]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/sunrpc/xprtrdma/transport.c
SUNRPC: Move the test for XPRT_CONNECTING into xprt_connect()
[mirror_ubuntu-artful-kernel.git] / net / sunrpc / xprtrdma / transport.c
1 /*
2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
8 * license below:
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 *
17 * Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials provided
20 * with the distribution.
21 *
22 * Neither the name of the Network Appliance, Inc. nor the names of
23 * its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written
25 * permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * transport.c
42 *
43 * This file contains the top-level implementation of an RPC RDMA
44 * transport.
45 *
46 * Naming convention: functions beginning with xprt_ are part of the
47 * transport switch. All others are RPC RDMA internal.
48 */
49
50 #include <linux/module.h>
51 #include <linux/init.h>
52 #include <linux/slab.h>
53 #include <linux/seq_file.h>
54
55 #include "xprt_rdma.h"
56
57 #ifdef RPC_DEBUG
58 # define RPCDBG_FACILITY RPCDBG_TRANS
59 #endif
60
61 MODULE_LICENSE("Dual BSD/GPL");
62
63 MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS");
64 MODULE_AUTHOR("Network Appliance, Inc.");
65
66 /*
67 * tunables
68 */
69
70 static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
71 static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
72 static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
73 static unsigned int xprt_rdma_inline_write_padding;
74 static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR;
75 int xprt_rdma_pad_optimize = 0;
76
77 #ifdef RPC_DEBUG
78
79 static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
80 static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
81 static unsigned int zero;
82 static unsigned int max_padding = PAGE_SIZE;
83 static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
84 static unsigned int max_memreg = RPCRDMA_LAST - 1;
85
86 static struct ctl_table_header *sunrpc_table_header;
87
88 static ctl_table xr_tunables_table[] = {
89 {
90 .procname = "rdma_slot_table_entries",
91 .data = &xprt_rdma_slot_table_entries,
92 .maxlen = sizeof(unsigned int),
93 .mode = 0644,
94 .proc_handler = proc_dointvec_minmax,
95 .extra1 = &min_slot_table_size,
96 .extra2 = &max_slot_table_size
97 },
98 {
99 .procname = "rdma_max_inline_read",
100 .data = &xprt_rdma_max_inline_read,
101 .maxlen = sizeof(unsigned int),
102 .mode = 0644,
103 .proc_handler = proc_dointvec,
104 },
105 {
106 .procname = "rdma_max_inline_write",
107 .data = &xprt_rdma_max_inline_write,
108 .maxlen = sizeof(unsigned int),
109 .mode = 0644,
110 .proc_handler = proc_dointvec,
111 },
112 {
113 .procname = "rdma_inline_write_padding",
114 .data = &xprt_rdma_inline_write_padding,
115 .maxlen = sizeof(unsigned int),
116 .mode = 0644,
117 .proc_handler = proc_dointvec_minmax,
118 .extra1 = &zero,
119 .extra2 = &max_padding,
120 },
121 {
122 .procname = "rdma_memreg_strategy",
123 .data = &xprt_rdma_memreg_strategy,
124 .maxlen = sizeof(unsigned int),
125 .mode = 0644,
126 .proc_handler = proc_dointvec_minmax,
127 .extra1 = &min_memreg,
128 .extra2 = &max_memreg,
129 },
130 {
131 .procname = "rdma_pad_optimize",
132 .data = &xprt_rdma_pad_optimize,
133 .maxlen = sizeof(unsigned int),
134 .mode = 0644,
135 .proc_handler = proc_dointvec,
136 },
137 { },
138 };
139
140 static ctl_table sunrpc_table[] = {
141 {
142 .procname = "sunrpc",
143 .mode = 0555,
144 .child = xr_tunables_table
145 },
146 { },
147 };
148
149 #endif
150
151 static struct rpc_xprt_ops xprt_rdma_procs; /* forward reference */
152
153 static void
154 xprt_rdma_format_addresses(struct rpc_xprt *xprt)
155 {
156 struct sockaddr *sap = (struct sockaddr *)
157 &rpcx_to_rdmad(xprt).addr;
158 struct sockaddr_in *sin = (struct sockaddr_in *)sap;
159 char buf[64];
160
161 (void)rpc_ntop(sap, buf, sizeof(buf));
162 xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL);
163
164 snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap));
165 xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
166
167 xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
168
169 snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr));
170 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
171
172 snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap));
173 xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
174
175 /* netid */
176 xprt->address_strings[RPC_DISPLAY_NETID] = "rdma";
177 }
178
179 static void
180 xprt_rdma_free_addresses(struct rpc_xprt *xprt)
181 {
182 unsigned int i;
183
184 for (i = 0; i < RPC_DISPLAY_MAX; i++)
185 switch (i) {
186 case RPC_DISPLAY_PROTO:
187 case RPC_DISPLAY_NETID:
188 continue;
189 default:
190 kfree(xprt->address_strings[i]);
191 }
192 }
193
194 static void
195 xprt_rdma_connect_worker(struct work_struct *work)
196 {
197 struct rpcrdma_xprt *r_xprt =
198 container_of(work, struct rpcrdma_xprt, rdma_connect.work);
199 struct rpc_xprt *xprt = &r_xprt->xprt;
200 int rc = 0;
201
202 if (!xprt->shutdown) {
203 xprt_clear_connected(xprt);
204
205 dprintk("RPC: %s: %sconnect\n", __func__,
206 r_xprt->rx_ep.rep_connected != 0 ? "re" : "");
207 rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
208 if (rc)
209 goto out;
210 }
211 goto out_clear;
212
213 out:
214 xprt_wake_pending_tasks(xprt, rc);
215
216 out_clear:
217 dprintk("RPC: %s: exit\n", __func__);
218 xprt_clear_connecting(xprt);
219 }
220
221 /*
222 * xprt_rdma_destroy
223 *
224 * Destroy the xprt.
225 * Free all memory associated with the object, including its own.
226 * NOTE: none of the *destroy methods free memory for their top-level
227 * objects, even though they may have allocated it (they do free
228 * private memory). It's up to the caller to handle it. In this
229 * case (RDMA transport), all structure memory is inlined with the
230 * struct rpcrdma_xprt.
231 */
232 static void
233 xprt_rdma_destroy(struct rpc_xprt *xprt)
234 {
235 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
236 int rc;
237
238 dprintk("RPC: %s: called\n", __func__);
239
240 cancel_delayed_work(&r_xprt->rdma_connect);
241 flush_scheduled_work();
242
243 xprt_clear_connected(xprt);
244
245 rpcrdma_buffer_destroy(&r_xprt->rx_buf);
246 rc = rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
247 if (rc)
248 dprintk("RPC: %s: rpcrdma_ep_destroy returned %i\n",
249 __func__, rc);
250 rpcrdma_ia_close(&r_xprt->rx_ia);
251
252 xprt_rdma_free_addresses(xprt);
253
254 kfree(xprt->slot);
255 xprt->slot = NULL;
256 kfree(xprt);
257
258 dprintk("RPC: %s: returning\n", __func__);
259
260 module_put(THIS_MODULE);
261 }
262
263 static const struct rpc_timeout xprt_rdma_default_timeout = {
264 .to_initval = 60 * HZ,
265 .to_maxval = 60 * HZ,
266 };
267
268 /**
269 * xprt_setup_rdma - Set up transport to use RDMA
270 *
271 * @args: rpc transport arguments
272 */
273 static struct rpc_xprt *
274 xprt_setup_rdma(struct xprt_create *args)
275 {
276 struct rpcrdma_create_data_internal cdata;
277 struct rpc_xprt *xprt;
278 struct rpcrdma_xprt *new_xprt;
279 struct rpcrdma_ep *new_ep;
280 struct sockaddr_in *sin;
281 int rc;
282
283 if (args->addrlen > sizeof(xprt->addr)) {
284 dprintk("RPC: %s: address too large\n", __func__);
285 return ERR_PTR(-EBADF);
286 }
287
288 xprt = kzalloc(sizeof(struct rpcrdma_xprt), GFP_KERNEL);
289 if (xprt == NULL) {
290 dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n",
291 __func__);
292 return ERR_PTR(-ENOMEM);
293 }
294
295 xprt->max_reqs = xprt_rdma_slot_table_entries;
296 xprt->slot = kcalloc(xprt->max_reqs,
297 sizeof(struct rpc_rqst), GFP_KERNEL);
298 if (xprt->slot == NULL) {
299 dprintk("RPC: %s: couldn't allocate %d slots\n",
300 __func__, xprt->max_reqs);
301 kfree(xprt);
302 return ERR_PTR(-ENOMEM);
303 }
304
305 /* 60 second timeout, no retries */
306 xprt->timeout = &xprt_rdma_default_timeout;
307 xprt->bind_timeout = (60U * HZ);
308 xprt->connect_timeout = (60U * HZ);
309 xprt->reestablish_timeout = (5U * HZ);
310 xprt->idle_timeout = (5U * 60 * HZ);
311
312 xprt->resvport = 0; /* privileged port not needed */
313 xprt->tsh_size = 0; /* RPC-RDMA handles framing */
314 xprt->max_payload = RPCRDMA_MAX_DATA_SEGS * PAGE_SIZE;
315 xprt->ops = &xprt_rdma_procs;
316
317 /*
318 * Set up RDMA-specific connect data.
319 */
320
321 /* Put server RDMA address in local cdata */
322 memcpy(&cdata.addr, args->dstaddr, args->addrlen);
323
324 /* Ensure xprt->addr holds valid server TCP (not RDMA)
325 * address, for any side protocols which peek at it */
326 xprt->prot = IPPROTO_TCP;
327 xprt->addrlen = args->addrlen;
328 memcpy(&xprt->addr, &cdata.addr, xprt->addrlen);
329
330 sin = (struct sockaddr_in *)&cdata.addr;
331 if (ntohs(sin->sin_port) != 0)
332 xprt_set_bound(xprt);
333
334 dprintk("RPC: %s: %pI4:%u\n",
335 __func__, &sin->sin_addr.s_addr, ntohs(sin->sin_port));
336
337 /* Set max requests */
338 cdata.max_requests = xprt->max_reqs;
339
340 /* Set some length limits */
341 cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
342 cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */
343
344 cdata.inline_wsize = xprt_rdma_max_inline_write;
345 if (cdata.inline_wsize > cdata.wsize)
346 cdata.inline_wsize = cdata.wsize;
347
348 cdata.inline_rsize = xprt_rdma_max_inline_read;
349 if (cdata.inline_rsize > cdata.rsize)
350 cdata.inline_rsize = cdata.rsize;
351
352 cdata.padding = xprt_rdma_inline_write_padding;
353
354 /*
355 * Create new transport instance, which includes initialized
356 * o ia
357 * o endpoint
358 * o buffers
359 */
360
361 new_xprt = rpcx_to_rdmax(xprt);
362
363 rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr,
364 xprt_rdma_memreg_strategy);
365 if (rc)
366 goto out1;
367
368 /*
369 * initialize and create ep
370 */
371 new_xprt->rx_data = cdata;
372 new_ep = &new_xprt->rx_ep;
373 new_ep->rep_remote_addr = cdata.addr;
374
375 rc = rpcrdma_ep_create(&new_xprt->rx_ep,
376 &new_xprt->rx_ia, &new_xprt->rx_data);
377 if (rc)
378 goto out2;
379
380 /*
381 * Allocate pre-registered send and receive buffers for headers and
382 * any inline data. Also specify any padding which will be provided
383 * from a preregistered zero buffer.
384 */
385 rc = rpcrdma_buffer_create(&new_xprt->rx_buf, new_ep, &new_xprt->rx_ia,
386 &new_xprt->rx_data);
387 if (rc)
388 goto out3;
389
390 /*
391 * Register a callback for connection events. This is necessary because
392 * connection loss notification is async. We also catch connection loss
393 * when reaping receives.
394 */
395 INIT_DELAYED_WORK(&new_xprt->rdma_connect, xprt_rdma_connect_worker);
396 new_ep->rep_func = rpcrdma_conn_func;
397 new_ep->rep_xprt = xprt;
398
399 xprt_rdma_format_addresses(xprt);
400
401 if (!try_module_get(THIS_MODULE))
402 goto out4;
403
404 return xprt;
405
406 out4:
407 xprt_rdma_free_addresses(xprt);
408 rc = -EINVAL;
409 out3:
410 (void) rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
411 out2:
412 rpcrdma_ia_close(&new_xprt->rx_ia);
413 out1:
414 kfree(xprt->slot);
415 kfree(xprt);
416 return ERR_PTR(rc);
417 }
418
419 /*
420 * Close a connection, during shutdown or timeout/reconnect
421 */
422 static void
423 xprt_rdma_close(struct rpc_xprt *xprt)
424 {
425 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
426
427 dprintk("RPC: %s: closing\n", __func__);
428 if (r_xprt->rx_ep.rep_connected > 0)
429 xprt->reestablish_timeout = 0;
430 xprt_disconnect_done(xprt);
431 (void) rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia);
432 }
433
434 static void
435 xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
436 {
437 struct sockaddr_in *sap;
438
439 sap = (struct sockaddr_in *)&xprt->addr;
440 sap->sin_port = htons(port);
441 sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr;
442 sap->sin_port = htons(port);
443 dprintk("RPC: %s: %u\n", __func__, port);
444 }
445
446 static void
447 xprt_rdma_connect(struct rpc_task *task)
448 {
449 struct rpc_xprt *xprt = (struct rpc_xprt *)task->tk_xprt;
450 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
451
452 if (r_xprt->rx_ep.rep_connected != 0) {
453 /* Reconnect */
454 schedule_delayed_work(&r_xprt->rdma_connect,
455 xprt->reestablish_timeout);
456 xprt->reestablish_timeout <<= 1;
457 if (xprt->reestablish_timeout > (30 * HZ))
458 xprt->reestablish_timeout = (30 * HZ);
459 else if (xprt->reestablish_timeout < (5 * HZ))
460 xprt->reestablish_timeout = (5 * HZ);
461 } else {
462 schedule_delayed_work(&r_xprt->rdma_connect, 0);
463 if (!RPC_IS_ASYNC(task))
464 flush_scheduled_work();
465 }
466 }
467
468 static int
469 xprt_rdma_reserve_xprt(struct rpc_task *task)
470 {
471 struct rpc_xprt *xprt = task->tk_xprt;
472 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
473 int credits = atomic_read(&r_xprt->rx_buf.rb_credits);
474
475 /* == RPC_CWNDSCALE @ init, but *after* setup */
476 if (r_xprt->rx_buf.rb_cwndscale == 0UL) {
477 r_xprt->rx_buf.rb_cwndscale = xprt->cwnd;
478 dprintk("RPC: %s: cwndscale %lu\n", __func__,
479 r_xprt->rx_buf.rb_cwndscale);
480 BUG_ON(r_xprt->rx_buf.rb_cwndscale <= 0);
481 }
482 xprt->cwnd = credits * r_xprt->rx_buf.rb_cwndscale;
483 return xprt_reserve_xprt_cong(task);
484 }
485
486 /*
487 * The RDMA allocate/free functions need the task structure as a place
488 * to hide the struct rpcrdma_req, which is necessary for the actual send/recv
489 * sequence. For this reason, the recv buffers are attached to send
490 * buffers for portions of the RPC. Note that the RPC layer allocates
491 * both send and receive buffers in the same call. We may register
492 * the receive buffer portion when using reply chunks.
493 */
494 static void *
495 xprt_rdma_allocate(struct rpc_task *task, size_t size)
496 {
497 struct rpc_xprt *xprt = task->tk_xprt;
498 struct rpcrdma_req *req, *nreq;
499
500 req = rpcrdma_buffer_get(&rpcx_to_rdmax(xprt)->rx_buf);
501 BUG_ON(NULL == req);
502
503 if (size > req->rl_size) {
504 dprintk("RPC: %s: size %zd too large for buffer[%zd]: "
505 "prog %d vers %d proc %d\n",
506 __func__, size, req->rl_size,
507 task->tk_client->cl_prog, task->tk_client->cl_vers,
508 task->tk_msg.rpc_proc->p_proc);
509 /*
510 * Outgoing length shortage. Our inline write max must have
511 * been configured to perform direct i/o.
512 *
513 * This is therefore a large metadata operation, and the
514 * allocate call was made on the maximum possible message,
515 * e.g. containing long filename(s) or symlink data. In
516 * fact, while these metadata operations *might* carry
517 * large outgoing payloads, they rarely *do*. However, we
518 * have to commit to the request here, so reallocate and
519 * register it now. The data path will never require this
520 * reallocation.
521 *
522 * If the allocation or registration fails, the RPC framework
523 * will (doggedly) retry.
524 */
525 if (rpcx_to_rdmax(xprt)->rx_ia.ri_memreg_strategy ==
526 RPCRDMA_BOUNCEBUFFERS) {
527 /* forced to "pure inline" */
528 dprintk("RPC: %s: too much data (%zd) for inline "
529 "(r/w max %d/%d)\n", __func__, size,
530 rpcx_to_rdmad(xprt).inline_rsize,
531 rpcx_to_rdmad(xprt).inline_wsize);
532 size = req->rl_size;
533 rpc_exit(task, -EIO); /* fail the operation */
534 rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
535 goto out;
536 }
537 if (task->tk_flags & RPC_TASK_SWAPPER)
538 nreq = kmalloc(sizeof *req + size, GFP_ATOMIC);
539 else
540 nreq = kmalloc(sizeof *req + size, GFP_NOFS);
541 if (nreq == NULL)
542 goto outfail;
543
544 if (rpcrdma_register_internal(&rpcx_to_rdmax(xprt)->rx_ia,
545 nreq->rl_base, size + sizeof(struct rpcrdma_req)
546 - offsetof(struct rpcrdma_req, rl_base),
547 &nreq->rl_handle, &nreq->rl_iov)) {
548 kfree(nreq);
549 goto outfail;
550 }
551 rpcx_to_rdmax(xprt)->rx_stats.hardway_register_count += size;
552 nreq->rl_size = size;
553 nreq->rl_niovs = 0;
554 nreq->rl_nchunks = 0;
555 nreq->rl_buffer = (struct rpcrdma_buffer *)req;
556 nreq->rl_reply = req->rl_reply;
557 memcpy(nreq->rl_segments,
558 req->rl_segments, sizeof nreq->rl_segments);
559 /* flag the swap with an unused field */
560 nreq->rl_iov.length = 0;
561 req->rl_reply = NULL;
562 req = nreq;
563 }
564 dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req);
565 out:
566 req->rl_connect_cookie = 0; /* our reserved value */
567 return req->rl_xdr_buf;
568
569 outfail:
570 rpcrdma_buffer_put(req);
571 rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
572 return NULL;
573 }
574
575 /*
576 * This function returns all RDMA resources to the pool.
577 */
578 static void
579 xprt_rdma_free(void *buffer)
580 {
581 struct rpcrdma_req *req;
582 struct rpcrdma_xprt *r_xprt;
583 struct rpcrdma_rep *rep;
584 int i;
585
586 if (buffer == NULL)
587 return;
588
589 req = container_of(buffer, struct rpcrdma_req, rl_xdr_buf[0]);
590 if (req->rl_iov.length == 0) { /* see allocate above */
591 r_xprt = container_of(((struct rpcrdma_req *) req->rl_buffer)->rl_buffer,
592 struct rpcrdma_xprt, rx_buf);
593 } else
594 r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf);
595 rep = req->rl_reply;
596
597 dprintk("RPC: %s: called on 0x%p%s\n",
598 __func__, rep, (rep && rep->rr_func) ? " (with waiter)" : "");
599
600 /*
601 * Finish the deregistration. When using mw bind, this was
602 * begun in rpcrdma_reply_handler(). In all other modes, we
603 * do it here, in thread context. The process is considered
604 * complete when the rr_func vector becomes NULL - this
605 * was put in place during rpcrdma_reply_handler() - the wait
606 * call below will not block if the dereg is "done". If
607 * interrupted, our framework will clean up.
608 */
609 for (i = 0; req->rl_nchunks;) {
610 --req->rl_nchunks;
611 i += rpcrdma_deregister_external(
612 &req->rl_segments[i], r_xprt, NULL);
613 }
614
615 if (rep && wait_event_interruptible(rep->rr_unbind, !rep->rr_func)) {
616 rep->rr_func = NULL; /* abandon the callback */
617 req->rl_reply = NULL;
618 }
619
620 if (req->rl_iov.length == 0) { /* see allocate above */
621 struct rpcrdma_req *oreq = (struct rpcrdma_req *)req->rl_buffer;
622 oreq->rl_reply = req->rl_reply;
623 (void) rpcrdma_deregister_internal(&r_xprt->rx_ia,
624 req->rl_handle,
625 &req->rl_iov);
626 kfree(req);
627 req = oreq;
628 }
629
630 /* Put back request+reply buffers */
631 rpcrdma_buffer_put(req);
632 }
633
634 /*
635 * send_request invokes the meat of RPC RDMA. It must do the following:
636 * 1. Marshal the RPC request into an RPC RDMA request, which means
637 * putting a header in front of data, and creating IOVs for RDMA
638 * from those in the request.
639 * 2. In marshaling, detect opportunities for RDMA, and use them.
640 * 3. Post a recv message to set up asynch completion, then send
641 * the request (rpcrdma_ep_post).
642 * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP).
643 */
644
645 static int
646 xprt_rdma_send_request(struct rpc_task *task)
647 {
648 struct rpc_rqst *rqst = task->tk_rqstp;
649 struct rpc_xprt *xprt = task->tk_xprt;
650 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
651 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
652
653 /* marshal the send itself */
654 if (req->rl_niovs == 0 && rpcrdma_marshal_req(rqst) != 0) {
655 r_xprt->rx_stats.failed_marshal_count++;
656 dprintk("RPC: %s: rpcrdma_marshal_req failed\n",
657 __func__);
658 return -EIO;
659 }
660
661 if (req->rl_reply == NULL) /* e.g. reconnection */
662 rpcrdma_recv_buffer_get(req);
663
664 if (req->rl_reply) {
665 req->rl_reply->rr_func = rpcrdma_reply_handler;
666 /* this need only be done once, but... */
667 req->rl_reply->rr_xprt = xprt;
668 }
669
670 /* Must suppress retransmit to maintain credits */
671 if (req->rl_connect_cookie == xprt->connect_cookie)
672 goto drop_connection;
673 req->rl_connect_cookie = xprt->connect_cookie;
674
675 if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req))
676 goto drop_connection;
677
678 task->tk_bytes_sent += rqst->rq_snd_buf.len;
679 rqst->rq_bytes_sent = 0;
680 return 0;
681
682 drop_connection:
683 xprt_disconnect_done(xprt);
684 return -ENOTCONN; /* implies disconnect */
685 }
686
687 static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
688 {
689 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
690 long idle_time = 0;
691
692 if (xprt_connected(xprt))
693 idle_time = (long)(jiffies - xprt->last_used) / HZ;
694
695 seq_printf(seq,
696 "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu "
697 "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n",
698
699 0, /* need a local port? */
700 xprt->stat.bind_count,
701 xprt->stat.connect_count,
702 xprt->stat.connect_time,
703 idle_time,
704 xprt->stat.sends,
705 xprt->stat.recvs,
706 xprt->stat.bad_xids,
707 xprt->stat.req_u,
708 xprt->stat.bklog_u,
709
710 r_xprt->rx_stats.read_chunk_count,
711 r_xprt->rx_stats.write_chunk_count,
712 r_xprt->rx_stats.reply_chunk_count,
713 r_xprt->rx_stats.total_rdma_request,
714 r_xprt->rx_stats.total_rdma_reply,
715 r_xprt->rx_stats.pullup_copy_count,
716 r_xprt->rx_stats.fixup_copy_count,
717 r_xprt->rx_stats.hardway_register_count,
718 r_xprt->rx_stats.failed_marshal_count,
719 r_xprt->rx_stats.bad_reply_count);
720 }
721
722 /*
723 * Plumbing for rpc transport switch and kernel module
724 */
725
726 static struct rpc_xprt_ops xprt_rdma_procs = {
727 .reserve_xprt = xprt_rdma_reserve_xprt,
728 .release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */
729 .release_request = xprt_release_rqst_cong, /* ditto */
730 .set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */
731 .rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */
732 .set_port = xprt_rdma_set_port,
733 .connect = xprt_rdma_connect,
734 .buf_alloc = xprt_rdma_allocate,
735 .buf_free = xprt_rdma_free,
736 .send_request = xprt_rdma_send_request,
737 .close = xprt_rdma_close,
738 .destroy = xprt_rdma_destroy,
739 .print_stats = xprt_rdma_print_stats
740 };
741
742 static struct xprt_class xprt_rdma = {
743 .list = LIST_HEAD_INIT(xprt_rdma.list),
744 .name = "rdma",
745 .owner = THIS_MODULE,
746 .ident = XPRT_TRANSPORT_RDMA,
747 .setup = xprt_setup_rdma,
748 };
749
750 static void __exit xprt_rdma_cleanup(void)
751 {
752 int rc;
753
754 dprintk(KERN_INFO "RPCRDMA Module Removed, deregister RPC RDMA transport\n");
755 #ifdef RPC_DEBUG
756 if (sunrpc_table_header) {
757 unregister_sysctl_table(sunrpc_table_header);
758 sunrpc_table_header = NULL;
759 }
760 #endif
761 rc = xprt_unregister_transport(&xprt_rdma);
762 if (rc)
763 dprintk("RPC: %s: xprt_unregister returned %i\n",
764 __func__, rc);
765 }
766
767 static int __init xprt_rdma_init(void)
768 {
769 int rc;
770
771 rc = xprt_register_transport(&xprt_rdma);
772
773 if (rc)
774 return rc;
775
776 dprintk(KERN_INFO "RPCRDMA Module Init, register RPC RDMA transport\n");
777
778 dprintk(KERN_INFO "Defaults:\n");
779 dprintk(KERN_INFO "\tSlots %d\n"
780 "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
781 xprt_rdma_slot_table_entries,
782 xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
783 dprintk(KERN_INFO "\tPadding %d\n\tMemreg %d\n",
784 xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy);
785
786 #ifdef RPC_DEBUG
787 if (!sunrpc_table_header)
788 sunrpc_table_header = register_sysctl_table(sunrpc_table);
789 #endif
790 return 0;
791 }
792
793 module_init(xprt_rdma_init);
794 module_exit(xprt_rdma_cleanup);