page(xdr->tail[0].iov_base);
572 page_base = (unsigned long)xdr->tail[0].iov_base & ~PAGE_MASK;
573 len = xdr->tail[0].iov_len;
574
575 map_tail:
576 sge_no++;
577 sge[sge_no].addr = ib_dma_map_page(device, page,
578 page_base, len,
579 DMA_TO_DEVICE);
580 if (ib_dma_mapping_error(device, sge[sge_no].addr))
581 goto out_mapping_err;
582 sge[sge_no].length = len;
583 sge[sge_no].lkey = lkey;
584 req->rl_mapped_sges++;
585 }
586
587 out:
588 req->rl_send_wr.num_sge = sge_no + 1;
589 return true;
590
591 out_mapping_overflow:
592 pr_err("rpcrdma: too many Send SGEs (%u)\n", sge_no);
593 return false;
594
595 out_mapping_err:
596 pr_err("rpcrdma: Send mapping error\n");
597 return false;
598 }
599
600 bool
601 rpcrdma_prepare_send_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
602 u32 hdrlen, struct xdr_buf *xdr,
603 enum rpcrdma_chunktype rtype)
604 {
605 req->rl_send_wr.num_sge = 0;
606 req->rl_mapped_sges = 0;
607
608 if (!rpcrdma_prepare_hdr_sge(ia, req, hdrlen))
609 goto out_map;
610
611 if (rtype != rpcrdma_areadch)
612 if (!rpcrdma_prepare_msg_sges(ia, req, xdr, rtype))
613 goto out_map;
614
615 return true;
616
617 out_map:
618 pr_err("rpcrdma: failed to DMA map a Send buffer\n");
619 return false;
620 }
621
622 void
623 rpcrdma_unmap_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req)
624 {
625 struct ib_device *device = ia->ri_device;
626 struct ib_sge *sge;
627 int count;
628
629 sge = &req->rl_send_sge[2];
630 for (count = req->rl_mapped_sges; count--; sge++)
631 ib_dma_unmap_page(device, sge->addr, sge->length,
632 DMA_TO_DEVICE);
633 req->rl_mapped_sges = 0;
634 }
635
636 /*
637 * Marshal a request: the primary job of this routine is to choose
638 * the transfer modes. See comments below.
639 *
640 * Returns zero on success, otherwise a negative errno.
641 */
642
643 int
644 rpcrdma_marshal_req(struct rpc_rqst *rqst)
645 {
646 struct rpc_xprt *xprt = rqst->rq_xprt;
647 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
648 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
649 enum rpcrdma_chunktype rtype, wtype;
650 struct rpcrdma_msg *headerp;
651 bool ddp_allowed;
652 ssize_t hdrlen;
653 size_t rpclen;
654 __be32 *iptr;
655
656 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
657 if (test_bit(RPC_BC_PA_IN_USE, &rqst->rq_bc_pa_state))
658 return rpcrdma_bc_marshal_reply(rqst);
659 #endif
660
661 headerp = rdmab_to_msg(req->rl_rdmabuf);
662 /* don't byte-swap XID, it's already done in request */
663 headerp->rm_xid = rqst->rq_xid;
664 headerp->rm_vers = rpcrdma_version;
665 headerp->rm_credit = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
666 headerp->rm_type = rdma_msg;
667
668 /* When the ULP employs a GSS flavor that guarantees integrity
669 * or privacy, direct data placement of individual data items
670 * is not allowed.
671 */
672 ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags &
673 RPCAUTH_AUTH_DATATOUCH);
674
675 /*
676 * Chunks needed for results?
677 *
678 * o If the expected result is under the inline threshold, all ops
679 * return as inline.
680 * o Large read ops return data as write chunk(s), header as
681 * inline.
682 * o Large non-read ops return as a single reply chunk.
683 */
684 if (rpcrdma_results_inline(r_xprt, rqst))
685 wtype = rpcrdma_noch;
686 else if (ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ)
687 wtype = rpcrdma_writech;
688 else
689 wtype = rpcrdma_replych;
690
691 /*
692 * Chunks needed for arguments?
693 *
694 * o If the total request is under the inline threshold, all ops
695 * are sent as inline.
696 * o Large write ops transmit data as read chunk(s), header as
697 * inline.
698 * o Large non-write ops are sent with the entire message as a
699 * single read chunk (protocol 0-position special case).
700 *
701 * This assumes that the upper layer does not present a request
702 * that both has a data payload, and whose non-data arguments
703 * by themselves are larger than the inline threshold.
704 */
705 if (rpcrdma_args_inline(r_xprt, rqst)) {
706 rtype = rpcrdma_noch;
707 rpclen = rqst->rq_snd_buf.len;
708 } else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
709 rtype = rpcrdma_readch;
710 rpclen = rqst->rq_snd_buf.head[0].iov_len +
711 rqst->rq_snd_buf.tail[0].iov_len;
712 } else {
713 r_xprt->rx_stats.nomsg_call_count++;
714 headerp->rm_type = htonl(RDMA_NOMSG);
715 rtype = rpcrdma_areadch;
716 rpclen = 0;
717 }
718
719 /* This implementation supports the following combinations
720 * of chunk lists in one RPC-over-RDMA Call message:
721 *
722 * - Read list
723 * - Write list
724 * - Reply chunk
725 * - Read list + Reply chunk
726 *
727 * It might not yet support the following combinations:
728 *
729 * - Read list + Write list
730 *
731 * It does not support the following combinations:
732 *
733 * - Write list + Reply chunk
734 * - Read list + Write list + Reply chunk
735 *
736 * This implementation supports only a single chunk in each
737 * Read or Write list. Thus for example the client cannot
738 * send a Call message with a Position Zero Read chunk and a
739 * regular Read chunk at the same time.
740 */
741 iptr = headerp->rm_body.rm_chunks;
742 iptr = rpcrdma_encode_read_list(r_xprt, req, rqst, iptr, rtype);
743 if (IS_ERR(iptr))
744 goto out_unmap;
745 iptr = rpcrdma_encode_write_list(r_xprt, req, rqst, iptr, wtype);
746 if (IS_ERR(iptr))
747 goto out_unmap;
748 iptr = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, iptr, wtype);
749 if (IS_ERR(iptr))
750 goto out_unmap;
751 hdrlen = (unsigned char *)iptr - (unsigned char *)headerp;
752
753 dprintk("RPC: %5u %s: %s/%s: hdrlen %zd rpclen %zd\n",
754 rqst->rq_task->tk_pid, __func__,
755 transfertypes[rtype], transfertypes[wtype],
756 hdrlen, rpclen);
757
758 if (!rpcrdma_prepare_send_sges(&r_xprt->rx_ia, req, hdrlen,
759 &rqst->rq_snd_buf, rtype)) {
760 iptr = ERR_PTR(-EIO);
761 goto out_unmap;
762 }
763 return 0;
764
765 out_unmap:
766 r_xprt->rx_ia.ri_ops->ro_unmap_safe(r_xprt, req, false);
767 return PTR_ERR(iptr);
768 }
769
770 /*
771 * Chase down a received write or reply chunklist to get length
772 * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
773 */
774 static int
775 rpcrdma_count_chunks(struct rpcrdma_rep *rep, int wrchunk, __be32 **iptrp)
776 {
777 unsigned int i, total_len;
778 struct rpcrdma_write_chunk *cur_wchunk;
779 char *base = (char *)rdmab_to_msg(rep->rr_rdmabuf);
780
781 i = be32_to_cpu(**iptrp);
782 cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
783 total_len = 0;
784 while (i--) {
785 struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
786 ifdebug(FACILITY) {
787 u64 off;
788 xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
789 dprintk("RPC: %s: chunk %d@0x%016llx:0x%08x\n",
790 __func__,
791 be32_to_cpu(seg->rs_length),
792 (unsigned long long)off,
793 be32_to_cpu(seg->rs_handle));
794 }
795 total_len += be32_to_cpu(seg->rs_length);
796 ++cur_wchunk;
797 }
798 /* check and adjust for properly terminated write chunk */
799 if (wrchunk) {
800 __be32 *w = (__be32 *) cur_wchunk;
801 if (*w++ != xdr_zero)
802 return -1;
803 cur_wchunk = (struct rpcrdma_write_chunk *) w;
804 }
805 if ((char *)cur_wchunk > base + rep->rr_len)
806 return -1;
807
808 *iptrp = (__be32 *) cur_wchunk;
809 return total_len;
810 }
811
812 /**
813 * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
814 * @rqst: controlling RPC request
815 * @srcp: points to RPC message payload in receive buffer
816 * @copy_len: remaining length of receive buffer content
817 * @pad: Write chunk pad bytes needed (zero for pure inline)
818 *
819 * The upper layer has set the maximum number of bytes it can
820 * receive in each component of rq_rcv_buf. These values are set in
821 * the head.iov_len, page_len, tail.iov_len, and buflen fields.
822 *
823 * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
824 * many cases this function simply updates iov_base pointers in
825 * rq_rcv_buf to point directly to the received reply data, to
826 * avoid copying reply data.
827 *
828 * Returns the count of bytes which had to be memcopied.
829 */
830 static unsigned long
831 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
832 {
833 unsigned long fixup_copy_count;
834 int i, npages, curlen;
835 char *destp;
836 struct page **ppages;
837 int page_base;
838
839 /* The head iovec is redirected to the RPC reply message
840 * in the receive buffer, to avoid a memcopy.
841 */
842 rqst->rq_rcv_buf.head[0].iov_base = srcp;
843 rqst->rq_private_buf.head[0].iov_base = srcp;
844
845 /* The contents of the receive buffer that follow
846 * head.iov_len bytes are copied into the page list.
847 */
848 curlen = rqst->rq_rcv_buf.head[0].iov_len;
849 if (curlen > copy_len)
850 curlen = copy_len;
851 dprintk("RPC: %s: srcp 0x%p len %d hdrlen %d\n",
852 __func__, srcp, copy_len, curlen);
853 srcp += curlen;
854 copy_len -= curlen;
855
856 page_base = rqst->rq_rcv_buf.page_base;
857 ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
858 page_base &= ~PAGE_MASK;
859 fixup_copy_count = 0;
860 if (copy_len && rqst->rq_rcv_buf.page_len) {
861 int pagelist_len;
862
863 pagelist_len = rqst->rq_rcv_buf.page_len;
864 if (pagelist_len > copy_len)
865 pagelist_len = copy_len;
866 npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
867 for (i = 0; i < npages; i++) {
868 curlen = PAGE_SIZE - page_base;
869 if (curlen > pagelist_len)
870 curlen = pagelist_len;
871
872 dprintk("RPC: %s: page %d"
873 " srcp 0x%p len %d curlen %d\n",
874 __func__, i, srcp, copy_len, curlen);
875 destp = kmap_atomic(ppages[i]);
876 memcpy(destp + page_base, srcp, curlen);
877 flush_dcache_page(ppages[i]);
878 kunmap_atomic(destp);
879 srcp += curlen;
880 copy_len -= curlen;
881 fixup_copy_count += curlen;
882 pagelist_len -= curlen;
883 if (!pagelist_len)
884 break;
885 page_base = 0;
886 }
887
888 /* Implicit padding for the last segment in a Write
889 * chunk is inserted inline at the front of the tail
890 * iovec. The upper layer ignores the content of
891 * the pad. Simply ensure inline content in the tail
892 * that follows the Write chunk is properly aligned.
893 */
894 if (pad)
895 srcp -= pad;
896 }
897
898 /* The tail iovec is redirected to the remaining data
899 * in the receive buffer, to avoid a memcopy.
900 */
901 if (copy_len || pad) {
902 rqst->rq_rcv_buf.tail[0].iov_base = srcp;
903 rqst->rq_private_buf.tail[0].iov_base = srcp;
904 }
905
906 return fixup_copy_count;
907 }
908
909 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
910 /* By convention, backchannel calls arrive via rdma_msg type
911 * messages, and never populate the chunk lists. This makes
912 * the RPC/RDMA header small and fixed in size, so it is
913 * straightforward to check the RPC header's direction field.
914 */
915 static bool
916 rpcrdma_is_bcall(struct rpcrdma_msg *headerp)
917 {
918 __be32 *p = (__be32 *)headerp;
919
920 if (headerp->rm_type != rdma_msg)
921 return false;
922 if (headerp->rm_body.rm_chunks[0] != xdr_zero)
923 return false;
924 if (headerp->rm_body.rm_chunks[1] != xdr_zero)
925 return false;
926 if (headerp->rm_body.rm_chunks[2] != xdr_zero)
927 return false;
928
929 /* sanity */
930 if (p[7] != headerp->rm_xid)
931 return false;
932 /* call direction */
933 if (p[8] != cpu_to_be32(RPC_CALL))
934 return false;
935
936 return true;
937 }
938 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
939
940 /* Process received RPC/RDMA messages.
941 *
942 * Errors must result in the RPC task either being awakened, or
943 * allowed to timeout, to discover the errors at that time.
944 */
945 void
946 rpcrdma_reply_handler(struct work_struct *work)
947 {
948 struct rpcrdma_rep *rep =
949 container_of(work, struct rpcrdma_rep, rr_work);
950 struct rpcrdma_msg *headerp;
951 struct rpcrdma_req *req;
952 struct rpc_rqst *rqst;
953 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
954 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
955 __be32 *iptr;
956 int rdmalen, status, rmerr;
957 unsigned long cwnd;
958
959 dprintk("RPC: %s: incoming rep %p\n", __func__, rep);
960
961 if (rep->rr_len == RPCRDMA_BAD_LEN)
962 goto out_badstatus;
963 if (rep->rr_len < RPCRDMA_HDRLEN_ERR)
964 goto out_shortreply;
965
966 headerp = rdmab_to_msg(rep->rr_rdmabuf);
967 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
968 if (rpcrdma_is_bcall(headerp))
969 goto out_bcall;
970 #endif
971
972 /* Match incoming rpcrdma_rep to an rpcrdma_req to
973 * get context for handling any incoming chunks.
974 */
975 spin_lock_bh(&xprt->transport_lock);
976 rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
977 if (!rqst)
978 goto out_nomatch;
979
980 req = rpcr_to_rdmar(rqst);
981 if (req->rl_reply)
982 goto out_duplicate;
983
984 /* Sanity checking has passed. We are now committed
985 * to complete this transaction.
986 */
987 list_del_init(&rqst->rq_list);
988 spin_unlock_bh(&xprt->transport_lock);
989 dprintk("RPC: %s: reply %p completes request %p (xid 0x%08x)\n",
990 __func__, rep, req, be32_to_cpu(headerp->rm_xid));
991
992 /* from here on, the reply is no longer an orphan */
993 req->rl_reply = rep;
994 xprt->reestablish_timeout = 0;
995
996 if (headerp->rm_vers != rpcrdma_version)
997 goto out_badversion;
998
999 /* check for expected message types */
1000 /* The order of some of these tests is important. */
1001 switch (headerp->rm_type) {
1002 case rdma_msg:
1003 /* never expect read chunks */
1004 /* never expect reply chunks (two ways to check) */
1005 /* never expect write chunks without having offered RDMA */
1006 if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
1007 (headerp->rm_body.rm_chunks[1] == xdr_zero &&
1008 headerp->rm_body.rm_chunks[2] != xdr_zero) ||
1009 (headerp->rm_body.rm_chunks[1] != xdr_zero &&
1010 list_empty(&req->rl_registered)))
1011 goto badheader;
1012 if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
1013 /* count any expected write chunks in read reply */
1014 /* start at write chunk array count */
1015 iptr = &headerp->rm_body.rm_chunks[2];
1016 rdmalen = rpcrdma_count_chunks(rep, 1, &iptr);
1017 /* check for validity, and no reply chunk after */
1018 if (rdmalen < 0 || *iptr++ != xdr_zero)
1019 goto badheader;
1020 rep->rr_len -=
1021 ((unsigned char *)iptr - (unsigned char *)headerp);
1022 status = rep->rr_len + rdmalen;
1023 r_xprt->rx_stats.total_rdma_reply += rdmalen;
1024 /* special case - last chunk may omit padding */
1025 if (rdmalen &= 3) {
1026 rdmalen = 4 - rdmalen;
1027 status += rdmalen;
1028 }
1029 } else {
1030 /* else ordinary inline */
1031 rdmalen = 0;
1032 iptr = (__be32 *)((unsigned char *)headerp +
1033 RPCRDMA_HDRLEN_MIN);
1034 rep->rr_len -= RPCRDMA_HDRLEN_MIN;
1035 status = rep->rr_len;
1036 }
1037
1038 r_xprt->rx_stats.fixup_copy_count +=
1039 rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len,
1040 rdmalen);
1041 break;
1042
1043 case rdma_nomsg:
1044 /* never expect read or write chunks, always reply chunks */
1045 if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
1046 headerp->rm_body.rm_chunks[1] != xdr_zero ||
1047 headerp->rm_body.rm_chunks[2] != xdr_one ||
1048 list_empty(&req->rl_registered))
1049 goto badheader;
1050 iptr = (__be32 *)((unsigned char *)headerp +
1051 RPCRDMA_HDRLEN_MIN);
1052 rdmalen = rpcrdma_count_chunks(rep, 0, &iptr);
1053 if (rdmalen < 0)
1054 goto badheader;
1055 r_xprt->rx_stats.total_rdma_reply += rdmalen;
1056 /* Reply chunk buffer already is the reply vector - no fixup. */
1057 status = rdmalen;
1058 break;
1059
1060 case rdma_error:
1061 goto out_rdmaerr;
1062
1063 badheader:
1064 default:
1065 dprintk("RPC: %5u %s: invalid rpcrdma reply (type %u)\n",
1066 rqst->rq_task->tk_pid, __func__,
1067 be32_to_cpu(headerp->rm_type));
1068 status = -EIO;
1069 r_xprt->rx_stats.bad_reply_count++;
1070 break;
1071 }
1072
1073 out:
1074 /* Invalidate and flush the data payloads before waking the
1075 * waiting application. This guarantees the memory region is
1076 * properly fenced from the server before the application
1077 * accesses the data. It also ensures proper send flow
1078 * control: waking the next RPC waits until this RPC has
1079 * relinquished all its Send Queue entries.
1080 */
1081 if (!list_empty(&req->rl_registered))
1082 r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt, req);
1083
1084 spin_lock_bh(&xprt->transport_lock);
1085 cwnd = xprt->cwnd;
1086 xprt->cwnd = atomic_read(&r_xprt->rx_buf.rb_credits) << RPC_CWNDSHIFT;
1087 if (xprt->cwnd > cwnd)
1088 xprt_release_rqst_cong(rqst->rq_task);
1089
1090 xprt_complete_rqst(rqst->rq_task, status);
1091 spin_unlock_bh(&xprt->transport_lock);
1092 dprintk("RPC: %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
1093 __func__, xprt, rqst, status);
1094 return;
1095
1096 out_badstatus:
1097 rpcrdma_recv_buffer_put(rep);
1098 if (r_xprt->rx_ep.rep_connected == 1) {
1099 r_xprt->rx_ep.rep_connected = -EIO;
1100 rpcrdma_conn_func(&r_xprt->rx_ep);
1101 }
1102 return;
1103
1104 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1105 out_bcall:
1106 rpcrdma_bc_receive_call(r_xprt, rep);
1107 return;
1108 #endif
1109
1110 /* If the incoming reply terminated a pending RPC, the next
1111 * RPC call will post a replacement receive buffer as it is
1112 * being marshaled.
1113 */
1114 out_badversion:
1115 dprintk("RPC: %s: invalid version %d\n",
1116 __func__, be32_to_cpu(headerp->rm_vers));
1117 status = -EIO;
1118 r_xprt->rx_stats.bad_reply_count++;
1119 goto out;
1120
1121 out_rdmaerr:
1122 rmerr = be32_to_cpu(headerp->rm_body.rm_error.rm_err);
1123 switch (rmerr) {
1124 case ERR_VERS:
1125 pr_err("%s: server reports header version error (%u-%u)\n",
1126 __func__,
1127 be32_to_cpu(headerp->rm_body.rm_error.rm_vers_low),
1128 be32_to_cpu(headerp->rm_body.rm_error.rm_vers_high));
1129 break;
1130 case ERR_CHUNK:
1131 pr_err("%s: server reports header decoding error\n",
1132 __func__);
1133 break;
1134 default:
1135 pr_err("%s: server reports unknown error %d\n",
1136 __func__, rmerr);
1137 }
1138 status = -EREMOTEIO;
1139 r_xprt->rx_stats.bad_reply_count++;
1140 goto out;
1141
1142 /* If no pending RPC transaction was matched, post a replacement
1143 * receive buffer before returning.
1144 */
1145 out_shortreply:
1146 dprintk("RPC: %s: short/invalid reply\n", __func__);
1147 goto repost;
1148
1149 out_nomatch:
1150 spin_unlock_bh(&xprt->transport_lock);
1151 dprintk("RPC: %s: no match for incoming xid 0x%08x len %d\n",
1152 __func__, be32_to_cpu(headerp->rm_xid),
1153 rep->rr_len);
1154 goto repost;
1155
1156 out_duplicate:
1157 spin_unlock_bh(&xprt->transport_lock);
1158 dprintk("RPC: %s: "
1159 "duplicate reply %p to RPC request %p: xid 0x%08x\n",
1160 __func__, rep, req, be32_to_cpu(headerp->rm_xid));
1161
1162 repost:
1163 r_xprt->rx_stats.bad_reply_count++;
1164 if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, rep))
1165 rpcrdma_recv_buffer_put(rep);
1166 }