]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - net/sunrpc/xprtrdma/svc_rdma_transport.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-eoan-kernel.git] / net / sunrpc / xprtrdma / svc_rdma_transport.c
1 /*
2 * Copyright (c) 2005-2007 Network Appliance, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
8 * license below:
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 *
17 * Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials provided
20 * with the distribution.
21 *
22 * Neither the name of the Network Appliance, Inc. nor the names of
23 * its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written
25 * permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 *
39 * Author: Tom Tucker <tom@opengridcomputing.com>
40 */
41
42 #include <linux/sunrpc/svc_xprt.h>
43 #include <linux/sunrpc/debug.h>
44 #include <linux/sunrpc/rpc_rdma.h>
45 #include <linux/interrupt.h>
46 #include <linux/sched.h>
47 #include <linux/slab.h>
48 #include <linux/spinlock.h>
49 #include <linux/workqueue.h>
50 #include <rdma/ib_verbs.h>
51 #include <rdma/rdma_cm.h>
52 #include <linux/sunrpc/svc_rdma.h>
53
54 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
55
56 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
57 struct net *net,
58 struct sockaddr *sa, int salen,
59 int flags);
60 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt);
61 static void svc_rdma_release_rqst(struct svc_rqst *);
62 static void dto_tasklet_func(unsigned long data);
63 static void svc_rdma_detach(struct svc_xprt *xprt);
64 static void svc_rdma_free(struct svc_xprt *xprt);
65 static int svc_rdma_has_wspace(struct svc_xprt *xprt);
66 static void rq_cq_reap(struct svcxprt_rdma *xprt);
67 static void sq_cq_reap(struct svcxprt_rdma *xprt);
68
69 static DECLARE_TASKLET(dto_tasklet, dto_tasklet_func, 0UL);
70 static DEFINE_SPINLOCK(dto_lock);
71 static LIST_HEAD(dto_xprt_q);
72
73 static struct svc_xprt_ops svc_rdma_ops = {
74 .xpo_create = svc_rdma_create,
75 .xpo_recvfrom = svc_rdma_recvfrom,
76 .xpo_sendto = svc_rdma_sendto,
77 .xpo_release_rqst = svc_rdma_release_rqst,
78 .xpo_detach = svc_rdma_detach,
79 .xpo_free = svc_rdma_free,
80 .xpo_prep_reply_hdr = svc_rdma_prep_reply_hdr,
81 .xpo_has_wspace = svc_rdma_has_wspace,
82 .xpo_accept = svc_rdma_accept,
83 };
84
85 struct svc_xprt_class svc_rdma_class = {
86 .xcl_name = "rdma",
87 .xcl_owner = THIS_MODULE,
88 .xcl_ops = &svc_rdma_ops,
89 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
90 };
91
92 /* WR context cache. Created in svc_rdma.c */
93 extern struct kmem_cache *svc_rdma_ctxt_cachep;
94
95 /* Workqueue created in svc_rdma.c */
96 extern struct workqueue_struct *svc_rdma_wq;
97
98 struct svc_rdma_op_ctxt *svc_rdma_get_context(struct svcxprt_rdma *xprt)
99 {
100 struct svc_rdma_op_ctxt *ctxt;
101
102 while (1) {
103 ctxt = kmem_cache_alloc(svc_rdma_ctxt_cachep, GFP_KERNEL);
104 if (ctxt)
105 break;
106 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
107 }
108 ctxt->xprt = xprt;
109 INIT_LIST_HEAD(&ctxt->dto_q);
110 ctxt->count = 0;
111 ctxt->frmr = NULL;
112 atomic_inc(&xprt->sc_ctxt_used);
113 return ctxt;
114 }
115
116 void svc_rdma_unmap_dma(struct svc_rdma_op_ctxt *ctxt)
117 {
118 struct svcxprt_rdma *xprt = ctxt->xprt;
119 int i;
120 for (i = 0; i < ctxt->count && ctxt->sge[i].length; i++) {
121 /*
122 * Unmap the DMA addr in the SGE if the lkey matches
123 * the sc_dma_lkey, otherwise, ignore it since it is
124 * an FRMR lkey and will be unmapped later when the
125 * last WR that uses it completes.
126 */
127 if (ctxt->sge[i].lkey == xprt->sc_dma_lkey) {
128 atomic_dec(&xprt->sc_dma_used);
129 ib_dma_unmap_page(xprt->sc_cm_id->device,
130 ctxt->sge[i].addr,
131 ctxt->sge[i].length,
132 ctxt->direction);
133 }
134 }
135 }
136
137 void svc_rdma_put_context(struct svc_rdma_op_ctxt *ctxt, int free_pages)
138 {
139 struct svcxprt_rdma *xprt;
140 int i;
141
142 BUG_ON(!ctxt);
143 xprt = ctxt->xprt;
144 if (free_pages)
145 for (i = 0; i < ctxt->count; i++)
146 put_page(ctxt->pages[i]);
147
148 kmem_cache_free(svc_rdma_ctxt_cachep, ctxt);
149 atomic_dec(&xprt->sc_ctxt_used);
150 }
151
152 /* Temporary NFS request map cache. Created in svc_rdma.c */
153 extern struct kmem_cache *svc_rdma_map_cachep;
154
155 /*
156 * Temporary NFS req mappings are shared across all transport
157 * instances. These are short lived and should be bounded by the number
158 * of concurrent server threads * depth of the SQ.
159 */
160 struct svc_rdma_req_map *svc_rdma_get_req_map(void)
161 {
162 struct svc_rdma_req_map *map;
163 while (1) {
164 map = kmem_cache_alloc(svc_rdma_map_cachep, GFP_KERNEL);
165 if (map)
166 break;
167 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
168 }
169 map->count = 0;
170 map->frmr = NULL;
171 return map;
172 }
173
174 void svc_rdma_put_req_map(struct svc_rdma_req_map *map)
175 {
176 kmem_cache_free(svc_rdma_map_cachep, map);
177 }
178
179 /* ib_cq event handler */
180 static void cq_event_handler(struct ib_event *event, void *context)
181 {
182 struct svc_xprt *xprt = context;
183 dprintk("svcrdma: received CQ event id=%d, context=%p\n",
184 event->event, context);
185 set_bit(XPT_CLOSE, &xprt->xpt_flags);
186 }
187
188 /* QP event handler */
189 static void qp_event_handler(struct ib_event *event, void *context)
190 {
191 struct svc_xprt *xprt = context;
192
193 switch (event->event) {
194 /* These are considered benign events */
195 case IB_EVENT_PATH_MIG:
196 case IB_EVENT_COMM_EST:
197 case IB_EVENT_SQ_DRAINED:
198 case IB_EVENT_QP_LAST_WQE_REACHED:
199 dprintk("svcrdma: QP event %d received for QP=%p\n",
200 event->event, event->element.qp);
201 break;
202 /* These are considered fatal events */
203 case IB_EVENT_PATH_MIG_ERR:
204 case IB_EVENT_QP_FATAL:
205 case IB_EVENT_QP_REQ_ERR:
206 case IB_EVENT_QP_ACCESS_ERR:
207 case IB_EVENT_DEVICE_FATAL:
208 default:
209 dprintk("svcrdma: QP ERROR event %d received for QP=%p, "
210 "closing transport\n",
211 event->event, event->element.qp);
212 set_bit(XPT_CLOSE, &xprt->xpt_flags);
213 break;
214 }
215 }
216
217 /*
218 * Data Transfer Operation Tasklet
219 *
220 * Walks a list of transports with I/O pending, removing entries as
221 * they are added to the server's I/O pending list. Two bits indicate
222 * if SQ, RQ, or both have I/O pending. The dto_lock is an irqsave
223 * spinlock that serializes access to the transport list with the RQ
224 * and SQ interrupt handlers.
225 */
226 static void dto_tasklet_func(unsigned long data)
227 {
228 struct svcxprt_rdma *xprt;
229 unsigned long flags;
230
231 spin_lock_irqsave(&dto_lock, flags);
232 while (!list_empty(&dto_xprt_q)) {
233 xprt = list_entry(dto_xprt_q.next,
234 struct svcxprt_rdma, sc_dto_q);
235 list_del_init(&xprt->sc_dto_q);
236 spin_unlock_irqrestore(&dto_lock, flags);
237
238 rq_cq_reap(xprt);
239 sq_cq_reap(xprt);
240
241 svc_xprt_put(&xprt->sc_xprt);
242 spin_lock_irqsave(&dto_lock, flags);
243 }
244 spin_unlock_irqrestore(&dto_lock, flags);
245 }
246
247 /*
248 * Receive Queue Completion Handler
249 *
250 * Since an RQ completion handler is called on interrupt context, we
251 * need to defer the handling of the I/O to a tasklet
252 */
253 static void rq_comp_handler(struct ib_cq *cq, void *cq_context)
254 {
255 struct svcxprt_rdma *xprt = cq_context;
256 unsigned long flags;
257
258 /* Guard against unconditional flush call for destroyed QP */
259 if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0)
260 return;
261
262 /*
263 * Set the bit regardless of whether or not it's on the list
264 * because it may be on the list already due to an SQ
265 * completion.
266 */
267 set_bit(RDMAXPRT_RQ_PENDING, &xprt->sc_flags);
268
269 /*
270 * If this transport is not already on the DTO transport queue,
271 * add it
272 */
273 spin_lock_irqsave(&dto_lock, flags);
274 if (list_empty(&xprt->sc_dto_q)) {
275 svc_xprt_get(&xprt->sc_xprt);
276 list_add_tail(&xprt->sc_dto_q, &dto_xprt_q);
277 }
278 spin_unlock_irqrestore(&dto_lock, flags);
279
280 /* Tasklet does all the work to avoid irqsave locks. */
281 tasklet_schedule(&dto_tasklet);
282 }
283
284 /*
285 * rq_cq_reap - Process the RQ CQ.
286 *
287 * Take all completing WC off the CQE and enqueue the associated DTO
288 * context on the dto_q for the transport.
289 *
290 * Note that caller must hold a transport reference.
291 */
292 static void rq_cq_reap(struct svcxprt_rdma *xprt)
293 {
294 int ret;
295 struct ib_wc wc;
296 struct svc_rdma_op_ctxt *ctxt = NULL;
297
298 if (!test_and_clear_bit(RDMAXPRT_RQ_PENDING, &xprt->sc_flags))
299 return;
300
301 ib_req_notify_cq(xprt->sc_rq_cq, IB_CQ_NEXT_COMP);
302 atomic_inc(&rdma_stat_rq_poll);
303
304 while ((ret = ib_poll_cq(xprt->sc_rq_cq, 1, &wc)) > 0) {
305 ctxt = (struct svc_rdma_op_ctxt *)(unsigned long)wc.wr_id;
306 ctxt->wc_status = wc.status;
307 ctxt->byte_len = wc.byte_len;
308 svc_rdma_unmap_dma(ctxt);
309 if (wc.status != IB_WC_SUCCESS) {
310 /* Close the transport */
311 dprintk("svcrdma: transport closing putting ctxt %p\n", ctxt);
312 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
313 svc_rdma_put_context(ctxt, 1);
314 svc_xprt_put(&xprt->sc_xprt);
315 continue;
316 }
317 spin_lock_bh(&xprt->sc_rq_dto_lock);
318 list_add_tail(&ctxt->dto_q, &xprt->sc_rq_dto_q);
319 spin_unlock_bh(&xprt->sc_rq_dto_lock);
320 svc_xprt_put(&xprt->sc_xprt);
321 }
322
323 if (ctxt)
324 atomic_inc(&rdma_stat_rq_prod);
325
326 set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags);
327 /*
328 * If data arrived before established event,
329 * don't enqueue. This defers RPC I/O until the
330 * RDMA connection is complete.
331 */
332 if (!test_bit(RDMAXPRT_CONN_PENDING, &xprt->sc_flags))
333 svc_xprt_enqueue(&xprt->sc_xprt);
334 }
335
336 /*
337 * Process a completion context
338 */
339 static void process_context(struct svcxprt_rdma *xprt,
340 struct svc_rdma_op_ctxt *ctxt)
341 {
342 svc_rdma_unmap_dma(ctxt);
343
344 switch (ctxt->wr_op) {
345 case IB_WR_SEND:
346 if (test_bit(RDMACTXT_F_FAST_UNREG, &ctxt->flags))
347 svc_rdma_put_frmr(xprt, ctxt->frmr);
348 svc_rdma_put_context(ctxt, 1);
349 break;
350
351 case IB_WR_RDMA_WRITE:
352 svc_rdma_put_context(ctxt, 0);
353 break;
354
355 case IB_WR_RDMA_READ:
356 case IB_WR_RDMA_READ_WITH_INV:
357 if (test_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags)) {
358 struct svc_rdma_op_ctxt *read_hdr = ctxt->read_hdr;
359 BUG_ON(!read_hdr);
360 if (test_bit(RDMACTXT_F_FAST_UNREG, &ctxt->flags))
361 svc_rdma_put_frmr(xprt, ctxt->frmr);
362 spin_lock_bh(&xprt->sc_rq_dto_lock);
363 set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags);
364 list_add_tail(&read_hdr->dto_q,
365 &xprt->sc_read_complete_q);
366 spin_unlock_bh(&xprt->sc_rq_dto_lock);
367 svc_xprt_enqueue(&xprt->sc_xprt);
368 }
369 svc_rdma_put_context(ctxt, 0);
370 break;
371
372 default:
373 printk(KERN_ERR "svcrdma: unexpected completion type, "
374 "opcode=%d\n",
375 ctxt->wr_op);
376 break;
377 }
378 }
379
380 /*
381 * Send Queue Completion Handler - potentially called on interrupt context.
382 *
383 * Note that caller must hold a transport reference.
384 */
385 static void sq_cq_reap(struct svcxprt_rdma *xprt)
386 {
387 struct svc_rdma_op_ctxt *ctxt = NULL;
388 struct ib_wc wc;
389 struct ib_cq *cq = xprt->sc_sq_cq;
390 int ret;
391
392 if (!test_and_clear_bit(RDMAXPRT_SQ_PENDING, &xprt->sc_flags))
393 return;
394
395 ib_req_notify_cq(xprt->sc_sq_cq, IB_CQ_NEXT_COMP);
396 atomic_inc(&rdma_stat_sq_poll);
397 while ((ret = ib_poll_cq(cq, 1, &wc)) > 0) {
398 if (wc.status != IB_WC_SUCCESS)
399 /* Close the transport */
400 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
401
402 /* Decrement used SQ WR count */
403 atomic_dec(&xprt->sc_sq_count);
404 wake_up(&xprt->sc_send_wait);
405
406 ctxt = (struct svc_rdma_op_ctxt *)(unsigned long)wc.wr_id;
407 if (ctxt)
408 process_context(xprt, ctxt);
409
410 svc_xprt_put(&xprt->sc_xprt);
411 }
412
413 if (ctxt)
414 atomic_inc(&rdma_stat_sq_prod);
415 }
416
417 static void sq_comp_handler(struct ib_cq *cq, void *cq_context)
418 {
419 struct svcxprt_rdma *xprt = cq_context;
420 unsigned long flags;
421
422 /* Guard against unconditional flush call for destroyed QP */
423 if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0)
424 return;
425
426 /*
427 * Set the bit regardless of whether or not it's on the list
428 * because it may be on the list already due to an RQ
429 * completion.
430 */
431 set_bit(RDMAXPRT_SQ_PENDING, &xprt->sc_flags);
432
433 /*
434 * If this transport is not already on the DTO transport queue,
435 * add it
436 */
437 spin_lock_irqsave(&dto_lock, flags);
438 if (list_empty(&xprt->sc_dto_q)) {
439 svc_xprt_get(&xprt->sc_xprt);
440 list_add_tail(&xprt->sc_dto_q, &dto_xprt_q);
441 }
442 spin_unlock_irqrestore(&dto_lock, flags);
443
444 /* Tasklet does all the work to avoid irqsave locks. */
445 tasklet_schedule(&dto_tasklet);
446 }
447
448 static struct svcxprt_rdma *rdma_create_xprt(struct svc_serv *serv,
449 int listener)
450 {
451 struct svcxprt_rdma *cma_xprt = kzalloc(sizeof *cma_xprt, GFP_KERNEL);
452
453 if (!cma_xprt)
454 return NULL;
455 svc_xprt_init(&svc_rdma_class, &cma_xprt->sc_xprt, serv);
456 INIT_LIST_HEAD(&cma_xprt->sc_accept_q);
457 INIT_LIST_HEAD(&cma_xprt->sc_dto_q);
458 INIT_LIST_HEAD(&cma_xprt->sc_rq_dto_q);
459 INIT_LIST_HEAD(&cma_xprt->sc_read_complete_q);
460 INIT_LIST_HEAD(&cma_xprt->sc_frmr_q);
461 init_waitqueue_head(&cma_xprt->sc_send_wait);
462
463 spin_lock_init(&cma_xprt->sc_lock);
464 spin_lock_init(&cma_xprt->sc_rq_dto_lock);
465 spin_lock_init(&cma_xprt->sc_frmr_q_lock);
466
467 cma_xprt->sc_ord = svcrdma_ord;
468
469 cma_xprt->sc_max_req_size = svcrdma_max_req_size;
470 cma_xprt->sc_max_requests = svcrdma_max_requests;
471 cma_xprt->sc_sq_depth = svcrdma_max_requests * RPCRDMA_SQ_DEPTH_MULT;
472 atomic_set(&cma_xprt->sc_sq_count, 0);
473 atomic_set(&cma_xprt->sc_ctxt_used, 0);
474
475 if (listener)
476 set_bit(XPT_LISTENER, &cma_xprt->sc_xprt.xpt_flags);
477
478 return cma_xprt;
479 }
480
481 struct page *svc_rdma_get_page(void)
482 {
483 struct page *page;
484
485 while ((page = alloc_page(GFP_KERNEL)) == NULL) {
486 /* If we can't get memory, wait a bit and try again */
487 printk(KERN_INFO "svcrdma: out of memory...retrying in 1000 "
488 "jiffies.\n");
489 schedule_timeout_uninterruptible(msecs_to_jiffies(1000));
490 }
491 return page;
492 }
493
494 int svc_rdma_post_recv(struct svcxprt_rdma *xprt)
495 {
496 struct ib_recv_wr recv_wr, *bad_recv_wr;
497 struct svc_rdma_op_ctxt *ctxt;
498 struct page *page;
499 dma_addr_t pa;
500 int sge_no;
501 int buflen;
502 int ret;
503
504 ctxt = svc_rdma_get_context(xprt);
505 buflen = 0;
506 ctxt->direction = DMA_FROM_DEVICE;
507 for (sge_no = 0; buflen < xprt->sc_max_req_size; sge_no++) {
508 BUG_ON(sge_no >= xprt->sc_max_sge);
509 page = svc_rdma_get_page();
510 ctxt->pages[sge_no] = page;
511 pa = ib_dma_map_page(xprt->sc_cm_id->device,
512 page, 0, PAGE_SIZE,
513 DMA_FROM_DEVICE);
514 if (ib_dma_mapping_error(xprt->sc_cm_id->device, pa))
515 goto err_put_ctxt;
516 atomic_inc(&xprt->sc_dma_used);
517 ctxt->sge[sge_no].addr = pa;
518 ctxt->sge[sge_no].length = PAGE_SIZE;
519 ctxt->sge[sge_no].lkey = xprt->sc_dma_lkey;
520 ctxt->count = sge_no + 1;
521 buflen += PAGE_SIZE;
522 }
523 recv_wr.next = NULL;
524 recv_wr.sg_list = &ctxt->sge[0];
525 recv_wr.num_sge = ctxt->count;
526 recv_wr.wr_id = (u64)(unsigned long)ctxt;
527
528 svc_xprt_get(&xprt->sc_xprt);
529 ret = ib_post_recv(xprt->sc_qp, &recv_wr, &bad_recv_wr);
530 if (ret) {
531 svc_rdma_unmap_dma(ctxt);
532 svc_rdma_put_context(ctxt, 1);
533 svc_xprt_put(&xprt->sc_xprt);
534 }
535 return ret;
536
537 err_put_ctxt:
538 svc_rdma_unmap_dma(ctxt);
539 svc_rdma_put_context(ctxt, 1);
540 return -ENOMEM;
541 }
542
543 /*
544 * This function handles the CONNECT_REQUEST event on a listening
545 * endpoint. It is passed the cma_id for the _new_ connection. The context in
546 * this cma_id is inherited from the listening cma_id and is the svc_xprt
547 * structure for the listening endpoint.
548 *
549 * This function creates a new xprt for the new connection and enqueues it on
550 * the accept queue for the listent xprt. When the listen thread is kicked, it
551 * will call the recvfrom method on the listen xprt which will accept the new
552 * connection.
553 */
554 static void handle_connect_req(struct rdma_cm_id *new_cma_id, size_t client_ird)
555 {
556 struct svcxprt_rdma *listen_xprt = new_cma_id->context;
557 struct svcxprt_rdma *newxprt;
558 struct sockaddr *sa;
559
560 /* Create a new transport */
561 newxprt = rdma_create_xprt(listen_xprt->sc_xprt.xpt_server, 0);
562 if (!newxprt) {
563 dprintk("svcrdma: failed to create new transport\n");
564 return;
565 }
566 newxprt->sc_cm_id = new_cma_id;
567 new_cma_id->context = newxprt;
568 dprintk("svcrdma: Creating newxprt=%p, cm_id=%p, listenxprt=%p\n",
569 newxprt, newxprt->sc_cm_id, listen_xprt);
570
571 /* Save client advertised inbound read limit for use later in accept. */
572 newxprt->sc_ord = client_ird;
573
574 /* Set the local and remote addresses in the transport */
575 sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr;
576 svc_xprt_set_remote(&newxprt->sc_xprt, sa, svc_addr_len(sa));
577 sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr;
578 svc_xprt_set_local(&newxprt->sc_xprt, sa, svc_addr_len(sa));
579
580 /*
581 * Enqueue the new transport on the accept queue of the listening
582 * transport
583 */
584 spin_lock_bh(&listen_xprt->sc_lock);
585 list_add_tail(&newxprt->sc_accept_q, &listen_xprt->sc_accept_q);
586 spin_unlock_bh(&listen_xprt->sc_lock);
587
588 /*
589 * Can't use svc_xprt_received here because we are not on a
590 * rqstp thread
591 */
592 set_bit(XPT_CONN, &listen_xprt->sc_xprt.xpt_flags);
593 svc_xprt_enqueue(&listen_xprt->sc_xprt);
594 }
595
596 /*
597 * Handles events generated on the listening endpoint. These events will be
598 * either be incoming connect requests or adapter removal events.
599 */
600 static int rdma_listen_handler(struct rdma_cm_id *cma_id,
601 struct rdma_cm_event *event)
602 {
603 struct svcxprt_rdma *xprt = cma_id->context;
604 int ret = 0;
605
606 switch (event->event) {
607 case RDMA_CM_EVENT_CONNECT_REQUEST:
608 dprintk("svcrdma: Connect request on cma_id=%p, xprt = %p, "
609 "event=%d\n", cma_id, cma_id->context, event->event);
610 handle_connect_req(cma_id,
611 event->param.conn.initiator_depth);
612 break;
613
614 case RDMA_CM_EVENT_ESTABLISHED:
615 /* Accept complete */
616 dprintk("svcrdma: Connection completed on LISTEN xprt=%p, "
617 "cm_id=%p\n", xprt, cma_id);
618 break;
619
620 case RDMA_CM_EVENT_DEVICE_REMOVAL:
621 dprintk("svcrdma: Device removal xprt=%p, cm_id=%p\n",
622 xprt, cma_id);
623 if (xprt)
624 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
625 break;
626
627 default:
628 dprintk("svcrdma: Unexpected event on listening endpoint %p, "
629 "event=%d\n", cma_id, event->event);
630 break;
631 }
632
633 return ret;
634 }
635
636 static int rdma_cma_handler(struct rdma_cm_id *cma_id,
637 struct rdma_cm_event *event)
638 {
639 struct svc_xprt *xprt = cma_id->context;
640 struct svcxprt_rdma *rdma =
641 container_of(xprt, struct svcxprt_rdma, sc_xprt);
642 switch (event->event) {
643 case RDMA_CM_EVENT_ESTABLISHED:
644 /* Accept complete */
645 svc_xprt_get(xprt);
646 dprintk("svcrdma: Connection completed on DTO xprt=%p, "
647 "cm_id=%p\n", xprt, cma_id);
648 clear_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags);
649 svc_xprt_enqueue(xprt);
650 break;
651 case RDMA_CM_EVENT_DISCONNECTED:
652 dprintk("svcrdma: Disconnect on DTO xprt=%p, cm_id=%p\n",
653 xprt, cma_id);
654 if (xprt) {
655 set_bit(XPT_CLOSE, &xprt->xpt_flags);
656 svc_xprt_enqueue(xprt);
657 svc_xprt_put(xprt);
658 }
659 break;
660 case RDMA_CM_EVENT_DEVICE_REMOVAL:
661 dprintk("svcrdma: Device removal cma_id=%p, xprt = %p, "
662 "event=%d\n", cma_id, xprt, event->event);
663 if (xprt) {
664 set_bit(XPT_CLOSE, &xprt->xpt_flags);
665 svc_xprt_enqueue(xprt);
666 }
667 break;
668 default:
669 dprintk("svcrdma: Unexpected event on DTO endpoint %p, "
670 "event=%d\n", cma_id, event->event);
671 break;
672 }
673 return 0;
674 }
675
676 /*
677 * Create a listening RDMA service endpoint.
678 */
679 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
680 struct net *net,
681 struct sockaddr *sa, int salen,
682 int flags)
683 {
684 struct rdma_cm_id *listen_id;
685 struct svcxprt_rdma *cma_xprt;
686 struct svc_xprt *xprt;
687 int ret;
688
689 dprintk("svcrdma: Creating RDMA socket\n");
690 if (sa->sa_family != AF_INET) {
691 dprintk("svcrdma: Address family %d is not supported.\n", sa->sa_family);
692 return ERR_PTR(-EAFNOSUPPORT);
693 }
694 cma_xprt = rdma_create_xprt(serv, 1);
695 if (!cma_xprt)
696 return ERR_PTR(-ENOMEM);
697 xprt = &cma_xprt->sc_xprt;
698
699 listen_id = rdma_create_id(rdma_listen_handler, cma_xprt, RDMA_PS_TCP,
700 IB_QPT_RC);
701 if (IS_ERR(listen_id)) {
702 ret = PTR_ERR(listen_id);
703 dprintk("svcrdma: rdma_create_id failed = %d\n", ret);
704 goto err0;
705 }
706
707 ret = rdma_bind_addr(listen_id, sa);
708 if (ret) {
709 dprintk("svcrdma: rdma_bind_addr failed = %d\n", ret);
710 goto err1;
711 }
712 cma_xprt->sc_cm_id = listen_id;
713
714 ret = rdma_listen(listen_id, RPCRDMA_LISTEN_BACKLOG);
715 if (ret) {
716 dprintk("svcrdma: rdma_listen failed = %d\n", ret);
717 goto err1;
718 }
719
720 /*
721 * We need to use the address from the cm_id in case the
722 * caller specified 0 for the port number.
723 */
724 sa = (struct sockaddr *)&cma_xprt->sc_cm_id->route.addr.src_addr;
725 svc_xprt_set_local(&cma_xprt->sc_xprt, sa, salen);
726
727 return &cma_xprt->sc_xprt;
728
729 err1:
730 rdma_destroy_id(listen_id);
731 err0:
732 kfree(cma_xprt);
733 return ERR_PTR(ret);
734 }
735
736 static struct svc_rdma_fastreg_mr *rdma_alloc_frmr(struct svcxprt_rdma *xprt)
737 {
738 struct ib_mr *mr;
739 struct ib_fast_reg_page_list *pl;
740 struct svc_rdma_fastreg_mr *frmr;
741
742 frmr = kmalloc(sizeof(*frmr), GFP_KERNEL);
743 if (!frmr)
744 goto err;
745
746 mr = ib_alloc_fast_reg_mr(xprt->sc_pd, RPCSVC_MAXPAGES);
747 if (IS_ERR(mr))
748 goto err_free_frmr;
749
750 pl = ib_alloc_fast_reg_page_list(xprt->sc_cm_id->device,
751 RPCSVC_MAXPAGES);
752 if (IS_ERR(pl))
753 goto err_free_mr;
754
755 frmr->mr = mr;
756 frmr->page_list = pl;
757 INIT_LIST_HEAD(&frmr->frmr_list);
758 return frmr;
759
760 err_free_mr:
761 ib_dereg_mr(mr);
762 err_free_frmr:
763 kfree(frmr);
764 err:
765 return ERR_PTR(-ENOMEM);
766 }
767
768 static void rdma_dealloc_frmr_q(struct svcxprt_rdma *xprt)
769 {
770 struct svc_rdma_fastreg_mr *frmr;
771
772 while (!list_empty(&xprt->sc_frmr_q)) {
773 frmr = list_entry(xprt->sc_frmr_q.next,
774 struct svc_rdma_fastreg_mr, frmr_list);
775 list_del_init(&frmr->frmr_list);
776 ib_dereg_mr(frmr->mr);
777 ib_free_fast_reg_page_list(frmr->page_list);
778 kfree(frmr);
779 }
780 }
781
782 struct svc_rdma_fastreg_mr *svc_rdma_get_frmr(struct svcxprt_rdma *rdma)
783 {
784 struct svc_rdma_fastreg_mr *frmr = NULL;
785
786 spin_lock_bh(&rdma->sc_frmr_q_lock);
787 if (!list_empty(&rdma->sc_frmr_q)) {
788 frmr = list_entry(rdma->sc_frmr_q.next,
789 struct svc_rdma_fastreg_mr, frmr_list);
790 list_del_init(&frmr->frmr_list);
791 frmr->map_len = 0;
792 frmr->page_list_len = 0;
793 }
794 spin_unlock_bh(&rdma->sc_frmr_q_lock);
795 if (frmr)
796 return frmr;
797
798 return rdma_alloc_frmr(rdma);
799 }
800
801 static void frmr_unmap_dma(struct svcxprt_rdma *xprt,
802 struct svc_rdma_fastreg_mr *frmr)
803 {
804 int page_no;
805 for (page_no = 0; page_no < frmr->page_list_len; page_no++) {
806 dma_addr_t addr = frmr->page_list->page_list[page_no];
807 if (ib_dma_mapping_error(frmr->mr->device, addr))
808 continue;
809 atomic_dec(&xprt->sc_dma_used);
810 ib_dma_unmap_page(frmr->mr->device, addr, PAGE_SIZE,
811 frmr->direction);
812 }
813 }
814
815 void svc_rdma_put_frmr(struct svcxprt_rdma *rdma,
816 struct svc_rdma_fastreg_mr *frmr)
817 {
818 if (frmr) {
819 frmr_unmap_dma(rdma, frmr);
820 spin_lock_bh(&rdma->sc_frmr_q_lock);
821 BUG_ON(!list_empty(&frmr->frmr_list));
822 list_add(&frmr->frmr_list, &rdma->sc_frmr_q);
823 spin_unlock_bh(&rdma->sc_frmr_q_lock);
824 }
825 }
826
827 /*
828 * This is the xpo_recvfrom function for listening endpoints. Its
829 * purpose is to accept incoming connections. The CMA callback handler
830 * has already created a new transport and attached it to the new CMA
831 * ID.
832 *
833 * There is a queue of pending connections hung on the listening
834 * transport. This queue contains the new svc_xprt structure. This
835 * function takes svc_xprt structures off the accept_q and completes
836 * the connection.
837 */
838 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt)
839 {
840 struct svcxprt_rdma *listen_rdma;
841 struct svcxprt_rdma *newxprt = NULL;
842 struct rdma_conn_param conn_param;
843 struct ib_qp_init_attr qp_attr;
844 struct ib_device_attr devattr;
845 int uninitialized_var(dma_mr_acc);
846 int need_dma_mr;
847 int ret;
848 int i;
849
850 listen_rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt);
851 clear_bit(XPT_CONN, &xprt->xpt_flags);
852 /* Get the next entry off the accept list */
853 spin_lock_bh(&listen_rdma->sc_lock);
854 if (!list_empty(&listen_rdma->sc_accept_q)) {
855 newxprt = list_entry(listen_rdma->sc_accept_q.next,
856 struct svcxprt_rdma, sc_accept_q);
857 list_del_init(&newxprt->sc_accept_q);
858 }
859 if (!list_empty(&listen_rdma->sc_accept_q))
860 set_bit(XPT_CONN, &listen_rdma->sc_xprt.xpt_flags);
861 spin_unlock_bh(&listen_rdma->sc_lock);
862 if (!newxprt)
863 return NULL;
864
865 dprintk("svcrdma: newxprt from accept queue = %p, cm_id=%p\n",
866 newxprt, newxprt->sc_cm_id);
867
868 ret = ib_query_device(newxprt->sc_cm_id->device, &devattr);
869 if (ret) {
870 dprintk("svcrdma: could not query device attributes on "
871 "device %p, rc=%d\n", newxprt->sc_cm_id->device, ret);
872 goto errout;
873 }
874
875 /* Qualify the transport resource defaults with the
876 * capabilities of this particular device */
877 newxprt->sc_max_sge = min((size_t)devattr.max_sge,
878 (size_t)RPCSVC_MAXPAGES);
879 newxprt->sc_max_requests = min((size_t)devattr.max_qp_wr,
880 (size_t)svcrdma_max_requests);
881 newxprt->sc_sq_depth = RPCRDMA_SQ_DEPTH_MULT * newxprt->sc_max_requests;
882
883 /*
884 * Limit ORD based on client limit, local device limit, and
885 * configured svcrdma limit.
886 */
887 newxprt->sc_ord = min_t(size_t, devattr.max_qp_rd_atom, newxprt->sc_ord);
888 newxprt->sc_ord = min_t(size_t, svcrdma_ord, newxprt->sc_ord);
889
890 newxprt->sc_pd = ib_alloc_pd(newxprt->sc_cm_id->device);
891 if (IS_ERR(newxprt->sc_pd)) {
892 dprintk("svcrdma: error creating PD for connect request\n");
893 goto errout;
894 }
895 newxprt->sc_sq_cq = ib_create_cq(newxprt->sc_cm_id->device,
896 sq_comp_handler,
897 cq_event_handler,
898 newxprt,
899 newxprt->sc_sq_depth,
900 0);
901 if (IS_ERR(newxprt->sc_sq_cq)) {
902 dprintk("svcrdma: error creating SQ CQ for connect request\n");
903 goto errout;
904 }
905 newxprt->sc_rq_cq = ib_create_cq(newxprt->sc_cm_id->device,
906 rq_comp_handler,
907 cq_event_handler,
908 newxprt,
909 newxprt->sc_max_requests,
910 0);
911 if (IS_ERR(newxprt->sc_rq_cq)) {
912 dprintk("svcrdma: error creating RQ CQ for connect request\n");
913 goto errout;
914 }
915
916 memset(&qp_attr, 0, sizeof qp_attr);
917 qp_attr.event_handler = qp_event_handler;
918 qp_attr.qp_context = &newxprt->sc_xprt;
919 qp_attr.cap.max_send_wr = newxprt->sc_sq_depth;
920 qp_attr.cap.max_recv_wr = newxprt->sc_max_requests;
921 qp_attr.cap.max_send_sge = newxprt->sc_max_sge;
922 qp_attr.cap.max_recv_sge = newxprt->sc_max_sge;
923 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
924 qp_attr.qp_type = IB_QPT_RC;
925 qp_attr.send_cq = newxprt->sc_sq_cq;
926 qp_attr.recv_cq = newxprt->sc_rq_cq;
927 dprintk("svcrdma: newxprt->sc_cm_id=%p, newxprt->sc_pd=%p\n"
928 " cm_id->device=%p, sc_pd->device=%p\n"
929 " cap.max_send_wr = %d\n"
930 " cap.max_recv_wr = %d\n"
931 " cap.max_send_sge = %d\n"
932 " cap.max_recv_sge = %d\n",
933 newxprt->sc_cm_id, newxprt->sc_pd,
934 newxprt->sc_cm_id->device, newxprt->sc_pd->device,
935 qp_attr.cap.max_send_wr,
936 qp_attr.cap.max_recv_wr,
937 qp_attr.cap.max_send_sge,
938 qp_attr.cap.max_recv_sge);
939
940 ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd, &qp_attr);
941 if (ret) {
942 /*
943 * XXX: This is a hack. We need a xx_request_qp interface
944 * that will adjust the qp_attr's with a best-effort
945 * number
946 */
947 qp_attr.cap.max_send_sge -= 2;
948 qp_attr.cap.max_recv_sge -= 2;
949 ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd,
950 &qp_attr);
951 if (ret) {
952 dprintk("svcrdma: failed to create QP, ret=%d\n", ret);
953 goto errout;
954 }
955 newxprt->sc_max_sge = qp_attr.cap.max_send_sge;
956 newxprt->sc_max_sge = qp_attr.cap.max_recv_sge;
957 newxprt->sc_sq_depth = qp_attr.cap.max_send_wr;
958 newxprt->sc_max_requests = qp_attr.cap.max_recv_wr;
959 }
960 newxprt->sc_qp = newxprt->sc_cm_id->qp;
961
962 /*
963 * Use the most secure set of MR resources based on the
964 * transport type and available memory management features in
965 * the device. Here's the table implemented below:
966 *
967 * Fast Global DMA Remote WR
968 * Reg LKEY MR Access
969 * Sup'd Sup'd Needed Needed
970 *
971 * IWARP N N Y Y
972 * N Y Y Y
973 * Y N Y N
974 * Y Y N -
975 *
976 * IB N N Y N
977 * N Y N -
978 * Y N Y N
979 * Y Y N -
980 *
981 * NB: iWARP requires remote write access for the data sink
982 * of an RDMA_READ. IB does not.
983 */
984 if (devattr.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) {
985 newxprt->sc_frmr_pg_list_len =
986 devattr.max_fast_reg_page_list_len;
987 newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_FAST_REG;
988 }
989
990 /*
991 * Determine if a DMA MR is required and if so, what privs are required
992 */
993 switch (rdma_node_get_transport(newxprt->sc_cm_id->device->node_type)) {
994 case RDMA_TRANSPORT_IWARP:
995 newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_READ_W_INV;
996 if (!(newxprt->sc_dev_caps & SVCRDMA_DEVCAP_FAST_REG)) {
997 need_dma_mr = 1;
998 dma_mr_acc =
999 (IB_ACCESS_LOCAL_WRITE |
1000 IB_ACCESS_REMOTE_WRITE);
1001 } else if (!(devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) {
1002 need_dma_mr = 1;
1003 dma_mr_acc = IB_ACCESS_LOCAL_WRITE;
1004 } else
1005 need_dma_mr = 0;
1006 break;
1007 case RDMA_TRANSPORT_IB:
1008 if (!(devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) {
1009 need_dma_mr = 1;
1010 dma_mr_acc = IB_ACCESS_LOCAL_WRITE;
1011 } else
1012 need_dma_mr = 0;
1013 break;
1014 default:
1015 goto errout;
1016 }
1017
1018 /* Create the DMA MR if needed, otherwise, use the DMA LKEY */
1019 if (need_dma_mr) {
1020 /* Register all of physical memory */
1021 newxprt->sc_phys_mr =
1022 ib_get_dma_mr(newxprt->sc_pd, dma_mr_acc);
1023 if (IS_ERR(newxprt->sc_phys_mr)) {
1024 dprintk("svcrdma: Failed to create DMA MR ret=%d\n",
1025 ret);
1026 goto errout;
1027 }
1028 newxprt->sc_dma_lkey = newxprt->sc_phys_mr->lkey;
1029 } else
1030 newxprt->sc_dma_lkey =
1031 newxprt->sc_cm_id->device->local_dma_lkey;
1032
1033 /* Post receive buffers */
1034 for (i = 0; i < newxprt->sc_max_requests; i++) {
1035 ret = svc_rdma_post_recv(newxprt);
1036 if (ret) {
1037 dprintk("svcrdma: failure posting receive buffers\n");
1038 goto errout;
1039 }
1040 }
1041
1042 /* Swap out the handler */
1043 newxprt->sc_cm_id->event_handler = rdma_cma_handler;
1044
1045 /*
1046 * Arm the CQs for the SQ and RQ before accepting so we can't
1047 * miss the first message
1048 */
1049 ib_req_notify_cq(newxprt->sc_sq_cq, IB_CQ_NEXT_COMP);
1050 ib_req_notify_cq(newxprt->sc_rq_cq, IB_CQ_NEXT_COMP);
1051
1052 /* Accept Connection */
1053 set_bit(RDMAXPRT_CONN_PENDING, &newxprt->sc_flags);
1054 memset(&conn_param, 0, sizeof conn_param);
1055 conn_param.responder_resources = 0;
1056 conn_param.initiator_depth = newxprt->sc_ord;
1057 ret = rdma_accept(newxprt->sc_cm_id, &conn_param);
1058 if (ret) {
1059 dprintk("svcrdma: failed to accept new connection, ret=%d\n",
1060 ret);
1061 goto errout;
1062 }
1063
1064 dprintk("svcrdma: new connection %p accepted with the following "
1065 "attributes:\n"
1066 " local_ip : %pI4\n"
1067 " local_port : %d\n"
1068 " remote_ip : %pI4\n"
1069 " remote_port : %d\n"
1070 " max_sge : %d\n"
1071 " sq_depth : %d\n"
1072 " max_requests : %d\n"
1073 " ord : %d\n",
1074 newxprt,
1075 &((struct sockaddr_in *)&newxprt->sc_cm_id->
1076 route.addr.src_addr)->sin_addr.s_addr,
1077 ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id->
1078 route.addr.src_addr)->sin_port),
1079 &((struct sockaddr_in *)&newxprt->sc_cm_id->
1080 route.addr.dst_addr)->sin_addr.s_addr,
1081 ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id->
1082 route.addr.dst_addr)->sin_port),
1083 newxprt->sc_max_sge,
1084 newxprt->sc_sq_depth,
1085 newxprt->sc_max_requests,
1086 newxprt->sc_ord);
1087
1088 return &newxprt->sc_xprt;
1089
1090 errout:
1091 dprintk("svcrdma: failure accepting new connection rc=%d.\n", ret);
1092 /* Take a reference in case the DTO handler runs */
1093 svc_xprt_get(&newxprt->sc_xprt);
1094 if (newxprt->sc_qp && !IS_ERR(newxprt->sc_qp))
1095 ib_destroy_qp(newxprt->sc_qp);
1096 rdma_destroy_id(newxprt->sc_cm_id);
1097 /* This call to put will destroy the transport */
1098 svc_xprt_put(&newxprt->sc_xprt);
1099 return NULL;
1100 }
1101
1102 static void svc_rdma_release_rqst(struct svc_rqst *rqstp)
1103 {
1104 }
1105
1106 /*
1107 * When connected, an svc_xprt has at least two references:
1108 *
1109 * - A reference held by the cm_id between the ESTABLISHED and
1110 * DISCONNECTED events. If the remote peer disconnected first, this
1111 * reference could be gone.
1112 *
1113 * - A reference held by the svc_recv code that called this function
1114 * as part of close processing.
1115 *
1116 * At a minimum one references should still be held.
1117 */
1118 static void svc_rdma_detach(struct svc_xprt *xprt)
1119 {
1120 struct svcxprt_rdma *rdma =
1121 container_of(xprt, struct svcxprt_rdma, sc_xprt);
1122 dprintk("svc: svc_rdma_detach(%p)\n", xprt);
1123
1124 /* Disconnect and flush posted WQE */
1125 rdma_disconnect(rdma->sc_cm_id);
1126 }
1127
1128 static void __svc_rdma_free(struct work_struct *work)
1129 {
1130 struct svcxprt_rdma *rdma =
1131 container_of(work, struct svcxprt_rdma, sc_work);
1132 dprintk("svcrdma: svc_rdma_free(%p)\n", rdma);
1133
1134 /* We should only be called from kref_put */
1135 BUG_ON(atomic_read(&rdma->sc_xprt.xpt_ref.refcount) != 0);
1136
1137 /*
1138 * Destroy queued, but not processed read completions. Note
1139 * that this cleanup has to be done before destroying the
1140 * cm_id because the device ptr is needed to unmap the dma in
1141 * svc_rdma_put_context.
1142 */
1143 while (!list_empty(&rdma->sc_read_complete_q)) {
1144 struct svc_rdma_op_ctxt *ctxt;
1145 ctxt = list_entry(rdma->sc_read_complete_q.next,
1146 struct svc_rdma_op_ctxt,
1147 dto_q);
1148 list_del_init(&ctxt->dto_q);
1149 svc_rdma_put_context(ctxt, 1);
1150 }
1151
1152 /* Destroy queued, but not processed recv completions */
1153 while (!list_empty(&rdma->sc_rq_dto_q)) {
1154 struct svc_rdma_op_ctxt *ctxt;
1155 ctxt = list_entry(rdma->sc_rq_dto_q.next,
1156 struct svc_rdma_op_ctxt,
1157 dto_q);
1158 list_del_init(&ctxt->dto_q);
1159 svc_rdma_put_context(ctxt, 1);
1160 }
1161
1162 /* Warn if we leaked a resource or under-referenced */
1163 WARN_ON(atomic_read(&rdma->sc_ctxt_used) != 0);
1164 WARN_ON(atomic_read(&rdma->sc_dma_used) != 0);
1165
1166 /* De-allocate fastreg mr */
1167 rdma_dealloc_frmr_q(rdma);
1168
1169 /* Destroy the QP if present (not a listener) */
1170 if (rdma->sc_qp && !IS_ERR(rdma->sc_qp))
1171 ib_destroy_qp(rdma->sc_qp);
1172
1173 if (rdma->sc_sq_cq && !IS_ERR(rdma->sc_sq_cq))
1174 ib_destroy_cq(rdma->sc_sq_cq);
1175
1176 if (rdma->sc_rq_cq && !IS_ERR(rdma->sc_rq_cq))
1177 ib_destroy_cq(rdma->sc_rq_cq);
1178
1179 if (rdma->sc_phys_mr && !IS_ERR(rdma->sc_phys_mr))
1180 ib_dereg_mr(rdma->sc_phys_mr);
1181
1182 if (rdma->sc_pd && !IS_ERR(rdma->sc_pd))
1183 ib_dealloc_pd(rdma->sc_pd);
1184
1185 /* Destroy the CM ID */
1186 rdma_destroy_id(rdma->sc_cm_id);
1187
1188 kfree(rdma);
1189 }
1190
1191 static void svc_rdma_free(struct svc_xprt *xprt)
1192 {
1193 struct svcxprt_rdma *rdma =
1194 container_of(xprt, struct svcxprt_rdma, sc_xprt);
1195 INIT_WORK(&rdma->sc_work, __svc_rdma_free);
1196 queue_work(svc_rdma_wq, &rdma->sc_work);
1197 }
1198
1199 static int svc_rdma_has_wspace(struct svc_xprt *xprt)
1200 {
1201 struct svcxprt_rdma *rdma =
1202 container_of(xprt, struct svcxprt_rdma, sc_xprt);
1203
1204 /*
1205 * If there are fewer SQ WR available than required to send a
1206 * simple response, return false.
1207 */
1208 if ((rdma->sc_sq_depth - atomic_read(&rdma->sc_sq_count) < 3))
1209 return 0;
1210
1211 /*
1212 * ...or there are already waiters on the SQ,
1213 * return false.
1214 */
1215 if (waitqueue_active(&rdma->sc_send_wait))
1216 return 0;
1217
1218 /* Otherwise return true. */
1219 return 1;
1220 }
1221
1222 /*
1223 * Attempt to register the kvec representing the RPC memory with the
1224 * device.
1225 *
1226 * Returns:
1227 * NULL : The device does not support fastreg or there were no more
1228 * fastreg mr.
1229 * frmr : The kvec register request was successfully posted.
1230 * <0 : An error was encountered attempting to register the kvec.
1231 */
1232 int svc_rdma_fastreg(struct svcxprt_rdma *xprt,
1233 struct svc_rdma_fastreg_mr *frmr)
1234 {
1235 struct ib_send_wr fastreg_wr;
1236 u8 key;
1237
1238 /* Bump the key */
1239 key = (u8)(frmr->mr->lkey & 0x000000FF);
1240 ib_update_fast_reg_key(frmr->mr, ++key);
1241
1242 /* Prepare FASTREG WR */
1243 memset(&fastreg_wr, 0, sizeof fastreg_wr);
1244 fastreg_wr.opcode = IB_WR_FAST_REG_MR;
1245 fastreg_wr.send_flags = IB_SEND_SIGNALED;
1246 fastreg_wr.wr.fast_reg.iova_start = (unsigned long)frmr->kva;
1247 fastreg_wr.wr.fast_reg.page_list = frmr->page_list;
1248 fastreg_wr.wr.fast_reg.page_list_len = frmr->page_list_len;
1249 fastreg_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
1250 fastreg_wr.wr.fast_reg.length = frmr->map_len;
1251 fastreg_wr.wr.fast_reg.access_flags = frmr->access_flags;
1252 fastreg_wr.wr.fast_reg.rkey = frmr->mr->lkey;
1253 return svc_rdma_send(xprt, &fastreg_wr);
1254 }
1255
1256 int svc_rdma_send(struct svcxprt_rdma *xprt, struct ib_send_wr *wr)
1257 {
1258 struct ib_send_wr *bad_wr, *n_wr;
1259 int wr_count;
1260 int i;
1261 int ret;
1262
1263 if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags))
1264 return -ENOTCONN;
1265
1266 BUG_ON(wr->send_flags != IB_SEND_SIGNALED);
1267 wr_count = 1;
1268 for (n_wr = wr->next; n_wr; n_wr = n_wr->next)
1269 wr_count++;
1270
1271 /* If the SQ is full, wait until an SQ entry is available */
1272 while (1) {
1273 spin_lock_bh(&xprt->sc_lock);
1274 if (xprt->sc_sq_depth < atomic_read(&xprt->sc_sq_count) + wr_count) {
1275 spin_unlock_bh(&xprt->sc_lock);
1276 atomic_inc(&rdma_stat_sq_starve);
1277
1278 /* See if we can opportunistically reap SQ WR to make room */
1279 sq_cq_reap(xprt);
1280
1281 /* Wait until SQ WR available if SQ still full */
1282 wait_event(xprt->sc_send_wait,
1283 atomic_read(&xprt->sc_sq_count) <
1284 xprt->sc_sq_depth);
1285 if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags))
1286 return -ENOTCONN;
1287 continue;
1288 }
1289 /* Take a transport ref for each WR posted */
1290 for (i = 0; i < wr_count; i++)
1291 svc_xprt_get(&xprt->sc_xprt);
1292
1293 /* Bump used SQ WR count and post */
1294 atomic_add(wr_count, &xprt->sc_sq_count);
1295 ret = ib_post_send(xprt->sc_qp, wr, &bad_wr);
1296 if (ret) {
1297 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
1298 atomic_sub(wr_count, &xprt->sc_sq_count);
1299 for (i = 0; i < wr_count; i ++)
1300 svc_xprt_put(&xprt->sc_xprt);
1301 dprintk("svcrdma: failed to post SQ WR rc=%d, "
1302 "sc_sq_count=%d, sc_sq_depth=%d\n",
1303 ret, atomic_read(&xprt->sc_sq_count),
1304 xprt->sc_sq_depth);
1305 }
1306 spin_unlock_bh(&xprt->sc_lock);
1307 if (ret)
1308 wake_up(&xprt->sc_send_wait);
1309 break;
1310 }
1311 return ret;
1312 }
1313
1314 void svc_rdma_send_error(struct svcxprt_rdma *xprt, struct rpcrdma_msg *rmsgp,
1315 enum rpcrdma_errcode err)
1316 {
1317 struct ib_send_wr err_wr;
1318 struct page *p;
1319 struct svc_rdma_op_ctxt *ctxt;
1320 u32 *va;
1321 int length;
1322 int ret;
1323
1324 p = svc_rdma_get_page();
1325 va = page_address(p);
1326
1327 /* XDR encode error */
1328 length = svc_rdma_xdr_encode_error(xprt, rmsgp, err, va);
1329
1330 ctxt = svc_rdma_get_context(xprt);
1331 ctxt->direction = DMA_FROM_DEVICE;
1332 ctxt->count = 1;
1333 ctxt->pages[0] = p;
1334
1335 /* Prepare SGE for local address */
1336 ctxt->sge[0].addr = ib_dma_map_page(xprt->sc_cm_id->device,
1337 p, 0, length, DMA_FROM_DEVICE);
1338 if (ib_dma_mapping_error(xprt->sc_cm_id->device, ctxt->sge[0].addr)) {
1339 put_page(p);
1340 svc_rdma_put_context(ctxt, 1);
1341 return;
1342 }
1343 atomic_inc(&xprt->sc_dma_used);
1344 ctxt->sge[0].lkey = xprt->sc_dma_lkey;
1345 ctxt->sge[0].length = length;
1346
1347 /* Prepare SEND WR */
1348 memset(&err_wr, 0, sizeof err_wr);
1349 ctxt->wr_op = IB_WR_SEND;
1350 err_wr.wr_id = (unsigned long)ctxt;
1351 err_wr.sg_list = ctxt->sge;
1352 err_wr.num_sge = 1;
1353 err_wr.opcode = IB_WR_SEND;
1354 err_wr.send_flags = IB_SEND_SIGNALED;
1355
1356 /* Post It */
1357 ret = svc_rdma_send(xprt, &err_wr);
1358 if (ret) {
1359 dprintk("svcrdma: Error %d posting send for protocol error\n",
1360 ret);
1361 svc_rdma_unmap_dma(ctxt);
1362 svc_rdma_put_context(ctxt, 1);
1363 }
1364 }