]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - net/sunrpc/xprtrdma/rpc_rdma.c
HID: logitech-dj: fix spelling in printk
[mirror_ubuntu-kernels.git] / net / sunrpc / xprtrdma / rpc_rdma.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (c) 2014-2017 Oracle. All rights reserved.
4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the BSD-type
10 * license below:
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 *
19 * Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials provided
22 * with the distribution.
23 *
24 * Neither the name of the Network Appliance, Inc. nor the names of
25 * its contributors may be used to endorse or promote products
26 * derived from this software without specific prior written
27 * permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42 /*
43 * rpc_rdma.c
44 *
45 * This file contains the guts of the RPC RDMA protocol, and
46 * does marshaling/unmarshaling, etc. It is also where interfacing
47 * to the Linux RPC framework lives.
48 */
49
50 #include <linux/highmem.h>
51
52 #include <linux/sunrpc/svc_rdma.h>
53
54 #include "xprt_rdma.h"
55 #include <trace/events/rpcrdma.h>
56
57 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
58 # define RPCDBG_FACILITY RPCDBG_TRANS
59 #endif
60
61 /* Returns size of largest RPC-over-RDMA header in a Call message
62 *
63 * The largest Call header contains a full-size Read list and a
64 * minimal Reply chunk.
65 */
66 static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
67 {
68 unsigned int size;
69
70 /* Fixed header fields and list discriminators */
71 size = RPCRDMA_HDRLEN_MIN;
72
73 /* Maximum Read list size */
74 size = maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32);
75
76 /* Minimal Read chunk size */
77 size += sizeof(__be32); /* segment count */
78 size += rpcrdma_segment_maxsz * sizeof(__be32);
79 size += sizeof(__be32); /* list discriminator */
80
81 dprintk("RPC: %s: max call header size = %u\n",
82 __func__, size);
83 return size;
84 }
85
86 /* Returns size of largest RPC-over-RDMA header in a Reply message
87 *
88 * There is only one Write list or one Reply chunk per Reply
89 * message. The larger list is the Write list.
90 */
91 static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
92 {
93 unsigned int size;
94
95 /* Fixed header fields and list discriminators */
96 size = RPCRDMA_HDRLEN_MIN;
97
98 /* Maximum Write list size */
99 size = sizeof(__be32); /* segment count */
100 size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32);
101 size += sizeof(__be32); /* list discriminator */
102
103 dprintk("RPC: %s: max reply header size = %u\n",
104 __func__, size);
105 return size;
106 }
107
108 void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt)
109 {
110 struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
111 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
112 unsigned int maxsegs = ia->ri_max_segs;
113
114 ia->ri_max_inline_write = cdata->inline_wsize -
115 rpcrdma_max_call_header_size(maxsegs);
116 ia->ri_max_inline_read = cdata->inline_rsize -
117 rpcrdma_max_reply_header_size(maxsegs);
118 }
119
120 /* The client can send a request inline as long as the RPCRDMA header
121 * plus the RPC call fit under the transport's inline limit. If the
122 * combined call message size exceeds that limit, the client must use
123 * a Read chunk for this operation.
124 *
125 * A Read chunk is also required if sending the RPC call inline would
126 * exceed this device's max_sge limit.
127 */
128 static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
129 struct rpc_rqst *rqst)
130 {
131 struct xdr_buf *xdr = &rqst->rq_snd_buf;
132 unsigned int count, remaining, offset;
133
134 if (xdr->len > r_xprt->rx_ia.ri_max_inline_write)
135 return false;
136
137 if (xdr->page_len) {
138 remaining = xdr->page_len;
139 offset = offset_in_page(xdr->page_base);
140 count = RPCRDMA_MIN_SEND_SGES;
141 while (remaining) {
142 remaining -= min_t(unsigned int,
143 PAGE_SIZE - offset, remaining);
144 offset = 0;
145 if (++count > r_xprt->rx_ia.ri_max_send_sges)
146 return false;
147 }
148 }
149
150 return true;
151 }
152
153 /* The client can't know how large the actual reply will be. Thus it
154 * plans for the largest possible reply for that particular ULP
155 * operation. If the maximum combined reply message size exceeds that
156 * limit, the client must provide a write list or a reply chunk for
157 * this request.
158 */
159 static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
160 struct rpc_rqst *rqst)
161 {
162 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
163
164 return rqst->rq_rcv_buf.buflen <= ia->ri_max_inline_read;
165 }
166
167 /* Split @vec on page boundaries into SGEs. FMR registers pages, not
168 * a byte range. Other modes coalesce these SGEs into a single MR
169 * when they can.
170 *
171 * Returns pointer to next available SGE, and bumps the total number
172 * of SGEs consumed.
173 */
174 static struct rpcrdma_mr_seg *
175 rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
176 unsigned int *n)
177 {
178 u32 remaining, page_offset;
179 char *base;
180
181 base = vec->iov_base;
182 page_offset = offset_in_page(base);
183 remaining = vec->iov_len;
184 while (remaining) {
185 seg->mr_page = NULL;
186 seg->mr_offset = base;
187 seg->mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
188 remaining -= seg->mr_len;
189 base += seg->mr_len;
190 ++seg;
191 ++(*n);
192 page_offset = 0;
193 }
194 return seg;
195 }
196
197 /* Convert @xdrbuf into SGEs no larger than a page each. As they
198 * are registered, these SGEs are then coalesced into RDMA segments
199 * when the selected memreg mode supports it.
200 *
201 * Returns positive number of SGEs consumed, or a negative errno.
202 */
203
204 static int
205 rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf,
206 unsigned int pos, enum rpcrdma_chunktype type,
207 struct rpcrdma_mr_seg *seg)
208 {
209 unsigned long page_base;
210 unsigned int len, n;
211 struct page **ppages;
212
213 n = 0;
214 if (pos == 0)
215 seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n);
216
217 len = xdrbuf->page_len;
218 ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
219 page_base = offset_in_page(xdrbuf->page_base);
220 while (len) {
221 /* ACL likes to be lazy in allocating pages - ACLs
222 * are small by default but can get huge.
223 */
224 if (unlikely(xdrbuf->flags & XDRBUF_SPARSE_PAGES)) {
225 if (!*ppages)
226 *ppages = alloc_page(GFP_ATOMIC);
227 if (!*ppages)
228 return -ENOBUFS;
229 }
230 seg->mr_page = *ppages;
231 seg->mr_offset = (char *)page_base;
232 seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len);
233 len -= seg->mr_len;
234 ++ppages;
235 ++seg;
236 ++n;
237 page_base = 0;
238 }
239
240 /* When encoding a Read chunk, the tail iovec contains an
241 * XDR pad and may be omitted.
242 */
243 if (type == rpcrdma_readch && r_xprt->rx_ia.ri_implicit_roundup)
244 goto out;
245
246 /* When encoding a Write chunk, some servers need to see an
247 * extra segment for non-XDR-aligned Write chunks. The upper
248 * layer provides space in the tail iovec that may be used
249 * for this purpose.
250 */
251 if (type == rpcrdma_writech && r_xprt->rx_ia.ri_implicit_roundup)
252 goto out;
253
254 if (xdrbuf->tail[0].iov_len)
255 seg = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n);
256
257 out:
258 if (unlikely(n > RPCRDMA_MAX_SEGS))
259 return -EIO;
260 return n;
261 }
262
263 static inline int
264 encode_item_present(struct xdr_stream *xdr)
265 {
266 __be32 *p;
267
268 p = xdr_reserve_space(xdr, sizeof(*p));
269 if (unlikely(!p))
270 return -EMSGSIZE;
271
272 *p = xdr_one;
273 return 0;
274 }
275
276 static inline int
277 encode_item_not_present(struct xdr_stream *xdr)
278 {
279 __be32 *p;
280
281 p = xdr_reserve_space(xdr, sizeof(*p));
282 if (unlikely(!p))
283 return -EMSGSIZE;
284
285 *p = xdr_zero;
286 return 0;
287 }
288
289 static void
290 xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mr *mr)
291 {
292 *iptr++ = cpu_to_be32(mr->mr_handle);
293 *iptr++ = cpu_to_be32(mr->mr_length);
294 xdr_encode_hyper(iptr, mr->mr_offset);
295 }
296
297 static int
298 encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr)
299 {
300 __be32 *p;
301
302 p = xdr_reserve_space(xdr, 4 * sizeof(*p));
303 if (unlikely(!p))
304 return -EMSGSIZE;
305
306 xdr_encode_rdma_segment(p, mr);
307 return 0;
308 }
309
310 static int
311 encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr,
312 u32 position)
313 {
314 __be32 *p;
315
316 p = xdr_reserve_space(xdr, 6 * sizeof(*p));
317 if (unlikely(!p))
318 return -EMSGSIZE;
319
320 *p++ = xdr_one; /* Item present */
321 *p++ = cpu_to_be32(position);
322 xdr_encode_rdma_segment(p, mr);
323 return 0;
324 }
325
326 /* Register and XDR encode the Read list. Supports encoding a list of read
327 * segments that belong to a single read chunk.
328 *
329 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
330 *
331 * Read chunklist (a linked list):
332 * N elements, position P (same P for all chunks of same arg!):
333 * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
334 *
335 * Returns zero on success, or a negative errno if a failure occurred.
336 * @xdr is advanced to the next position in the stream.
337 *
338 * Only a single @pos value is currently supported.
339 */
340 static noinline int
341 rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
342 struct rpc_rqst *rqst, enum rpcrdma_chunktype rtype)
343 {
344 struct xdr_stream *xdr = &req->rl_stream;
345 struct rpcrdma_mr_seg *seg;
346 struct rpcrdma_mr *mr;
347 unsigned int pos;
348 int nsegs;
349
350 pos = rqst->rq_snd_buf.head[0].iov_len;
351 if (rtype == rpcrdma_areadch)
352 pos = 0;
353 seg = req->rl_segments;
354 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos,
355 rtype, seg);
356 if (nsegs < 0)
357 return nsegs;
358
359 do {
360 seg = frwr_map(r_xprt, seg, nsegs, false, rqst->rq_xid, &mr);
361 if (IS_ERR(seg))
362 return PTR_ERR(seg);
363 rpcrdma_mr_push(mr, &req->rl_registered);
364
365 if (encode_read_segment(xdr, mr, pos) < 0)
366 return -EMSGSIZE;
367
368 trace_xprtrdma_chunk_read(rqst->rq_task, pos, mr, nsegs);
369 r_xprt->rx_stats.read_chunk_count++;
370 nsegs -= mr->mr_nents;
371 } while (nsegs);
372
373 return 0;
374 }
375
376 /* Register and XDR encode the Write list. Supports encoding a list
377 * containing one array of plain segments that belong to a single
378 * write chunk.
379 *
380 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
381 *
382 * Write chunklist (a list of (one) counted array):
383 * N elements:
384 * 1 - N - HLOO - HLOO - ... - HLOO - 0
385 *
386 * Returns zero on success, or a negative errno if a failure occurred.
387 * @xdr is advanced to the next position in the stream.
388 *
389 * Only a single Write chunk is currently supported.
390 */
391 static noinline int
392 rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
393 struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype)
394 {
395 struct xdr_stream *xdr = &req->rl_stream;
396 struct rpcrdma_mr_seg *seg;
397 struct rpcrdma_mr *mr;
398 int nsegs, nchunks;
399 __be32 *segcount;
400
401 seg = req->rl_segments;
402 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf,
403 rqst->rq_rcv_buf.head[0].iov_len,
404 wtype, seg);
405 if (nsegs < 0)
406 return nsegs;
407
408 if (encode_item_present(xdr) < 0)
409 return -EMSGSIZE;
410 segcount = xdr_reserve_space(xdr, sizeof(*segcount));
411 if (unlikely(!segcount))
412 return -EMSGSIZE;
413 /* Actual value encoded below */
414
415 nchunks = 0;
416 do {
417 seg = frwr_map(r_xprt, seg, nsegs, true, rqst->rq_xid, &mr);
418 if (IS_ERR(seg))
419 return PTR_ERR(seg);
420 rpcrdma_mr_push(mr, &req->rl_registered);
421
422 if (encode_rdma_segment(xdr, mr) < 0)
423 return -EMSGSIZE;
424
425 trace_xprtrdma_chunk_write(rqst->rq_task, mr, nsegs);
426 r_xprt->rx_stats.write_chunk_count++;
427 r_xprt->rx_stats.total_rdma_request += mr->mr_length;
428 nchunks++;
429 nsegs -= mr->mr_nents;
430 } while (nsegs);
431
432 /* Update count of segments in this Write chunk */
433 *segcount = cpu_to_be32(nchunks);
434
435 return 0;
436 }
437
438 /* Register and XDR encode the Reply chunk. Supports encoding an array
439 * of plain segments that belong to a single write (reply) chunk.
440 *
441 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
442 *
443 * Reply chunk (a counted array):
444 * N elements:
445 * 1 - N - HLOO - HLOO - ... - HLOO
446 *
447 * Returns zero on success, or a negative errno if a failure occurred.
448 * @xdr is advanced to the next position in the stream.
449 */
450 static noinline int
451 rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
452 struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype)
453 {
454 struct xdr_stream *xdr = &req->rl_stream;
455 struct rpcrdma_mr_seg *seg;
456 struct rpcrdma_mr *mr;
457 int nsegs, nchunks;
458 __be32 *segcount;
459
460 seg = req->rl_segments;
461 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg);
462 if (nsegs < 0)
463 return nsegs;
464
465 if (encode_item_present(xdr) < 0)
466 return -EMSGSIZE;
467 segcount = xdr_reserve_space(xdr, sizeof(*segcount));
468 if (unlikely(!segcount))
469 return -EMSGSIZE;
470 /* Actual value encoded below */
471
472 nchunks = 0;
473 do {
474 seg = frwr_map(r_xprt, seg, nsegs, true, rqst->rq_xid, &mr);
475 if (IS_ERR(seg))
476 return PTR_ERR(seg);
477 rpcrdma_mr_push(mr, &req->rl_registered);
478
479 if (encode_rdma_segment(xdr, mr) < 0)
480 return -EMSGSIZE;
481
482 trace_xprtrdma_chunk_reply(rqst->rq_task, mr, nsegs);
483 r_xprt->rx_stats.reply_chunk_count++;
484 r_xprt->rx_stats.total_rdma_request += mr->mr_length;
485 nchunks++;
486 nsegs -= mr->mr_nents;
487 } while (nsegs);
488
489 /* Update count of segments in the Reply chunk */
490 *segcount = cpu_to_be32(nchunks);
491
492 return 0;
493 }
494
495 /**
496 * rpcrdma_unmap_sendctx - DMA-unmap Send buffers
497 * @sc: sendctx containing SGEs to unmap
498 *
499 */
500 void
501 rpcrdma_unmap_sendctx(struct rpcrdma_sendctx *sc)
502 {
503 struct rpcrdma_ia *ia = &sc->sc_xprt->rx_ia;
504 struct ib_sge *sge;
505 unsigned int count;
506
507 /* The first two SGEs contain the transport header and
508 * the inline buffer. These are always left mapped so
509 * they can be cheaply re-used.
510 */
511 sge = &sc->sc_sges[2];
512 for (count = sc->sc_unmap_count; count; ++sge, --count)
513 ib_dma_unmap_page(ia->ri_device,
514 sge->addr, sge->length, DMA_TO_DEVICE);
515
516 if (test_and_clear_bit(RPCRDMA_REQ_F_TX_RESOURCES, &sc->sc_req->rl_flags)) {
517 smp_mb__after_atomic();
518 wake_up_bit(&sc->sc_req->rl_flags, RPCRDMA_REQ_F_TX_RESOURCES);
519 }
520 }
521
522 /* Prepare an SGE for the RPC-over-RDMA transport header.
523 */
524 static bool
525 rpcrdma_prepare_hdr_sge(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
526 u32 len)
527 {
528 struct rpcrdma_sendctx *sc = req->rl_sendctx;
529 struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
530 struct ib_sge *sge = sc->sc_sges;
531
532 if (!rpcrdma_dma_map_regbuf(ia, rb))
533 goto out_regbuf;
534 sge->addr = rdmab_addr(rb);
535 sge->length = len;
536 sge->lkey = rdmab_lkey(rb);
537
538 ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr,
539 sge->length, DMA_TO_DEVICE);
540 sc->sc_wr.num_sge++;
541 return true;
542
543 out_regbuf:
544 pr_err("rpcrdma: failed to DMA map a Send buffer\n");
545 return false;
546 }
547
548 /* Prepare the Send SGEs. The head and tail iovec, and each entry
549 * in the page list, gets its own SGE.
550 */
551 static bool
552 rpcrdma_prepare_msg_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
553 struct xdr_buf *xdr, enum rpcrdma_chunktype rtype)
554 {
555 struct rpcrdma_sendctx *sc = req->rl_sendctx;
556 unsigned int sge_no, page_base, len, remaining;
557 struct rpcrdma_regbuf *rb = req->rl_sendbuf;
558 struct ib_device *device = ia->ri_device;
559 struct ib_sge *sge = sc->sc_sges;
560 u32 lkey = ia->ri_pd->local_dma_lkey;
561 struct page *page, **ppages;
562
563 /* The head iovec is straightforward, as it is already
564 * DMA-mapped. Sync the content that has changed.
565 */
566 if (!rpcrdma_dma_map_regbuf(ia, rb))
567 goto out_regbuf;
568 sge_no = 1;
569 sge[sge_no].addr = rdmab_addr(rb);
570 sge[sge_no].length = xdr->head[0].iov_len;
571 sge[sge_no].lkey = rdmab_lkey(rb);
572 ib_dma_sync_single_for_device(rdmab_device(rb), sge[sge_no].addr,
573 sge[sge_no].length, DMA_TO_DEVICE);
574
575 /* If there is a Read chunk, the page list is being handled
576 * via explicit RDMA, and thus is skipped here. However, the
577 * tail iovec may include an XDR pad for the page list, as
578 * well as additional content, and may not reside in the
579 * same page as the head iovec.
580 */
581 if (rtype == rpcrdma_readch) {
582 len = xdr->tail[0].iov_len;
583
584 /* Do not include the tail if it is only an XDR pad */
585 if (len < 4)
586 goto out;
587
588 page = virt_to_page(xdr->tail[0].iov_base);
589 page_base = offset_in_page(xdr->tail[0].iov_base);
590
591 /* If the content in the page list is an odd length,
592 * xdr_write_pages() has added a pad at the beginning
593 * of the tail iovec. Force the tail's non-pad content
594 * to land at the next XDR position in the Send message.
595 */
596 page_base += len & 3;
597 len -= len & 3;
598 goto map_tail;
599 }
600
601 /* If there is a page list present, temporarily DMA map
602 * and prepare an SGE for each page to be sent.
603 */
604 if (xdr->page_len) {
605 ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
606 page_base = offset_in_page(xdr->page_base);
607 remaining = xdr->page_len;
608 while (remaining) {
609 sge_no++;
610 if (sge_no > RPCRDMA_MAX_SEND_SGES - 2)
611 goto out_mapping_overflow;
612
613 len = min_t(u32, PAGE_SIZE - page_base, remaining);
614 sge[sge_no].addr = ib_dma_map_page(device, *ppages,
615 page_base, len,
616 DMA_TO_DEVICE);
617 if (ib_dma_mapping_error(device, sge[sge_no].addr))
618 goto out_mapping_err;
619 sge[sge_no].length = len;
620 sge[sge_no].lkey = lkey;
621
622 sc->sc_unmap_count++;
623 ppages++;
624 remaining -= len;
625 page_base = 0;
626 }
627 }
628
629 /* The tail iovec is not always constructed in the same
630 * page where the head iovec resides (see, for example,
631 * gss_wrap_req_priv). To neatly accommodate that case,
632 * DMA map it separately.
633 */
634 if (xdr->tail[0].iov_len) {
635 page = virt_to_page(xdr->tail[0].iov_base);
636 page_base = offset_in_page(xdr->tail[0].iov_base);
637 len = xdr->tail[0].iov_len;
638
639 map_tail:
640 sge_no++;
641 sge[sge_no].addr = ib_dma_map_page(device, page,
642 page_base, len,
643 DMA_TO_DEVICE);
644 if (ib_dma_mapping_error(device, sge[sge_no].addr))
645 goto out_mapping_err;
646 sge[sge_no].length = len;
647 sge[sge_no].lkey = lkey;
648 sc->sc_unmap_count++;
649 }
650
651 out:
652 sc->sc_wr.num_sge += sge_no;
653 if (sc->sc_unmap_count)
654 __set_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags);
655 return true;
656
657 out_regbuf:
658 pr_err("rpcrdma: failed to DMA map a Send buffer\n");
659 return false;
660
661 out_mapping_overflow:
662 rpcrdma_unmap_sendctx(sc);
663 pr_err("rpcrdma: too many Send SGEs (%u)\n", sge_no);
664 return false;
665
666 out_mapping_err:
667 rpcrdma_unmap_sendctx(sc);
668 trace_xprtrdma_dma_maperr(sge[sge_no].addr);
669 return false;
670 }
671
672 /**
673 * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR
674 * @r_xprt: controlling transport
675 * @req: context of RPC Call being marshalled
676 * @hdrlen: size of transport header, in bytes
677 * @xdr: xdr_buf containing RPC Call
678 * @rtype: chunk type being encoded
679 *
680 * Returns 0 on success; otherwise a negative errno is returned.
681 */
682 int
683 rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt,
684 struct rpcrdma_req *req, u32 hdrlen,
685 struct xdr_buf *xdr, enum rpcrdma_chunktype rtype)
686 {
687 req->rl_sendctx = rpcrdma_sendctx_get_locked(&r_xprt->rx_buf);
688 if (!req->rl_sendctx)
689 return -EAGAIN;
690 req->rl_sendctx->sc_wr.num_sge = 0;
691 req->rl_sendctx->sc_unmap_count = 0;
692 req->rl_sendctx->sc_req = req;
693 __clear_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags);
694
695 if (!rpcrdma_prepare_hdr_sge(&r_xprt->rx_ia, req, hdrlen))
696 return -EIO;
697
698 if (rtype != rpcrdma_areadch)
699 if (!rpcrdma_prepare_msg_sges(&r_xprt->rx_ia, req, xdr, rtype))
700 return -EIO;
701
702 return 0;
703 }
704
705 /**
706 * rpcrdma_marshal_req - Marshal and send one RPC request
707 * @r_xprt: controlling transport
708 * @rqst: RPC request to be marshaled
709 *
710 * For the RPC in "rqst", this function:
711 * - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG)
712 * - Registers Read, Write, and Reply chunks
713 * - Constructs the transport header
714 * - Posts a Send WR to send the transport header and request
715 *
716 * Returns:
717 * %0 if the RPC was sent successfully,
718 * %-ENOTCONN if the connection was lost,
719 * %-EAGAIN if the caller should call again with the same arguments,
720 * %-ENOBUFS if the caller should call again after a delay,
721 * %-EMSGSIZE if the transport header is too small,
722 * %-EIO if a permanent problem occurred while marshaling.
723 */
724 int
725 rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst)
726 {
727 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
728 struct xdr_stream *xdr = &req->rl_stream;
729 enum rpcrdma_chunktype rtype, wtype;
730 bool ddp_allowed;
731 __be32 *p;
732 int ret;
733
734 rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0);
735 xdr_init_encode(xdr, &req->rl_hdrbuf,
736 req->rl_rdmabuf->rg_base);
737
738 /* Fixed header fields */
739 ret = -EMSGSIZE;
740 p = xdr_reserve_space(xdr, 4 * sizeof(*p));
741 if (!p)
742 goto out_err;
743 *p++ = rqst->rq_xid;
744 *p++ = rpcrdma_version;
745 *p++ = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
746
747 /* When the ULP employs a GSS flavor that guarantees integrity
748 * or privacy, direct data placement of individual data items
749 * is not allowed.
750 */
751 ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags &
752 RPCAUTH_AUTH_DATATOUCH);
753
754 /*
755 * Chunks needed for results?
756 *
757 * o If the expected result is under the inline threshold, all ops
758 * return as inline.
759 * o Large read ops return data as write chunk(s), header as
760 * inline.
761 * o Large non-read ops return as a single reply chunk.
762 */
763 if (rpcrdma_results_inline(r_xprt, rqst))
764 wtype = rpcrdma_noch;
765 else if (ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ)
766 wtype = rpcrdma_writech;
767 else
768 wtype = rpcrdma_replych;
769
770 /*
771 * Chunks needed for arguments?
772 *
773 * o If the total request is under the inline threshold, all ops
774 * are sent as inline.
775 * o Large write ops transmit data as read chunk(s), header as
776 * inline.
777 * o Large non-write ops are sent with the entire message as a
778 * single read chunk (protocol 0-position special case).
779 *
780 * This assumes that the upper layer does not present a request
781 * that both has a data payload, and whose non-data arguments
782 * by themselves are larger than the inline threshold.
783 */
784 if (rpcrdma_args_inline(r_xprt, rqst)) {
785 *p++ = rdma_msg;
786 rtype = rpcrdma_noch;
787 } else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
788 *p++ = rdma_msg;
789 rtype = rpcrdma_readch;
790 } else {
791 r_xprt->rx_stats.nomsg_call_count++;
792 *p++ = rdma_nomsg;
793 rtype = rpcrdma_areadch;
794 }
795
796 /* If this is a retransmit, discard previously registered
797 * chunks. Very likely the connection has been replaced,
798 * so these registrations are invalid and unusable.
799 */
800 while (unlikely(!list_empty(&req->rl_registered))) {
801 struct rpcrdma_mr *mr;
802
803 mr = rpcrdma_mr_pop(&req->rl_registered);
804 rpcrdma_mr_recycle(mr);
805 }
806
807 /* This implementation supports the following combinations
808 * of chunk lists in one RPC-over-RDMA Call message:
809 *
810 * - Read list
811 * - Write list
812 * - Reply chunk
813 * - Read list + Reply chunk
814 *
815 * It might not yet support the following combinations:
816 *
817 * - Read list + Write list
818 *
819 * It does not support the following combinations:
820 *
821 * - Write list + Reply chunk
822 * - Read list + Write list + Reply chunk
823 *
824 * This implementation supports only a single chunk in each
825 * Read or Write list. Thus for example the client cannot
826 * send a Call message with a Position Zero Read chunk and a
827 * regular Read chunk at the same time.
828 */
829 if (rtype != rpcrdma_noch) {
830 ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype);
831 if (ret)
832 goto out_err;
833 }
834 ret = encode_item_not_present(xdr);
835 if (ret)
836 goto out_err;
837
838 if (wtype == rpcrdma_writech) {
839 ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype);
840 if (ret)
841 goto out_err;
842 }
843 ret = encode_item_not_present(xdr);
844 if (ret)
845 goto out_err;
846
847 if (wtype != rpcrdma_replych)
848 ret = encode_item_not_present(xdr);
849 else
850 ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype);
851 if (ret)
852 goto out_err;
853
854 trace_xprtrdma_marshal(rqst, xdr_stream_pos(xdr), rtype, wtype);
855
856 ret = rpcrdma_prepare_send_sges(r_xprt, req, xdr_stream_pos(xdr),
857 &rqst->rq_snd_buf, rtype);
858 if (ret)
859 goto out_err;
860 return 0;
861
862 out_err:
863 switch (ret) {
864 case -EAGAIN:
865 xprt_wait_for_buffer_space(rqst->rq_xprt);
866 break;
867 case -ENOBUFS:
868 break;
869 default:
870 r_xprt->rx_stats.failed_marshal_count++;
871 }
872 return ret;
873 }
874
875 /**
876 * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
877 * @rqst: controlling RPC request
878 * @srcp: points to RPC message payload in receive buffer
879 * @copy_len: remaining length of receive buffer content
880 * @pad: Write chunk pad bytes needed (zero for pure inline)
881 *
882 * The upper layer has set the maximum number of bytes it can
883 * receive in each component of rq_rcv_buf. These values are set in
884 * the head.iov_len, page_len, tail.iov_len, and buflen fields.
885 *
886 * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
887 * many cases this function simply updates iov_base pointers in
888 * rq_rcv_buf to point directly to the received reply data, to
889 * avoid copying reply data.
890 *
891 * Returns the count of bytes which had to be memcopied.
892 */
893 static unsigned long
894 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
895 {
896 unsigned long fixup_copy_count;
897 int i, npages, curlen;
898 char *destp;
899 struct page **ppages;
900 int page_base;
901
902 /* The head iovec is redirected to the RPC reply message
903 * in the receive buffer, to avoid a memcopy.
904 */
905 rqst->rq_rcv_buf.head[0].iov_base = srcp;
906 rqst->rq_private_buf.head[0].iov_base = srcp;
907
908 /* The contents of the receive buffer that follow
909 * head.iov_len bytes are copied into the page list.
910 */
911 curlen = rqst->rq_rcv_buf.head[0].iov_len;
912 if (curlen > copy_len)
913 curlen = copy_len;
914 trace_xprtrdma_fixup(rqst, copy_len, curlen);
915 srcp += curlen;
916 copy_len -= curlen;
917
918 ppages = rqst->rq_rcv_buf.pages +
919 (rqst->rq_rcv_buf.page_base >> PAGE_SHIFT);
920 page_base = offset_in_page(rqst->rq_rcv_buf.page_base);
921 fixup_copy_count = 0;
922 if (copy_len && rqst->rq_rcv_buf.page_len) {
923 int pagelist_len;
924
925 pagelist_len = rqst->rq_rcv_buf.page_len;
926 if (pagelist_len > copy_len)
927 pagelist_len = copy_len;
928 npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
929 for (i = 0; i < npages; i++) {
930 curlen = PAGE_SIZE - page_base;
931 if (curlen > pagelist_len)
932 curlen = pagelist_len;
933
934 trace_xprtrdma_fixup_pg(rqst, i, srcp,
935 copy_len, curlen);
936 destp = kmap_atomic(ppages[i]);
937 memcpy(destp + page_base, srcp, curlen);
938 flush_dcache_page(ppages[i]);
939 kunmap_atomic(destp);
940 srcp += curlen;
941 copy_len -= curlen;
942 fixup_copy_count += curlen;
943 pagelist_len -= curlen;
944 if (!pagelist_len)
945 break;
946 page_base = 0;
947 }
948
949 /* Implicit padding for the last segment in a Write
950 * chunk is inserted inline at the front of the tail
951 * iovec. The upper layer ignores the content of
952 * the pad. Simply ensure inline content in the tail
953 * that follows the Write chunk is properly aligned.
954 */
955 if (pad)
956 srcp -= pad;
957 }
958
959 /* The tail iovec is redirected to the remaining data
960 * in the receive buffer, to avoid a memcopy.
961 */
962 if (copy_len || pad) {
963 rqst->rq_rcv_buf.tail[0].iov_base = srcp;
964 rqst->rq_private_buf.tail[0].iov_base = srcp;
965 }
966
967 return fixup_copy_count;
968 }
969
970 /* By convention, backchannel calls arrive via rdma_msg type
971 * messages, and never populate the chunk lists. This makes
972 * the RPC/RDMA header small and fixed in size, so it is
973 * straightforward to check the RPC header's direction field.
974 */
975 static bool
976 rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
977 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
978 {
979 struct xdr_stream *xdr = &rep->rr_stream;
980 __be32 *p;
981
982 if (rep->rr_proc != rdma_msg)
983 return false;
984
985 /* Peek at stream contents without advancing. */
986 p = xdr_inline_decode(xdr, 0);
987
988 /* Chunk lists */
989 if (*p++ != xdr_zero)
990 return false;
991 if (*p++ != xdr_zero)
992 return false;
993 if (*p++ != xdr_zero)
994 return false;
995
996 /* RPC header */
997 if (*p++ != rep->rr_xid)
998 return false;
999 if (*p != cpu_to_be32(RPC_CALL))
1000 return false;
1001
1002 /* Now that we are sure this is a backchannel call,
1003 * advance to the RPC header.
1004 */
1005 p = xdr_inline_decode(xdr, 3 * sizeof(*p));
1006 if (unlikely(!p))
1007 goto out_short;
1008
1009 rpcrdma_bc_receive_call(r_xprt, rep);
1010 return true;
1011
1012 out_short:
1013 pr_warn("RPC/RDMA short backward direction call\n");
1014 return true;
1015 }
1016 #else /* CONFIG_SUNRPC_BACKCHANNEL */
1017 {
1018 return false;
1019 }
1020 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1021
1022 static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length)
1023 {
1024 u32 handle;
1025 u64 offset;
1026 __be32 *p;
1027
1028 p = xdr_inline_decode(xdr, 4 * sizeof(*p));
1029 if (unlikely(!p))
1030 return -EIO;
1031
1032 handle = be32_to_cpup(p++);
1033 *length = be32_to_cpup(p++);
1034 xdr_decode_hyper(p, &offset);
1035
1036 trace_xprtrdma_decode_seg(handle, *length, offset);
1037 return 0;
1038 }
1039
1040 static int decode_write_chunk(struct xdr_stream *xdr, u32 *length)
1041 {
1042 u32 segcount, seglength;
1043 __be32 *p;
1044
1045 p = xdr_inline_decode(xdr, sizeof(*p));
1046 if (unlikely(!p))
1047 return -EIO;
1048
1049 *length = 0;
1050 segcount = be32_to_cpup(p);
1051 while (segcount--) {
1052 if (decode_rdma_segment(xdr, &seglength))
1053 return -EIO;
1054 *length += seglength;
1055 }
1056
1057 return 0;
1058 }
1059
1060 /* In RPC-over-RDMA Version One replies, a Read list is never
1061 * expected. This decoder is a stub that returns an error if
1062 * a Read list is present.
1063 */
1064 static int decode_read_list(struct xdr_stream *xdr)
1065 {
1066 __be32 *p;
1067
1068 p = xdr_inline_decode(xdr, sizeof(*p));
1069 if (unlikely(!p))
1070 return -EIO;
1071 if (unlikely(*p != xdr_zero))
1072 return -EIO;
1073 return 0;
1074 }
1075
1076 /* Supports only one Write chunk in the Write list
1077 */
1078 static int decode_write_list(struct xdr_stream *xdr, u32 *length)
1079 {
1080 u32 chunklen;
1081 bool first;
1082 __be32 *p;
1083
1084 *length = 0;
1085 first = true;
1086 do {
1087 p = xdr_inline_decode(xdr, sizeof(*p));
1088 if (unlikely(!p))
1089 return -EIO;
1090 if (*p == xdr_zero)
1091 break;
1092 if (!first)
1093 return -EIO;
1094
1095 if (decode_write_chunk(xdr, &chunklen))
1096 return -EIO;
1097 *length += chunklen;
1098 first = false;
1099 } while (true);
1100 return 0;
1101 }
1102
1103 static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length)
1104 {
1105 __be32 *p;
1106
1107 p = xdr_inline_decode(xdr, sizeof(*p));
1108 if (unlikely(!p))
1109 return -EIO;
1110
1111 *length = 0;
1112 if (*p != xdr_zero)
1113 if (decode_write_chunk(xdr, length))
1114 return -EIO;
1115 return 0;
1116 }
1117
1118 static int
1119 rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1120 struct rpc_rqst *rqst)
1121 {
1122 struct xdr_stream *xdr = &rep->rr_stream;
1123 u32 writelist, replychunk, rpclen;
1124 char *base;
1125
1126 /* Decode the chunk lists */
1127 if (decode_read_list(xdr))
1128 return -EIO;
1129 if (decode_write_list(xdr, &writelist))
1130 return -EIO;
1131 if (decode_reply_chunk(xdr, &replychunk))
1132 return -EIO;
1133
1134 /* RDMA_MSG sanity checks */
1135 if (unlikely(replychunk))
1136 return -EIO;
1137
1138 /* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */
1139 base = (char *)xdr_inline_decode(xdr, 0);
1140 rpclen = xdr_stream_remaining(xdr);
1141 r_xprt->rx_stats.fixup_copy_count +=
1142 rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3);
1143
1144 r_xprt->rx_stats.total_rdma_reply += writelist;
1145 return rpclen + xdr_align_size(writelist);
1146 }
1147
1148 static noinline int
1149 rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1150 {
1151 struct xdr_stream *xdr = &rep->rr_stream;
1152 u32 writelist, replychunk;
1153
1154 /* Decode the chunk lists */
1155 if (decode_read_list(xdr))
1156 return -EIO;
1157 if (decode_write_list(xdr, &writelist))
1158 return -EIO;
1159 if (decode_reply_chunk(xdr, &replychunk))
1160 return -EIO;
1161
1162 /* RDMA_NOMSG sanity checks */
1163 if (unlikely(writelist))
1164 return -EIO;
1165 if (unlikely(!replychunk))
1166 return -EIO;
1167
1168 /* Reply chunk buffer already is the reply vector */
1169 r_xprt->rx_stats.total_rdma_reply += replychunk;
1170 return replychunk;
1171 }
1172
1173 static noinline int
1174 rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1175 struct rpc_rqst *rqst)
1176 {
1177 struct xdr_stream *xdr = &rep->rr_stream;
1178 __be32 *p;
1179
1180 p = xdr_inline_decode(xdr, sizeof(*p));
1181 if (unlikely(!p))
1182 return -EIO;
1183
1184 switch (*p) {
1185 case err_vers:
1186 p = xdr_inline_decode(xdr, 2 * sizeof(*p));
1187 if (!p)
1188 break;
1189 dprintk("RPC: %s: server reports "
1190 "version error (%u-%u), xid %08x\n", __func__,
1191 be32_to_cpup(p), be32_to_cpu(*(p + 1)),
1192 be32_to_cpu(rep->rr_xid));
1193 break;
1194 case err_chunk:
1195 dprintk("RPC: %s: server reports "
1196 "header decoding error, xid %08x\n", __func__,
1197 be32_to_cpu(rep->rr_xid));
1198 break;
1199 default:
1200 dprintk("RPC: %s: server reports "
1201 "unrecognized error %d, xid %08x\n", __func__,
1202 be32_to_cpup(p), be32_to_cpu(rep->rr_xid));
1203 }
1204
1205 r_xprt->rx_stats.bad_reply_count++;
1206 return -EREMOTEIO;
1207 }
1208
1209 /* Perform XID lookup, reconstruction of the RPC reply, and
1210 * RPC completion while holding the transport lock to ensure
1211 * the rep, rqst, and rq_task pointers remain stable.
1212 */
1213 void rpcrdma_complete_rqst(struct rpcrdma_rep *rep)
1214 {
1215 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1216 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1217 struct rpc_rqst *rqst = rep->rr_rqst;
1218 int status;
1219
1220 xprt->reestablish_timeout = 0;
1221
1222 switch (rep->rr_proc) {
1223 case rdma_msg:
1224 status = rpcrdma_decode_msg(r_xprt, rep, rqst);
1225 break;
1226 case rdma_nomsg:
1227 status = rpcrdma_decode_nomsg(r_xprt, rep);
1228 break;
1229 case rdma_error:
1230 status = rpcrdma_decode_error(r_xprt, rep, rqst);
1231 break;
1232 default:
1233 status = -EIO;
1234 }
1235 if (status < 0)
1236 goto out_badheader;
1237
1238 out:
1239 spin_lock(&xprt->queue_lock);
1240 xprt_complete_rqst(rqst->rq_task, status);
1241 xprt_unpin_rqst(rqst);
1242 spin_unlock(&xprt->queue_lock);
1243 return;
1244
1245 /* If the incoming reply terminated a pending RPC, the next
1246 * RPC call will post a replacement receive buffer as it is
1247 * being marshaled.
1248 */
1249 out_badheader:
1250 trace_xprtrdma_reply_hdr(rep);
1251 r_xprt->rx_stats.bad_reply_count++;
1252 goto out;
1253 }
1254
1255 void rpcrdma_release_rqst(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
1256 {
1257 /* Invalidate and unmap the data payloads before waking
1258 * the waiting application. This guarantees the memory
1259 * regions are properly fenced from the server before the
1260 * application accesses the data. It also ensures proper
1261 * send flow control: waking the next RPC waits until this
1262 * RPC has relinquished all its Send Queue entries.
1263 */
1264 if (!list_empty(&req->rl_registered))
1265 frwr_unmap_sync(r_xprt, &req->rl_registered);
1266
1267 /* Ensure that any DMA mapped pages associated with
1268 * the Send of the RPC Call have been unmapped before
1269 * allowing the RPC to complete. This protects argument
1270 * memory not controlled by the RPC client from being
1271 * re-used before we're done with it.
1272 */
1273 if (test_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags)) {
1274 r_xprt->rx_stats.reply_waits_for_send++;
1275 out_of_line_wait_on_bit(&req->rl_flags,
1276 RPCRDMA_REQ_F_TX_RESOURCES,
1277 bit_wait,
1278 TASK_UNINTERRUPTIBLE);
1279 }
1280 }
1281
1282 /* Reply handling runs in the poll worker thread. Anything that
1283 * might wait is deferred to a separate workqueue.
1284 */
1285 void rpcrdma_deferred_completion(struct work_struct *work)
1286 {
1287 struct rpcrdma_rep *rep =
1288 container_of(work, struct rpcrdma_rep, rr_work);
1289 struct rpcrdma_req *req = rpcr_to_rdmar(rep->rr_rqst);
1290 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1291
1292 trace_xprtrdma_defer_cmp(rep);
1293 if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE)
1294 frwr_reminv(rep, &req->rl_registered);
1295 rpcrdma_release_rqst(r_xprt, req);
1296 rpcrdma_complete_rqst(rep);
1297 }
1298
1299 /* Process received RPC/RDMA messages.
1300 *
1301 * Errors must result in the RPC task either being awakened, or
1302 * allowed to timeout, to discover the errors at that time.
1303 */
1304 void rpcrdma_reply_handler(struct rpcrdma_rep *rep)
1305 {
1306 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1307 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1308 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1309 struct rpcrdma_req *req;
1310 struct rpc_rqst *rqst;
1311 u32 credits;
1312 __be32 *p;
1313
1314 /* Fixed transport header fields */
1315 xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf,
1316 rep->rr_hdrbuf.head[0].iov_base);
1317 p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p));
1318 if (unlikely(!p))
1319 goto out_shortreply;
1320 rep->rr_xid = *p++;
1321 rep->rr_vers = *p++;
1322 credits = be32_to_cpu(*p++);
1323 rep->rr_proc = *p++;
1324
1325 if (rep->rr_vers != rpcrdma_version)
1326 goto out_badversion;
1327
1328 if (rpcrdma_is_bcall(r_xprt, rep))
1329 return;
1330
1331 /* Match incoming rpcrdma_rep to an rpcrdma_req to
1332 * get context for handling any incoming chunks.
1333 */
1334 spin_lock(&xprt->queue_lock);
1335 rqst = xprt_lookup_rqst(xprt, rep->rr_xid);
1336 if (!rqst)
1337 goto out_norqst;
1338 xprt_pin_rqst(rqst);
1339 spin_unlock(&xprt->queue_lock);
1340
1341 if (credits == 0)
1342 credits = 1; /* don't deadlock */
1343 else if (credits > buf->rb_max_requests)
1344 credits = buf->rb_max_requests;
1345 if (buf->rb_credits != credits) {
1346 spin_lock_bh(&xprt->transport_lock);
1347 buf->rb_credits = credits;
1348 xprt->cwnd = credits << RPC_CWNDSHIFT;
1349 spin_unlock_bh(&xprt->transport_lock);
1350 }
1351
1352 req = rpcr_to_rdmar(rqst);
1353 if (req->rl_reply) {
1354 trace_xprtrdma_leaked_rep(rqst, req->rl_reply);
1355 rpcrdma_recv_buffer_put(req->rl_reply);
1356 }
1357 req->rl_reply = rep;
1358 rep->rr_rqst = rqst;
1359 clear_bit(RPCRDMA_REQ_F_PENDING, &req->rl_flags);
1360
1361 trace_xprtrdma_reply(rqst->rq_task, rep, req, credits);
1362 queue_work(buf->rb_completion_wq, &rep->rr_work);
1363 return;
1364
1365 out_badversion:
1366 trace_xprtrdma_reply_vers(rep);
1367 goto out;
1368
1369 out_norqst:
1370 spin_unlock(&xprt->queue_lock);
1371 trace_xprtrdma_reply_rqst(rep);
1372 goto out;
1373
1374 out_shortreply:
1375 trace_xprtrdma_reply_short(rep);
1376
1377 out:
1378 rpcrdma_recv_buffer_put(rep);
1379 }