]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - net/sunrpc/xprtrdma/svc_rdma_transport.c
Merge branch 'WIP.x86/boot' into x86/boot, to pick up ready branch
[mirror_ubuntu-focal-kernel.git] / net / sunrpc / xprtrdma / svc_rdma_transport.c
1 /*
2 * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved.
3 * Copyright (c) 2005-2007 Network Appliance, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the BSD-type
9 * license below:
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 *
15 * Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 *
18 * Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials provided
21 * with the distribution.
22 *
23 * Neither the name of the Network Appliance, Inc. nor the names of
24 * its contributors may be used to endorse or promote products
25 * derived from this software without specific prior written
26 * permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Author: Tom Tucker <tom@opengridcomputing.com>
41 */
42
43 #include <linux/sunrpc/svc_xprt.h>
44 #include <linux/sunrpc/addr.h>
45 #include <linux/sunrpc/debug.h>
46 #include <linux/sunrpc/rpc_rdma.h>
47 #include <linux/interrupt.h>
48 #include <linux/sched.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/workqueue.h>
52 #include <rdma/ib_verbs.h>
53 #include <rdma/rdma_cm.h>
54 #include <linux/sunrpc/svc_rdma.h>
55 #include <linux/export.h>
56 #include "xprt_rdma.h"
57
58 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
59
60 static struct svcxprt_rdma *rdma_create_xprt(struct svc_serv *, int);
61 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
62 struct net *net,
63 struct sockaddr *sa, int salen,
64 int flags);
65 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt);
66 static void svc_rdma_release_rqst(struct svc_rqst *);
67 static void svc_rdma_detach(struct svc_xprt *xprt);
68 static void svc_rdma_free(struct svc_xprt *xprt);
69 static int svc_rdma_has_wspace(struct svc_xprt *xprt);
70 static int svc_rdma_secure_port(struct svc_rqst *);
71 static void svc_rdma_kill_temp_xprt(struct svc_xprt *);
72
73 static struct svc_xprt_ops svc_rdma_ops = {
74 .xpo_create = svc_rdma_create,
75 .xpo_recvfrom = svc_rdma_recvfrom,
76 .xpo_sendto = svc_rdma_sendto,
77 .xpo_release_rqst = svc_rdma_release_rqst,
78 .xpo_detach = svc_rdma_detach,
79 .xpo_free = svc_rdma_free,
80 .xpo_prep_reply_hdr = svc_rdma_prep_reply_hdr,
81 .xpo_has_wspace = svc_rdma_has_wspace,
82 .xpo_accept = svc_rdma_accept,
83 .xpo_secure_port = svc_rdma_secure_port,
84 .xpo_kill_temp_xprt = svc_rdma_kill_temp_xprt,
85 };
86
87 struct svc_xprt_class svc_rdma_class = {
88 .xcl_name = "rdma",
89 .xcl_owner = THIS_MODULE,
90 .xcl_ops = &svc_rdma_ops,
91 .xcl_max_payload = RPCSVC_MAXPAYLOAD_RDMA,
92 .xcl_ident = XPRT_TRANSPORT_RDMA,
93 };
94
95 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
96 static struct svc_xprt *svc_rdma_bc_create(struct svc_serv *, struct net *,
97 struct sockaddr *, int, int);
98 static void svc_rdma_bc_detach(struct svc_xprt *);
99 static void svc_rdma_bc_free(struct svc_xprt *);
100
101 static struct svc_xprt_ops svc_rdma_bc_ops = {
102 .xpo_create = svc_rdma_bc_create,
103 .xpo_detach = svc_rdma_bc_detach,
104 .xpo_free = svc_rdma_bc_free,
105 .xpo_prep_reply_hdr = svc_rdma_prep_reply_hdr,
106 .xpo_secure_port = svc_rdma_secure_port,
107 };
108
109 struct svc_xprt_class svc_rdma_bc_class = {
110 .xcl_name = "rdma-bc",
111 .xcl_owner = THIS_MODULE,
112 .xcl_ops = &svc_rdma_bc_ops,
113 .xcl_max_payload = (1024 - RPCRDMA_HDRLEN_MIN)
114 };
115
116 static struct svc_xprt *svc_rdma_bc_create(struct svc_serv *serv,
117 struct net *net,
118 struct sockaddr *sa, int salen,
119 int flags)
120 {
121 struct svcxprt_rdma *cma_xprt;
122 struct svc_xprt *xprt;
123
124 cma_xprt = rdma_create_xprt(serv, 0);
125 if (!cma_xprt)
126 return ERR_PTR(-ENOMEM);
127 xprt = &cma_xprt->sc_xprt;
128
129 svc_xprt_init(net, &svc_rdma_bc_class, xprt, serv);
130 serv->sv_bc_xprt = xprt;
131
132 dprintk("svcrdma: %s(%p)\n", __func__, xprt);
133 return xprt;
134 }
135
136 static void svc_rdma_bc_detach(struct svc_xprt *xprt)
137 {
138 dprintk("svcrdma: %s(%p)\n", __func__, xprt);
139 }
140
141 static void svc_rdma_bc_free(struct svc_xprt *xprt)
142 {
143 struct svcxprt_rdma *rdma =
144 container_of(xprt, struct svcxprt_rdma, sc_xprt);
145
146 dprintk("svcrdma: %s(%p)\n", __func__, xprt);
147 if (xprt)
148 kfree(rdma);
149 }
150 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
151
152 static struct svc_rdma_op_ctxt *alloc_ctxt(struct svcxprt_rdma *xprt,
153 gfp_t flags)
154 {
155 struct svc_rdma_op_ctxt *ctxt;
156
157 ctxt = kmalloc(sizeof(*ctxt), flags);
158 if (ctxt) {
159 ctxt->xprt = xprt;
160 INIT_LIST_HEAD(&ctxt->list);
161 }
162 return ctxt;
163 }
164
165 static bool svc_rdma_prealloc_ctxts(struct svcxprt_rdma *xprt)
166 {
167 unsigned int i;
168
169 /* Each RPC/RDMA credit can consume a number of send
170 * and receive WQEs. One ctxt is allocated for each.
171 */
172 i = xprt->sc_sq_depth + xprt->sc_rq_depth;
173
174 while (i--) {
175 struct svc_rdma_op_ctxt *ctxt;
176
177 ctxt = alloc_ctxt(xprt, GFP_KERNEL);
178 if (!ctxt) {
179 dprintk("svcrdma: No memory for RDMA ctxt\n");
180 return false;
181 }
182 list_add(&ctxt->list, &xprt->sc_ctxts);
183 }
184 return true;
185 }
186
187 struct svc_rdma_op_ctxt *svc_rdma_get_context(struct svcxprt_rdma *xprt)
188 {
189 struct svc_rdma_op_ctxt *ctxt = NULL;
190
191 spin_lock(&xprt->sc_ctxt_lock);
192 xprt->sc_ctxt_used++;
193 if (list_empty(&xprt->sc_ctxts))
194 goto out_empty;
195
196 ctxt = list_first_entry(&xprt->sc_ctxts,
197 struct svc_rdma_op_ctxt, list);
198 list_del(&ctxt->list);
199 spin_unlock(&xprt->sc_ctxt_lock);
200
201 out:
202 ctxt->count = 0;
203 ctxt->mapped_sges = 0;
204 ctxt->frmr = NULL;
205 return ctxt;
206
207 out_empty:
208 /* Either pre-allocation missed the mark, or send
209 * queue accounting is broken.
210 */
211 spin_unlock(&xprt->sc_ctxt_lock);
212
213 ctxt = alloc_ctxt(xprt, GFP_NOIO);
214 if (ctxt)
215 goto out;
216
217 spin_lock(&xprt->sc_ctxt_lock);
218 xprt->sc_ctxt_used--;
219 spin_unlock(&xprt->sc_ctxt_lock);
220 WARN_ONCE(1, "svcrdma: empty RDMA ctxt list?\n");
221 return NULL;
222 }
223
224 void svc_rdma_unmap_dma(struct svc_rdma_op_ctxt *ctxt)
225 {
226 struct svcxprt_rdma *xprt = ctxt->xprt;
227 struct ib_device *device = xprt->sc_cm_id->device;
228 u32 lkey = xprt->sc_pd->local_dma_lkey;
229 unsigned int i;
230
231 for (i = 0; i < ctxt->mapped_sges; i++) {
232 /*
233 * Unmap the DMA addr in the SGE if the lkey matches
234 * the local_dma_lkey, otherwise, ignore it since it is
235 * an FRMR lkey and will be unmapped later when the
236 * last WR that uses it completes.
237 */
238 if (ctxt->sge[i].lkey == lkey)
239 ib_dma_unmap_page(device,
240 ctxt->sge[i].addr,
241 ctxt->sge[i].length,
242 ctxt->direction);
243 }
244 ctxt->mapped_sges = 0;
245 }
246
247 void svc_rdma_put_context(struct svc_rdma_op_ctxt *ctxt, int free_pages)
248 {
249 struct svcxprt_rdma *xprt = ctxt->xprt;
250 int i;
251
252 if (free_pages)
253 for (i = 0; i < ctxt->count; i++)
254 put_page(ctxt->pages[i]);
255
256 spin_lock(&xprt->sc_ctxt_lock);
257 xprt->sc_ctxt_used--;
258 list_add(&ctxt->list, &xprt->sc_ctxts);
259 spin_unlock(&xprt->sc_ctxt_lock);
260 }
261
262 static void svc_rdma_destroy_ctxts(struct svcxprt_rdma *xprt)
263 {
264 while (!list_empty(&xprt->sc_ctxts)) {
265 struct svc_rdma_op_ctxt *ctxt;
266
267 ctxt = list_first_entry(&xprt->sc_ctxts,
268 struct svc_rdma_op_ctxt, list);
269 list_del(&ctxt->list);
270 kfree(ctxt);
271 }
272 }
273
274 static struct svc_rdma_req_map *alloc_req_map(gfp_t flags)
275 {
276 struct svc_rdma_req_map *map;
277
278 map = kmalloc(sizeof(*map), flags);
279 if (map)
280 INIT_LIST_HEAD(&map->free);
281 return map;
282 }
283
284 static bool svc_rdma_prealloc_maps(struct svcxprt_rdma *xprt)
285 {
286 unsigned int i;
287
288 /* One for each receive buffer on this connection. */
289 i = xprt->sc_max_requests;
290
291 while (i--) {
292 struct svc_rdma_req_map *map;
293
294 map = alloc_req_map(GFP_KERNEL);
295 if (!map) {
296 dprintk("svcrdma: No memory for request map\n");
297 return false;
298 }
299 list_add(&map->free, &xprt->sc_maps);
300 }
301 return true;
302 }
303
304 struct svc_rdma_req_map *svc_rdma_get_req_map(struct svcxprt_rdma *xprt)
305 {
306 struct svc_rdma_req_map *map = NULL;
307
308 spin_lock(&xprt->sc_map_lock);
309 if (list_empty(&xprt->sc_maps))
310 goto out_empty;
311
312 map = list_first_entry(&xprt->sc_maps,
313 struct svc_rdma_req_map, free);
314 list_del_init(&map->free);
315 spin_unlock(&xprt->sc_map_lock);
316
317 out:
318 map->count = 0;
319 return map;
320
321 out_empty:
322 spin_unlock(&xprt->sc_map_lock);
323
324 /* Pre-allocation amount was incorrect */
325 map = alloc_req_map(GFP_NOIO);
326 if (map)
327 goto out;
328
329 WARN_ONCE(1, "svcrdma: empty request map list?\n");
330 return NULL;
331 }
332
333 void svc_rdma_put_req_map(struct svcxprt_rdma *xprt,
334 struct svc_rdma_req_map *map)
335 {
336 spin_lock(&xprt->sc_map_lock);
337 list_add(&map->free, &xprt->sc_maps);
338 spin_unlock(&xprt->sc_map_lock);
339 }
340
341 static void svc_rdma_destroy_maps(struct svcxprt_rdma *xprt)
342 {
343 while (!list_empty(&xprt->sc_maps)) {
344 struct svc_rdma_req_map *map;
345
346 map = list_first_entry(&xprt->sc_maps,
347 struct svc_rdma_req_map, free);
348 list_del(&map->free);
349 kfree(map);
350 }
351 }
352
353 /* QP event handler */
354 static void qp_event_handler(struct ib_event *event, void *context)
355 {
356 struct svc_xprt *xprt = context;
357
358 switch (event->event) {
359 /* These are considered benign events */
360 case IB_EVENT_PATH_MIG:
361 case IB_EVENT_COMM_EST:
362 case IB_EVENT_SQ_DRAINED:
363 case IB_EVENT_QP_LAST_WQE_REACHED:
364 dprintk("svcrdma: QP event %s (%d) received for QP=%p\n",
365 ib_event_msg(event->event), event->event,
366 event->element.qp);
367 break;
368 /* These are considered fatal events */
369 case IB_EVENT_PATH_MIG_ERR:
370 case IB_EVENT_QP_FATAL:
371 case IB_EVENT_QP_REQ_ERR:
372 case IB_EVENT_QP_ACCESS_ERR:
373 case IB_EVENT_DEVICE_FATAL:
374 default:
375 dprintk("svcrdma: QP ERROR event %s (%d) received for QP=%p, "
376 "closing transport\n",
377 ib_event_msg(event->event), event->event,
378 event->element.qp);
379 set_bit(XPT_CLOSE, &xprt->xpt_flags);
380 break;
381 }
382 }
383
384 /**
385 * svc_rdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
386 * @cq: completion queue
387 * @wc: completed WR
388 *
389 */
390 static void svc_rdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
391 {
392 struct svcxprt_rdma *xprt = cq->cq_context;
393 struct ib_cqe *cqe = wc->wr_cqe;
394 struct svc_rdma_op_ctxt *ctxt;
395
396 /* WARNING: Only wc->wr_cqe and wc->status are reliable */
397 ctxt = container_of(cqe, struct svc_rdma_op_ctxt, cqe);
398 svc_rdma_unmap_dma(ctxt);
399
400 if (wc->status != IB_WC_SUCCESS)
401 goto flushed;
402
403 /* All wc fields are now known to be valid */
404 ctxt->byte_len = wc->byte_len;
405 spin_lock(&xprt->sc_rq_dto_lock);
406 list_add_tail(&ctxt->list, &xprt->sc_rq_dto_q);
407 spin_unlock(&xprt->sc_rq_dto_lock);
408
409 set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags);
410 if (test_bit(RDMAXPRT_CONN_PENDING, &xprt->sc_flags))
411 goto out;
412 svc_xprt_enqueue(&xprt->sc_xprt);
413 goto out;
414
415 flushed:
416 if (wc->status != IB_WC_WR_FLUSH_ERR)
417 pr_warn("svcrdma: receive: %s (%u/0x%x)\n",
418 ib_wc_status_msg(wc->status),
419 wc->status, wc->vendor_err);
420 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
421 svc_rdma_put_context(ctxt, 1);
422
423 out:
424 svc_xprt_put(&xprt->sc_xprt);
425 }
426
427 static void svc_rdma_send_wc_common(struct svcxprt_rdma *xprt,
428 struct ib_wc *wc,
429 const char *opname)
430 {
431 if (wc->status != IB_WC_SUCCESS)
432 goto err;
433
434 out:
435 atomic_inc(&xprt->sc_sq_avail);
436 wake_up(&xprt->sc_send_wait);
437 return;
438
439 err:
440 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
441 if (wc->status != IB_WC_WR_FLUSH_ERR)
442 pr_err("svcrdma: %s: %s (%u/0x%x)\n",
443 opname, ib_wc_status_msg(wc->status),
444 wc->status, wc->vendor_err);
445 goto out;
446 }
447
448 static void svc_rdma_send_wc_common_put(struct ib_cq *cq, struct ib_wc *wc,
449 const char *opname)
450 {
451 struct svcxprt_rdma *xprt = cq->cq_context;
452
453 svc_rdma_send_wc_common(xprt, wc, opname);
454 svc_xprt_put(&xprt->sc_xprt);
455 }
456
457 /**
458 * svc_rdma_wc_send - Invoked by RDMA provider for each polled Send WC
459 * @cq: completion queue
460 * @wc: completed WR
461 *
462 */
463 void svc_rdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
464 {
465 struct ib_cqe *cqe = wc->wr_cqe;
466 struct svc_rdma_op_ctxt *ctxt;
467
468 svc_rdma_send_wc_common_put(cq, wc, "send");
469
470 ctxt = container_of(cqe, struct svc_rdma_op_ctxt, cqe);
471 svc_rdma_unmap_dma(ctxt);
472 svc_rdma_put_context(ctxt, 1);
473 }
474
475 /**
476 * svc_rdma_wc_write - Invoked by RDMA provider for each polled Write WC
477 * @cq: completion queue
478 * @wc: completed WR
479 *
480 */
481 void svc_rdma_wc_write(struct ib_cq *cq, struct ib_wc *wc)
482 {
483 struct ib_cqe *cqe = wc->wr_cqe;
484 struct svc_rdma_op_ctxt *ctxt;
485
486 svc_rdma_send_wc_common_put(cq, wc, "write");
487
488 ctxt = container_of(cqe, struct svc_rdma_op_ctxt, cqe);
489 svc_rdma_unmap_dma(ctxt);
490 svc_rdma_put_context(ctxt, 0);
491 }
492
493 /**
494 * svc_rdma_wc_reg - Invoked by RDMA provider for each polled FASTREG WC
495 * @cq: completion queue
496 * @wc: completed WR
497 *
498 */
499 void svc_rdma_wc_reg(struct ib_cq *cq, struct ib_wc *wc)
500 {
501 svc_rdma_send_wc_common_put(cq, wc, "fastreg");
502 }
503
504 /**
505 * svc_rdma_wc_read - Invoked by RDMA provider for each polled Read WC
506 * @cq: completion queue
507 * @wc: completed WR
508 *
509 */
510 void svc_rdma_wc_read(struct ib_cq *cq, struct ib_wc *wc)
511 {
512 struct svcxprt_rdma *xprt = cq->cq_context;
513 struct ib_cqe *cqe = wc->wr_cqe;
514 struct svc_rdma_op_ctxt *ctxt;
515
516 svc_rdma_send_wc_common(xprt, wc, "read");
517
518 ctxt = container_of(cqe, struct svc_rdma_op_ctxt, cqe);
519 svc_rdma_unmap_dma(ctxt);
520 svc_rdma_put_frmr(xprt, ctxt->frmr);
521
522 if (test_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags)) {
523 struct svc_rdma_op_ctxt *read_hdr;
524
525 read_hdr = ctxt->read_hdr;
526 spin_lock(&xprt->sc_rq_dto_lock);
527 list_add_tail(&read_hdr->list,
528 &xprt->sc_read_complete_q);
529 spin_unlock(&xprt->sc_rq_dto_lock);
530
531 set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags);
532 svc_xprt_enqueue(&xprt->sc_xprt);
533 }
534
535 svc_rdma_put_context(ctxt, 0);
536 svc_xprt_put(&xprt->sc_xprt);
537 }
538
539 /**
540 * svc_rdma_wc_inv - Invoked by RDMA provider for each polled LOCAL_INV WC
541 * @cq: completion queue
542 * @wc: completed WR
543 *
544 */
545 void svc_rdma_wc_inv(struct ib_cq *cq, struct ib_wc *wc)
546 {
547 svc_rdma_send_wc_common_put(cq, wc, "localInv");
548 }
549
550 static struct svcxprt_rdma *rdma_create_xprt(struct svc_serv *serv,
551 int listener)
552 {
553 struct svcxprt_rdma *cma_xprt = kzalloc(sizeof *cma_xprt, GFP_KERNEL);
554
555 if (!cma_xprt)
556 return NULL;
557 svc_xprt_init(&init_net, &svc_rdma_class, &cma_xprt->sc_xprt, serv);
558 INIT_LIST_HEAD(&cma_xprt->sc_accept_q);
559 INIT_LIST_HEAD(&cma_xprt->sc_rq_dto_q);
560 INIT_LIST_HEAD(&cma_xprt->sc_read_complete_q);
561 INIT_LIST_HEAD(&cma_xprt->sc_frmr_q);
562 INIT_LIST_HEAD(&cma_xprt->sc_ctxts);
563 INIT_LIST_HEAD(&cma_xprt->sc_maps);
564 init_waitqueue_head(&cma_xprt->sc_send_wait);
565
566 spin_lock_init(&cma_xprt->sc_lock);
567 spin_lock_init(&cma_xprt->sc_rq_dto_lock);
568 spin_lock_init(&cma_xprt->sc_frmr_q_lock);
569 spin_lock_init(&cma_xprt->sc_ctxt_lock);
570 spin_lock_init(&cma_xprt->sc_map_lock);
571
572 /*
573 * Note that this implies that the underlying transport support
574 * has some form of congestion control (see RFC 7530 section 3.1
575 * paragraph 2). For now, we assume that all supported RDMA
576 * transports are suitable here.
577 */
578 set_bit(XPT_CONG_CTRL, &cma_xprt->sc_xprt.xpt_flags);
579
580 if (listener)
581 set_bit(XPT_LISTENER, &cma_xprt->sc_xprt.xpt_flags);
582
583 return cma_xprt;
584 }
585
586 int svc_rdma_post_recv(struct svcxprt_rdma *xprt, gfp_t flags)
587 {
588 struct ib_recv_wr recv_wr, *bad_recv_wr;
589 struct svc_rdma_op_ctxt *ctxt;
590 struct page *page;
591 dma_addr_t pa;
592 int sge_no;
593 int buflen;
594 int ret;
595
596 ctxt = svc_rdma_get_context(xprt);
597 buflen = 0;
598 ctxt->direction = DMA_FROM_DEVICE;
599 ctxt->cqe.done = svc_rdma_wc_receive;
600 for (sge_no = 0; buflen < xprt->sc_max_req_size; sge_no++) {
601 if (sge_no >= xprt->sc_max_sge) {
602 pr_err("svcrdma: Too many sges (%d)\n", sge_no);
603 goto err_put_ctxt;
604 }
605 page = alloc_page(flags);
606 if (!page)
607 goto err_put_ctxt;
608 ctxt->pages[sge_no] = page;
609 pa = ib_dma_map_page(xprt->sc_cm_id->device,
610 page, 0, PAGE_SIZE,
611 DMA_FROM_DEVICE);
612 if (ib_dma_mapping_error(xprt->sc_cm_id->device, pa))
613 goto err_put_ctxt;
614 svc_rdma_count_mappings(xprt, ctxt);
615 ctxt->sge[sge_no].addr = pa;
616 ctxt->sge[sge_no].length = PAGE_SIZE;
617 ctxt->sge[sge_no].lkey = xprt->sc_pd->local_dma_lkey;
618 ctxt->count = sge_no + 1;
619 buflen += PAGE_SIZE;
620 }
621 recv_wr.next = NULL;
622 recv_wr.sg_list = &ctxt->sge[0];
623 recv_wr.num_sge = ctxt->count;
624 recv_wr.wr_cqe = &ctxt->cqe;
625
626 svc_xprt_get(&xprt->sc_xprt);
627 ret = ib_post_recv(xprt->sc_qp, &recv_wr, &bad_recv_wr);
628 if (ret) {
629 svc_rdma_unmap_dma(ctxt);
630 svc_rdma_put_context(ctxt, 1);
631 svc_xprt_put(&xprt->sc_xprt);
632 }
633 return ret;
634
635 err_put_ctxt:
636 svc_rdma_unmap_dma(ctxt);
637 svc_rdma_put_context(ctxt, 1);
638 return -ENOMEM;
639 }
640
641 int svc_rdma_repost_recv(struct svcxprt_rdma *xprt, gfp_t flags)
642 {
643 int ret = 0;
644
645 ret = svc_rdma_post_recv(xprt, flags);
646 if (ret) {
647 pr_err("svcrdma: could not post a receive buffer, err=%d.\n",
648 ret);
649 pr_err("svcrdma: closing transport %p.\n", xprt);
650 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
651 ret = -ENOTCONN;
652 }
653 return ret;
654 }
655
656 static void
657 svc_rdma_parse_connect_private(struct svcxprt_rdma *newxprt,
658 struct rdma_conn_param *param)
659 {
660 const struct rpcrdma_connect_private *pmsg = param->private_data;
661
662 if (pmsg &&
663 pmsg->cp_magic == rpcrdma_cmp_magic &&
664 pmsg->cp_version == RPCRDMA_CMP_VERSION) {
665 newxprt->sc_snd_w_inv = pmsg->cp_flags &
666 RPCRDMA_CMP_F_SND_W_INV_OK;
667
668 dprintk("svcrdma: client send_size %u, recv_size %u "
669 "remote inv %ssupported\n",
670 rpcrdma_decode_buffer_size(pmsg->cp_send_size),
671 rpcrdma_decode_buffer_size(pmsg->cp_recv_size),
672 newxprt->sc_snd_w_inv ? "" : "un");
673 }
674 }
675
676 /*
677 * This function handles the CONNECT_REQUEST event on a listening
678 * endpoint. It is passed the cma_id for the _new_ connection. The context in
679 * this cma_id is inherited from the listening cma_id and is the svc_xprt
680 * structure for the listening endpoint.
681 *
682 * This function creates a new xprt for the new connection and enqueues it on
683 * the accept queue for the listent xprt. When the listen thread is kicked, it
684 * will call the recvfrom method on the listen xprt which will accept the new
685 * connection.
686 */
687 static void handle_connect_req(struct rdma_cm_id *new_cma_id,
688 struct rdma_conn_param *param)
689 {
690 struct svcxprt_rdma *listen_xprt = new_cma_id->context;
691 struct svcxprt_rdma *newxprt;
692 struct sockaddr *sa;
693
694 /* Create a new transport */
695 newxprt = rdma_create_xprt(listen_xprt->sc_xprt.xpt_server, 0);
696 if (!newxprt) {
697 dprintk("svcrdma: failed to create new transport\n");
698 return;
699 }
700 newxprt->sc_cm_id = new_cma_id;
701 new_cma_id->context = newxprt;
702 dprintk("svcrdma: Creating newxprt=%p, cm_id=%p, listenxprt=%p\n",
703 newxprt, newxprt->sc_cm_id, listen_xprt);
704 svc_rdma_parse_connect_private(newxprt, param);
705
706 /* Save client advertised inbound read limit for use later in accept. */
707 newxprt->sc_ord = param->initiator_depth;
708
709 /* Set the local and remote addresses in the transport */
710 sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr;
711 svc_xprt_set_remote(&newxprt->sc_xprt, sa, svc_addr_len(sa));
712 sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr;
713 svc_xprt_set_local(&newxprt->sc_xprt, sa, svc_addr_len(sa));
714
715 /*
716 * Enqueue the new transport on the accept queue of the listening
717 * transport
718 */
719 spin_lock_bh(&listen_xprt->sc_lock);
720 list_add_tail(&newxprt->sc_accept_q, &listen_xprt->sc_accept_q);
721 spin_unlock_bh(&listen_xprt->sc_lock);
722
723 set_bit(XPT_CONN, &listen_xprt->sc_xprt.xpt_flags);
724 svc_xprt_enqueue(&listen_xprt->sc_xprt);
725 }
726
727 /*
728 * Handles events generated on the listening endpoint. These events will be
729 * either be incoming connect requests or adapter removal events.
730 */
731 static int rdma_listen_handler(struct rdma_cm_id *cma_id,
732 struct rdma_cm_event *event)
733 {
734 struct svcxprt_rdma *xprt = cma_id->context;
735 int ret = 0;
736
737 switch (event->event) {
738 case RDMA_CM_EVENT_CONNECT_REQUEST:
739 dprintk("svcrdma: Connect request on cma_id=%p, xprt = %p, "
740 "event = %s (%d)\n", cma_id, cma_id->context,
741 rdma_event_msg(event->event), event->event);
742 handle_connect_req(cma_id, &event->param.conn);
743 break;
744
745 case RDMA_CM_EVENT_ESTABLISHED:
746 /* Accept complete */
747 dprintk("svcrdma: Connection completed on LISTEN xprt=%p, "
748 "cm_id=%p\n", xprt, cma_id);
749 break;
750
751 case RDMA_CM_EVENT_DEVICE_REMOVAL:
752 dprintk("svcrdma: Device removal xprt=%p, cm_id=%p\n",
753 xprt, cma_id);
754 if (xprt)
755 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
756 break;
757
758 default:
759 dprintk("svcrdma: Unexpected event on listening endpoint %p, "
760 "event = %s (%d)\n", cma_id,
761 rdma_event_msg(event->event), event->event);
762 break;
763 }
764
765 return ret;
766 }
767
768 static int rdma_cma_handler(struct rdma_cm_id *cma_id,
769 struct rdma_cm_event *event)
770 {
771 struct svc_xprt *xprt = cma_id->context;
772 struct svcxprt_rdma *rdma =
773 container_of(xprt, struct svcxprt_rdma, sc_xprt);
774 switch (event->event) {
775 case RDMA_CM_EVENT_ESTABLISHED:
776 /* Accept complete */
777 svc_xprt_get(xprt);
778 dprintk("svcrdma: Connection completed on DTO xprt=%p, "
779 "cm_id=%p\n", xprt, cma_id);
780 clear_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags);
781 svc_xprt_enqueue(xprt);
782 break;
783 case RDMA_CM_EVENT_DISCONNECTED:
784 dprintk("svcrdma: Disconnect on DTO xprt=%p, cm_id=%p\n",
785 xprt, cma_id);
786 if (xprt) {
787 set_bit(XPT_CLOSE, &xprt->xpt_flags);
788 svc_xprt_enqueue(xprt);
789 svc_xprt_put(xprt);
790 }
791 break;
792 case RDMA_CM_EVENT_DEVICE_REMOVAL:
793 dprintk("svcrdma: Device removal cma_id=%p, xprt = %p, "
794 "event = %s (%d)\n", cma_id, xprt,
795 rdma_event_msg(event->event), event->event);
796 if (xprt) {
797 set_bit(XPT_CLOSE, &xprt->xpt_flags);
798 svc_xprt_enqueue(xprt);
799 svc_xprt_put(xprt);
800 }
801 break;
802 default:
803 dprintk("svcrdma: Unexpected event on DTO endpoint %p, "
804 "event = %s (%d)\n", cma_id,
805 rdma_event_msg(event->event), event->event);
806 break;
807 }
808 return 0;
809 }
810
811 /*
812 * Create a listening RDMA service endpoint.
813 */
814 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
815 struct net *net,
816 struct sockaddr *sa, int salen,
817 int flags)
818 {
819 struct rdma_cm_id *listen_id;
820 struct svcxprt_rdma *cma_xprt;
821 int ret;
822
823 dprintk("svcrdma: Creating RDMA socket\n");
824 if ((sa->sa_family != AF_INET) && (sa->sa_family != AF_INET6)) {
825 dprintk("svcrdma: Address family %d is not supported.\n", sa->sa_family);
826 return ERR_PTR(-EAFNOSUPPORT);
827 }
828 cma_xprt = rdma_create_xprt(serv, 1);
829 if (!cma_xprt)
830 return ERR_PTR(-ENOMEM);
831
832 listen_id = rdma_create_id(&init_net, rdma_listen_handler, cma_xprt,
833 RDMA_PS_TCP, IB_QPT_RC);
834 if (IS_ERR(listen_id)) {
835 ret = PTR_ERR(listen_id);
836 dprintk("svcrdma: rdma_create_id failed = %d\n", ret);
837 goto err0;
838 }
839
840 /* Allow both IPv4 and IPv6 sockets to bind a single port
841 * at the same time.
842 */
843 #if IS_ENABLED(CONFIG_IPV6)
844 ret = rdma_set_afonly(listen_id, 1);
845 if (ret) {
846 dprintk("svcrdma: rdma_set_afonly failed = %d\n", ret);
847 goto err1;
848 }
849 #endif
850 ret = rdma_bind_addr(listen_id, sa);
851 if (ret) {
852 dprintk("svcrdma: rdma_bind_addr failed = %d\n", ret);
853 goto err1;
854 }
855 cma_xprt->sc_cm_id = listen_id;
856
857 ret = rdma_listen(listen_id, RPCRDMA_LISTEN_BACKLOG);
858 if (ret) {
859 dprintk("svcrdma: rdma_listen failed = %d\n", ret);
860 goto err1;
861 }
862
863 /*
864 * We need to use the address from the cm_id in case the
865 * caller specified 0 for the port number.
866 */
867 sa = (struct sockaddr *)&cma_xprt->sc_cm_id->route.addr.src_addr;
868 svc_xprt_set_local(&cma_xprt->sc_xprt, sa, salen);
869
870 return &cma_xprt->sc_xprt;
871
872 err1:
873 rdma_destroy_id(listen_id);
874 err0:
875 kfree(cma_xprt);
876 return ERR_PTR(ret);
877 }
878
879 static struct svc_rdma_fastreg_mr *rdma_alloc_frmr(struct svcxprt_rdma *xprt)
880 {
881 struct ib_mr *mr;
882 struct scatterlist *sg;
883 struct svc_rdma_fastreg_mr *frmr;
884 u32 num_sg;
885
886 frmr = kmalloc(sizeof(*frmr), GFP_KERNEL);
887 if (!frmr)
888 goto err;
889
890 num_sg = min_t(u32, RPCSVC_MAXPAGES, xprt->sc_frmr_pg_list_len);
891 mr = ib_alloc_mr(xprt->sc_pd, IB_MR_TYPE_MEM_REG, num_sg);
892 if (IS_ERR(mr))
893 goto err_free_frmr;
894
895 sg = kcalloc(RPCSVC_MAXPAGES, sizeof(*sg), GFP_KERNEL);
896 if (!sg)
897 goto err_free_mr;
898
899 sg_init_table(sg, RPCSVC_MAXPAGES);
900
901 frmr->mr = mr;
902 frmr->sg = sg;
903 INIT_LIST_HEAD(&frmr->frmr_list);
904 return frmr;
905
906 err_free_mr:
907 ib_dereg_mr(mr);
908 err_free_frmr:
909 kfree(frmr);
910 err:
911 return ERR_PTR(-ENOMEM);
912 }
913
914 static void rdma_dealloc_frmr_q(struct svcxprt_rdma *xprt)
915 {
916 struct svc_rdma_fastreg_mr *frmr;
917
918 while (!list_empty(&xprt->sc_frmr_q)) {
919 frmr = list_entry(xprt->sc_frmr_q.next,
920 struct svc_rdma_fastreg_mr, frmr_list);
921 list_del_init(&frmr->frmr_list);
922 kfree(frmr->sg);
923 ib_dereg_mr(frmr->mr);
924 kfree(frmr);
925 }
926 }
927
928 struct svc_rdma_fastreg_mr *svc_rdma_get_frmr(struct svcxprt_rdma *rdma)
929 {
930 struct svc_rdma_fastreg_mr *frmr = NULL;
931
932 spin_lock(&rdma->sc_frmr_q_lock);
933 if (!list_empty(&rdma->sc_frmr_q)) {
934 frmr = list_entry(rdma->sc_frmr_q.next,
935 struct svc_rdma_fastreg_mr, frmr_list);
936 list_del_init(&frmr->frmr_list);
937 frmr->sg_nents = 0;
938 }
939 spin_unlock(&rdma->sc_frmr_q_lock);
940 if (frmr)
941 return frmr;
942
943 return rdma_alloc_frmr(rdma);
944 }
945
946 void svc_rdma_put_frmr(struct svcxprt_rdma *rdma,
947 struct svc_rdma_fastreg_mr *frmr)
948 {
949 if (frmr) {
950 ib_dma_unmap_sg(rdma->sc_cm_id->device,
951 frmr->sg, frmr->sg_nents, frmr->direction);
952 spin_lock(&rdma->sc_frmr_q_lock);
953 WARN_ON_ONCE(!list_empty(&frmr->frmr_list));
954 list_add(&frmr->frmr_list, &rdma->sc_frmr_q);
955 spin_unlock(&rdma->sc_frmr_q_lock);
956 }
957 }
958
959 /*
960 * This is the xpo_recvfrom function for listening endpoints. Its
961 * purpose is to accept incoming connections. The CMA callback handler
962 * has already created a new transport and attached it to the new CMA
963 * ID.
964 *
965 * There is a queue of pending connections hung on the listening
966 * transport. This queue contains the new svc_xprt structure. This
967 * function takes svc_xprt structures off the accept_q and completes
968 * the connection.
969 */
970 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt)
971 {
972 struct svcxprt_rdma *listen_rdma;
973 struct svcxprt_rdma *newxprt = NULL;
974 struct rdma_conn_param conn_param;
975 struct rpcrdma_connect_private pmsg;
976 struct ib_qp_init_attr qp_attr;
977 struct ib_device *dev;
978 struct sockaddr *sap;
979 unsigned int i;
980 int ret = 0;
981
982 listen_rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt);
983 clear_bit(XPT_CONN, &xprt->xpt_flags);
984 /* Get the next entry off the accept list */
985 spin_lock_bh(&listen_rdma->sc_lock);
986 if (!list_empty(&listen_rdma->sc_accept_q)) {
987 newxprt = list_entry(listen_rdma->sc_accept_q.next,
988 struct svcxprt_rdma, sc_accept_q);
989 list_del_init(&newxprt->sc_accept_q);
990 }
991 if (!list_empty(&listen_rdma->sc_accept_q))
992 set_bit(XPT_CONN, &listen_rdma->sc_xprt.xpt_flags);
993 spin_unlock_bh(&listen_rdma->sc_lock);
994 if (!newxprt)
995 return NULL;
996
997 dprintk("svcrdma: newxprt from accept queue = %p, cm_id=%p\n",
998 newxprt, newxprt->sc_cm_id);
999
1000 dev = newxprt->sc_cm_id->device;
1001
1002 /* Qualify the transport resource defaults with the
1003 * capabilities of this particular device */
1004 newxprt->sc_max_sge = min((size_t)dev->attrs.max_sge,
1005 (size_t)RPCSVC_MAXPAGES);
1006 newxprt->sc_max_sge_rd = min_t(size_t, dev->attrs.max_sge_rd,
1007 RPCSVC_MAXPAGES);
1008 newxprt->sc_max_req_size = svcrdma_max_req_size;
1009 newxprt->sc_max_requests = min_t(u32, dev->attrs.max_qp_wr,
1010 svcrdma_max_requests);
1011 newxprt->sc_fc_credits = cpu_to_be32(newxprt->sc_max_requests);
1012 newxprt->sc_max_bc_requests = min_t(u32, dev->attrs.max_qp_wr,
1013 svcrdma_max_bc_requests);
1014 newxprt->sc_rq_depth = newxprt->sc_max_requests +
1015 newxprt->sc_max_bc_requests;
1016 newxprt->sc_sq_depth = RPCRDMA_SQ_DEPTH_MULT * newxprt->sc_rq_depth;
1017 atomic_set(&newxprt->sc_sq_avail, newxprt->sc_sq_depth);
1018
1019 if (!svc_rdma_prealloc_ctxts(newxprt))
1020 goto errout;
1021 if (!svc_rdma_prealloc_maps(newxprt))
1022 goto errout;
1023
1024 /*
1025 * Limit ORD based on client limit, local device limit, and
1026 * configured svcrdma limit.
1027 */
1028 newxprt->sc_ord = min_t(size_t, dev->attrs.max_qp_rd_atom, newxprt->sc_ord);
1029 newxprt->sc_ord = min_t(size_t, svcrdma_ord, newxprt->sc_ord);
1030
1031 newxprt->sc_pd = ib_alloc_pd(dev, 0);
1032 if (IS_ERR(newxprt->sc_pd)) {
1033 dprintk("svcrdma: error creating PD for connect request\n");
1034 goto errout;
1035 }
1036 newxprt->sc_sq_cq = ib_alloc_cq(dev, newxprt, newxprt->sc_sq_depth,
1037 0, IB_POLL_WORKQUEUE);
1038 if (IS_ERR(newxprt->sc_sq_cq)) {
1039 dprintk("svcrdma: error creating SQ CQ for connect request\n");
1040 goto errout;
1041 }
1042 newxprt->sc_rq_cq = ib_alloc_cq(dev, newxprt, newxprt->sc_rq_depth,
1043 0, IB_POLL_WORKQUEUE);
1044 if (IS_ERR(newxprt->sc_rq_cq)) {
1045 dprintk("svcrdma: error creating RQ CQ for connect request\n");
1046 goto errout;
1047 }
1048
1049 memset(&qp_attr, 0, sizeof qp_attr);
1050 qp_attr.event_handler = qp_event_handler;
1051 qp_attr.qp_context = &newxprt->sc_xprt;
1052 qp_attr.cap.max_send_wr = newxprt->sc_sq_depth;
1053 qp_attr.cap.max_recv_wr = newxprt->sc_rq_depth;
1054 qp_attr.cap.max_send_sge = newxprt->sc_max_sge;
1055 qp_attr.cap.max_recv_sge = newxprt->sc_max_sge;
1056 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1057 qp_attr.qp_type = IB_QPT_RC;
1058 qp_attr.send_cq = newxprt->sc_sq_cq;
1059 qp_attr.recv_cq = newxprt->sc_rq_cq;
1060 dprintk("svcrdma: newxprt->sc_cm_id=%p, newxprt->sc_pd=%p\n",
1061 newxprt->sc_cm_id, newxprt->sc_pd);
1062 dprintk(" cap.max_send_wr = %d, cap.max_recv_wr = %d\n",
1063 qp_attr.cap.max_send_wr, qp_attr.cap.max_recv_wr);
1064 dprintk(" cap.max_send_sge = %d, cap.max_recv_sge = %d\n",
1065 qp_attr.cap.max_send_sge, qp_attr.cap.max_recv_sge);
1066
1067 ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd, &qp_attr);
1068 if (ret) {
1069 dprintk("svcrdma: failed to create QP, ret=%d\n", ret);
1070 goto errout;
1071 }
1072 newxprt->sc_qp = newxprt->sc_cm_id->qp;
1073
1074 /*
1075 * Use the most secure set of MR resources based on the
1076 * transport type and available memory management features in
1077 * the device. Here's the table implemented below:
1078 *
1079 * Fast Global DMA Remote WR
1080 * Reg LKEY MR Access
1081 * Sup'd Sup'd Needed Needed
1082 *
1083 * IWARP N N Y Y
1084 * N Y Y Y
1085 * Y N Y N
1086 * Y Y N -
1087 *
1088 * IB N N Y N
1089 * N Y N -
1090 * Y N Y N
1091 * Y Y N -
1092 *
1093 * NB: iWARP requires remote write access for the data sink
1094 * of an RDMA_READ. IB does not.
1095 */
1096 newxprt->sc_reader = rdma_read_chunk_lcl;
1097 if (dev->attrs.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) {
1098 newxprt->sc_frmr_pg_list_len =
1099 dev->attrs.max_fast_reg_page_list_len;
1100 newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_FAST_REG;
1101 newxprt->sc_reader = rdma_read_chunk_frmr;
1102 } else
1103 newxprt->sc_snd_w_inv = false;
1104
1105 /*
1106 * Determine if a DMA MR is required and if so, what privs are required
1107 */
1108 if (!rdma_protocol_iwarp(dev, newxprt->sc_cm_id->port_num) &&
1109 !rdma_ib_or_roce(dev, newxprt->sc_cm_id->port_num))
1110 goto errout;
1111
1112 if (rdma_protocol_iwarp(dev, newxprt->sc_cm_id->port_num))
1113 newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_READ_W_INV;
1114
1115 /* Post receive buffers */
1116 for (i = 0; i < newxprt->sc_max_requests; i++) {
1117 ret = svc_rdma_post_recv(newxprt, GFP_KERNEL);
1118 if (ret) {
1119 dprintk("svcrdma: failure posting receive buffers\n");
1120 goto errout;
1121 }
1122 }
1123
1124 /* Swap out the handler */
1125 newxprt->sc_cm_id->event_handler = rdma_cma_handler;
1126
1127 /* Construct RDMA-CM private message */
1128 pmsg.cp_magic = rpcrdma_cmp_magic;
1129 pmsg.cp_version = RPCRDMA_CMP_VERSION;
1130 pmsg.cp_flags = 0;
1131 pmsg.cp_send_size = pmsg.cp_recv_size =
1132 rpcrdma_encode_buffer_size(newxprt->sc_max_req_size);
1133
1134 /* Accept Connection */
1135 set_bit(RDMAXPRT_CONN_PENDING, &newxprt->sc_flags);
1136 memset(&conn_param, 0, sizeof conn_param);
1137 conn_param.responder_resources = 0;
1138 conn_param.initiator_depth = newxprt->sc_ord;
1139 conn_param.private_data = &pmsg;
1140 conn_param.private_data_len = sizeof(pmsg);
1141 ret = rdma_accept(newxprt->sc_cm_id, &conn_param);
1142 if (ret) {
1143 dprintk("svcrdma: failed to accept new connection, ret=%d\n",
1144 ret);
1145 goto errout;
1146 }
1147
1148 dprintk("svcrdma: new connection %p accepted:\n", newxprt);
1149 sap = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr;
1150 dprintk(" local address : %pIS:%u\n", sap, rpc_get_port(sap));
1151 sap = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr;
1152 dprintk(" remote address : %pIS:%u\n", sap, rpc_get_port(sap));
1153 dprintk(" max_sge : %d\n", newxprt->sc_max_sge);
1154 dprintk(" max_sge_rd : %d\n", newxprt->sc_max_sge_rd);
1155 dprintk(" sq_depth : %d\n", newxprt->sc_sq_depth);
1156 dprintk(" max_requests : %d\n", newxprt->sc_max_requests);
1157 dprintk(" ord : %d\n", newxprt->sc_ord);
1158
1159 return &newxprt->sc_xprt;
1160
1161 errout:
1162 dprintk("svcrdma: failure accepting new connection rc=%d.\n", ret);
1163 /* Take a reference in case the DTO handler runs */
1164 svc_xprt_get(&newxprt->sc_xprt);
1165 if (newxprt->sc_qp && !IS_ERR(newxprt->sc_qp))
1166 ib_destroy_qp(newxprt->sc_qp);
1167 rdma_destroy_id(newxprt->sc_cm_id);
1168 /* This call to put will destroy the transport */
1169 svc_xprt_put(&newxprt->sc_xprt);
1170 return NULL;
1171 }
1172
1173 static void svc_rdma_release_rqst(struct svc_rqst *rqstp)
1174 {
1175 }
1176
1177 /*
1178 * When connected, an svc_xprt has at least two references:
1179 *
1180 * - A reference held by the cm_id between the ESTABLISHED and
1181 * DISCONNECTED events. If the remote peer disconnected first, this
1182 * reference could be gone.
1183 *
1184 * - A reference held by the svc_recv code that called this function
1185 * as part of close processing.
1186 *
1187 * At a minimum one references should still be held.
1188 */
1189 static void svc_rdma_detach(struct svc_xprt *xprt)
1190 {
1191 struct svcxprt_rdma *rdma =
1192 container_of(xprt, struct svcxprt_rdma, sc_xprt);
1193 dprintk("svc: svc_rdma_detach(%p)\n", xprt);
1194
1195 /* Disconnect and flush posted WQE */
1196 rdma_disconnect(rdma->sc_cm_id);
1197 }
1198
1199 static void __svc_rdma_free(struct work_struct *work)
1200 {
1201 struct svcxprt_rdma *rdma =
1202 container_of(work, struct svcxprt_rdma, sc_work);
1203 struct svc_xprt *xprt = &rdma->sc_xprt;
1204
1205 dprintk("svcrdma: %s(%p)\n", __func__, rdma);
1206
1207 if (rdma->sc_qp && !IS_ERR(rdma->sc_qp))
1208 ib_drain_qp(rdma->sc_qp);
1209
1210 /* We should only be called from kref_put */
1211 if (kref_read(&xprt->xpt_ref) != 0)
1212 pr_err("svcrdma: sc_xprt still in use? (%d)\n",
1213 kref_read(&xprt->xpt_ref));
1214
1215 /*
1216 * Destroy queued, but not processed read completions. Note
1217 * that this cleanup has to be done before destroying the
1218 * cm_id because the device ptr is needed to unmap the dma in
1219 * svc_rdma_put_context.
1220 */
1221 while (!list_empty(&rdma->sc_read_complete_q)) {
1222 struct svc_rdma_op_ctxt *ctxt;
1223 ctxt = list_first_entry(&rdma->sc_read_complete_q,
1224 struct svc_rdma_op_ctxt, list);
1225 list_del(&ctxt->list);
1226 svc_rdma_put_context(ctxt, 1);
1227 }
1228
1229 /* Destroy queued, but not processed recv completions */
1230 while (!list_empty(&rdma->sc_rq_dto_q)) {
1231 struct svc_rdma_op_ctxt *ctxt;
1232 ctxt = list_first_entry(&rdma->sc_rq_dto_q,
1233 struct svc_rdma_op_ctxt, list);
1234 list_del(&ctxt->list);
1235 svc_rdma_put_context(ctxt, 1);
1236 }
1237
1238 /* Warn if we leaked a resource or under-referenced */
1239 if (rdma->sc_ctxt_used != 0)
1240 pr_err("svcrdma: ctxt still in use? (%d)\n",
1241 rdma->sc_ctxt_used);
1242
1243 /* Final put of backchannel client transport */
1244 if (xprt->xpt_bc_xprt) {
1245 xprt_put(xprt->xpt_bc_xprt);
1246 xprt->xpt_bc_xprt = NULL;
1247 }
1248
1249 rdma_dealloc_frmr_q(rdma);
1250 svc_rdma_destroy_ctxts(rdma);
1251 svc_rdma_destroy_maps(rdma);
1252
1253 /* Destroy the QP if present (not a listener) */
1254 if (rdma->sc_qp && !IS_ERR(rdma->sc_qp))
1255 ib_destroy_qp(rdma->sc_qp);
1256
1257 if (rdma->sc_sq_cq && !IS_ERR(rdma->sc_sq_cq))
1258 ib_free_cq(rdma->sc_sq_cq);
1259
1260 if (rdma->sc_rq_cq && !IS_ERR(rdma->sc_rq_cq))
1261 ib_free_cq(rdma->sc_rq_cq);
1262
1263 if (rdma->sc_pd && !IS_ERR(rdma->sc_pd))
1264 ib_dealloc_pd(rdma->sc_pd);
1265
1266 /* Destroy the CM ID */
1267 rdma_destroy_id(rdma->sc_cm_id);
1268
1269 kfree(rdma);
1270 }
1271
1272 static void svc_rdma_free(struct svc_xprt *xprt)
1273 {
1274 struct svcxprt_rdma *rdma =
1275 container_of(xprt, struct svcxprt_rdma, sc_xprt);
1276 INIT_WORK(&rdma->sc_work, __svc_rdma_free);
1277 queue_work(svc_rdma_wq, &rdma->sc_work);
1278 }
1279
1280 static int svc_rdma_has_wspace(struct svc_xprt *xprt)
1281 {
1282 struct svcxprt_rdma *rdma =
1283 container_of(xprt, struct svcxprt_rdma, sc_xprt);
1284
1285 /*
1286 * If there are already waiters on the SQ,
1287 * return false.
1288 */
1289 if (waitqueue_active(&rdma->sc_send_wait))
1290 return 0;
1291
1292 /* Otherwise return true. */
1293 return 1;
1294 }
1295
1296 static int svc_rdma_secure_port(struct svc_rqst *rqstp)
1297 {
1298 return 1;
1299 }
1300
1301 static void svc_rdma_kill_temp_xprt(struct svc_xprt *xprt)
1302 {
1303 }
1304
1305 int svc_rdma_send(struct svcxprt_rdma *xprt, struct ib_send_wr *wr)
1306 {
1307 struct ib_send_wr *bad_wr, *n_wr;
1308 int wr_count;
1309 int i;
1310 int ret;
1311
1312 if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags))
1313 return -ENOTCONN;
1314
1315 wr_count = 1;
1316 for (n_wr = wr->next; n_wr; n_wr = n_wr->next)
1317 wr_count++;
1318
1319 /* If the SQ is full, wait until an SQ entry is available */
1320 while (1) {
1321 if ((atomic_sub_return(wr_count, &xprt->sc_sq_avail) < 0)) {
1322 atomic_inc(&rdma_stat_sq_starve);
1323
1324 /* Wait until SQ WR available if SQ still full */
1325 atomic_add(wr_count, &xprt->sc_sq_avail);
1326 wait_event(xprt->sc_send_wait,
1327 atomic_read(&xprt->sc_sq_avail) > wr_count);
1328 if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags))
1329 return -ENOTCONN;
1330 continue;
1331 }
1332 /* Take a transport ref for each WR posted */
1333 for (i = 0; i < wr_count; i++)
1334 svc_xprt_get(&xprt->sc_xprt);
1335
1336 /* Bump used SQ WR count and post */
1337 ret = ib_post_send(xprt->sc_qp, wr, &bad_wr);
1338 if (ret) {
1339 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
1340 for (i = 0; i < wr_count; i ++)
1341 svc_xprt_put(&xprt->sc_xprt);
1342 dprintk("svcrdma: failed to post SQ WR rc=%d\n", ret);
1343 dprintk(" sc_sq_avail=%d, sc_sq_depth=%d\n",
1344 atomic_read(&xprt->sc_sq_avail),
1345 xprt->sc_sq_depth);
1346 wake_up(&xprt->sc_send_wait);
1347 }
1348 break;
1349 }
1350 return ret;
1351 }