]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/sunrpc/xprtrdma/transport.c
alpha: osf_sys.c: use timespec64 where appropriate
[mirror_ubuntu-jammy-kernel.git] / net / sunrpc / xprtrdma / transport.c
1 /*
2 * Copyright (c) 2014-2017 Oracle. All rights reserved.
3 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the BSD-type
9 * license below:
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 *
15 * Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 *
18 * Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials provided
21 * with the distribution.
22 *
23 * Neither the name of the Network Appliance, Inc. nor the names of
24 * its contributors may be used to endorse or promote products
25 * derived from this software without specific prior written
26 * permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*
42 * transport.c
43 *
44 * This file contains the top-level implementation of an RPC RDMA
45 * transport.
46 *
47 * Naming convention: functions beginning with xprt_ are part of the
48 * transport switch. All others are RPC RDMA internal.
49 */
50
51 #include <linux/module.h>
52 #include <linux/slab.h>
53 #include <linux/seq_file.h>
54 #include <linux/sunrpc/addr.h>
55
56 #include "xprt_rdma.h"
57
58 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
59 # define RPCDBG_FACILITY RPCDBG_TRANS
60 #endif
61
62 /*
63 * tunables
64 */
65
66 static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
67 unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
68 static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
69 static unsigned int xprt_rdma_inline_write_padding;
70 unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR;
71 int xprt_rdma_pad_optimize;
72
73 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
74
75 static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
76 static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
77 static unsigned int min_inline_size = RPCRDMA_MIN_INLINE;
78 static unsigned int max_inline_size = RPCRDMA_MAX_INLINE;
79 static unsigned int zero;
80 static unsigned int max_padding = PAGE_SIZE;
81 static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
82 static unsigned int max_memreg = RPCRDMA_LAST - 1;
83
84 static struct ctl_table_header *sunrpc_table_header;
85
86 static struct ctl_table xr_tunables_table[] = {
87 {
88 .procname = "rdma_slot_table_entries",
89 .data = &xprt_rdma_slot_table_entries,
90 .maxlen = sizeof(unsigned int),
91 .mode = 0644,
92 .proc_handler = proc_dointvec_minmax,
93 .extra1 = &min_slot_table_size,
94 .extra2 = &max_slot_table_size
95 },
96 {
97 .procname = "rdma_max_inline_read",
98 .data = &xprt_rdma_max_inline_read,
99 .maxlen = sizeof(unsigned int),
100 .mode = 0644,
101 .proc_handler = proc_dointvec_minmax,
102 .extra1 = &min_inline_size,
103 .extra2 = &max_inline_size,
104 },
105 {
106 .procname = "rdma_max_inline_write",
107 .data = &xprt_rdma_max_inline_write,
108 .maxlen = sizeof(unsigned int),
109 .mode = 0644,
110 .proc_handler = proc_dointvec_minmax,
111 .extra1 = &min_inline_size,
112 .extra2 = &max_inline_size,
113 },
114 {
115 .procname = "rdma_inline_write_padding",
116 .data = &xprt_rdma_inline_write_padding,
117 .maxlen = sizeof(unsigned int),
118 .mode = 0644,
119 .proc_handler = proc_dointvec_minmax,
120 .extra1 = &zero,
121 .extra2 = &max_padding,
122 },
123 {
124 .procname = "rdma_memreg_strategy",
125 .data = &xprt_rdma_memreg_strategy,
126 .maxlen = sizeof(unsigned int),
127 .mode = 0644,
128 .proc_handler = proc_dointvec_minmax,
129 .extra1 = &min_memreg,
130 .extra2 = &max_memreg,
131 },
132 {
133 .procname = "rdma_pad_optimize",
134 .data = &xprt_rdma_pad_optimize,
135 .maxlen = sizeof(unsigned int),
136 .mode = 0644,
137 .proc_handler = proc_dointvec,
138 },
139 { },
140 };
141
142 static struct ctl_table sunrpc_table[] = {
143 {
144 .procname = "sunrpc",
145 .mode = 0555,
146 .child = xr_tunables_table
147 },
148 { },
149 };
150
151 #endif
152
153 static const struct rpc_xprt_ops xprt_rdma_procs;
154
155 static void
156 xprt_rdma_format_addresses4(struct rpc_xprt *xprt, struct sockaddr *sap)
157 {
158 struct sockaddr_in *sin = (struct sockaddr_in *)sap;
159 char buf[20];
160
161 snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr));
162 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
163
164 xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA;
165 }
166
167 static void
168 xprt_rdma_format_addresses6(struct rpc_xprt *xprt, struct sockaddr *sap)
169 {
170 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sap;
171 char buf[40];
172
173 snprintf(buf, sizeof(buf), "%pi6", &sin6->sin6_addr);
174 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
175
176 xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA6;
177 }
178
179 void
180 xprt_rdma_format_addresses(struct rpc_xprt *xprt, struct sockaddr *sap)
181 {
182 char buf[128];
183
184 switch (sap->sa_family) {
185 case AF_INET:
186 xprt_rdma_format_addresses4(xprt, sap);
187 break;
188 case AF_INET6:
189 xprt_rdma_format_addresses6(xprt, sap);
190 break;
191 default:
192 pr_err("rpcrdma: Unrecognized address family\n");
193 return;
194 }
195
196 (void)rpc_ntop(sap, buf, sizeof(buf));
197 xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL);
198
199 snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap));
200 xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
201
202 snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap));
203 xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
204
205 xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
206 }
207
208 void
209 xprt_rdma_free_addresses(struct rpc_xprt *xprt)
210 {
211 unsigned int i;
212
213 for (i = 0; i < RPC_DISPLAY_MAX; i++)
214 switch (i) {
215 case RPC_DISPLAY_PROTO:
216 case RPC_DISPLAY_NETID:
217 continue;
218 default:
219 kfree(xprt->address_strings[i]);
220 }
221 }
222
223 void
224 rpcrdma_conn_func(struct rpcrdma_ep *ep)
225 {
226 schedule_delayed_work(&ep->rep_connect_worker, 0);
227 }
228
229 void
230 rpcrdma_connect_worker(struct work_struct *work)
231 {
232 struct rpcrdma_ep *ep =
233 container_of(work, struct rpcrdma_ep, rep_connect_worker.work);
234 struct rpcrdma_xprt *r_xprt =
235 container_of(ep, struct rpcrdma_xprt, rx_ep);
236 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
237
238 spin_lock_bh(&xprt->transport_lock);
239 if (++xprt->connect_cookie == 0) /* maintain a reserved value */
240 ++xprt->connect_cookie;
241 if (ep->rep_connected > 0) {
242 if (!xprt_test_and_set_connected(xprt))
243 xprt_wake_pending_tasks(xprt, 0);
244 } else {
245 if (xprt_test_and_clear_connected(xprt))
246 xprt_wake_pending_tasks(xprt, -ENOTCONN);
247 }
248 spin_unlock_bh(&xprt->transport_lock);
249 }
250
251 static void
252 xprt_rdma_connect_worker(struct work_struct *work)
253 {
254 struct rpcrdma_xprt *r_xprt = container_of(work, struct rpcrdma_xprt,
255 rx_connect_worker.work);
256 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
257 int rc = 0;
258
259 xprt_clear_connected(xprt);
260
261 dprintk("RPC: %s: %sconnect\n", __func__,
262 r_xprt->rx_ep.rep_connected != 0 ? "re" : "");
263 rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
264 if (rc)
265 xprt_wake_pending_tasks(xprt, rc);
266
267 dprintk("RPC: %s: exit\n", __func__);
268 xprt_clear_connecting(xprt);
269 }
270
271 static void
272 xprt_rdma_inject_disconnect(struct rpc_xprt *xprt)
273 {
274 struct rpcrdma_xprt *r_xprt = container_of(xprt, struct rpcrdma_xprt,
275 rx_xprt);
276
277 pr_info("rpcrdma: injecting transport disconnect on xprt=%p\n", xprt);
278 rdma_disconnect(r_xprt->rx_ia.ri_id);
279 }
280
281 /*
282 * xprt_rdma_destroy
283 *
284 * Destroy the xprt.
285 * Free all memory associated with the object, including its own.
286 * NOTE: none of the *destroy methods free memory for their top-level
287 * objects, even though they may have allocated it (they do free
288 * private memory). It's up to the caller to handle it. In this
289 * case (RDMA transport), all structure memory is inlined with the
290 * struct rpcrdma_xprt.
291 */
292 static void
293 xprt_rdma_destroy(struct rpc_xprt *xprt)
294 {
295 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
296
297 dprintk("RPC: %s: called\n", __func__);
298
299 cancel_delayed_work_sync(&r_xprt->rx_connect_worker);
300
301 xprt_clear_connected(xprt);
302
303 rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
304 rpcrdma_buffer_destroy(&r_xprt->rx_buf);
305 rpcrdma_ia_close(&r_xprt->rx_ia);
306
307 xprt_rdma_free_addresses(xprt);
308
309 xprt_free(xprt);
310
311 dprintk("RPC: %s: returning\n", __func__);
312
313 module_put(THIS_MODULE);
314 }
315
316 static const struct rpc_timeout xprt_rdma_default_timeout = {
317 .to_initval = 60 * HZ,
318 .to_maxval = 60 * HZ,
319 };
320
321 /**
322 * xprt_setup_rdma - Set up transport to use RDMA
323 *
324 * @args: rpc transport arguments
325 */
326 static struct rpc_xprt *
327 xprt_setup_rdma(struct xprt_create *args)
328 {
329 struct rpcrdma_create_data_internal cdata;
330 struct rpc_xprt *xprt;
331 struct rpcrdma_xprt *new_xprt;
332 struct rpcrdma_ep *new_ep;
333 struct sockaddr *sap;
334 int rc;
335
336 if (args->addrlen > sizeof(xprt->addr)) {
337 dprintk("RPC: %s: address too large\n", __func__);
338 return ERR_PTR(-EBADF);
339 }
340
341 xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt),
342 xprt_rdma_slot_table_entries,
343 xprt_rdma_slot_table_entries);
344 if (xprt == NULL) {
345 dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n",
346 __func__);
347 return ERR_PTR(-ENOMEM);
348 }
349
350 /* 60 second timeout, no retries */
351 xprt->timeout = &xprt_rdma_default_timeout;
352 xprt->bind_timeout = RPCRDMA_BIND_TO;
353 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
354 xprt->idle_timeout = RPCRDMA_IDLE_DISC_TO;
355
356 xprt->resvport = 0; /* privileged port not needed */
357 xprt->tsh_size = 0; /* RPC-RDMA handles framing */
358 xprt->ops = &xprt_rdma_procs;
359
360 /*
361 * Set up RDMA-specific connect data.
362 */
363
364 sap = (struct sockaddr *)&cdata.addr;
365 memcpy(sap, args->dstaddr, args->addrlen);
366
367 /* Ensure xprt->addr holds valid server TCP (not RDMA)
368 * address, for any side protocols which peek at it */
369 xprt->prot = IPPROTO_TCP;
370 xprt->addrlen = args->addrlen;
371 memcpy(&xprt->addr, sap, xprt->addrlen);
372
373 if (rpc_get_port(sap))
374 xprt_set_bound(xprt);
375
376 cdata.max_requests = xprt->max_reqs;
377
378 cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
379 cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */
380
381 cdata.inline_wsize = xprt_rdma_max_inline_write;
382 if (cdata.inline_wsize > cdata.wsize)
383 cdata.inline_wsize = cdata.wsize;
384
385 cdata.inline_rsize = xprt_rdma_max_inline_read;
386 if (cdata.inline_rsize > cdata.rsize)
387 cdata.inline_rsize = cdata.rsize;
388
389 cdata.padding = xprt_rdma_inline_write_padding;
390
391 /*
392 * Create new transport instance, which includes initialized
393 * o ia
394 * o endpoint
395 * o buffers
396 */
397
398 new_xprt = rpcx_to_rdmax(xprt);
399
400 rc = rpcrdma_ia_open(new_xprt, sap);
401 if (rc)
402 goto out1;
403
404 /*
405 * initialize and create ep
406 */
407 new_xprt->rx_data = cdata;
408 new_ep = &new_xprt->rx_ep;
409 new_ep->rep_remote_addr = cdata.addr;
410
411 rc = rpcrdma_ep_create(&new_xprt->rx_ep,
412 &new_xprt->rx_ia, &new_xprt->rx_data);
413 if (rc)
414 goto out2;
415
416 /*
417 * Allocate pre-registered send and receive buffers for headers and
418 * any inline data. Also specify any padding which will be provided
419 * from a preregistered zero buffer.
420 */
421 rc = rpcrdma_buffer_create(new_xprt);
422 if (rc)
423 goto out3;
424
425 /*
426 * Register a callback for connection events. This is necessary because
427 * connection loss notification is async. We also catch connection loss
428 * when reaping receives.
429 */
430 INIT_DELAYED_WORK(&new_xprt->rx_connect_worker,
431 xprt_rdma_connect_worker);
432
433 xprt_rdma_format_addresses(xprt, sap);
434 xprt->max_payload = new_xprt->rx_ia.ri_ops->ro_maxpages(new_xprt);
435 if (xprt->max_payload == 0)
436 goto out4;
437 xprt->max_payload <<= PAGE_SHIFT;
438 dprintk("RPC: %s: transport data payload maximum: %zu bytes\n",
439 __func__, xprt->max_payload);
440
441 if (!try_module_get(THIS_MODULE))
442 goto out4;
443
444 dprintk("RPC: %s: %s:%s\n", __func__,
445 xprt->address_strings[RPC_DISPLAY_ADDR],
446 xprt->address_strings[RPC_DISPLAY_PORT]);
447 return xprt;
448
449 out4:
450 xprt_rdma_free_addresses(xprt);
451 rc = -EINVAL;
452 out3:
453 rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
454 out2:
455 rpcrdma_ia_close(&new_xprt->rx_ia);
456 out1:
457 xprt_free(xprt);
458 return ERR_PTR(rc);
459 }
460
461 /**
462 * xprt_rdma_close - Close down RDMA connection
463 * @xprt: generic transport to be closed
464 *
465 * Called during transport shutdown reconnect, or device
466 * removal. Caller holds the transport's write lock.
467 */
468 static void
469 xprt_rdma_close(struct rpc_xprt *xprt)
470 {
471 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
472 struct rpcrdma_ep *ep = &r_xprt->rx_ep;
473 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
474
475 dprintk("RPC: %s: closing xprt %p\n", __func__, xprt);
476
477 if (test_and_clear_bit(RPCRDMA_IAF_REMOVING, &ia->ri_flags)) {
478 xprt_clear_connected(xprt);
479 rpcrdma_ia_remove(ia);
480 return;
481 }
482 if (ep->rep_connected == -ENODEV)
483 return;
484 if (ep->rep_connected > 0)
485 xprt->reestablish_timeout = 0;
486 xprt_disconnect_done(xprt);
487 rpcrdma_ep_disconnect(ep, ia);
488 }
489
490 static void
491 xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
492 {
493 struct sockaddr_in *sap;
494
495 sap = (struct sockaddr_in *)&xprt->addr;
496 sap->sin_port = htons(port);
497 sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr;
498 sap->sin_port = htons(port);
499 dprintk("RPC: %s: %u\n", __func__, port);
500 }
501
502 /**
503 * xprt_rdma_timer - invoked when an RPC times out
504 * @xprt: controlling RPC transport
505 * @task: RPC task that timed out
506 *
507 * Invoked when the transport is still connected, but an RPC
508 * retransmit timeout occurs.
509 *
510 * Since RDMA connections don't have a keep-alive, forcibly
511 * disconnect and retry to connect. This drives full
512 * detection of the network path, and retransmissions of
513 * all pending RPCs.
514 */
515 static void
516 xprt_rdma_timer(struct rpc_xprt *xprt, struct rpc_task *task)
517 {
518 dprintk("RPC: %5u %s: xprt = %p\n", task->tk_pid, __func__, xprt);
519
520 xprt_force_disconnect(xprt);
521 }
522
523 static void
524 xprt_rdma_connect(struct rpc_xprt *xprt, struct rpc_task *task)
525 {
526 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
527
528 if (r_xprt->rx_ep.rep_connected != 0) {
529 /* Reconnect */
530 schedule_delayed_work(&r_xprt->rx_connect_worker,
531 xprt->reestablish_timeout);
532 xprt->reestablish_timeout <<= 1;
533 if (xprt->reestablish_timeout > RPCRDMA_MAX_REEST_TO)
534 xprt->reestablish_timeout = RPCRDMA_MAX_REEST_TO;
535 else if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
536 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
537 } else {
538 schedule_delayed_work(&r_xprt->rx_connect_worker, 0);
539 if (!RPC_IS_ASYNC(task))
540 flush_delayed_work(&r_xprt->rx_connect_worker);
541 }
542 }
543
544 /* Allocate a fixed-size buffer in which to construct and send the
545 * RPC-over-RDMA header for this request.
546 */
547 static bool
548 rpcrdma_get_rdmabuf(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
549 gfp_t flags)
550 {
551 size_t size = RPCRDMA_HDRBUF_SIZE;
552 struct rpcrdma_regbuf *rb;
553
554 if (req->rl_rdmabuf)
555 return true;
556
557 rb = rpcrdma_alloc_regbuf(size, DMA_TO_DEVICE, flags);
558 if (IS_ERR(rb))
559 return false;
560
561 r_xprt->rx_stats.hardway_register_count += size;
562 req->rl_rdmabuf = rb;
563 xdr_buf_init(&req->rl_hdrbuf, rb->rg_base, rdmab_length(rb));
564 return true;
565 }
566
567 static bool
568 rpcrdma_get_sendbuf(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
569 size_t size, gfp_t flags)
570 {
571 struct rpcrdma_regbuf *rb;
572
573 if (req->rl_sendbuf && rdmab_length(req->rl_sendbuf) >= size)
574 return true;
575
576 rb = rpcrdma_alloc_regbuf(size, DMA_TO_DEVICE, flags);
577 if (IS_ERR(rb))
578 return false;
579
580 rpcrdma_free_regbuf(req->rl_sendbuf);
581 r_xprt->rx_stats.hardway_register_count += size;
582 req->rl_sendbuf = rb;
583 return true;
584 }
585
586 /* The rq_rcv_buf is used only if a Reply chunk is necessary.
587 * The decision to use a Reply chunk is made later in
588 * rpcrdma_marshal_req. This buffer is registered at that time.
589 *
590 * Otherwise, the associated RPC Reply arrives in a separate
591 * Receive buffer, arbitrarily chosen by the HCA. The buffer
592 * allocated here for the RPC Reply is not utilized in that
593 * case. See rpcrdma_inline_fixup.
594 *
595 * A regbuf is used here to remember the buffer size.
596 */
597 static bool
598 rpcrdma_get_recvbuf(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
599 size_t size, gfp_t flags)
600 {
601 struct rpcrdma_regbuf *rb;
602
603 if (req->rl_recvbuf && rdmab_length(req->rl_recvbuf) >= size)
604 return true;
605
606 rb = rpcrdma_alloc_regbuf(size, DMA_NONE, flags);
607 if (IS_ERR(rb))
608 return false;
609
610 rpcrdma_free_regbuf(req->rl_recvbuf);
611 r_xprt->rx_stats.hardway_register_count += size;
612 req->rl_recvbuf = rb;
613 return true;
614 }
615
616 /**
617 * xprt_rdma_allocate - allocate transport resources for an RPC
618 * @task: RPC task
619 *
620 * Return values:
621 * 0: Success; rq_buffer points to RPC buffer to use
622 * ENOMEM: Out of memory, call again later
623 * EIO: A permanent error occurred, do not retry
624 *
625 * The RDMA allocate/free functions need the task structure as a place
626 * to hide the struct rpcrdma_req, which is necessary for the actual
627 * send/recv sequence.
628 *
629 * xprt_rdma_allocate provides buffers that are already mapped for
630 * DMA, and a local DMA lkey is provided for each.
631 */
632 static int
633 xprt_rdma_allocate(struct rpc_task *task)
634 {
635 struct rpc_rqst *rqst = task->tk_rqstp;
636 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
637 struct rpcrdma_req *req;
638 gfp_t flags;
639
640 req = rpcrdma_buffer_get(&r_xprt->rx_buf);
641 if (req == NULL)
642 return -ENOMEM;
643
644 flags = RPCRDMA_DEF_GFP;
645 if (RPC_IS_SWAPPER(task))
646 flags = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
647
648 if (!rpcrdma_get_rdmabuf(r_xprt, req, flags))
649 goto out_fail;
650 if (!rpcrdma_get_sendbuf(r_xprt, req, rqst->rq_callsize, flags))
651 goto out_fail;
652 if (!rpcrdma_get_recvbuf(r_xprt, req, rqst->rq_rcvsize, flags))
653 goto out_fail;
654
655 dprintk("RPC: %5u %s: send size = %zd, recv size = %zd, req = %p\n",
656 task->tk_pid, __func__, rqst->rq_callsize,
657 rqst->rq_rcvsize, req);
658
659 req->rl_connect_cookie = 0; /* our reserved value */
660 rpcrdma_set_xprtdata(rqst, req);
661 rqst->rq_buffer = req->rl_sendbuf->rg_base;
662 rqst->rq_rbuffer = req->rl_recvbuf->rg_base;
663 return 0;
664
665 out_fail:
666 rpcrdma_buffer_put(req);
667 return -ENOMEM;
668 }
669
670 /**
671 * xprt_rdma_free - release resources allocated by xprt_rdma_allocate
672 * @task: RPC task
673 *
674 * Caller guarantees rqst->rq_buffer is non-NULL.
675 */
676 static void
677 xprt_rdma_free(struct rpc_task *task)
678 {
679 struct rpc_rqst *rqst = task->tk_rqstp;
680 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
681 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
682
683 if (test_bit(RPCRDMA_REQ_F_BACKCHANNEL, &req->rl_flags))
684 return;
685
686 dprintk("RPC: %s: called on 0x%p\n", __func__, req->rl_reply);
687
688 if (test_bit(RPCRDMA_REQ_F_PENDING, &req->rl_flags))
689 rpcrdma_release_rqst(r_xprt, req);
690 rpcrdma_buffer_put(req);
691 }
692
693 /**
694 * xprt_rdma_send_request - marshal and send an RPC request
695 * @task: RPC task with an RPC message in rq_snd_buf
696 *
697 * Caller holds the transport's write lock.
698 *
699 * Return values:
700 * 0: The request has been sent
701 * ENOTCONN: Caller needs to invoke connect logic then call again
702 * ENOBUFS: Call again later to send the request
703 * EIO: A permanent error occurred. The request was not sent,
704 * and don't try it again
705 *
706 * send_request invokes the meat of RPC RDMA. It must do the following:
707 *
708 * 1. Marshal the RPC request into an RPC RDMA request, which means
709 * putting a header in front of data, and creating IOVs for RDMA
710 * from those in the request.
711 * 2. In marshaling, detect opportunities for RDMA, and use them.
712 * 3. Post a recv message to set up asynch completion, then send
713 * the request (rpcrdma_ep_post).
714 * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP).
715 */
716 static int
717 xprt_rdma_send_request(struct rpc_task *task)
718 {
719 struct rpc_rqst *rqst = task->tk_rqstp;
720 struct rpc_xprt *xprt = rqst->rq_xprt;
721 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
722 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
723 int rc = 0;
724
725 if (!xprt_connected(xprt))
726 goto drop_connection;
727
728 /* On retransmit, remove any previously registered chunks */
729 if (unlikely(!list_empty(&req->rl_registered)))
730 r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt,
731 &req->rl_registered);
732
733 rc = rpcrdma_marshal_req(r_xprt, rqst);
734 if (rc < 0)
735 goto failed_marshal;
736
737 if (req->rl_reply == NULL) /* e.g. reconnection */
738 rpcrdma_recv_buffer_get(req);
739
740 /* Must suppress retransmit to maintain credits */
741 if (req->rl_connect_cookie == xprt->connect_cookie)
742 goto drop_connection;
743 req->rl_connect_cookie = xprt->connect_cookie;
744
745 set_bit(RPCRDMA_REQ_F_PENDING, &req->rl_flags);
746 if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req))
747 goto drop_connection;
748
749 rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len;
750 rqst->rq_bytes_sent = 0;
751 return 0;
752
753 failed_marshal:
754 if (rc != -ENOTCONN)
755 return rc;
756 drop_connection:
757 xprt_disconnect_done(xprt);
758 return -ENOTCONN; /* implies disconnect */
759 }
760
761 void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
762 {
763 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
764 long idle_time = 0;
765
766 if (xprt_connected(xprt))
767 idle_time = (long)(jiffies - xprt->last_used) / HZ;
768
769 seq_puts(seq, "\txprt:\trdma ");
770 seq_printf(seq, "%u %lu %lu %lu %ld %lu %lu %lu %llu %llu ",
771 0, /* need a local port? */
772 xprt->stat.bind_count,
773 xprt->stat.connect_count,
774 xprt->stat.connect_time,
775 idle_time,
776 xprt->stat.sends,
777 xprt->stat.recvs,
778 xprt->stat.bad_xids,
779 xprt->stat.req_u,
780 xprt->stat.bklog_u);
781 seq_printf(seq, "%lu %lu %lu %llu %llu %llu %llu %lu %lu %lu %lu ",
782 r_xprt->rx_stats.read_chunk_count,
783 r_xprt->rx_stats.write_chunk_count,
784 r_xprt->rx_stats.reply_chunk_count,
785 r_xprt->rx_stats.total_rdma_request,
786 r_xprt->rx_stats.total_rdma_reply,
787 r_xprt->rx_stats.pullup_copy_count,
788 r_xprt->rx_stats.fixup_copy_count,
789 r_xprt->rx_stats.hardway_register_count,
790 r_xprt->rx_stats.failed_marshal_count,
791 r_xprt->rx_stats.bad_reply_count,
792 r_xprt->rx_stats.nomsg_call_count);
793 seq_printf(seq, "%lu %lu %lu %lu %lu %lu\n",
794 r_xprt->rx_stats.mrs_recovered,
795 r_xprt->rx_stats.mrs_orphaned,
796 r_xprt->rx_stats.mrs_allocated,
797 r_xprt->rx_stats.local_inv_needed,
798 r_xprt->rx_stats.empty_sendctx_q,
799 r_xprt->rx_stats.reply_waits_for_send);
800 }
801
802 static int
803 xprt_rdma_enable_swap(struct rpc_xprt *xprt)
804 {
805 return 0;
806 }
807
808 static void
809 xprt_rdma_disable_swap(struct rpc_xprt *xprt)
810 {
811 }
812
813 /*
814 * Plumbing for rpc transport switch and kernel module
815 */
816
817 static const struct rpc_xprt_ops xprt_rdma_procs = {
818 .reserve_xprt = xprt_reserve_xprt_cong,
819 .release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */
820 .alloc_slot = xprt_alloc_slot,
821 .release_request = xprt_release_rqst_cong, /* ditto */
822 .set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */
823 .timer = xprt_rdma_timer,
824 .rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */
825 .set_port = xprt_rdma_set_port,
826 .connect = xprt_rdma_connect,
827 .buf_alloc = xprt_rdma_allocate,
828 .buf_free = xprt_rdma_free,
829 .send_request = xprt_rdma_send_request,
830 .close = xprt_rdma_close,
831 .destroy = xprt_rdma_destroy,
832 .print_stats = xprt_rdma_print_stats,
833 .enable_swap = xprt_rdma_enable_swap,
834 .disable_swap = xprt_rdma_disable_swap,
835 .inject_disconnect = xprt_rdma_inject_disconnect,
836 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
837 .bc_setup = xprt_rdma_bc_setup,
838 .bc_up = xprt_rdma_bc_up,
839 .bc_maxpayload = xprt_rdma_bc_maxpayload,
840 .bc_free_rqst = xprt_rdma_bc_free_rqst,
841 .bc_destroy = xprt_rdma_bc_destroy,
842 #endif
843 };
844
845 static struct xprt_class xprt_rdma = {
846 .list = LIST_HEAD_INIT(xprt_rdma.list),
847 .name = "rdma",
848 .owner = THIS_MODULE,
849 .ident = XPRT_TRANSPORT_RDMA,
850 .setup = xprt_setup_rdma,
851 };
852
853 void xprt_rdma_cleanup(void)
854 {
855 int rc;
856
857 dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n");
858 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
859 if (sunrpc_table_header) {
860 unregister_sysctl_table(sunrpc_table_header);
861 sunrpc_table_header = NULL;
862 }
863 #endif
864 rc = xprt_unregister_transport(&xprt_rdma);
865 if (rc)
866 dprintk("RPC: %s: xprt_unregister returned %i\n",
867 __func__, rc);
868
869 rpcrdma_destroy_wq();
870
871 rc = xprt_unregister_transport(&xprt_rdma_bc);
872 if (rc)
873 dprintk("RPC: %s: xprt_unregister(bc) returned %i\n",
874 __func__, rc);
875 }
876
877 int xprt_rdma_init(void)
878 {
879 int rc;
880
881 rc = rpcrdma_alloc_wq();
882 if (rc)
883 return rc;
884
885 rc = xprt_register_transport(&xprt_rdma);
886 if (rc) {
887 rpcrdma_destroy_wq();
888 return rc;
889 }
890
891 rc = xprt_register_transport(&xprt_rdma_bc);
892 if (rc) {
893 xprt_unregister_transport(&xprt_rdma);
894 rpcrdma_destroy_wq();
895 return rc;
896 }
897
898 dprintk("RPCRDMA Module Init, register RPC RDMA transport\n");
899
900 dprintk("Defaults:\n");
901 dprintk("\tSlots %d\n"
902 "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
903 xprt_rdma_slot_table_entries,
904 xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
905 dprintk("\tPadding %d\n\tMemreg %d\n",
906 xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy);
907
908 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
909 if (!sunrpc_table_header)
910 sunrpc_table_header = register_sysctl_table(sunrpc_table);
911 #endif
912 return 0;
913 }