]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/sunrpc/xprtrdma/svc_rdma_transport.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-artful-kernel.git] / net / sunrpc / xprtrdma / svc_rdma_transport.c
1 /*
2 * Copyright (c) 2005-2007 Network Appliance, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
8 * license below:
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 *
17 * Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials provided
20 * with the distribution.
21 *
22 * Neither the name of the Network Appliance, Inc. nor the names of
23 * its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written
25 * permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 *
39 * Author: Tom Tucker <tom@opengridcomputing.com>
40 */
41
42 #include <linux/sunrpc/svc_xprt.h>
43 #include <linux/sunrpc/debug.h>
44 #include <linux/sunrpc/rpc_rdma.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <rdma/ib_verbs.h>
49 #include <rdma/rdma_cm.h>
50 #include <linux/sunrpc/svc_rdma.h>
51
52 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
53
54 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
55 struct sockaddr *sa, int salen,
56 int flags);
57 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt);
58 static void svc_rdma_release_rqst(struct svc_rqst *);
59 static void dto_tasklet_func(unsigned long data);
60 static void svc_rdma_detach(struct svc_xprt *xprt);
61 static void svc_rdma_free(struct svc_xprt *xprt);
62 static int svc_rdma_has_wspace(struct svc_xprt *xprt);
63 static void rq_cq_reap(struct svcxprt_rdma *xprt);
64 static void sq_cq_reap(struct svcxprt_rdma *xprt);
65
66 static DECLARE_TASKLET(dto_tasklet, dto_tasklet_func, 0UL);
67 static DEFINE_SPINLOCK(dto_lock);
68 static LIST_HEAD(dto_xprt_q);
69
70 static struct svc_xprt_ops svc_rdma_ops = {
71 .xpo_create = svc_rdma_create,
72 .xpo_recvfrom = svc_rdma_recvfrom,
73 .xpo_sendto = svc_rdma_sendto,
74 .xpo_release_rqst = svc_rdma_release_rqst,
75 .xpo_detach = svc_rdma_detach,
76 .xpo_free = svc_rdma_free,
77 .xpo_prep_reply_hdr = svc_rdma_prep_reply_hdr,
78 .xpo_has_wspace = svc_rdma_has_wspace,
79 .xpo_accept = svc_rdma_accept,
80 };
81
82 struct svc_xprt_class svc_rdma_class = {
83 .xcl_name = "rdma",
84 .xcl_owner = THIS_MODULE,
85 .xcl_ops = &svc_rdma_ops,
86 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
87 };
88
89 /* WR context cache. Created in svc_rdma.c */
90 extern struct kmem_cache *svc_rdma_ctxt_cachep;
91
92 struct svc_rdma_op_ctxt *svc_rdma_get_context(struct svcxprt_rdma *xprt)
93 {
94 struct svc_rdma_op_ctxt *ctxt;
95
96 while (1) {
97 ctxt = kmem_cache_alloc(svc_rdma_ctxt_cachep, GFP_KERNEL);
98 if (ctxt)
99 break;
100 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
101 }
102 ctxt->xprt = xprt;
103 INIT_LIST_HEAD(&ctxt->dto_q);
104 ctxt->count = 0;
105 ctxt->frmr = NULL;
106 atomic_inc(&xprt->sc_ctxt_used);
107 return ctxt;
108 }
109
110 void svc_rdma_unmap_dma(struct svc_rdma_op_ctxt *ctxt)
111 {
112 struct svcxprt_rdma *xprt = ctxt->xprt;
113 int i;
114 for (i = 0; i < ctxt->count && ctxt->sge[i].length; i++) {
115 /*
116 * Unmap the DMA addr in the SGE if the lkey matches
117 * the sc_dma_lkey, otherwise, ignore it since it is
118 * an FRMR lkey and will be unmapped later when the
119 * last WR that uses it completes.
120 */
121 if (ctxt->sge[i].lkey == xprt->sc_dma_lkey) {
122 atomic_dec(&xprt->sc_dma_used);
123 ib_dma_unmap_single(xprt->sc_cm_id->device,
124 ctxt->sge[i].addr,
125 ctxt->sge[i].length,
126 ctxt->direction);
127 }
128 }
129 }
130
131 void svc_rdma_put_context(struct svc_rdma_op_ctxt *ctxt, int free_pages)
132 {
133 struct svcxprt_rdma *xprt;
134 int i;
135
136 BUG_ON(!ctxt);
137 xprt = ctxt->xprt;
138 if (free_pages)
139 for (i = 0; i < ctxt->count; i++)
140 put_page(ctxt->pages[i]);
141
142 kmem_cache_free(svc_rdma_ctxt_cachep, ctxt);
143 atomic_dec(&xprt->sc_ctxt_used);
144 }
145
146 /* Temporary NFS request map cache. Created in svc_rdma.c */
147 extern struct kmem_cache *svc_rdma_map_cachep;
148
149 /*
150 * Temporary NFS req mappings are shared across all transport
151 * instances. These are short lived and should be bounded by the number
152 * of concurrent server threads * depth of the SQ.
153 */
154 struct svc_rdma_req_map *svc_rdma_get_req_map(void)
155 {
156 struct svc_rdma_req_map *map;
157 while (1) {
158 map = kmem_cache_alloc(svc_rdma_map_cachep, GFP_KERNEL);
159 if (map)
160 break;
161 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
162 }
163 map->count = 0;
164 map->frmr = NULL;
165 return map;
166 }
167
168 void svc_rdma_put_req_map(struct svc_rdma_req_map *map)
169 {
170 kmem_cache_free(svc_rdma_map_cachep, map);
171 }
172
173 /* ib_cq event handler */
174 static void cq_event_handler(struct ib_event *event, void *context)
175 {
176 struct svc_xprt *xprt = context;
177 dprintk("svcrdma: received CQ event id=%d, context=%p\n",
178 event->event, context);
179 set_bit(XPT_CLOSE, &xprt->xpt_flags);
180 }
181
182 /* QP event handler */
183 static void qp_event_handler(struct ib_event *event, void *context)
184 {
185 struct svc_xprt *xprt = context;
186
187 switch (event->event) {
188 /* These are considered benign events */
189 case IB_EVENT_PATH_MIG:
190 case IB_EVENT_COMM_EST:
191 case IB_EVENT_SQ_DRAINED:
192 case IB_EVENT_QP_LAST_WQE_REACHED:
193 dprintk("svcrdma: QP event %d received for QP=%p\n",
194 event->event, event->element.qp);
195 break;
196 /* These are considered fatal events */
197 case IB_EVENT_PATH_MIG_ERR:
198 case IB_EVENT_QP_FATAL:
199 case IB_EVENT_QP_REQ_ERR:
200 case IB_EVENT_QP_ACCESS_ERR:
201 case IB_EVENT_DEVICE_FATAL:
202 default:
203 dprintk("svcrdma: QP ERROR event %d received for QP=%p, "
204 "closing transport\n",
205 event->event, event->element.qp);
206 set_bit(XPT_CLOSE, &xprt->xpt_flags);
207 break;
208 }
209 }
210
211 /*
212 * Data Transfer Operation Tasklet
213 *
214 * Walks a list of transports with I/O pending, removing entries as
215 * they are added to the server's I/O pending list. Two bits indicate
216 * if SQ, RQ, or both have I/O pending. The dto_lock is an irqsave
217 * spinlock that serializes access to the transport list with the RQ
218 * and SQ interrupt handlers.
219 */
220 static void dto_tasklet_func(unsigned long data)
221 {
222 struct svcxprt_rdma *xprt;
223 unsigned long flags;
224
225 spin_lock_irqsave(&dto_lock, flags);
226 while (!list_empty(&dto_xprt_q)) {
227 xprt = list_entry(dto_xprt_q.next,
228 struct svcxprt_rdma, sc_dto_q);
229 list_del_init(&xprt->sc_dto_q);
230 spin_unlock_irqrestore(&dto_lock, flags);
231
232 rq_cq_reap(xprt);
233 sq_cq_reap(xprt);
234
235 svc_xprt_put(&xprt->sc_xprt);
236 spin_lock_irqsave(&dto_lock, flags);
237 }
238 spin_unlock_irqrestore(&dto_lock, flags);
239 }
240
241 /*
242 * Receive Queue Completion Handler
243 *
244 * Since an RQ completion handler is called on interrupt context, we
245 * need to defer the handling of the I/O to a tasklet
246 */
247 static void rq_comp_handler(struct ib_cq *cq, void *cq_context)
248 {
249 struct svcxprt_rdma *xprt = cq_context;
250 unsigned long flags;
251
252 /* Guard against unconditional flush call for destroyed QP */
253 if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0)
254 return;
255
256 /*
257 * Set the bit regardless of whether or not it's on the list
258 * because it may be on the list already due to an SQ
259 * completion.
260 */
261 set_bit(RDMAXPRT_RQ_PENDING, &xprt->sc_flags);
262
263 /*
264 * If this transport is not already on the DTO transport queue,
265 * add it
266 */
267 spin_lock_irqsave(&dto_lock, flags);
268 if (list_empty(&xprt->sc_dto_q)) {
269 svc_xprt_get(&xprt->sc_xprt);
270 list_add_tail(&xprt->sc_dto_q, &dto_xprt_q);
271 }
272 spin_unlock_irqrestore(&dto_lock, flags);
273
274 /* Tasklet does all the work to avoid irqsave locks. */
275 tasklet_schedule(&dto_tasklet);
276 }
277
278 /*
279 * rq_cq_reap - Process the RQ CQ.
280 *
281 * Take all completing WC off the CQE and enqueue the associated DTO
282 * context on the dto_q for the transport.
283 *
284 * Note that caller must hold a transport reference.
285 */
286 static void rq_cq_reap(struct svcxprt_rdma *xprt)
287 {
288 int ret;
289 struct ib_wc wc;
290 struct svc_rdma_op_ctxt *ctxt = NULL;
291
292 if (!test_and_clear_bit(RDMAXPRT_RQ_PENDING, &xprt->sc_flags))
293 return;
294
295 ib_req_notify_cq(xprt->sc_rq_cq, IB_CQ_NEXT_COMP);
296 atomic_inc(&rdma_stat_rq_poll);
297
298 while ((ret = ib_poll_cq(xprt->sc_rq_cq, 1, &wc)) > 0) {
299 ctxt = (struct svc_rdma_op_ctxt *)(unsigned long)wc.wr_id;
300 ctxt->wc_status = wc.status;
301 ctxt->byte_len = wc.byte_len;
302 svc_rdma_unmap_dma(ctxt);
303 if (wc.status != IB_WC_SUCCESS) {
304 /* Close the transport */
305 dprintk("svcrdma: transport closing putting ctxt %p\n", ctxt);
306 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
307 svc_rdma_put_context(ctxt, 1);
308 svc_xprt_put(&xprt->sc_xprt);
309 continue;
310 }
311 spin_lock_bh(&xprt->sc_rq_dto_lock);
312 list_add_tail(&ctxt->dto_q, &xprt->sc_rq_dto_q);
313 spin_unlock_bh(&xprt->sc_rq_dto_lock);
314 svc_xprt_put(&xprt->sc_xprt);
315 }
316
317 if (ctxt)
318 atomic_inc(&rdma_stat_rq_prod);
319
320 set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags);
321 /*
322 * If data arrived before established event,
323 * don't enqueue. This defers RPC I/O until the
324 * RDMA connection is complete.
325 */
326 if (!test_bit(RDMAXPRT_CONN_PENDING, &xprt->sc_flags))
327 svc_xprt_enqueue(&xprt->sc_xprt);
328 }
329
330 /*
331 * Processs a completion context
332 */
333 static void process_context(struct svcxprt_rdma *xprt,
334 struct svc_rdma_op_ctxt *ctxt)
335 {
336 svc_rdma_unmap_dma(ctxt);
337
338 switch (ctxt->wr_op) {
339 case IB_WR_SEND:
340 if (test_bit(RDMACTXT_F_FAST_UNREG, &ctxt->flags))
341 svc_rdma_put_frmr(xprt, ctxt->frmr);
342 svc_rdma_put_context(ctxt, 1);
343 break;
344
345 case IB_WR_RDMA_WRITE:
346 svc_rdma_put_context(ctxt, 0);
347 break;
348
349 case IB_WR_RDMA_READ:
350 case IB_WR_RDMA_READ_WITH_INV:
351 if (test_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags)) {
352 struct svc_rdma_op_ctxt *read_hdr = ctxt->read_hdr;
353 BUG_ON(!read_hdr);
354 if (test_bit(RDMACTXT_F_FAST_UNREG, &ctxt->flags))
355 svc_rdma_put_frmr(xprt, ctxt->frmr);
356 spin_lock_bh(&xprt->sc_rq_dto_lock);
357 set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags);
358 list_add_tail(&read_hdr->dto_q,
359 &xprt->sc_read_complete_q);
360 spin_unlock_bh(&xprt->sc_rq_dto_lock);
361 svc_xprt_enqueue(&xprt->sc_xprt);
362 }
363 svc_rdma_put_context(ctxt, 0);
364 break;
365
366 default:
367 printk(KERN_ERR "svcrdma: unexpected completion type, "
368 "opcode=%d\n",
369 ctxt->wr_op);
370 break;
371 }
372 }
373
374 /*
375 * Send Queue Completion Handler - potentially called on interrupt context.
376 *
377 * Note that caller must hold a transport reference.
378 */
379 static void sq_cq_reap(struct svcxprt_rdma *xprt)
380 {
381 struct svc_rdma_op_ctxt *ctxt = NULL;
382 struct ib_wc wc;
383 struct ib_cq *cq = xprt->sc_sq_cq;
384 int ret;
385
386 if (!test_and_clear_bit(RDMAXPRT_SQ_PENDING, &xprt->sc_flags))
387 return;
388
389 ib_req_notify_cq(xprt->sc_sq_cq, IB_CQ_NEXT_COMP);
390 atomic_inc(&rdma_stat_sq_poll);
391 while ((ret = ib_poll_cq(cq, 1, &wc)) > 0) {
392 if (wc.status != IB_WC_SUCCESS)
393 /* Close the transport */
394 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
395
396 /* Decrement used SQ WR count */
397 atomic_dec(&xprt->sc_sq_count);
398 wake_up(&xprt->sc_send_wait);
399
400 ctxt = (struct svc_rdma_op_ctxt *)(unsigned long)wc.wr_id;
401 if (ctxt)
402 process_context(xprt, ctxt);
403
404 svc_xprt_put(&xprt->sc_xprt);
405 }
406
407 if (ctxt)
408 atomic_inc(&rdma_stat_sq_prod);
409 }
410
411 static void sq_comp_handler(struct ib_cq *cq, void *cq_context)
412 {
413 struct svcxprt_rdma *xprt = cq_context;
414 unsigned long flags;
415
416 /* Guard against unconditional flush call for destroyed QP */
417 if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0)
418 return;
419
420 /*
421 * Set the bit regardless of whether or not it's on the list
422 * because it may be on the list already due to an RQ
423 * completion.
424 */
425 set_bit(RDMAXPRT_SQ_PENDING, &xprt->sc_flags);
426
427 /*
428 * If this transport is not already on the DTO transport queue,
429 * add it
430 */
431 spin_lock_irqsave(&dto_lock, flags);
432 if (list_empty(&xprt->sc_dto_q)) {
433 svc_xprt_get(&xprt->sc_xprt);
434 list_add_tail(&xprt->sc_dto_q, &dto_xprt_q);
435 }
436 spin_unlock_irqrestore(&dto_lock, flags);
437
438 /* Tasklet does all the work to avoid irqsave locks. */
439 tasklet_schedule(&dto_tasklet);
440 }
441
442 static struct svcxprt_rdma *rdma_create_xprt(struct svc_serv *serv,
443 int listener)
444 {
445 struct svcxprt_rdma *cma_xprt = kzalloc(sizeof *cma_xprt, GFP_KERNEL);
446
447 if (!cma_xprt)
448 return NULL;
449 svc_xprt_init(&svc_rdma_class, &cma_xprt->sc_xprt, serv);
450 INIT_LIST_HEAD(&cma_xprt->sc_accept_q);
451 INIT_LIST_HEAD(&cma_xprt->sc_dto_q);
452 INIT_LIST_HEAD(&cma_xprt->sc_rq_dto_q);
453 INIT_LIST_HEAD(&cma_xprt->sc_read_complete_q);
454 INIT_LIST_HEAD(&cma_xprt->sc_frmr_q);
455 init_waitqueue_head(&cma_xprt->sc_send_wait);
456
457 spin_lock_init(&cma_xprt->sc_lock);
458 spin_lock_init(&cma_xprt->sc_rq_dto_lock);
459 spin_lock_init(&cma_xprt->sc_frmr_q_lock);
460
461 cma_xprt->sc_ord = svcrdma_ord;
462
463 cma_xprt->sc_max_req_size = svcrdma_max_req_size;
464 cma_xprt->sc_max_requests = svcrdma_max_requests;
465 cma_xprt->sc_sq_depth = svcrdma_max_requests * RPCRDMA_SQ_DEPTH_MULT;
466 atomic_set(&cma_xprt->sc_sq_count, 0);
467 atomic_set(&cma_xprt->sc_ctxt_used, 0);
468
469 if (listener)
470 set_bit(XPT_LISTENER, &cma_xprt->sc_xprt.xpt_flags);
471
472 return cma_xprt;
473 }
474
475 struct page *svc_rdma_get_page(void)
476 {
477 struct page *page;
478
479 while ((page = alloc_page(GFP_KERNEL)) == NULL) {
480 /* If we can't get memory, wait a bit and try again */
481 printk(KERN_INFO "svcrdma: out of memory...retrying in 1000 "
482 "jiffies.\n");
483 schedule_timeout_uninterruptible(msecs_to_jiffies(1000));
484 }
485 return page;
486 }
487
488 int svc_rdma_post_recv(struct svcxprt_rdma *xprt)
489 {
490 struct ib_recv_wr recv_wr, *bad_recv_wr;
491 struct svc_rdma_op_ctxt *ctxt;
492 struct page *page;
493 dma_addr_t pa;
494 int sge_no;
495 int buflen;
496 int ret;
497
498 ctxt = svc_rdma_get_context(xprt);
499 buflen = 0;
500 ctxt->direction = DMA_FROM_DEVICE;
501 for (sge_no = 0; buflen < xprt->sc_max_req_size; sge_no++) {
502 BUG_ON(sge_no >= xprt->sc_max_sge);
503 page = svc_rdma_get_page();
504 ctxt->pages[sge_no] = page;
505 pa = ib_dma_map_single(xprt->sc_cm_id->device,
506 page_address(page), PAGE_SIZE,
507 DMA_FROM_DEVICE);
508 if (ib_dma_mapping_error(xprt->sc_cm_id->device, pa))
509 goto err_put_ctxt;
510 atomic_inc(&xprt->sc_dma_used);
511 ctxt->sge[sge_no].addr = pa;
512 ctxt->sge[sge_no].length = PAGE_SIZE;
513 ctxt->sge[sge_no].lkey = xprt->sc_dma_lkey;
514 buflen += PAGE_SIZE;
515 }
516 ctxt->count = sge_no;
517 recv_wr.next = NULL;
518 recv_wr.sg_list = &ctxt->sge[0];
519 recv_wr.num_sge = ctxt->count;
520 recv_wr.wr_id = (u64)(unsigned long)ctxt;
521
522 svc_xprt_get(&xprt->sc_xprt);
523 ret = ib_post_recv(xprt->sc_qp, &recv_wr, &bad_recv_wr);
524 if (ret) {
525 svc_rdma_unmap_dma(ctxt);
526 svc_rdma_put_context(ctxt, 1);
527 svc_xprt_put(&xprt->sc_xprt);
528 }
529 return ret;
530
531 err_put_ctxt:
532 svc_rdma_put_context(ctxt, 1);
533 return -ENOMEM;
534 }
535
536 /*
537 * This function handles the CONNECT_REQUEST event on a listening
538 * endpoint. It is passed the cma_id for the _new_ connection. The context in
539 * this cma_id is inherited from the listening cma_id and is the svc_xprt
540 * structure for the listening endpoint.
541 *
542 * This function creates a new xprt for the new connection and enqueues it on
543 * the accept queue for the listent xprt. When the listen thread is kicked, it
544 * will call the recvfrom method on the listen xprt which will accept the new
545 * connection.
546 */
547 static void handle_connect_req(struct rdma_cm_id *new_cma_id, size_t client_ird)
548 {
549 struct svcxprt_rdma *listen_xprt = new_cma_id->context;
550 struct svcxprt_rdma *newxprt;
551 struct sockaddr *sa;
552
553 /* Create a new transport */
554 newxprt = rdma_create_xprt(listen_xprt->sc_xprt.xpt_server, 0);
555 if (!newxprt) {
556 dprintk("svcrdma: failed to create new transport\n");
557 return;
558 }
559 newxprt->sc_cm_id = new_cma_id;
560 new_cma_id->context = newxprt;
561 dprintk("svcrdma: Creating newxprt=%p, cm_id=%p, listenxprt=%p\n",
562 newxprt, newxprt->sc_cm_id, listen_xprt);
563
564 /* Save client advertised inbound read limit for use later in accept. */
565 newxprt->sc_ord = client_ird;
566
567 /* Set the local and remote addresses in the transport */
568 sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr;
569 svc_xprt_set_remote(&newxprt->sc_xprt, sa, svc_addr_len(sa));
570 sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr;
571 svc_xprt_set_local(&newxprt->sc_xprt, sa, svc_addr_len(sa));
572
573 /*
574 * Enqueue the new transport on the accept queue of the listening
575 * transport
576 */
577 spin_lock_bh(&listen_xprt->sc_lock);
578 list_add_tail(&newxprt->sc_accept_q, &listen_xprt->sc_accept_q);
579 spin_unlock_bh(&listen_xprt->sc_lock);
580
581 /*
582 * Can't use svc_xprt_received here because we are not on a
583 * rqstp thread
584 */
585 set_bit(XPT_CONN, &listen_xprt->sc_xprt.xpt_flags);
586 svc_xprt_enqueue(&listen_xprt->sc_xprt);
587 }
588
589 /*
590 * Handles events generated on the listening endpoint. These events will be
591 * either be incoming connect requests or adapter removal events.
592 */
593 static int rdma_listen_handler(struct rdma_cm_id *cma_id,
594 struct rdma_cm_event *event)
595 {
596 struct svcxprt_rdma *xprt = cma_id->context;
597 int ret = 0;
598
599 switch (event->event) {
600 case RDMA_CM_EVENT_CONNECT_REQUEST:
601 dprintk("svcrdma: Connect request on cma_id=%p, xprt = %p, "
602 "event=%d\n", cma_id, cma_id->context, event->event);
603 handle_connect_req(cma_id,
604 event->param.conn.initiator_depth);
605 break;
606
607 case RDMA_CM_EVENT_ESTABLISHED:
608 /* Accept complete */
609 dprintk("svcrdma: Connection completed on LISTEN xprt=%p, "
610 "cm_id=%p\n", xprt, cma_id);
611 break;
612
613 case RDMA_CM_EVENT_DEVICE_REMOVAL:
614 dprintk("svcrdma: Device removal xprt=%p, cm_id=%p\n",
615 xprt, cma_id);
616 if (xprt)
617 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
618 break;
619
620 default:
621 dprintk("svcrdma: Unexpected event on listening endpoint %p, "
622 "event=%d\n", cma_id, event->event);
623 break;
624 }
625
626 return ret;
627 }
628
629 static int rdma_cma_handler(struct rdma_cm_id *cma_id,
630 struct rdma_cm_event *event)
631 {
632 struct svc_xprt *xprt = cma_id->context;
633 struct svcxprt_rdma *rdma =
634 container_of(xprt, struct svcxprt_rdma, sc_xprt);
635 switch (event->event) {
636 case RDMA_CM_EVENT_ESTABLISHED:
637 /* Accept complete */
638 svc_xprt_get(xprt);
639 dprintk("svcrdma: Connection completed on DTO xprt=%p, "
640 "cm_id=%p\n", xprt, cma_id);
641 clear_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags);
642 svc_xprt_enqueue(xprt);
643 break;
644 case RDMA_CM_EVENT_DISCONNECTED:
645 dprintk("svcrdma: Disconnect on DTO xprt=%p, cm_id=%p\n",
646 xprt, cma_id);
647 if (xprt) {
648 set_bit(XPT_CLOSE, &xprt->xpt_flags);
649 svc_xprt_enqueue(xprt);
650 svc_xprt_put(xprt);
651 }
652 break;
653 case RDMA_CM_EVENT_DEVICE_REMOVAL:
654 dprintk("svcrdma: Device removal cma_id=%p, xprt = %p, "
655 "event=%d\n", cma_id, xprt, event->event);
656 if (xprt) {
657 set_bit(XPT_CLOSE, &xprt->xpt_flags);
658 svc_xprt_enqueue(xprt);
659 }
660 break;
661 default:
662 dprintk("svcrdma: Unexpected event on DTO endpoint %p, "
663 "event=%d\n", cma_id, event->event);
664 break;
665 }
666 return 0;
667 }
668
669 /*
670 * Create a listening RDMA service endpoint.
671 */
672 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
673 struct sockaddr *sa, int salen,
674 int flags)
675 {
676 struct rdma_cm_id *listen_id;
677 struct svcxprt_rdma *cma_xprt;
678 struct svc_xprt *xprt;
679 int ret;
680
681 dprintk("svcrdma: Creating RDMA socket\n");
682
683 cma_xprt = rdma_create_xprt(serv, 1);
684 if (!cma_xprt)
685 return ERR_PTR(-ENOMEM);
686 xprt = &cma_xprt->sc_xprt;
687
688 listen_id = rdma_create_id(rdma_listen_handler, cma_xprt, RDMA_PS_TCP);
689 if (IS_ERR(listen_id)) {
690 ret = PTR_ERR(listen_id);
691 dprintk("svcrdma: rdma_create_id failed = %d\n", ret);
692 goto err0;
693 }
694
695 ret = rdma_bind_addr(listen_id, sa);
696 if (ret) {
697 dprintk("svcrdma: rdma_bind_addr failed = %d\n", ret);
698 goto err1;
699 }
700 cma_xprt->sc_cm_id = listen_id;
701
702 ret = rdma_listen(listen_id, RPCRDMA_LISTEN_BACKLOG);
703 if (ret) {
704 dprintk("svcrdma: rdma_listen failed = %d\n", ret);
705 goto err1;
706 }
707
708 /*
709 * We need to use the address from the cm_id in case the
710 * caller specified 0 for the port number.
711 */
712 sa = (struct sockaddr *)&cma_xprt->sc_cm_id->route.addr.src_addr;
713 svc_xprt_set_local(&cma_xprt->sc_xprt, sa, salen);
714
715 return &cma_xprt->sc_xprt;
716
717 err1:
718 rdma_destroy_id(listen_id);
719 err0:
720 kfree(cma_xprt);
721 return ERR_PTR(ret);
722 }
723
724 static struct svc_rdma_fastreg_mr *rdma_alloc_frmr(struct svcxprt_rdma *xprt)
725 {
726 struct ib_mr *mr;
727 struct ib_fast_reg_page_list *pl;
728 struct svc_rdma_fastreg_mr *frmr;
729
730 frmr = kmalloc(sizeof(*frmr), GFP_KERNEL);
731 if (!frmr)
732 goto err;
733
734 mr = ib_alloc_fast_reg_mr(xprt->sc_pd, RPCSVC_MAXPAGES);
735 if (IS_ERR(mr))
736 goto err_free_frmr;
737
738 pl = ib_alloc_fast_reg_page_list(xprt->sc_cm_id->device,
739 RPCSVC_MAXPAGES);
740 if (IS_ERR(pl))
741 goto err_free_mr;
742
743 frmr->mr = mr;
744 frmr->page_list = pl;
745 INIT_LIST_HEAD(&frmr->frmr_list);
746 return frmr;
747
748 err_free_mr:
749 ib_dereg_mr(mr);
750 err_free_frmr:
751 kfree(frmr);
752 err:
753 return ERR_PTR(-ENOMEM);
754 }
755
756 static void rdma_dealloc_frmr_q(struct svcxprt_rdma *xprt)
757 {
758 struct svc_rdma_fastreg_mr *frmr;
759
760 while (!list_empty(&xprt->sc_frmr_q)) {
761 frmr = list_entry(xprt->sc_frmr_q.next,
762 struct svc_rdma_fastreg_mr, frmr_list);
763 list_del_init(&frmr->frmr_list);
764 ib_dereg_mr(frmr->mr);
765 ib_free_fast_reg_page_list(frmr->page_list);
766 kfree(frmr);
767 }
768 }
769
770 struct svc_rdma_fastreg_mr *svc_rdma_get_frmr(struct svcxprt_rdma *rdma)
771 {
772 struct svc_rdma_fastreg_mr *frmr = NULL;
773
774 spin_lock_bh(&rdma->sc_frmr_q_lock);
775 if (!list_empty(&rdma->sc_frmr_q)) {
776 frmr = list_entry(rdma->sc_frmr_q.next,
777 struct svc_rdma_fastreg_mr, frmr_list);
778 list_del_init(&frmr->frmr_list);
779 frmr->map_len = 0;
780 frmr->page_list_len = 0;
781 }
782 spin_unlock_bh(&rdma->sc_frmr_q_lock);
783 if (frmr)
784 return frmr;
785
786 return rdma_alloc_frmr(rdma);
787 }
788
789 static void frmr_unmap_dma(struct svcxprt_rdma *xprt,
790 struct svc_rdma_fastreg_mr *frmr)
791 {
792 int page_no;
793 for (page_no = 0; page_no < frmr->page_list_len; page_no++) {
794 dma_addr_t addr = frmr->page_list->page_list[page_no];
795 if (ib_dma_mapping_error(frmr->mr->device, addr))
796 continue;
797 atomic_dec(&xprt->sc_dma_used);
798 ib_dma_unmap_single(frmr->mr->device, addr, PAGE_SIZE,
799 frmr->direction);
800 }
801 }
802
803 void svc_rdma_put_frmr(struct svcxprt_rdma *rdma,
804 struct svc_rdma_fastreg_mr *frmr)
805 {
806 if (frmr) {
807 frmr_unmap_dma(rdma, frmr);
808 spin_lock_bh(&rdma->sc_frmr_q_lock);
809 BUG_ON(!list_empty(&frmr->frmr_list));
810 list_add(&frmr->frmr_list, &rdma->sc_frmr_q);
811 spin_unlock_bh(&rdma->sc_frmr_q_lock);
812 }
813 }
814
815 /*
816 * This is the xpo_recvfrom function for listening endpoints. Its
817 * purpose is to accept incoming connections. The CMA callback handler
818 * has already created a new transport and attached it to the new CMA
819 * ID.
820 *
821 * There is a queue of pending connections hung on the listening
822 * transport. This queue contains the new svc_xprt structure. This
823 * function takes svc_xprt structures off the accept_q and completes
824 * the connection.
825 */
826 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt)
827 {
828 struct svcxprt_rdma *listen_rdma;
829 struct svcxprt_rdma *newxprt = NULL;
830 struct rdma_conn_param conn_param;
831 struct ib_qp_init_attr qp_attr;
832 struct ib_device_attr devattr;
833 int uninitialized_var(dma_mr_acc);
834 int need_dma_mr;
835 int ret;
836 int i;
837
838 listen_rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt);
839 clear_bit(XPT_CONN, &xprt->xpt_flags);
840 /* Get the next entry off the accept list */
841 spin_lock_bh(&listen_rdma->sc_lock);
842 if (!list_empty(&listen_rdma->sc_accept_q)) {
843 newxprt = list_entry(listen_rdma->sc_accept_q.next,
844 struct svcxprt_rdma, sc_accept_q);
845 list_del_init(&newxprt->sc_accept_q);
846 }
847 if (!list_empty(&listen_rdma->sc_accept_q))
848 set_bit(XPT_CONN, &listen_rdma->sc_xprt.xpt_flags);
849 spin_unlock_bh(&listen_rdma->sc_lock);
850 if (!newxprt)
851 return NULL;
852
853 dprintk("svcrdma: newxprt from accept queue = %p, cm_id=%p\n",
854 newxprt, newxprt->sc_cm_id);
855
856 ret = ib_query_device(newxprt->sc_cm_id->device, &devattr);
857 if (ret) {
858 dprintk("svcrdma: could not query device attributes on "
859 "device %p, rc=%d\n", newxprt->sc_cm_id->device, ret);
860 goto errout;
861 }
862
863 /* Qualify the transport resource defaults with the
864 * capabilities of this particular device */
865 newxprt->sc_max_sge = min((size_t)devattr.max_sge,
866 (size_t)RPCSVC_MAXPAGES);
867 newxprt->sc_max_requests = min((size_t)devattr.max_qp_wr,
868 (size_t)svcrdma_max_requests);
869 newxprt->sc_sq_depth = RPCRDMA_SQ_DEPTH_MULT * newxprt->sc_max_requests;
870
871 /*
872 * Limit ORD based on client limit, local device limit, and
873 * configured svcrdma limit.
874 */
875 newxprt->sc_ord = min_t(size_t, devattr.max_qp_rd_atom, newxprt->sc_ord);
876 newxprt->sc_ord = min_t(size_t, svcrdma_ord, newxprt->sc_ord);
877
878 newxprt->sc_pd = ib_alloc_pd(newxprt->sc_cm_id->device);
879 if (IS_ERR(newxprt->sc_pd)) {
880 dprintk("svcrdma: error creating PD for connect request\n");
881 goto errout;
882 }
883 newxprt->sc_sq_cq = ib_create_cq(newxprt->sc_cm_id->device,
884 sq_comp_handler,
885 cq_event_handler,
886 newxprt,
887 newxprt->sc_sq_depth,
888 0);
889 if (IS_ERR(newxprt->sc_sq_cq)) {
890 dprintk("svcrdma: error creating SQ CQ for connect request\n");
891 goto errout;
892 }
893 newxprt->sc_rq_cq = ib_create_cq(newxprt->sc_cm_id->device,
894 rq_comp_handler,
895 cq_event_handler,
896 newxprt,
897 newxprt->sc_max_requests,
898 0);
899 if (IS_ERR(newxprt->sc_rq_cq)) {
900 dprintk("svcrdma: error creating RQ CQ for connect request\n");
901 goto errout;
902 }
903
904 memset(&qp_attr, 0, sizeof qp_attr);
905 qp_attr.event_handler = qp_event_handler;
906 qp_attr.qp_context = &newxprt->sc_xprt;
907 qp_attr.cap.max_send_wr = newxprt->sc_sq_depth;
908 qp_attr.cap.max_recv_wr = newxprt->sc_max_requests;
909 qp_attr.cap.max_send_sge = newxprt->sc_max_sge;
910 qp_attr.cap.max_recv_sge = newxprt->sc_max_sge;
911 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
912 qp_attr.qp_type = IB_QPT_RC;
913 qp_attr.send_cq = newxprt->sc_sq_cq;
914 qp_attr.recv_cq = newxprt->sc_rq_cq;
915 dprintk("svcrdma: newxprt->sc_cm_id=%p, newxprt->sc_pd=%p\n"
916 " cm_id->device=%p, sc_pd->device=%p\n"
917 " cap.max_send_wr = %d\n"
918 " cap.max_recv_wr = %d\n"
919 " cap.max_send_sge = %d\n"
920 " cap.max_recv_sge = %d\n",
921 newxprt->sc_cm_id, newxprt->sc_pd,
922 newxprt->sc_cm_id->device, newxprt->sc_pd->device,
923 qp_attr.cap.max_send_wr,
924 qp_attr.cap.max_recv_wr,
925 qp_attr.cap.max_send_sge,
926 qp_attr.cap.max_recv_sge);
927
928 ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd, &qp_attr);
929 if (ret) {
930 /*
931 * XXX: This is a hack. We need a xx_request_qp interface
932 * that will adjust the qp_attr's with a best-effort
933 * number
934 */
935 qp_attr.cap.max_send_sge -= 2;
936 qp_attr.cap.max_recv_sge -= 2;
937 ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd,
938 &qp_attr);
939 if (ret) {
940 dprintk("svcrdma: failed to create QP, ret=%d\n", ret);
941 goto errout;
942 }
943 newxprt->sc_max_sge = qp_attr.cap.max_send_sge;
944 newxprt->sc_max_sge = qp_attr.cap.max_recv_sge;
945 newxprt->sc_sq_depth = qp_attr.cap.max_send_wr;
946 newxprt->sc_max_requests = qp_attr.cap.max_recv_wr;
947 }
948 newxprt->sc_qp = newxprt->sc_cm_id->qp;
949
950 /*
951 * Use the most secure set of MR resources based on the
952 * transport type and available memory management features in
953 * the device. Here's the table implemented below:
954 *
955 * Fast Global DMA Remote WR
956 * Reg LKEY MR Access
957 * Sup'd Sup'd Needed Needed
958 *
959 * IWARP N N Y Y
960 * N Y Y Y
961 * Y N Y N
962 * Y Y N -
963 *
964 * IB N N Y N
965 * N Y N -
966 * Y N Y N
967 * Y Y N -
968 *
969 * NB: iWARP requires remote write access for the data sink
970 * of an RDMA_READ. IB does not.
971 */
972 if (devattr.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) {
973 newxprt->sc_frmr_pg_list_len =
974 devattr.max_fast_reg_page_list_len;
975 newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_FAST_REG;
976 }
977
978 /*
979 * Determine if a DMA MR is required and if so, what privs are required
980 */
981 switch (rdma_node_get_transport(newxprt->sc_cm_id->device->node_type)) {
982 case RDMA_TRANSPORT_IWARP:
983 newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_READ_W_INV;
984 if (!(newxprt->sc_dev_caps & SVCRDMA_DEVCAP_FAST_REG)) {
985 need_dma_mr = 1;
986 dma_mr_acc =
987 (IB_ACCESS_LOCAL_WRITE |
988 IB_ACCESS_REMOTE_WRITE);
989 } else if (!(devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) {
990 need_dma_mr = 1;
991 dma_mr_acc = IB_ACCESS_LOCAL_WRITE;
992 } else
993 need_dma_mr = 0;
994 break;
995 case RDMA_TRANSPORT_IB:
996 if (!(devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) {
997 need_dma_mr = 1;
998 dma_mr_acc = IB_ACCESS_LOCAL_WRITE;
999 } else
1000 need_dma_mr = 0;
1001 break;
1002 default:
1003 goto errout;
1004 }
1005
1006 /* Create the DMA MR if needed, otherwise, use the DMA LKEY */
1007 if (need_dma_mr) {
1008 /* Register all of physical memory */
1009 newxprt->sc_phys_mr =
1010 ib_get_dma_mr(newxprt->sc_pd, dma_mr_acc);
1011 if (IS_ERR(newxprt->sc_phys_mr)) {
1012 dprintk("svcrdma: Failed to create DMA MR ret=%d\n",
1013 ret);
1014 goto errout;
1015 }
1016 newxprt->sc_dma_lkey = newxprt->sc_phys_mr->lkey;
1017 } else
1018 newxprt->sc_dma_lkey =
1019 newxprt->sc_cm_id->device->local_dma_lkey;
1020
1021 /* Post receive buffers */
1022 for (i = 0; i < newxprt->sc_max_requests; i++) {
1023 ret = svc_rdma_post_recv(newxprt);
1024 if (ret) {
1025 dprintk("svcrdma: failure posting receive buffers\n");
1026 goto errout;
1027 }
1028 }
1029
1030 /* Swap out the handler */
1031 newxprt->sc_cm_id->event_handler = rdma_cma_handler;
1032
1033 /*
1034 * Arm the CQs for the SQ and RQ before accepting so we can't
1035 * miss the first message
1036 */
1037 ib_req_notify_cq(newxprt->sc_sq_cq, IB_CQ_NEXT_COMP);
1038 ib_req_notify_cq(newxprt->sc_rq_cq, IB_CQ_NEXT_COMP);
1039
1040 /* Accept Connection */
1041 set_bit(RDMAXPRT_CONN_PENDING, &newxprt->sc_flags);
1042 memset(&conn_param, 0, sizeof conn_param);
1043 conn_param.responder_resources = 0;
1044 conn_param.initiator_depth = newxprt->sc_ord;
1045 ret = rdma_accept(newxprt->sc_cm_id, &conn_param);
1046 if (ret) {
1047 dprintk("svcrdma: failed to accept new connection, ret=%d\n",
1048 ret);
1049 goto errout;
1050 }
1051
1052 dprintk("svcrdma: new connection %p accepted with the following "
1053 "attributes:\n"
1054 " local_ip : %pI4\n"
1055 " local_port : %d\n"
1056 " remote_ip : %pI4\n"
1057 " remote_port : %d\n"
1058 " max_sge : %d\n"
1059 " sq_depth : %d\n"
1060 " max_requests : %d\n"
1061 " ord : %d\n",
1062 newxprt,
1063 &((struct sockaddr_in *)&newxprt->sc_cm_id->
1064 route.addr.src_addr)->sin_addr.s_addr,
1065 ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id->
1066 route.addr.src_addr)->sin_port),
1067 &((struct sockaddr_in *)&newxprt->sc_cm_id->
1068 route.addr.dst_addr)->sin_addr.s_addr,
1069 ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id->
1070 route.addr.dst_addr)->sin_port),
1071 newxprt->sc_max_sge,
1072 newxprt->sc_sq_depth,
1073 newxprt->sc_max_requests,
1074 newxprt->sc_ord);
1075
1076 return &newxprt->sc_xprt;
1077
1078 errout:
1079 dprintk("svcrdma: failure accepting new connection rc=%d.\n", ret);
1080 /* Take a reference in case the DTO handler runs */
1081 svc_xprt_get(&newxprt->sc_xprt);
1082 if (newxprt->sc_qp && !IS_ERR(newxprt->sc_qp))
1083 ib_destroy_qp(newxprt->sc_qp);
1084 rdma_destroy_id(newxprt->sc_cm_id);
1085 /* This call to put will destroy the transport */
1086 svc_xprt_put(&newxprt->sc_xprt);
1087 return NULL;
1088 }
1089
1090 static void svc_rdma_release_rqst(struct svc_rqst *rqstp)
1091 {
1092 }
1093
1094 /*
1095 * When connected, an svc_xprt has at least two references:
1096 *
1097 * - A reference held by the cm_id between the ESTABLISHED and
1098 * DISCONNECTED events. If the remote peer disconnected first, this
1099 * reference could be gone.
1100 *
1101 * - A reference held by the svc_recv code that called this function
1102 * as part of close processing.
1103 *
1104 * At a minimum one references should still be held.
1105 */
1106 static void svc_rdma_detach(struct svc_xprt *xprt)
1107 {
1108 struct svcxprt_rdma *rdma =
1109 container_of(xprt, struct svcxprt_rdma, sc_xprt);
1110 dprintk("svc: svc_rdma_detach(%p)\n", xprt);
1111
1112 /* Disconnect and flush posted WQE */
1113 rdma_disconnect(rdma->sc_cm_id);
1114 }
1115
1116 static void __svc_rdma_free(struct work_struct *work)
1117 {
1118 struct svcxprt_rdma *rdma =
1119 container_of(work, struct svcxprt_rdma, sc_work);
1120 dprintk("svcrdma: svc_rdma_free(%p)\n", rdma);
1121
1122 /* We should only be called from kref_put */
1123 BUG_ON(atomic_read(&rdma->sc_xprt.xpt_ref.refcount) != 0);
1124
1125 /*
1126 * Destroy queued, but not processed read completions. Note
1127 * that this cleanup has to be done before destroying the
1128 * cm_id because the device ptr is needed to unmap the dma in
1129 * svc_rdma_put_context.
1130 */
1131 while (!list_empty(&rdma->sc_read_complete_q)) {
1132 struct svc_rdma_op_ctxt *ctxt;
1133 ctxt = list_entry(rdma->sc_read_complete_q.next,
1134 struct svc_rdma_op_ctxt,
1135 dto_q);
1136 list_del_init(&ctxt->dto_q);
1137 svc_rdma_put_context(ctxt, 1);
1138 }
1139
1140 /* Destroy queued, but not processed recv completions */
1141 while (!list_empty(&rdma->sc_rq_dto_q)) {
1142 struct svc_rdma_op_ctxt *ctxt;
1143 ctxt = list_entry(rdma->sc_rq_dto_q.next,
1144 struct svc_rdma_op_ctxt,
1145 dto_q);
1146 list_del_init(&ctxt->dto_q);
1147 svc_rdma_put_context(ctxt, 1);
1148 }
1149
1150 /* Warn if we leaked a resource or under-referenced */
1151 WARN_ON(atomic_read(&rdma->sc_ctxt_used) != 0);
1152 WARN_ON(atomic_read(&rdma->sc_dma_used) != 0);
1153
1154 /* De-allocate fastreg mr */
1155 rdma_dealloc_frmr_q(rdma);
1156
1157 /* Destroy the QP if present (not a listener) */
1158 if (rdma->sc_qp && !IS_ERR(rdma->sc_qp))
1159 ib_destroy_qp(rdma->sc_qp);
1160
1161 if (rdma->sc_sq_cq && !IS_ERR(rdma->sc_sq_cq))
1162 ib_destroy_cq(rdma->sc_sq_cq);
1163
1164 if (rdma->sc_rq_cq && !IS_ERR(rdma->sc_rq_cq))
1165 ib_destroy_cq(rdma->sc_rq_cq);
1166
1167 if (rdma->sc_phys_mr && !IS_ERR(rdma->sc_phys_mr))
1168 ib_dereg_mr(rdma->sc_phys_mr);
1169
1170 if (rdma->sc_pd && !IS_ERR(rdma->sc_pd))
1171 ib_dealloc_pd(rdma->sc_pd);
1172
1173 /* Destroy the CM ID */
1174 rdma_destroy_id(rdma->sc_cm_id);
1175
1176 kfree(rdma);
1177 }
1178
1179 static void svc_rdma_free(struct svc_xprt *xprt)
1180 {
1181 struct svcxprt_rdma *rdma =
1182 container_of(xprt, struct svcxprt_rdma, sc_xprt);
1183 INIT_WORK(&rdma->sc_work, __svc_rdma_free);
1184 schedule_work(&rdma->sc_work);
1185 }
1186
1187 static int svc_rdma_has_wspace(struct svc_xprt *xprt)
1188 {
1189 struct svcxprt_rdma *rdma =
1190 container_of(xprt, struct svcxprt_rdma, sc_xprt);
1191
1192 /*
1193 * If there are fewer SQ WR available than required to send a
1194 * simple response, return false.
1195 */
1196 if ((rdma->sc_sq_depth - atomic_read(&rdma->sc_sq_count) < 3))
1197 return 0;
1198
1199 /*
1200 * ...or there are already waiters on the SQ,
1201 * return false.
1202 */
1203 if (waitqueue_active(&rdma->sc_send_wait))
1204 return 0;
1205
1206 /* Otherwise return true. */
1207 return 1;
1208 }
1209
1210 /*
1211 * Attempt to register the kvec representing the RPC memory with the
1212 * device.
1213 *
1214 * Returns:
1215 * NULL : The device does not support fastreg or there were no more
1216 * fastreg mr.
1217 * frmr : The kvec register request was successfully posted.
1218 * <0 : An error was encountered attempting to register the kvec.
1219 */
1220 int svc_rdma_fastreg(struct svcxprt_rdma *xprt,
1221 struct svc_rdma_fastreg_mr *frmr)
1222 {
1223 struct ib_send_wr fastreg_wr;
1224 u8 key;
1225
1226 /* Bump the key */
1227 key = (u8)(frmr->mr->lkey & 0x000000FF);
1228 ib_update_fast_reg_key(frmr->mr, ++key);
1229
1230 /* Prepare FASTREG WR */
1231 memset(&fastreg_wr, 0, sizeof fastreg_wr);
1232 fastreg_wr.opcode = IB_WR_FAST_REG_MR;
1233 fastreg_wr.send_flags = IB_SEND_SIGNALED;
1234 fastreg_wr.wr.fast_reg.iova_start = (unsigned long)frmr->kva;
1235 fastreg_wr.wr.fast_reg.page_list = frmr->page_list;
1236 fastreg_wr.wr.fast_reg.page_list_len = frmr->page_list_len;
1237 fastreg_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
1238 fastreg_wr.wr.fast_reg.length = frmr->map_len;
1239 fastreg_wr.wr.fast_reg.access_flags = frmr->access_flags;
1240 fastreg_wr.wr.fast_reg.rkey = frmr->mr->lkey;
1241 return svc_rdma_send(xprt, &fastreg_wr);
1242 }
1243
1244 int svc_rdma_send(struct svcxprt_rdma *xprt, struct ib_send_wr *wr)
1245 {
1246 struct ib_send_wr *bad_wr, *n_wr;
1247 int wr_count;
1248 int i;
1249 int ret;
1250
1251 if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags))
1252 return -ENOTCONN;
1253
1254 BUG_ON(wr->send_flags != IB_SEND_SIGNALED);
1255 wr_count = 1;
1256 for (n_wr = wr->next; n_wr; n_wr = n_wr->next)
1257 wr_count++;
1258
1259 /* If the SQ is full, wait until an SQ entry is available */
1260 while (1) {
1261 spin_lock_bh(&xprt->sc_lock);
1262 if (xprt->sc_sq_depth < atomic_read(&xprt->sc_sq_count) + wr_count) {
1263 spin_unlock_bh(&xprt->sc_lock);
1264 atomic_inc(&rdma_stat_sq_starve);
1265
1266 /* See if we can opportunistically reap SQ WR to make room */
1267 sq_cq_reap(xprt);
1268
1269 /* Wait until SQ WR available if SQ still full */
1270 wait_event(xprt->sc_send_wait,
1271 atomic_read(&xprt->sc_sq_count) <
1272 xprt->sc_sq_depth);
1273 if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags))
1274 return 0;
1275 continue;
1276 }
1277 /* Take a transport ref for each WR posted */
1278 for (i = 0; i < wr_count; i++)
1279 svc_xprt_get(&xprt->sc_xprt);
1280
1281 /* Bump used SQ WR count and post */
1282 atomic_add(wr_count, &xprt->sc_sq_count);
1283 ret = ib_post_send(xprt->sc_qp, wr, &bad_wr);
1284 if (ret) {
1285 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
1286 atomic_sub(wr_count, &xprt->sc_sq_count);
1287 for (i = 0; i < wr_count; i ++)
1288 svc_xprt_put(&xprt->sc_xprt);
1289 dprintk("svcrdma: failed to post SQ WR rc=%d, "
1290 "sc_sq_count=%d, sc_sq_depth=%d\n",
1291 ret, atomic_read(&xprt->sc_sq_count),
1292 xprt->sc_sq_depth);
1293 }
1294 spin_unlock_bh(&xprt->sc_lock);
1295 if (ret)
1296 wake_up(&xprt->sc_send_wait);
1297 break;
1298 }
1299 return ret;
1300 }
1301
1302 void svc_rdma_send_error(struct svcxprt_rdma *xprt, struct rpcrdma_msg *rmsgp,
1303 enum rpcrdma_errcode err)
1304 {
1305 struct ib_send_wr err_wr;
1306 struct ib_sge sge;
1307 struct page *p;
1308 struct svc_rdma_op_ctxt *ctxt;
1309 u32 *va;
1310 int length;
1311 int ret;
1312
1313 p = svc_rdma_get_page();
1314 va = page_address(p);
1315
1316 /* XDR encode error */
1317 length = svc_rdma_xdr_encode_error(xprt, rmsgp, err, va);
1318
1319 /* Prepare SGE for local address */
1320 sge.addr = ib_dma_map_single(xprt->sc_cm_id->device,
1321 page_address(p), PAGE_SIZE, DMA_FROM_DEVICE);
1322 if (ib_dma_mapping_error(xprt->sc_cm_id->device, sge.addr)) {
1323 put_page(p);
1324 return;
1325 }
1326 atomic_inc(&xprt->sc_dma_used);
1327 sge.lkey = xprt->sc_dma_lkey;
1328 sge.length = length;
1329
1330 ctxt = svc_rdma_get_context(xprt);
1331 ctxt->count = 1;
1332 ctxt->pages[0] = p;
1333
1334 /* Prepare SEND WR */
1335 memset(&err_wr, 0, sizeof err_wr);
1336 ctxt->wr_op = IB_WR_SEND;
1337 err_wr.wr_id = (unsigned long)ctxt;
1338 err_wr.sg_list = &sge;
1339 err_wr.num_sge = 1;
1340 err_wr.opcode = IB_WR_SEND;
1341 err_wr.send_flags = IB_SEND_SIGNALED;
1342
1343 /* Post It */
1344 ret = svc_rdma_send(xprt, &err_wr);
1345 if (ret) {
1346 dprintk("svcrdma: Error %d posting send for protocol error\n",
1347 ret);
1348 ib_dma_unmap_single(xprt->sc_cm_id->device,
1349 sge.addr, PAGE_SIZE,
1350 DMA_FROM_DEVICE);
1351 svc_rdma_put_context(ctxt, 1);
1352 }
1353 }